JP2008295868A - Method for producing blood purifier and blood purifier - Google Patents

Method for producing blood purifier and blood purifier Download PDF

Info

Publication number
JP2008295868A
JP2008295868A JP2007147245A JP2007147245A JP2008295868A JP 2008295868 A JP2008295868 A JP 2008295868A JP 2007147245 A JP2007147245 A JP 2007147245A JP 2007147245 A JP2007147245 A JP 2007147245A JP 2008295868 A JP2008295868 A JP 2008295868A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
blood purifier
hollow
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007147245A
Other languages
Japanese (ja)
Inventor
Yuji Ito
裕二 伊藤
Saori Ito
小織 伊藤
Hidehiko Sakurai
秀彦 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007147245A priority Critical patent/JP2008295868A/en
Publication of JP2008295868A publication Critical patent/JP2008295868A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cleaning oily materials loaded in hollow parts while leaving a pore size keeping agent for hollow fiber membranes such as glycerin or the like which avoids the destruction of the earth environment that is seen when using solvents such as chlorofluorocarbons or the like for cleaning oily materials such as liquid parafin loaded in hollow parts of hollow fiber membranes, avoids danger of ignition, dispenses with installation of explosion-proof equipment, and solves the problem of deterioration of a case for storing a hollow fiber membrane bundle due to the solvents. <P>SOLUTION: In a method for cleaning a hollow fiber membrane, a hollow fiber membrane bundle is loaded in a case of a blood purifier, both ends are fixed by a bonding resin, and gas whose temperature and humidity are adjusted to a temperature of ≥5°C and ≤40°C and to a relative humidity of ≥30% and ≤70% is supplied to the hollow parts of the hollow fiber membranes. By doing so, a hollow forming agent remaining in the hollow parts is removed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、血液浄化器等に使用される中空糸膜より中空形成剤を低コストで効率よく除去する血液浄化器の製造方法に関する。   The present invention relates to a method for producing a blood purifier that efficiently removes a hollow forming agent at a low cost from a hollow fiber membrane used in a blood purifier or the like.

血液浄化膜は腎臓機能の低下した患者の腎機能を補完するものとして、初期は尿素やクレアチニンなどの低分子物質を除くために用いられてきたが、近年ではβ2ミクログロブリンなどの中分子量のタンパク質も効率的に除去できる、いわゆる中空糸膜タイプの高性能血液浄化膜が開発され、ますますその重要性が増している。 As blood purification membrane to complement reduced patient renal function renal function, the initial urea and has been used to remove low molecular substances such as creatinine, in recent molecular weight within such beta 2 microglobulin A so-called hollow fiber membrane type high-performance blood purification membrane capable of efficiently removing proteins has been developed and its importance is increasing.

従来、セルロース、酢酸セルロース、三酢酸セルロース、ポリアクリロニトリル、ポリメチルメタクリレート等のポリマーの溶融物、ポリマーおよび溶媒および/または非溶媒からなる溶液を二重環状オリフィスの外側環状部から押し出す際に、二重環状オリフィスの内管から流動パラフィン、イソプロピルミリステート等の油状物質を同時に吐出して、油状物質が充填された状態の中空糸膜を製造してきた。このようにして製造された中空糸膜を複数本束ねて、ポリスチレン樹脂、アクリル樹脂、ポリカーボネート樹脂等のプラスチックから成る血液浄化器ケース内に装填し、中空糸膜束の両端部を接着剤で固着した後、接着部の一部を切断して中空糸膜端部を開口して血液浄化器を製造してきた。   Conventionally, when extruding a solution of a polymer such as cellulose, cellulose acetate, cellulose triacetate, polyacrylonitrile, polymethylmethacrylate, polymer and solvent and / or non-solvent from the outer annular portion of the double annular orifice, A hollow fiber membrane filled with an oily substance has been manufactured by simultaneously discharging oily substances such as liquid paraffin and isopropyl myristate from the inner tube of the double annular orifice. A plurality of hollow fiber membranes manufactured in this way are bundled and loaded into a blood purifier case made of plastic such as polystyrene resin, acrylic resin, polycarbonate resin, etc., and both ends of the hollow fiber membrane bundle are fixed with an adhesive. After that, a blood purifier has been manufactured by cutting a part of the bonded portion and opening the end portion of the hollow fiber membrane.

