JP2005065725A - Hollow fiber blood purifying membrane - Google Patents

Hollow fiber blood purifying membrane Download PDF

Info

Publication number
JP2005065725A
JP2005065725A JP2003208484A JP2003208484A JP2005065725A JP 2005065725 A JP2005065725 A JP 2005065725A JP 2003208484 A JP2003208484 A JP 2003208484A JP 2003208484 A JP2003208484 A JP 2003208484A JP 2005065725 A JP2005065725 A JP 2005065725A
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
blood purification
spinning
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003208484A
Other languages
Japanese (ja)
Other versions
JP4093134B2 (en
Inventor
Noriaki Kato
典昭 加藤
Yoshihito Sagara
誉仁 相良
Hideyuki Yokota
英之 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003208484A priority Critical patent/JP4093134B2/en
Priority to PCT/JP2004/011972 priority patent/WO2005025649A1/en
Publication of JP2005065725A publication Critical patent/JP2005065725A/en
Application granted granted Critical
Publication of JP4093134B2 publication Critical patent/JP4093134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that no manufacturing method for developing characteristics sufficient to use in a clinical treatment is found since a blood purifying membrane, which mainly comprises aromatic polymers and is formed of a substantially uniform structure, shows an insufficient stability in hemofiltration. <P>SOLUTION: When a hollow fiber blood purifying membrane comprising aromatic hydrophobic polymers as a principal component is formed by a dry and wet spinning method, a spinning yarn stock solution in which reduced viscosity A of the hydrophobic polymers and a weight fraction B of the hydrophobic polymers in the spinning yarn stock solution satisfy inequalities, 0.36 ≤ A ≤ 0.78, 0.28 ≤ B ≤ 0.50, and 0.13 ≤ A×B ≤ 0.25, is used. The spinning yarn stock solution discharged from a spinning nozzle into air is guided to a coagulation bath, and the hollow fiber blood purifying membrane immersed in the coagulation bath is drawn at least 5% but no more than 30%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術】
本発明は、血液透析、血液濾過、血液濾過透析などの血液浄化療法に用いられる血液浄化膜の製造に関するものである。特に膜強度が強く、膜からの溶出物が少なく安全性に優れ、かつ安定な血液成分の選択分離性能の維持できる均一膜構造型の血液浄化用中空糸膜を提供するものである。
【0002】
【従来の技術】
血液浄化用中空糸膜は、その膜構造の特徴により大きく2種類に分類される。
一つは膜全体がほぼ均等な孔径からなり、電子顕微鏡などでの観察によっても明瞭な多孔質構造を持たない均一膜であり、もう一方は膜の表面部、特に血液と接触する面に緻密層を有し、他の部分が明瞭な多孔質あるいは巨大空洞部からなる非対称膜である。前者の均一膜は、膜全体で分離活性および膜の機械強度を担うのに対して、非対称膜は、緻密層を主体としての分離活性を持ち、他の部分(支持層)が膜の機械強度を担う。
【0003】
均一構造の血液浄化膜としての利点は、膜の厚みが薄くても強度を保持できることから、膜の厚みを薄くし、溶質の膜透過抵抗を低減させることができ、かつ血液浄化器の大きさをコンパクトにすることが可能である。また膜厚部全体で、分離活性を担うため、血液透析で懸念される透析液側からの汚染物質(細菌や発熱性物質など)の血液への侵入(逆拡散、逆濾過)の危険性が低減される。
【0004】
一方、非対称膜は、膜の血液接触面の緻密層を主体として物質分離をおこなうため、膜を溶質が透過する際の摩擦抵抗は低く、濾過特性に優れる。しかしながら膜の構造保持のために、厚い支持層が必要となり透析器は大きくなり、また透析液側の孔径は極めて大きなものとなり透析液から血液中への汚染物質の浸入の危険性が高い。
【0005】
従来技術において、血液透析膜に使用される膜素材とその構造においては、以下のように分類される。均一膜は、セルロース、酢酸セルロース、ポリメチルメタクリレート、エチレン−ピニルアルコール共重合体などのセルロース系、ビニル系素材からなり、非対称膜では、ポリスルホン系ポリマーと親水性ポリマーのブレンド、芳香族ポリアミドなどの芳香族系高分子が主体となっている。一部では、セルロース系高分子での非対称膜化(例えば、特許文献1、2参照)、ポリスルホン系高分子での均一膜化(例えば、特許文献3、4、5参照)などの技術も開示されているが、必ずしも血液浄化膜としての性能、安全性、生産性を十分に達成しているものではない。
【0006】
また、製造方法と膜構造の関係は、主に中空糸を製造する際の、凝固液の接触過程との関係に左右される。高分子溶液からなる紡糸原液は、凝固液との接触により、溶液中の高分子成分と溶媒成分の相分離、それに続く高分子成分のゲル化、析出により膜が形成される。すなわち紡糸原液をノズルより吐出し、膜形成を行わせるための凝固のプロセスの違いも膜構造を決める要因となる。均一膜では、中空形成時の芯液として非凝固性のものを用い、中空糸を凝固浴に吐出し、外表部からの凝固により膜を形成させる。このプロセスでは、外表部の凝固に始まり膜内表部に至る膜形成をコントロールする技術となる。一方、非対称膜は中空糸の芯液に凝固性の液体を用いる事により、積極的に膜内表部の膜構造をコントロールする。
【0007】
従来技術においては、上記素材と膜の形成方法の適性を勘案した最適な組合せでの膜製造が行われている。前述の先行技術にみられる組合せの再検討は、膜素材の持つ生体適合性と膜構造に基づく性能特性により、幅広い市場の要求と臨床効果に応えるための発明である。本願発明は、均一膜においての芳香族系の疎水性高分子からなる血液浄化膜の改良を実現している。
【0008】
膜の分離性能の観点から均一膜、非対称膜を比較すると、均一膜は非対称膜に比べ分離活性の実質的な膜厚部が厚くなり、膜中の拡散抵抗および溶質と膜との接触頻度が上昇し透過性能の低下を起こしやすい。これは、均一膜の膜厚部への溶出の堆積、目詰まりによるものである。均一膜においてこの性能の経時劣化を防ぐ観点から、膜厚部に血液中のアルブミン、グロブリンなどのタンパク成分の侵入を防ぐことと、タンパクの吸着による目詰まりを防ぐことの2点が必要である。中空糸型の血液浄化膜においては、中空糸の内面部が血液と接する部分であり、膜構造上の上記課題においては特に考慮すべき点となる。
【0009】
芳香族系高分子の均一膜においては、その疎水性特性によりタンパク吸着が多いことが問題となる。従来技術(例えば、特許文献4、5参照)からなる膜では、タンパク吸着量が、セルロース系均一膜に比して高い。これは、膜の均一性が十分とは言えず、膜の内表部の細孔がアルブミンの十分な侵入を阻止することが出来ていないこと、親水性高分子の含有がなされてはいるが、親水化に不十分であり膜の疎水特性が強いことによると考えられる。
【0010】
【特許文献1】
特許第3253867号
【特許文献2】
特許第3253885号
【特許文献3】
特開昭59−112027号
【特許文献4】
特開平9−220455号
【特許文献5】
特開2000−42383号
【0011】
【本発明が解決しようとする課題】
本発明は、芳香族系高分子を主要成分とし、実質的に均一構造からなる安全性、血液濾過時の安定性に優れた中空糸型血液浄化膜の製造方法を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明者は、かかる目的を達成するために鋭意検討した結果、本発明に到達した。すなわち、本発明は以下の構成を有する製造方法により、本発明の課題を解決することができた。
(1)芳香族系疎水性高分子を主成分としてなる中空糸型血液浄化膜を乾湿式紡糸法により製造する際、疎水性高分子の還元粘度A、紡糸原液中の疎水性高分子の重量分率Bが、
0.36≦A≦0.78かつ0.28≦B≦0.50かつ0.13≦A×B≦0.25
の関係となる紡糸原液を用い、紡糸口金より空中に吐出された該紡糸原液を凝固浴に導き、凝固浴に浸漬後の中空糸型血液浄化膜に5%以上30%以下の延伸を付与することを特徴とする中空糸型血液浄化膜の製造方法。
(2)芳香族系疎水性高分子を主成分としてなる中空糸型血液浄化膜の製造において、疎水性高分子の還元粘度Aと紡糸原液中の疎水性高分子の重量分率Bが、
0.45≦A≦0.75かつ0.32≦B≦0.45かつ0.16≦A×B≦0.23
の関係となる紡糸原液を用いることを特徴とする(1)記載の中空糸型血液浄化膜の製造方法。
(3)中空糸型血液浄化膜が親水性高分子を含むことを特徴とする(1)または(2)記載の中空糸型血液浄化膜の製造方法。
(4)中空糸型血液浄化膜の製造において、紡糸原液中の疎水性高分子の重量分率B、親水性高分子の重量分率Cが、
0.02≦C≦0.07かつ0.07≦C/B≦0.20
の関係となる紡糸原液を用いることを特徴とする(1)〜(3)いずれか記載の中空糸型血液浄化膜の製造方法。
(5)中空糸型血液浄化膜の製造において、中空形成に用いる芯剤として、流動パラフィンを用いることを特徴とする(1)〜(4)いずれか記載の中空糸型血液浄化膜の製造方法。
(6)芳香族系疎水性高分子が、ポリスルホン系高分子である(1)〜(5)いずれか記載の中空糸型血液浄化膜の製造方法。
(7)親水性高分子がポリビニルピロリドンである(1)〜(6)いずれか記載の中空糸型血液浄化膜の製造方法。
【0013】
本発明においては、疎水性高分子の還元粘度Aが0.36〜0.78の間にあるのが好ましい。還元粘度が0.36より低い場合、すなわち分子量の小さい疎水性高分子を用いて血液浄化用中空糸膜を製造する場合は、中空糸膜の機械的強度が低下するため膜の厚みを大きくしなければならない、ひいてはモジュールサイズが大きくなるなど中空糸膜のメリットであるコンパクト性が損なわれる可能性がある。また、膜厚が大きくなると、本願の目的とする血液成分の選択分離特性において、膜の物質透過抵抗が大きくなるなど望ましい血液浄化機能が得られない可能性がある。還元粘度が0.78より大きくなると、紡糸原液への溶解性が低下し、製膜時の相分離挙動を制御するための紡糸原液に高分子非溶媒を添加するなどの血液性能の発現手段が制限されることがある。還元粘度Aの好ましい範囲は0.45〜0.75である。
【0014】
疎水性高分子の重量分率Bは、0.28〜0.50の間にあることが望ましい。この理由は、重量分率が低すぎると、製膜後の中空糸膜の空孔率が低くなり、前述の特許文献3に開示されている膜のごとく、中空糸の内面の開孔が大きくなったり、外面の開孔が小さい構造になりやすくなる。この場合、中空糸の内部から外部に向かって血液成分のろ過を行なう血液浄化操作においては、血中タンパク質などの目詰まりが起こり、ろ過安定性が悪くなることがある。また、前記構造を有する中空糸膜は、親水性高分子の中空糸内側部への溶出も助長するため、溶出量が大きくなり安全性の低下を招くことがある。重量分率が高すぎる場合は、紡糸原液の溶解性の低下および粘度の上昇が起き、安定して中空糸の製造が出来ない、あるいは真円の中空糸が作れないなど中空糸の成形加工が困難になることがある。重量分率Bの好ましい範囲は0.32〜0.45である。
【0015】
本願発明では、芳香族系疎水性高分子を含有する紡糸原液において、該高分子の還元粘度Aと重量分率Bとの積A×Bは0.13以上0.25以下が好ましい。この範囲に調製することによって、中空糸膜形成時の膜構造の均一性を向上し、膜の目詰まり特性を大きく改善させている。還元粘度は、重量当りの高分子の大きさを反映する値であり、大きな還元粘度値を示す程、分子量や溶液系での分子の広がりの大きいことを示す。また紡糸原液中の含有率は、溶液中の高分子の含有重量を示す。従って還元粘度Aと重量分率Bの積A×Bは、紡糸原液中の高分子の容積密度、高分子が占める容積部を反映する値となる。本願では、この値を0.13以上とすることにより、その紡糸原液より製造される均一膜の均一性、特に内表面部における膜孔の制御を可能にした。
紡糸原液中の高分子が占める容積密度が高いと膜成形時に誘起される高分子リッチ相と溶媒リッチ相への相分離の際に高分子の拡散が阻害され、膜全体が高分子濃厚相の状態でゲル化することになる。そうすると、中空糸膜の膜厚方向に異方性を有する構造になりやすい。このため、相分離の最終過程で形成される完全に高分子と非溶媒のみで構成された状態の膜において、高分子部の膜厚方向での均一性が増す。
一方、紡糸原液中の高分子容積密度が低すぎると、相分離において高分子拡散が増し、さらには高分子自体の凝固液への脱落が発生し、膜厚方向で凝固液(非溶媒)の侵入面と反対面の間において構造の異方性を生じてしまう。特に、中空糸の外面からの凝固の場合は、内面に溶媒リッチ部が生じ、結果的に内面の開孔が高い構造となる。この構造は、前述のとおり血液成分の内から外の除去には適さない。
上記A×B値が0.13より小さい時は、このような点から膜の均一性が十分でなく、膜は凝固浴接触面で緻密となり易く、反対面側で孔径が大きくなるような非対称性が現れてくることが見出される。また0.25より大きくなると、紡糸原液の粘度が高くなりすぎて、紡糸口金より吐出する際の圧力が高くなるため、実質的に中空糸の製造が困難になることがある。より好ましくは、A×B値が0.16以上0.23以下である。
【0016】
本願発明においては、中空糸の乾湿式紡糸において紡糸口金より前記紡糸原液を凝固浴に吐出した後の延伸を5%以上30%以下が好ましい。ここでいう延伸とは、凝固浴に吐出後の中空糸が最初に接する第1の巻取りローラー速度(紡糸速度V1)に対し、最終の巻取り紡糸速度(V2)より、(V2−V1)/V1にて算出される速度比である。延伸の付与工程は、凝固の中期段階で実施するのが好ましく、凝固浴に吐出した後の次の工程でのローラー間の延伸が好ましい。凝固浴への吐出から0.2〜3.0secの時間スケールでの段階での延伸が効果的である。この過程では、膜からの脱溶媒は完全ではなく、高分子はまだ溶媒和された状態にあり、延伸による極度の分子配向や歪が発生しない状態で膜形成を制御することができる。
【0017】
紡糸原液からなる中空糸は、高度な均一性を有するように密な高分子のゲル化状態により形成されるものである。このため、膜としての透過性能を発現するための手段として、延伸による細孔の制御を行なうことにより、血液浄化膜としての適切な透過性能を発揮させるものである。延伸は、5%〜30%が好ましい。5%未満では、細孔の形成が不充分であり所望の透過性能が得られないことがある。また30%より大きな延伸を掛けると、延伸に伴う細孔の配向、扁平化が大きくなり、内表面の平滑性の低下による血液成分の吸着、目詰まり上昇と考えられる分離特性の低下が起こる可能性がある。より好ましい延伸は25%以下、さらに好ましくは20%以下、よりさらに好ましくは15%以下である。
【0018】
本願発明では、疎水性高分子を主成分としてなる血液浄化膜の製造方法であるが、親水性高分子との混合からなる紡糸原液を用いることも可能である。親水性高分子の含有により、透水性の向上や血漿タンパク吸着の抑制、血小板の活性化抑制が行なわれ、より血液浄化膜としての好適な特性が発現しやすくなる。この場合は、親水性成分を添加しすぎると、血液浄化膜の単位面積りの溶出が増加するため、好適には紡糸原液中の添加率(C)は0.02から0.07の割合である。疎水性高分子に対する比率(C/B)は0.07から0.20が好ましい。本願発明者らの研究によれば、C/Bが0.07より低い場合、親水性高分子の添加の効果が発揮されにくく、膜としては疎水性の強い特性を表すことがある。すなはち、前述の血液成分との相互作用が大きく現れてくる結果であると考える。また0.20より高くなると、疎水性高分子のマトリックスからなる膜を構成する高分子固相中での親水性高分子の存在が過剰になると推定され、結果的に親水性高分子の溶出が多くなることがあることが判った。
【0019】
また、親水性高分子を含有させた場合は、膜の構造によっても溶出挙動が左右され、溶出に関わる安全性への影響が大きい。すなわち、特許文献3に開示されているように、膜の成形法によっては中空糸膜の外面に緻密な孔を持ち、内部に大きな開孔を有するような、高度な異方性の構造を持つ膜ができる。この場合は、親水性高分子の溶出にも異方性を生じ、膜内部への選択的溶出が起こる。これは、中空糸内部に血液を循環させる中空糸型の血液浄化器では、安全上の不利益を生じさせる。従って、本願発明では、前述の紡糸原液を用いることにより、密な膜構造を形成、中空糸内側部への膜含有成分の溶出を低減させることを実現させるものである。
【0020】
本願発明に用いられる芳香族系疎水性高分子は、ポリスルホン系、ポリアミド系、ポリエステル系、ポリイミド系などの高分子が挙げられるが、これらに限定されるものではない。好適には、製膜性、溶液への溶解性などの点からポリスルホン系が好ましく、市販されており入手が容易であり、本発明の特性が得られやすいポリスルホン、ポリエーテルスルホンがより好ましい。
【0021】
本願発明に用いられる親水性高分子は、ポリビニルピロリドン、ポリエチレングリコール、ポリアミド、ポリビニルアルコールおよびセルロース系などの高分子が挙げられるが、これらに限定されるものではない。好適には、疎水性高分子との相溶性、安全性などの点からポリビニルピロリドンが好ましい。ポリビニルピロリドンの分子量としては重量平均分子量10,000〜1,500,000のものを用いることができる。具体的にはBASF社より市販されている分子量9,000のもの(K17)、以下同様に45,000(K30)、450,000(K60)、900,000(K80)、1,200,000(K90)を用いるのが好ましく、目的とする用途、特性、構造を得るために、それぞれ単独で用いてもよく、適宜2種以上を組み合わせて用いても良い。
【0022】
本願発明における血液浄化用中空糸膜の製造方法における好ましい態様について、以下に具体例を示す。均一構造型の中空糸膜を製造するための乾湿式紡糸プロセスを用い、非凝固性の内液を芯液に用いた紡糸方法が最適な様態である。
紡糸原液は、請求項に示す組成からなる芳香族系疎水性高分子と親水性高分子に対する共通溶媒と疎水性高分子に対する非溶媒の混合系溶媒に溶解した溶液からなる。原液は、加温により均一溶解される。この溶液を120℃程度の口金温度に保持された2重管スリット口金から吐出し、1〜100cmの乾式長を持つ空中部を走行後、凝固浴に導く。この際、中空部の芯液として口金中心孔より流動パラフィンを同時に吐出する。この紡糸原液と芯液の吐出量、ならびに口金直下での紡糸速度(ドラフト)により中空糸のディメンジョンが決定される。血液浄化用中空糸膜は、内径200μm前後が最適であり、膜厚は任意に設定される。本願においては膜厚を12μm〜40μm程度にするのが好ましい。より好ましくは15〜30μm、さらに好ましくは15〜25μm、よりさらに好ましくは15〜17μmである。凝固浴は、紡糸原液に用いたのと同じ溶媒、非溶媒の水溶液からなり温度制御される。凝固液の濃度は0〜70wt%、温度は0〜70℃である。より好ましくは、5〜50wt%、5〜40℃である。凝固液に浸漬された紡糸原液は、相分離、脱溶媒過程により膜形成が行なわれ、中空糸膜が形成される。この過程において、中空糸を複数のローラー間を走行させることにより延伸を付与する。好ましくは、凝固槽中に複数のローラーを設け、凝固槽に突入した中空糸が最初に接するローラーまたはガイド間でのドラフトによりほぼ所望のディメンジョンを形成した後に、凝固槽中で延伸を付与する。凝固槽への突入から延伸までの時間は、0.2〜3.0秒の間に実施されることが好ましい。こうして形成された中空糸膜は、洗浄による紡糸原液の溶媒、非溶媒の除去、細孔保持剤付与、乾燥を経て巻き取られ、本願発明の中空糸膜を得る。孔径保持剤の付与は、乾燥工程での膜の収縮を抑制するためにあらかじめ、細孔中に非乾燥性の液体を含浸させておくものであり、好ましくはグリセリンが用いられ、グリセリンの水溶液中に中空糸膜を走行させることにより細孔へのグリセリン水溶液置換が実施される。孔径保持に必要なグリセリン水溶液濃度は、20〜70wt%であり、より好ましくは40〜60wt%である。同様に中空糸膜の乾燥は、加熱気流中を走行させることにより、グリセリンと共に含浸した水分の除去を行ない、実質的に乾燥された中空糸膜を得る。こうして得られた中空糸膜は、ボビンにチーズ状に巻き取る。