中空糸膜に充填された油状物質は、中空糸膜を血液浄化器等のケースに挿入する前あるいは後に中空糸膜中空部にフロンを通液することで除去していた。しかしながら、フロンはオゾン層を破壊することから、先進国を中心に生産を中止する方向へ進んでおり、代替可能な洗浄方法への切り替えが進んでいる。これに関し、塩化フッ素系炭化水素化合物、フッ化炭素系化合物、有機溶剤等による洗浄が検討されている。   The oily substance filled in the hollow fiber membrane was removed by passing fluorocarbon through the hollow portion of the hollow fiber membrane before or after inserting the hollow fiber membrane into a case such as a blood purifier. However, since chlorofluorocarbons destroy the ozone layer, they are moving to stop production mainly in developed countries, and switching to alternative cleaning methods is progressing. In this regard, cleaning with a fluorinated hydrocarbon compound, a fluorinated carbon compound, an organic solvent, or the like has been studied.

しかし、各々実用上での制約があり、必ずしも完全な代替品には成りえない。塩化フッ素系炭化水素化合物、例えば構造式C2H3Cl2Fで示される化合物(特許文献1)や構造式C3HCl3Fで示される化合物はアクリル樹脂、ポリカーボネート樹脂等のプラスチックへの侵食(例えば、表面がざらざらする、部分溶解による白化、クラックが入るなど)があり、血液浄化器を組み立てた後に中空糸膜中空部に残存する中空形成剤を洗浄除去することができなかった。また、構造式C3HCl5F5で示される化合物の場合、孔径保持剤として含有されるグリセリンを部分溶解するため膜性能を低下させるという問題もあった。
特開平07−138807号公報
However, each has practical limitations and cannot necessarily be a perfect substitute. Fluorinated hydrocarbon compounds such as compounds represented by the structural formula C 2 H 3 Cl 2 F (Patent Document 1) and compounds represented by the structural formula C 3 HCl 3 F are eroded by plastics such as acrylic resins and polycarbonate resins. (For example, the surface is rough, whitening due to partial dissolution, cracks, etc.), and the hollow forming agent remaining in the hollow portion of the hollow fiber membrane could not be washed away after the blood purifier was assembled. In the case of the compound represented by the structural formula C 3 HCl 5 F 5 , the glycerin contained as the pore size retaining agent is partially dissolved, which causes a problem of reducing the membrane performance.
JP 07-138807 A

一方、フッ化炭素系化合物(特許文献2)は基本的に油状物質を溶解する能力は無いが、表面張力が低いため膜素材と油状物質の間に入り込み、油状物質を膜面より剥離する形で除去することができる。しかしながら、物理的に剥離するため、効率が悪く、多量の該化合物を必要とするという欠点がある。更に、地球温暖化への影響も考慮する必要がある。また、脂肪族炭化水素、例えばヘキサン(特許文献3)やノナン(特許文献4)を用いることで油状物質を選択的に溶解除去することができるが、引火点を持つため防爆設備が必須となり、作業安全性やコスト増に繋がることから、単純に代替ができない。
特開平06−285160号公報 特開平06−285161号公報 特開平10−225627号公報
On the other hand, a fluorocarbon compound (Patent Document 2) basically has no ability to dissolve an oily substance, but because of its low surface tension, it penetrates between the film material and the oily substance and peels the oily substance from the film surface. Can be removed. However, since it physically peels, there is a disadvantage that the efficiency is poor and a large amount of the compound is required. Furthermore, it is necessary to consider the impact on global warming. Moreover, although an oily substance can be selectively dissolved and removed by using an aliphatic hydrocarbon such as hexane (Patent Document 3) or Nonane (Patent Document 4), an explosion-proof facility is essential because it has a flash point. Because it leads to increased work safety and cost, it cannot simply be replaced.
Japanese Patent Laid-Open No. 06-285160 Japanese Patent Laid-Open No. 06-285161 Japanese Patent Laid-Open No. 10-225627

一方、上記のような溶剤を用いた洗浄方法に取って代わる、安全で作業性がよく、安価な洗浄方法の確立が求められている。   On the other hand, establishment of a safe, good workability, and inexpensive cleaning method that replaces the above-described cleaning method using a solvent is required.

特許文献5には、中空糸膜束の一端に向けて温度50〜120℃および/または相対湿度20〜100%の調温調湿空気を送風することにより、中空糸膜内部の非凝固性液体を除去する方法が開示されている。これはフロン等の洗浄液を用いることなく中空形成剤を除去でき、環境負荷の少ない安価な洗浄方法である。しかしながら、該文献に記載の中空糸膜は、透水率が2.5〜60mL/m2/hr/mmHgと細孔径が小さく、細孔内にグリセリンが充填されていない中空糸膜を対象としている。
特開平07−252721号公報
Patent Document 5 discloses a non-coagulating liquid inside a hollow fiber membrane by blowing temperature-controlled humidity air at a temperature of 50 to 120 ° C. and / or a relative humidity of 20 to 100% toward one end of the hollow fiber membrane bundle. A method of removing is disclosed. This is an inexpensive cleaning method that can remove the hollow forming agent without using a cleaning liquid such as chlorofluorocarbon, and has a low environmental load. However, the hollow fiber membrane described in the document is intended for a hollow fiber membrane having a water permeability of 2.5 to 60 mL / m 2 / hr / mmHg, a small pore diameter, and no pore filled with glycerin. .
JP 07-252721 A

特許文献6には、中空糸から芯液の大半を遠心分離、圧空押し出し、自然落下を組み合わせて除去した後、中空糸を透析器内に収納、接着し、さらに透析器内の中空糸に残存する芯液を加圧気体および水で物理的に除去する方法が開示されている。該技術によれば、血液浄化器の作製前後での芯液除去操作が必要であることから、かかる操作は非常に煩雑であり、それに伴うコストも軽微とは言い難い。
特開平08−164200号公報
In Patent Document 6, most of the core liquid is removed from the hollow fiber by centrifugation, compressed air extrusion, and natural dropping in combination, and then the hollow fiber is housed and bonded in the dialyzer and further remains in the hollow fiber in the dialyzer. A method of physically removing the core liquid to be removed with a pressurized gas and water is disclosed. According to this technique, since the core fluid removal operation before and after the production of the blood purifier is necessary, such an operation is very complicated, and the associated cost is hardly small.
Japanese Patent Laid-Open No. 08-164200

本発明は、中空糸膜の膜構造に変化を与えず、血液透析器組立時の中空糸膜端部接着時の接着樹脂充填不良による生産性低下の問題がなく、グリセリン等の孔径保持剤を残存させ、中空糸膜中空部に存在する中空形成剤(油状物質)を選択的に除去するとともに、中空糸膜束を収容するケースを劣化させることなく、引火性、環境破壊、血液浄化器製造コストにかかる諸問題を解消した中空糸膜中空部の中空形成剤除去方法を提供する。   The present invention does not change the membrane structure of the hollow fiber membrane, and there is no problem of a decrease in productivity due to poor filling of the adhesive resin when adhering to the end of the hollow fiber membrane at the time of hemodialyzer assembly. Remains and selectively removes the hollow forming agent (oily substance) present in the hollow part of the hollow fiber membrane, and flammability, environmental destruction, blood purifier manufacture without deteriorating the case containing the hollow fiber membrane bundle Provided is a method for removing a hollow forming agent from a hollow portion of a hollow fiber membrane, which solves various problems related to cost.