【0023】
巻き取られた中空糸膜は、血液浄化用モジュールに組立て評価に用いる。例を示すと、中空糸膜は約10,000本の糸束として円筒状のモジュールケースに装填され、両端部をウレタン樹脂で接着後、切断により中空部を開口させる。この後、遠心力や通気による物理的処理、または炭化水素系などの溶剤で芯液である流動パラフィンを洗浄除去し、洗浄溶剤も乾燥などにより除去する。このようにして中空糸型の血液浄化用モジュールを得る。さらに血液浄化器として臨床にて使用する場合は、γ線滅菌、EOG滅菌、高圧蒸気滅菌などによる滅菌処理が施される。
【0024】
本願発明で得られた中空糸型血液浄化膜は、血液をろ過した際のろ過圧の変動が少なく、通常の血液浄化療法で施行される数時間(3〜5時間)のろ過では、ほぼ一定の値の透水性をもつ。安定性の目安として、血液浄化モジュールの膜面積1.5mあたりのろ過速度を20ml/minとしてろ過を行なった時のろ過圧の変動から計算される、水の透過係数(MFR)がろ過開始15minの値に対し、120minの値の保持率が80%以上であることが好ましい。本願発明の血液浄化用中空糸膜は、この特性を有するものである。より好ましくは85%以上、さらに好ましくは90%以上である。
【0025】
また、安全性については、本願発明での中空糸膜では、親水性高分子を膜に含有させた場合に、親水性高分子の膜からの溶出量として考えることができる。本願発明では、血液浄化療法を施行中の血中への親水性高分子の溶出量を判定するために、40vol%エタノールによる、血液浄化用中空糸膜の循環抽出試験法を採用した。本願発明の血液浄化用中空糸は、親水性高分子の抽出量が、数〜10mg程度と低値であることが好ましい。
以上、本願発明に示す製造法に基づき提供される血液浄化用中空糸膜は、性能、安全性ともに良好な効果を発揮するものである。
【0026】
【実施例】
以下に本発明について実施例を用いて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
なお実施例及び比較例中において評価項目の測定は、下記の方法で行った。
【0027】
(還元粘度の測定)
芳香族系疎水性高分子の1重量%のジメチルホルムアミド(DMF)溶液を作成し、オストワルド型粘度計にて、25℃条件にて、所定容量のキャピラリー流動時間を測定(T1)する。別途測定のDMFのみの流動時間(T2)により、還元粘度(RV)は、T1/T2−1の関係により算出される。
【0028】
(親水性高分子の溶出量の測定)
親水性高分子の溶出は、40v/v%EtOH水溶液を用いた抽出試験により実施した。中空糸膜モジュールの中空糸内側に400mlの純水を流してプライミング(水充填、泡抜き)を行なった後、モジュール内の充填水を40v/v%EtOH水溶液で置換した。中空糸外側のモジュールケース内にも40v/v%EtOH水溶液を満たし封止した。続いて40℃の条件下で200mlの40v/v%EtOH水溶液を150ml/minの流速で1時間の循環を実施した後、循環液を回収し、液中の親水性高分子(ポリビニルピロリドン)濃度を求める。循環液の総流量と親水性高分子の濃度より、抽出された親水性高分子の総重量を算出し、抽出したモジュールの中空糸内面膜面積1m辺りの抽出量を求めた。なお、ポリビニルピロリドンの濃度測定はK.Muellerの方法(Pharm.Acta.Helv.,43,107(1968))により実施した。
【0029】
(中空糸膜の透水性の測定)
透水性(以下UFRとする)の測定は、以下の手順による。中空糸膜モジュールに純水を満たし、37℃の条件下で、膜の内側に通じるモジュール片端を栓で閉じ、もう一方の片端入口から純水を加圧により通液する。この時、膜を通じて外側に出てくる純水の透過速度と膜間圧力差を圧力を数点変化させて測定する。透水速度と膜間圧力差の関係を直線近似し、その傾き、および中空糸モジュールの膜面積からUFR(単位はml/hr・mmHg・m)を算出する。
【0030】
(血液系での濾過安定性の評価)
中空糸膜モジュール、膜面積1.5mを使用し、ヘマトクリット35%の牛血液を200ml/minの流速で中空糸の内側に灌流した。同時に、中空糸外側から20ml/minの流速で濾過を開始した。灌流、濾過の開始から15分後の膜間圧力差と濾過流量より牛血での透水速度(以下MFRとする)を算出した。この値をAとし、灌流、濾過の開始から120分後に、同様にMFRを算出しこの値をBとした。血液での濾過の安定性(以下C%値とする)は、B/A×100(%)で算出した。
【0031】
(実施例1)
還元粘度(A)0.48であるポリエーテルスルホン(PES;住友化学社製、スミカエクセル)およびポリビニルピロリドン(PVP;BASF社製、K90)をN−メチルピロリドン(NMP)とトリエチレングリコール(TEG)の混合液(重量比で8:2混合溶液)に、濃度(B)35重量%、濃度(C)7重量%になるように120℃にて混合溶解し、紡糸原液を作成した。この原液のA×B値は0.168、C/B値は0.200である。この紡糸原液を、二重環状スリット口金の外周部より口金部温度125℃で吐出、中心孔から流動パラフィンを芯液として吐出した。口金から、凝固槽までの乾式部分40mmを経て凝固層内に紡糸原液を導き膜の凝固を行なった。凝固槽は、NMPとTEG(8:2)の混合水溶液からなり、NMP/TEG混合物の重量%(凝固浴濃度)が10重量%、温度を25℃とした。この凝固工程中での中空糸は、まず最初にガイドと接触し、その直後に2つの駆動ローラー間で延伸比7%の延伸を付与し、次いで洗浄槽を通過させることにより溶媒を除去し、30重量%のグリセリン水溶液槽を通過させ中空糸にグリセリンを含浸させ、乾燥を行なった。乾燥後の中空糸膜は、内径が200μm、膜厚は15μmであった。
【0032】
中空糸膜は、血液透析用のモジュールに組み込み膜面積1.5mのモジュールを作成した。このモジュールを用いて、PVPの溶出量試験、透水性試験、血液濾過安定性試験を実施した。結果は、表1に示すごとく、血液ろ過安定性が95%と良好であり、親水性高分子の溶出量が9.4mgであった。
【0033】
(実施例2〜6)
表1に示す組成からなる紡糸原液を用い、実施例1と同様の中空糸膜製造工程により、中空糸膜を製造した。中空糸膜製造工程における延伸比、乾式長、口金温度、凝固槽濃度、温度、グリセリン浸漬濃度は、表1に示すとおりである。作成した中空糸のディメンジョンはいずれも、内径200μm、膜厚15μm付近である。
これらの中空糸膜を用いて、PVPの溶出量試験、透水性試験、血液濾過安定性試験を実施した。結果は、表1に示す。いずれも、血液ろ過安定性に優れ、親水性高分子の溶出量が10mg以下と軽微なものであった。
【0034】
(比較例1)
還元粘度(A)0.48のポリエーテルスルホン(PES;住友化学社製、スミカエクセル)およびポリビニルピロリドン(PVP;BASF社製、K90)をN−メチルピロリドン(NMP)とトリエチレングリコール(TEG)の混合液(重量比で8:2混合溶液)に、濃度(B)23重量%、濃度(C)3重量%になるように120℃にて混合溶解し、紡糸原液を作成した。この原液のA×B値は0.110、C/B値は0.130である。この紡糸原液を、二重環状スリット口金の外周部より口金部温度125℃で吐出、中心孔から流動パラフィンを芯液として吐出した。口金から、凝固槽までの乾式部分40mmを経て凝固層内に紡糸原液を導き膜の凝固を行なった。凝固槽は、NMPとTEG(8:2)の混合水溶液からなり、NMP/TEG混合物の重量%(凝固浴濃度)が10重量%、温度を25℃とした。この凝固工程中での中空糸は、まず最初にガイドと接触し、その直後に2つの駆動ローラー間で延伸比7%の延伸を付与し、次いで洗浄槽を通過させることにより溶媒を除去し、30重量%のグリセリン水溶液槽を通過させ中空糸にグリセリンを含浸させ、乾燥を行なった。乾燥後の中空糸膜は、内径が200μm、膜厚は15μmであった。
【0035】
中空糸膜は、血液透析用のモジュールに組み込み膜面積1.5mのモジュールを作成した。このモジュールを用いて、PVPの溶出量試験、透水性試験、血液濾過安定性試験を実施した。結果は、表1に示すごとく、血液ろ過安定性が80%以下と低く、親水性高分子の溶出量が32.5mgと高いものであった。紡糸原液中の疎水性高分子の重量分率が低いため、中空糸膜の血液接触面の細孔径が大きくなりすぎ、血液処理時血液中のタンパク等が細孔に目詰まりを起こし血液ろ過安定性が低下したものと思われた。また、同様の理由により親水性高分子の溶出量が増加したものと思われた。
【0036】
(比較例2〜7)
表1に示す組成からなる紡糸原液を用い、比較例1と同様の中空糸膜製造工程により、中空糸膜を製造した。中空糸膜製造工程における延伸比、乾式長、口金温度、凝固槽濃度、温度、グリセリン浸漬濃度は、表1に示すとおりである。作成した中空糸のディメンジョンは、いずれも内径200μm、膜厚15μm付近である。
これらの中空糸膜を用いて、PVPの溶出量試験、透水性試験、血液濾過安定性試験を実施した。結果は、表1に示すごとく、血液ろ過安定性と親水性高分子溶出の低減、いずれもが良好となるものは得られなかった。
【0037】
(比較例8)
還元粘度(A)0.75のポリエーテルスルホン(PES;住友化学社製、スミカエクセル)およびポリビニルピロリドン(PVP;BASF社製、K90)をN−メチルピロリドン(NMP)とトリエチレングリコール(TEG)の混合液(重量比で8:2混合溶液)に、濃度(B)38重量%、濃度(C)3重量%になるように120゜Cにて混合溶解し、紡糸原液を作成した。この原液のA×B値は0.285、C/B値は0.079である。この紡糸原液を、二重環状スリット口金の外周部より口金部温度125℃で吐出により中空糸紡糸を試みたが、紡糸原液吐出時の背圧が高く、安定して紡糸を行うことができなかった。
【0038】
【表1】