クレーム確定時に修正。
本発明により、これらの課題が解決できることがわかった。すなわち、本発明は、
(1)中空糸膜束を血液浄化器ケースに装填して、両端部を接着樹脂で固定した後、温度5℃以上40℃以下、相対湿度30%以上70%以下に調温調湿した気体を中空糸膜中空部に流して、中空部に残存する中空形成剤を除去することを特徴とする血液浄化器の製造方法である。
(2)また、中空形成剤が油状物質であることを特徴とする血液浄化器の製造方法である。
(3)また、油状物質が流動パラフィンまたはミリスチン酸イソプロピルであることを特徴とする血液浄化器の製造方法である。
(4)また、中空糸膜が細孔内に孔径保持剤を含有していることを特徴とする血液浄化器の製造方法である。
(5)また、孔径保持剤が主としてグリセリンまたはグリセリン誘導体であることを特徴とする血液浄化器の製造方法である。
(6)また、孔径保持剤の付着率が30〜80重量%であることを特徴とする血液浄化器の製造方法である。
(7)また、中空糸膜中空部に気体を流す際の圧力が0.05〜0.20MPaであることを特徴とする血液浄化器の製造方法である。
(8)また、中空糸膜の空隙率が30〜85%であることを特徴とする血液浄化器の製造方法である。
(9)さらに、前記いずれかに記載の方法で製造されたことを特徴とする血液浄化器である。
(10)また、油状物質の残存量が100mg/(2.1m2モジュール)以下であることを特徴とする血液浄化器である。
Corrected when claim is confirmed.
It has been found that these problems can be solved by the present invention. That is, the present invention
(1) After the hollow fiber membrane bundle is loaded into a blood purifier case and both ends are fixed with an adhesive resin, the temperature is adjusted to a temperature of 5 ° C. to 40 ° C. and the relative humidity is 30% to 70%. In the hollow portion of the hollow fiber membrane to remove the hollow forming agent remaining in the hollow portion.
(2) The method for producing a blood purifier is characterized in that the hollow forming agent is an oily substance.
(3) The method for producing a blood purifier is characterized in that the oily substance is liquid paraffin or isopropyl myristate.
(4) The method for producing a blood purifier is characterized in that the hollow fiber membrane contains a pore diameter retaining agent in the pores.
(5) The blood purifier manufacturing method is characterized in that the pore diameter maintaining agent is mainly glycerin or a glycerin derivative.
(6) Moreover, it is a manufacturing method of the blood purifier characterized by the adhesion rate of a pore diameter maintaining agent being 30 to 80% by weight.
(7) The method for producing a blood purifier is characterized in that the pressure when flowing a gas through the hollow portion of the hollow fiber membrane is 0.05 to 0.20 MPa.
(8) Moreover, it is a manufacturing method of the blood purifier characterized by the porosity of a hollow fiber membrane being 30 to 85%.
(9) A blood purifier produced by any one of the methods described above.
(10) The blood purifier is characterized in that the residual amount of the oily substance is 100 mg / (2.1 m 2 module) or less.

本発明方法によれば、中空糸膜に含浸されているグリセリン等の水溶性の孔径保持剤の脱落を抑制しながら、中空糸膜中空部に充填されている油状物質を除去することができる。すなわち、孔径保持剤の脱落により生じる細孔の収縮が殆ど生じない除去操作であるため、中空糸膜の性能低下は殆どみられない。また、本発明では油状物質の洗浄除去に塩化フッ素系炭化水素化合物、フッ化炭素系化合物、有機溶剤等を使用しないため、環境破壊、引火の危険性、および中空糸膜束を収容するケ−スの溶剤劣化に関する問題がない。また、本発明は中空糸膜束の端部を血液浄化器ケースに充填し、端部を接着樹脂で接着した後に調温調湿気体で中空部の油状物質を除去する為、血液透析器組立時の端部ウレタン樹脂充填不良の問題が生じない。更に、本発明では、塩化フッ素系炭化水素化合物、フッ化炭素系化合物、有機溶剤等を使用しないため防爆設備の設置が不要となり、血液浄化器製造にかかるコストの低減効果が大である。   According to the method of the present invention, the oily substance filled in the hollow portion of the hollow fiber membrane can be removed while suppressing the falling off of the water-soluble pore diameter retaining agent such as glycerin impregnated in the hollow fiber membrane. That is, since the removal operation hardly causes the shrinkage of the pores caused by the removal of the pore diameter retaining agent, the performance of the hollow fiber membrane is hardly deteriorated. Further, in the present invention, since a chlorofluorinated hydrocarbon compound, a fluorinated carbon compound, an organic solvent, or the like is not used for washing and removing the oily substance, environmental destruction, risk of ignition, and a case for housing a hollow fiber membrane bundle are accommodated. There is no problem with solvent degradation. In addition, the present invention fills the end of the hollow fiber membrane bundle into a blood purifier case, and adheres the end with an adhesive resin, and then removes the oily substance in the hollow with a temperature-controlled humidity gas. The problem of poor filling of the end urethane resin does not occur. Furthermore, in the present invention, since no chlorofluorinated hydrocarbon compound, fluorinated carbon compound, organic solvent, or the like is used, it is not necessary to install an explosion-proof facility, which greatly reduces the cost of manufacturing a blood purifier.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、中空糸膜を製造する方法は特に限定されないが、例えば、ポリマーと溶媒、非溶媒からなる紡糸原液をニ重管状ノズルの外側環状部より吐出し、同時に内管より中空形成剤を吐出し、エアギャップ部を通過後、凝固液に浸漬させる乾湿式紡糸法が挙げられる。得られた中空糸膜は、引き続き水洗槽で過剰の溶媒、非溶媒を除去した後、孔径保持剤を中空糸膜の細孔内に含浸させ、乾燥し、巻き取る。孔径保持剤としては、グリセリン、ポリエチレングリコール、ポリプロピレングリコール等が使用されるが、特にグリセリンが好適に使用される。   In the present invention, the method for producing the hollow fiber membrane is not particularly limited. For example, a spinning stock solution composed of a polymer, a solvent, and a non-solvent is discharged from the outer annular portion of the double tubular nozzle, and at the same time, the hollow forming agent is discharged from the inner tube. There is a dry and wet spinning method in which it is discharged and passed through the air gap portion and then immersed in a coagulating liquid. The obtained hollow fiber membrane is subsequently removed with an excess solvent and non-solvent in a water washing tank, and then impregnated with a pore diameter retaining agent in the pores of the hollow fiber membrane, dried and wound up. As the pore diameter retaining agent, glycerin, polyethylene glycol, polypropylene glycol or the like is used, and glycerin is particularly preferably used.