Figure 2005065725
【0039】
【発明の効果】
本発明に示す中空糸型血液浄化膜は、血液透析、血液濾過、血液濾過透析などの血液浄化療法に用いるに際し、膜からの溶出物が少なく安全性に優れ、かつ安定な血液成分の選択分離性能の維持できる均一膜構造型の血液浄化膜を提供するものである。従って、慢性腎不全患者の透析治療や急性血液浄化治療などに用いられる血液浄化デバイスとして極めて有用なものとなる。[0001]
[Technology to which the invention belongs]
The present invention relates to the manufacture of a blood purification membrane used for blood purification therapy such as hemodialysis, blood filtration, and blood filtration dialysis. In particular, the present invention provides a hollow fiber membrane for blood purification having a uniform membrane structure, which has a strong membrane strength, has a small amount of eluate from the membrane, is excellent in safety, and can maintain stable selective separation of blood components.
[0002]
[Prior art]
Blood purification hollow fiber membranes are roughly classified into two types depending on the characteristics of the membrane structure.
One is a uniform membrane that has almost uniform pore size and does not have a clear porous structure even when observed with an electron microscope. The other is a dense membrane on the surface of the membrane, especially the surface that contacts blood. It is an asymmetric membrane having a layer and other parts consisting of a clear porous or giant cavity. The former uniform membrane is responsible for the separation activity and mechanical strength of the membrane as a whole, while the asymmetric membrane has the separation activity mainly composed of the dense layer, and the other part (support layer) is the mechanical strength of the membrane. Take on.
[0003]
The advantage of a blood purification membrane with a uniform structure is that the strength can be maintained even when the membrane is thin, so the membrane thickness can be reduced, the membrane permeation resistance of the solute can be reduced, and the size of the blood purification device Can be made compact. In addition, since the entire film thickness part is responsible for separation activity, there is a risk of contamination (back diffusion, reverse filtration) into the blood of contaminants (bacteria, pyrogens, etc.) from the dialysate side, which is a concern in hemodialysis. Reduced.
[0004]
On the other hand, since the asymmetric membrane performs substance separation mainly on the dense layer on the blood contact surface of the membrane, the friction resistance when the solute permeates through the membrane is low, and the filtration characteristics are excellent. However, in order to maintain the structure of the membrane, a thick support layer is required, the dialyzer becomes large, and the pore diameter on the dialysate side is extremely large, and there is a high risk of contamination from the dialysate into the blood.
[0005]
In the prior art, membrane materials used for hemodialysis membranes and their structures are classified as follows. Uniform membranes are made of cellulose and vinyl materials such as cellulose, cellulose acetate, polymethyl methacrylate, and ethylene-pinyl alcohol copolymer. Asymmetric membranes are blends of polysulfone and hydrophilic polymers, aromatic polyamides, etc. Aromatic polymers are mainly used. Some also disclose techniques such as asymmetric membrane formation with a cellulose-based polymer (for example, see Patent Documents 1 and 2) and uniform membrane formation with a polysulfone-based polymer (for example, see Patent Documents 3, 4, and 5). However, the performance, safety and productivity as a blood purification membrane are not necessarily achieved sufficiently.
[0006]
Further, the relationship between the production method and the membrane structure depends mainly on the relationship with the contact process of the coagulating liquid when producing the hollow fiber. A spinning stock solution composed of a polymer solution forms a film by contact with the coagulation solution by phase separation of the polymer component and the solvent component in the solution, followed by gelation and precipitation of the polymer component. That is, the difference in the coagulation process for discharging the spinning stock solution from the nozzle to form the film is also a factor for determining the film structure. In the uniform membrane, a non-coagulable liquid is used as the core liquid at the time of forming the hollow, the hollow fiber is discharged into a coagulation bath, and the membrane is formed by coagulation from the outer surface. This process is a technique for controlling film formation starting from the solidification of the outer surface to the inner surface. On the other hand, the asymmetric membrane positively controls the membrane structure of the inner surface of the membrane by using a solidifying liquid as the hollow fiber core liquid.
[0007]
In the prior art, film production is carried out with an optimum combination in consideration of the suitability of the material and the film formation method. The review of the combination found in the above-mentioned prior art is an invention to meet a wide range of market demands and clinical effects due to the biocompatibility of the membrane material and the performance characteristics based on the membrane structure. The present invention realizes an improvement of a blood purification membrane made of an aromatic hydrophobic polymer in a uniform membrane.
[0008]
Comparing uniform membranes and asymmetric membranes from the viewpoint of membrane separation performance, uniform membranes have a greater thickness of separation activity than asymmetric membranes, and diffusion resistance in the membrane and contact frequency between solute and membrane It tends to increase and decrease the transmission performance. This is due to deposition and clogging of elution in the film thickness portion of the uniform film. From the viewpoint of preventing deterioration of this performance over time in a uniform membrane, it is necessary to prevent the entry of protein components such as albumin and globulin in the blood into the film thickness part and to prevent clogging due to protein adsorption. . In the hollow fiber type blood purification membrane, the inner surface portion of the hollow fiber is a portion in contact with blood, and this is a point to be particularly considered in the above-described problem on the membrane structure.
[0009]
In a uniform membrane of an aromatic polymer, there is a problem that there is much protein adsorption due to its hydrophobic characteristics. In a film made of a conventional technique (for example, see Patent Documents 4 and 5), the amount of protein adsorption is higher than that of a cellulosic uniform film. This is because the uniformity of the membrane cannot be said to be sufficient, the pores on the inner surface of the membrane have not been able to prevent sufficient penetration of albumin, and the hydrophilic polymer has been included. This is considered to be due to insufficient hydrophilization and strong hydrophobic properties of the membrane.
[0010]
[Patent Document 1]
Japanese Patent No. 3253867
[Patent Document 2]
Japanese Patent No. 3253895
[Patent Document 3]
JP 59-112027
[Patent Document 4]
JP-A-9-220455
[Patent Document 5]
JP 2000-42383 A
[0011]
[Problems to be solved by the present invention]
An object of the present invention is to provide a method for producing a hollow fiber blood purification membrane comprising an aromatic polymer as a main component and having a substantially uniform structure and excellent stability during blood filtration. .
[0012]
[Means for Solving the Problems]
The inventor of the present invention has arrived at the present invention as a result of intensive investigations to achieve the object. That is, the present invention was able to solve the problems of the present invention by a manufacturing method having the following configuration.
(1) When producing a hollow fiber blood purification membrane mainly composed of an aromatic hydrophobic polymer by dry-wet spinning, the reduced viscosity A of the hydrophobic polymer, the weight of the hydrophobic polymer in the spinning dope The fraction B is
0.36 ≦ A ≦ 0.78 and 0.28 ≦ B ≦ 0.50 and 0.13 ≦ A × B ≦ 0.25
Using the spinning stock solution having the relationship of A method for producing a hollow fiber blood purification membrane characterized by the above.
(2) In the production of a hollow fiber blood purification membrane mainly composed of an aromatic hydrophobic polymer, the reduced viscosity A of the hydrophobic polymer and the weight fraction B of the hydrophobic polymer in the spinning dope are:
0.45 ≦ A ≦ 0.75 and 0.32 ≦ B ≦ 0.45 and 0.16 ≦ A × B ≦ 0.23
(1) The method for producing a hollow fiber blood purification membrane according to (1), wherein a spinning stock solution having the following relationship is used.
(3) The method for producing a hollow fiber blood purification membrane according to (1) or (2), wherein the hollow fiber blood purification membrane contains a hydrophilic polymer.
(4) In the production of the hollow fiber type blood purification membrane, the weight fraction B of the hydrophobic polymer and the weight fraction C of the hydrophilic polymer in the spinning dope are:
0.02 ≦ C ≦ 0.07 and 0.07 ≦ C / B ≦ 0.20
The method for producing a hollow fiber blood purification membrane according to any one of (1) to (3), wherein a spinning stock solution having the above relationship is used.
(5) In the production of a hollow fiber blood purification membrane, liquid paraffin is used as a core agent used for forming a hollow, The method for producing a hollow fiber blood purification membrane according to any one of (1) to (4), .
(6) The method for producing a hollow fiber blood purification membrane according to any one of (1) to (5), wherein the aromatic hydrophobic polymer is a polysulfone polymer.
(7) The method for producing a hollow fiber blood purification membrane according to any one of (1) to (6), wherein the hydrophilic polymer is polyvinylpyrrolidone.
[0013]
In the present invention, the reduced viscosity A of the hydrophobic polymer is preferably between 0.36 and 0.78. When the reduced viscosity is lower than 0.36, that is, when a hollow fiber membrane for blood purification is produced using a hydrophobic polymer having a small molecular weight, the mechanical strength of the hollow fiber membrane is reduced, so that the thickness of the membrane is increased. There is a possibility that the compactness, which is the merit of the hollow fiber membrane, may be impaired, for example, the module size must be increased. Further, when the film thickness is increased, there is a possibility that a desirable blood purification function may not be obtained, such as an increase in the substance permeation resistance of the film, in the selective separation characteristics of blood components intended by the present application. When the reduced viscosity is greater than 0.78, the solubility in the spinning stock solution decreases, and blood expression means such as adding a polymer non-solvent to the spinning stock solution to control the phase separation behavior during film formation are provided. May be limited. A preferable range of the reduced viscosity A is 0.45 to 0.75.
[0014]
It is desirable that the weight fraction B of the hydrophobic polymer is between 0.28 and 0.50. The reason for this is that if the weight fraction is too low, the porosity of the hollow fiber membrane after film formation will be low, and the inner surface of the hollow fiber will be large as in the membrane disclosed in Patent Document 3 described above. Or a structure with a small opening on the outer surface. In this case, in blood purification operations in which blood components are filtered from the inside to the outside of the hollow fiber, clogging of blood proteins and the like may occur, and filtration stability may deteriorate. Moreover, since the hollow fiber membrane having the above structure facilitates the elution of the hydrophilic polymer into the hollow fiber inner side, the amount of elution increases and the safety may be reduced. If the weight fraction is too high, the solubility of the spinning dope will decrease and the viscosity will increase, and it will not be possible to produce hollow fibers stably, or hollow fibers will not be formed. It can be difficult. A preferred range for the weight fraction B is 0.32 to 0.45.
[0015]
In the present invention, in the spinning dope containing an aromatic hydrophobic polymer, the product A × B of the reduced viscosity A and the weight fraction B of the polymer is preferably 0.13 or more and 0.25 or less. By adjusting to this range, the uniformity of the membrane structure at the time of forming the hollow fiber membrane is improved, and the clogging characteristics of the membrane are greatly improved. The reduced viscosity is a value reflecting the size of the polymer per weight, and the larger the reduced viscosity value, the larger the molecular weight and the molecular spread in the solution system. The content in the spinning dope indicates the weight of the polymer in the solution. Therefore, the product A × B of the reduced viscosity A and the weight fraction B is a value reflecting the volume density of the polymer in the spinning dope and the volume portion occupied by the polymer. In the present application, by setting this value to 0.13 or more, it is possible to control the uniformity of the uniform membrane produced from the spinning dope, particularly the membrane pores in the inner surface portion.
When the volume density occupied by the polymer in the spinning dope is high, the diffusion of the polymer is inhibited during the phase separation into the polymer-rich phase and the solvent-rich phase induced during membrane formation, and the entire membrane is in a polymer-rich phase. It will gel in the state. If it does so, it will be easy to become a structure which has anisotropy in the film thickness direction of a hollow fiber membrane. For this reason, the uniformity in the film thickness direction of the polymer portion increases in a film that is formed in the final process of phase separation and is completely composed of only a polymer and a non-solvent.
On the other hand, if the polymer volume density in the spinning dope is too low, the polymer diffusion increases in the phase separation, and the polymer itself falls into the coagulating liquid, causing the coagulating liquid (non-solvent) to drop in the thickness direction. Anisotropy of the structure occurs between the entrance surface and the opposite surface. In particular, in the case of solidification from the outer surface of the hollow fiber, a solvent-rich portion is generated on the inner surface, resulting in a structure with a high opening on the inner surface. As described above, this structure is not suitable for removing blood components from the outside.
When the A × B value is smaller than 0.13, the film is not sufficiently uniform from such a point, and the film tends to be dense on the coagulation bath contact surface, and the asymmetry that increases the pore diameter on the opposite surface side. It is found that sex appears. On the other hand, if it exceeds 0.25, the viscosity of the spinning dope becomes too high, and the pressure at the time of discharging from the spinneret becomes high, so that it may be substantially difficult to produce hollow fibers. More preferably, the A × B value is 0.16 or more and 0.23 or less.
[0016]
In the present invention, the stretch after the spinning solution is discharged from the spinneret into the coagulation bath in the dry and wet spinning of the hollow fiber is preferably 5% or more and 30% or less. The term “stretching” as used herein refers to the first winding roller speed (spinning speed V1) with which the hollow fiber after being discharged into the coagulation bath first comes into contact with the final winding spinning speed (V2) by (V2-V1). It is a speed ratio calculated by / V1. The stretching application step is preferably carried out in the middle stage of solidification, and stretching between rollers in the next step after discharging into the coagulation bath is preferred. Stretching at a stage of a time scale of 0.2 to 3.0 seconds from the discharge to the coagulation bath is effective. In this process, the solvent removal from the film is not complete, the polymer is still in a solvated state, and the film formation can be controlled in a state where extreme molecular orientation and distortion due to stretching do not occur.
[0017]
A hollow fiber made of a spinning stock solution is formed by a gelled state of a dense polymer so as to have a high degree of uniformity. For this reason, as a means for expressing the permeation performance as a membrane, the permeation performance appropriate as a blood purification membrane is exhibited by controlling pores by stretching. Stretching is preferably 5% to 30%. If it is less than 5%, the formation of pores is insufficient and the desired permeation performance may not be obtained. Also, if stretching more than 30% is applied, the orientation and flattening of the pores associated with stretching increase, and blood component adsorption and clogging increase due to decreased smoothness of the inner surface may result in a decrease in separation characteristics. There is sex. More preferable stretching is 25% or less, more preferably 20% or less, and still more preferably 15% or less.
[0018]
In the present invention, a method for producing a blood purification membrane comprising a hydrophobic polymer as a main component is used, but it is also possible to use a spinning dope comprising a mixture with a hydrophilic polymer. By containing the hydrophilic polymer, water permeability is improved, plasma protein adsorption is suppressed, and platelet activation is suppressed, and it is easier to express suitable characteristics as a blood purification membrane. In this case, if too much hydrophilic component is added, the elution per unit area of the blood purification membrane increases, so the addition rate (C) in the spinning stock solution is preferably 0.02 to 0.07. is there. The ratio (C / B) to the hydrophobic polymer is preferably 0.07 to 0.20. According to the study by the inventors of the present application, when C / B is lower than 0.07, the effect of adding a hydrophilic polymer is hardly exhibited, and the film may exhibit a strong hydrophobic property. In other words, it is considered that the interaction with the blood component described above appears greatly. On the other hand, when the value is higher than 0.20, it is estimated that the presence of the hydrophilic polymer in the polymer solid phase constituting the membrane composed of the hydrophobic polymer matrix becomes excessive, and as a result, the elution of the hydrophilic polymer occurs. It turns out that there can be many.
[0019]
In addition, when a hydrophilic polymer is contained, the elution behavior depends on the structure of the membrane, and the influence on the safety related to elution is great. That is, as disclosed in Patent Document 3, it has a highly anisotropic structure that has a fine hole on the outer surface of the hollow fiber membrane and a large opening inside depending on the method of forming the membrane. A film is formed. In this case, anisotropy also occurs in the elution of the hydrophilic polymer, and selective elution into the membrane occurs. This causes a safety disadvantage in a hollow fiber blood purifier that circulates blood inside the hollow fiber. Therefore, in the present invention, by using the above-mentioned spinning solution, it is possible to form a dense membrane structure and reduce the elution of the membrane-containing component into the hollow fiber inner portion.
[0020]
Examples of the aromatic hydrophobic polymer used in the present invention include, but are not limited to, polymers such as polysulfone, polyamide, polyester, and polyimide. Preferably, polysulfone is preferable from the viewpoints of film-forming properties, solubility in a solution, and the like, and commercially available and easily available, and polysulfone and polyethersulfone that can easily obtain the characteristics of the present invention are more preferable.
[0021]
Examples of the hydrophilic polymer used in the present invention include, but are not limited to, polymers such as polyvinyl pyrrolidone, polyethylene glycol, polyamide, polyvinyl alcohol, and cellulose. Preferably, polyvinylpyrrolidone is preferable from the viewpoint of compatibility with a hydrophobic polymer and safety. As the molecular weight of polyvinylpyrrolidone, those having a weight average molecular weight of 10,000 to 1,500,000 can be used. Specifically, those having a molecular weight of 9,000 (K17) commercially available from BASF, and the same shall apply hereinafter: 45,000 (K30), 450,000 (K60), 900,000 (K80), 1,200,000 (K90) is preferably used, and in order to obtain the intended application, characteristics, and structure, each may be used alone or in combination of two or more.
[0022]
Specific examples of preferred embodiments of the method for producing a blood purification hollow fiber membrane according to the present invention are shown below. A spinning method using a dry and wet spinning process for producing a hollow fiber membrane of uniform structure type and using a non-solidifying inner liquid as a core liquid is an optimal mode.
The spinning dope consists of a solution dissolved in a mixed solvent of a common solvent for the aromatic hydrophobic polymer and hydrophilic polymer having the composition shown in the claims and a non-solvent for the hydrophobic polymer. The stock solution is uniformly dissolved by heating. This solution is discharged from a double tube slit die maintained at a die temperature of about 120 ° C., and after running through an aerial part having a dry length of 1 to 100 cm, it is led to a coagulation bath. At this time, liquid paraffin is simultaneously discharged from the center hole of the die as the core liquid of the hollow portion. The dimension of the hollow fiber is determined by the discharge amount of the spinning solution and the core solution and the spinning speed (draft) just below the die. The hollow fiber membrane for blood purification is optimal with an inner diameter of around 200 μm, and the film thickness is arbitrarily set. In the present application, the film thickness is preferably about 12 to 40 μm. More preferably, it is 15-30 micrometers, More preferably, it is 15-25 micrometers, More preferably, it is 15-17 micrometers. The coagulation bath is composed of the same solvent and non-solvent aqueous solution used for the spinning dope, and the temperature is controlled. The concentration of the coagulation liquid is 0 to 70 wt%, and the temperature is 0 to 70 ° C. More preferably, they are 5-50 wt% and 5-40 degreeC. The spinning dope immersed in the coagulation liquid is subjected to film formation by phase separation and desolvation processes to form a hollow fiber film. In this process, stretching is imparted by running the hollow fiber between a plurality of rollers. Preferably, a plurality of rollers are provided in the coagulation tank, and a stretch is imparted in the coagulation tank after a desired dimension is formed by a draft between a roller or a guide that the hollow fiber that has entered the coagulation tank first contacts. It is preferable that the time from the entry into the coagulation tank to the stretching is performed within 0.2 to 3.0 seconds. The hollow fiber membrane formed in this way is wound up after removing the solvent and non-solvent of the spinning stock solution by washing, applying a pore retaining agent, and drying to obtain the hollow fiber membrane of the present invention. In order to suppress the shrinkage of the membrane in the drying step, the pore diameter retaining agent is impregnated with a non-drying liquid in advance in the pores, preferably glycerin is used, and the glycerin is in an aqueous solution. The hollow fiber membrane is allowed to run through to replace the glycerol aqueous solution into the pores. The concentration of the glycerin aqueous solution necessary for maintaining the pore diameter is 20 to 70 wt%, and more preferably 40 to 60 wt%. Similarly, the hollow fiber membrane is dried by removing the moisture impregnated with glycerin by running in a heated air stream to obtain a substantially dried hollow fiber membrane. The hollow fiber membrane thus obtained is wound around a bobbin in a cheese shape.
[0023]
The wound hollow fiber membrane is assembled into a blood purification module and used for evaluation. As an example, the hollow fiber membrane is loaded in a cylindrical module case as a bundle of about 10,000 yarns, and after bonding both ends with urethane resin, the hollow part is opened by cutting. Thereafter, the liquid paraffin, which is the core liquid, is washed and removed with a physical treatment by centrifugal force or ventilation, or a hydrocarbon-based solvent, and the washing solvent is also removed by drying or the like. In this way, a hollow fiber blood purification module is obtained. Furthermore, when clinically used as a blood purifier, sterilization is performed by γ-ray sterilization, EOG sterilization, high-pressure steam sterilization, or the like.
[0024]
The hollow fiber type blood purification membrane obtained in the present invention has little fluctuation in the filtration pressure when blood is filtered, and is almost constant in the filtration for several hours (3 to 5 hours) performed in normal blood purification therapy. It has a water permeability of the value of As a measure of stability, the membrane area of the blood purification module is 1.5m 2 The water permeability coefficient (MFR) calculated from the fluctuation of the filtration pressure when filtration is performed at a filtration rate of 20 ml / min, the retention rate of the value of 120 min is 80% or more with respect to the value of 15 min at the start of filtration. It is preferable that The hollow fiber membrane for blood purification of the present invention has this characteristic. More preferably, it is 85% or more, More preferably, it is 90% or more.
[0025]
Further, regarding the safety, in the hollow fiber membrane according to the present invention, when the hydrophilic polymer is contained in the membrane, it can be considered as the amount of the hydrophilic polymer eluted from the membrane. In the present invention, in order to determine the elution amount of the hydrophilic polymer into the blood undergoing blood purification therapy, a circulation extraction test method for blood purification hollow fiber membranes with 40 vol% ethanol was employed. In the hollow fiber for blood purification of the present invention, the amount of hydrophilic polymer extracted is preferably as low as several to 10 mg.
As described above, the hollow fiber membrane for blood purification provided based on the production method shown in the present invention exhibits good effects in both performance and safety.
[0026]
【Example】
Hereinafter, the present invention will be specifically described using examples, but the present invention is not limited to these examples.
In the examples and comparative examples, the evaluation items were measured by the following methods.
[0027]
(Measurement of reduced viscosity)
A 1% by weight dimethylformamide (DMF) solution of an aromatic hydrophobic polymer is prepared, and a capillary flow time of a predetermined volume is measured (T1) at 25 ° C. with an Ostwald viscometer. The reduced viscosity (RV) is calculated from the relationship of T1 / T2-1 based on the separately measured flow time (T2) of only DMF.
[0028]
(Measurement of elution amount of hydrophilic polymer)
The elution of the hydrophilic polymer was carried out by an extraction test using a 40 v / v% EtOH aqueous solution. After priming (water filling and defoaming) by flowing 400 ml of pure water inside the hollow fiber of the hollow fiber membrane module, the filled water in the module was replaced with 40 v / v% EtOH aqueous solution. The module case outside the hollow fiber was also filled with 40 v / v% EtOH aqueous solution and sealed. Subsequently, 200 ml of 40 v / v% EtOH aqueous solution was circulated at a flow rate of 150 ml / min for 1 hour under the condition of 40 ° C., and then the circulated liquid was recovered, and the concentration of the hydrophilic polymer (polyvinylpyrrolidone) in the liquid Ask for. The total weight of the extracted hydrophilic polymer is calculated from the total flow rate of the circulating fluid and the concentration of the hydrophilic polymer, and the hollow fiber inner surface membrane area of the extracted module is 1 m. 2 The amount of extraction around was calculated. The polyvinyl pyrrolidone concentration was measured by K.K. It carried out by the method of Mueller (Pharm. Acta. Helv., 43, 107 (1968)).
[0029]
(Measurement of water permeability of hollow fiber membrane)
The measurement of water permeability (hereinafter referred to as UFR) is according to the following procedure. The hollow fiber membrane module is filled with pure water, and at 37 ° C., one end of the module leading to the inside of the membrane is closed with a stopper, and pure water is passed through the other end entrance by pressurization. At this time, the permeation speed of pure water coming out through the membrane and the pressure difference between the membranes are measured by changing the pressure at several points. The relationship between the water transmission rate and the intermembrane pressure difference is linearly approximated, and the UFR (unit: ml / hr · mmHg · m) is calculated from the inclination and membrane area of the hollow fiber module. 2 ) Is calculated.
[0030]
(Evaluation of filtration stability in blood system)
Hollow fiber membrane module, membrane area 1.5m 2 Was used, and hematocrit 35% bovine blood was perfused inside the hollow fiber at a flow rate of 200 ml / min. At the same time, filtration was started from the outside of the hollow fiber at a flow rate of 20 ml / min. The water permeation rate (hereinafter referred to as MFR) in bovine blood was calculated from the transmembrane pressure difference 15 minutes after the start of perfusion and filtration and the filtration flow rate. This value was designated as A, and MFR was calculated in the same manner 120 minutes after the start of perfusion and filtration, and this value was designated as B. The stability of filtration with blood (hereinafter referred to as C% value) was calculated as B / A × 100 (%).
[0031]
(Example 1)
Polyethersulfone (PES; Sumika Excel, manufactured by Sumitomo Chemical Co., Ltd.) and polyvinylpyrrolidone (PVP; manufactured by BASF, K90) having a reduced viscosity (A) of 0.48 were mixed with N-methylpyrrolidone (NMP) and triethylene glycol (TEG). ) Was mixed and dissolved at 120 ° C. so that the concentration (B) was 35 wt% and the concentration (C) was 7 wt% to prepare a spinning dope. The stock solution has an A × B value of 0.168 and a C / B value of 0.200. This spinning dope was discharged from the outer peripheral part of the double annular slit base at a base part temperature of 125 ° C., and liquid paraffin was discharged from the center hole as a core liquid. The spinning solution was introduced into the coagulation layer through a dry portion 40 mm from the die to the coagulation tank, and the membrane was coagulated. The coagulation tank was composed of a mixed aqueous solution of NMP and TEG (8: 2). The NMP / TEG mixture had a weight% (coagulation bath concentration) of 10% by weight and a temperature of 25 ° C. The hollow fiber in the coagulation step first comes into contact with the guide, and immediately after that, a stretch with a stretch ratio of 7% is applied between the two drive rollers, and then the solvent is removed by passing through a washing tank, The hollow fiber was impregnated with glycerin through a 30% by weight glycerin aqueous solution tank and dried. The hollow fiber membrane after drying had an inner diameter of 200 μm and a film thickness of 15 μm.
[0032]
The hollow fiber membrane is built into the hemodialysis module and the membrane area is 1.5m 2 Created the module. Using this module, a PVP dissolution test, a water permeability test, and a blood filtration stability test were performed. As shown in Table 1, the blood filtration stability was as good as 95%, and the amount of hydrophilic polymer eluted was 9.4 mg.
[0033]
(Examples 2 to 6)
A hollow fiber membrane was produced by the same hollow fiber membrane production process as in Example 1 using the spinning dope having the composition shown in Table 1. The stretch ratio, dry length, die temperature, coagulation tank concentration, temperature, glycerin immersion concentration in the hollow fiber membrane production process are as shown in Table 1. The dimensions of the prepared hollow fibers are all around an inner diameter of 200 μm and a film thickness of 15 μm.
Using these hollow fiber membranes, a PVP dissolution test, a water permeability test, and a blood filtration stability test were performed. The results are shown in Table 1. All were excellent in blood filtration stability, and the amount of hydrophilic polymer eluted was as small as 10 mg or less.
[0034]
(Comparative Example 1)
Polyether sulfone (PES; Sumika Excel, manufactured by Sumitomo Chemical Co., Ltd.) and polyvinyl pyrrolidone (PVP; manufactured by BASF, K90) having a reduced viscosity (A) of 0.48, N-methylpyrrolidone (NMP) and triethylene glycol (TEG) Was mixed and dissolved at 120 ° C. so that the concentration (B) was 23% by weight and the concentration (C) was 3% by weight to prepare a spinning dope. The stock solution has an A × B value of 0.110 and a C / B value of 0.130. This spinning dope was discharged from the outer peripheral part of the double annular slit base at a base part temperature of 125 ° C., and liquid paraffin was discharged from the center hole as a core liquid. The spinning solution was introduced into the coagulation layer through a dry portion 40 mm from the die to the coagulation tank, and the membrane was coagulated. The coagulation tank was composed of a mixed aqueous solution of NMP and TEG (8: 2). The NMP / TEG mixture had a weight% (coagulation bath concentration) of 10% by weight and a temperature of 25 ° C. The hollow fiber in the coagulation step first comes into contact with the guide, and immediately after that, a stretch with a stretch ratio of 7% is applied between the two drive rollers, and then the solvent is removed by passing through a washing tank, The hollow fiber was impregnated with glycerin through a 30% by weight glycerin aqueous solution tank and dried. The hollow fiber membrane after drying had an inner diameter of 200 μm and a film thickness of 15 μm.
[0035]
The hollow fiber membrane is built into the hemodialysis module and the membrane area is 1.5m 2 Created the module. Using this module, a PVP dissolution test, a water permeability test, and a blood filtration stability test were performed. As shown in Table 1, the blood filtration stability was as low as 80% or less, and the amount of hydrophilic polymer eluted was as high as 32.5 mg. Since the weight fraction of the hydrophobic polymer in the spinning dope is low, the pore diameter of the blood contact surface of the hollow fiber membrane becomes too large, and proteins in the blood clog the pores during blood processing and stabilize blood filtration. It seemed that the sex decreased. Moreover, it seems that the elution amount of hydrophilic polymer increased for the same reason.
[0036]
(Comparative Examples 2-7)
A hollow fiber membrane was produced by the same hollow fiber membrane production process as in Comparative Example 1 using the spinning dope having the composition shown in Table 1. The stretch ratio, dry length, die temperature, coagulation tank concentration, temperature, glycerin immersion concentration in the hollow fiber membrane production process are as shown in Table 1. The dimensions of the prepared hollow fibers are all about an inner diameter of 200 μm and a film thickness of 15 μm.
Using these hollow fiber membranes, a PVP dissolution test, a water permeability test, and a blood filtration stability test were performed. As shown in Table 1, no results were obtained in which blood filtration stability and hydrophilic polymer elution were both reduced.
[0037]
(Comparative Example 8)
Polyethersulfone (PES; Sumika Excel, manufactured by Sumitomo Chemical Co., Ltd.) and polyvinylpyrrolidone (PVP; manufactured by BASF, K90) having a reduced viscosity (A) of 0.75 were converted to N-methylpyrrolidone (NMP) and triethylene glycol (TEG). Was mixed and dissolved at 120 ° C. so that the concentration (B) was 38% by weight and the concentration (C) was 3% by weight to prepare a spinning dope. The stock solution has an A × B value of 0.285 and a C / B value of 0.079. We tried spinning hollow fiber by discharging this spinning dope from the outer periphery of the double annular slit die at a die part temperature of 125 ° C., but the back pressure during discharging the spinning dope was high, and spinning could not be performed stably. It was.
[0038]
[Table 1]
Figure 2005065725
[0039]
【The invention's effect】
The hollow fiber type blood purification membrane shown in the present invention, when used for blood purification therapy such as hemodialysis, blood filtration, blood filtration dialysis, etc., is excellent in safety with little effluent from the membrane, and stable selective separation of blood components. A blood purification membrane having a uniform membrane structure type capable of maintaining performance is provided. Therefore, it is extremely useful as a blood purification device used for dialysis treatment or acute blood purification treatment of patients with chronic renal failure.

Claims (7)

芳香族系疎水性高分子を主成分としてなる中空糸型血液浄化膜を乾湿式紡糸法により製造する際、疎水性高分子の還元粘度A、紡糸原液中の疎水性高分子の重量分率Bが、
0.36≦A≦0.78かつ0.28≦B≦0.50かつ0.13≦A×B≦0.25
の関係となる紡糸原液を用い、紡糸口金より空中に吐出された該紡糸原液を凝固浴に導き、凝固浴に浸漬後の中空糸型血液浄化膜に5%以上30%以下の延伸を付与することを特徴とする中空糸型血液浄化膜の製造方法。
When producing a hollow fiber blood purification membrane mainly composed of an aromatic hydrophobic polymer by dry and wet spinning, the reduced viscosity A of the hydrophobic polymer, the weight fraction B of the hydrophobic polymer in the spinning dope But,
0.36 ≦ A ≦ 0.78 and 0.28 ≦ B ≦ 0.50 and 0.13 ≦ A × B ≦ 0.25
Using the spinning stock solution having the relationship of A method for producing a hollow fiber blood purification membrane characterized by the above.
芳香族系疎水性高分子を主成分としてなる中空糸型血液浄化膜の製造において、疎水性高分子の還元粘度Aと紡糸原液中の疎水性高分子の重量分率Bが、
0.45≦A≦0.75かつ0.32≦B≦0.45かつ0.16≦A×B≦0.23
の関係となる紡糸原液を用いることを特徴とする請求項1記載の中空糸型血液浄化膜の製造方法。
In the production of a hollow fiber blood purification membrane mainly composed of an aromatic hydrophobic polymer, the reduced viscosity A of the hydrophobic polymer and the weight fraction B of the hydrophobic polymer in the spinning dope are:
0.45 ≦ A ≦ 0.75 and 0.32 ≦ B ≦ 0.45 and 0.16 ≦ A × B ≦ 0.23
2. The method for producing a hollow fiber blood purification membrane according to claim 1, wherein a spinning stock solution having the following relationship is used.
中空糸型血液浄化膜が親水性高分子を含むことを特徴とする請求項1または2記載の中空糸型血液浄化膜の製造方法。3. The method for producing a hollow fiber blood purification membrane according to claim 1, wherein the hollow fiber blood purification membrane contains a hydrophilic polymer. 中空糸型血液浄化膜の製造において、紡糸原液中の疎水性高分子の重量分率B、親水性高分子の重量分率Cが、
0.02≦C≦0.07かつ0.07≦C/B≦0.20
の関係となる紡糸原液を用いることを特徴とする請求項1〜3いずれか記載の中空糸型血液浄化膜の製造方法。
In the production of the hollow fiber blood purification membrane, the weight fraction B of the hydrophobic polymer and the weight fraction C of the hydrophilic polymer in the spinning dope are:
0.02 ≦ C ≦ 0.07 and 0.07 ≦ C / B ≦ 0.20
The method for producing a hollow fiber blood purification membrane according to any one of claims 1 to 3, wherein a spinning stock solution having the following relationship is used.
中空糸型血液浄化膜の製造において、中空形成に用いる芯剤として、流動パラフィンを用いることを特徴とする請求項1〜4いずれか記載の中空糸型血液浄化膜の製造方法。The method for producing a hollow fiber blood purification membrane according to any one of claims 1 to 4, wherein liquid paraffin is used as a core agent used for forming a hollow in the production of the hollow fiber blood purification membrane. 芳香族系疎水性高分子が、ポリスルホン系高分子である請求項1〜5いずれか記載の中空糸型血液浄化膜の製造方法。The method for producing a hollow fiber blood purification membrane according to any one of claims 1 to 5, wherein the aromatic hydrophobic polymer is a polysulfone polymer. 親水性高分子がポリビニルピロリドンである請求項1〜6いずれか記載の中空糸型血液浄化膜の製造方法。The method for producing a hollow fiber blood purification membrane according to any one of claims 1 to 6, wherein the hydrophilic polymer is polyvinylpyrrolidone.
JP2003208484A 2003-08-22 2003-08-22 Hollow fiber blood purification membrane Expired - Lifetime JP4093134B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003208484A JP4093134B2 (en) 2003-08-22 2003-08-22 Hollow fiber blood purification membrane
PCT/JP2004/011972 WO2005025649A1 (en) 2003-08-22 2004-08-20 Polysulfone based selective permeation hollow fiber membrane and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208484A JP4093134B2 (en) 2003-08-22 2003-08-22 Hollow fiber blood purification membrane

Publications (2)

Publication Number Publication Date
JP2005065725A true JP2005065725A (en) 2005-03-17
JP4093134B2 JP4093134B2 (en) 2008-06-04

Family

ID=34401754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208484A Expired - Lifetime JP4093134B2 (en) 2003-08-22 2003-08-22 Hollow fiber blood purification membrane

Country Status (1)

Country Link
JP (1) JP4093134B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295868A (en) * 2007-06-01 2008-12-11 Toyobo Co Ltd Method for producing blood purifier and blood purifier
WO2010074136A1 (en) * 2008-12-25 2010-07-01 東洋紡績株式会社 Porous hollow fiber membrane and porous hollow fiber membrane for processing protein-containing liquid
JP2011000145A (en) * 2009-06-16 2011-01-06 Nikkiso Co Ltd Hollow fiber blood purification membrane and method of manufacturing the same
JP2021519421A (en) * 2018-03-30 2021-08-10 エクソソミクス・ソシエタ・ペル・アチオニEXOSOMICS S.p.A. Use of hollow fibers to obtain blood or blood derivatives that have deprived extracellular vesicles from blood cells and platelets

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295868A (en) * 2007-06-01 2008-12-11 Toyobo Co Ltd Method for producing blood purifier and blood purifier
WO2010074136A1 (en) * 2008-12-25 2010-07-01 東洋紡績株式会社 Porous hollow fiber membrane and porous hollow fiber membrane for processing protein-containing liquid
JP5207150B2 (en) * 2008-12-25 2013-06-12 東洋紡株式会社 Porous hollow fiber membrane and porous hollow fiber membrane for protein-containing liquid treatment
US9795932B2 (en) 2008-12-25 2017-10-24 Toyo Boseki Kabushiki Kaisha Porous hollow fiber membrane and a porous hollow fiber membrane for the treatment of a protein-containing liquid
JP2011000145A (en) * 2009-06-16 2011-01-06 Nikkiso Co Ltd Hollow fiber blood purification membrane and method of manufacturing the same
JP2021519421A (en) * 2018-03-30 2021-08-10 エクソソミクス・ソシエタ・ペル・アチオニEXOSOMICS S.p.A. Use of hollow fibers to obtain blood or blood derivatives that have deprived extracellular vesicles from blood cells and platelets
JP7337438B2 (en) 2018-03-30 2023-09-04 エクソソミクス・ソシエタ・ペル・アチオニ Use of hollow fibers to obtain blood or blood derivatives impoverished with extracellular vesicles derived from blood cells and platelets

Also Published As

Publication number Publication date
JP4093134B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP5504560B2 (en) Hollow fiber membrane for liquid processing
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
JPH0554373B2 (en)
TW200938239A (en) Microporous hollow fiber membrane for blood treatment
JPH06165926A (en) Polysulfone hollow fabric membrane and production therefor
WO2004056460A1 (en) Perm selective asymmetric hollow fibre membrane for the separation of toxic mediators from blood
JP2007522929A (en) Dialysis membrane with improved removal of medium molecules
WO2007102528A1 (en) Hollow fiber membrane with excellent performance stability and blood purifier and method for producing hollow fiber membrane
JP2016531747A (en) Permselective asymmetric membrane
US10888823B2 (en) Membrane with improved permeability and selectivity
KR20110126607A (en) Hollow-fiber membrane, process for producing same, and blood purification module
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2006340977A (en) Hollow fibre membranes and blood purifier
JP5217238B2 (en) Porous hollow fiber membrane and blood purifier excellent in permeation performance stability
JP5212837B2 (en) Permselective hollow fiber membrane
JP5292762B2 (en) Blood purifier with excellent mass replacement characteristics
JP4093134B2 (en) Hollow fiber blood purification membrane
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP2008246402A (en) Hollow fiber type blood purification membrane and method of manufacturing the same
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP2007054470A (en) Hollow fiber membrane for blood purification and its manufacturing method
JPH09220455A (en) Hollow yarn type selective separation membrane
JP4381058B2 (en) Hollow fiber blood purifier with excellent blood compatibility

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4093134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term