本発明において、中空糸膜の素材は、中空形成剤として油状物質を用いて紡糸できるものであれば特に制限はなく、セルロース、酢酸セルロース、三酢酸セルロース、ポリアクリロニトリル、ポリメチルメタクリレート、ポリスルホン、ポリエーテルスルホン等のポリマーが好適に用いられる。中でも、酢酸セルロースや三酢酸セルロースなどのセルロースアセテート系ポリマー、ポリスルホンやポリエーテルスルホンなどのポリスルホン系ポリマーがより好ましく用いられる。紡糸原液中のポリマー濃度は、15〜50重量%が好ましい。本願発明は、細孔内に孔径保持剤が充填された中空糸膜に好ましく適応されるが、孔径保持剤の保持(細孔内からの孔径保持剤の脱落防止)の観点より均質構造に近い膜であるのがより好ましい。紡糸原液中のポリマー濃度が前記範囲にあれば、中空糸膜を均質構造としやすい。   In the present invention, the material of the hollow fiber membrane is not particularly limited as long as it can be spun using an oily substance as a hollow forming agent. Cellulose, cellulose acetate, cellulose triacetate, polyacrylonitrile, polymethyl methacrylate, polysulfone, polysulfone A polymer such as ether sulfone is preferably used. Of these, cellulose acetate polymers such as cellulose acetate and cellulose triacetate, and polysulfone polymers such as polysulfone and polyethersulfone are more preferably used. The polymer concentration in the spinning dope is preferably 15 to 50% by weight. The present invention is preferably applied to a hollow fiber membrane in which pores are filled with a pore size retainer, but is close to a homogeneous structure from the viewpoint of retaining the pore size retainer (preventing the removal of the pore size retainer from the pores). More preferably, it is a membrane. If the polymer concentration in the spinning dope is in the above range, the hollow fiber membrane can easily have a homogeneous structure.

本発明において、ポリマーに対する溶媒としては、N−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられるが、セルロースアセテート系ポリマーやポリスルホン系ポリマーの凝固および相分離のコントロールのしやすさ、作業安全性、廃棄処理の観点からN−メチル−2−ピロリドン、ジメチルアセトアミドを用いるのが好ましい。   In the present invention, examples of the solvent for the polymer include N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, etc., and it is easy to control the coagulation and phase separation of the cellulose acetate polymer and the polysulfone polymer. From the viewpoints of work safety and disposal, N-methyl-2-pyrrolidone and dimethylacetamide are preferably used.

また、前記ポリマーに対する非溶媒としては、グリセリン、エチレングリコール、トリエチレングリコール、ポリエチレングリコール等が好ましく用いられるが、溶媒との相溶性や洗浄除去性、安全性の観点からトリエチレングリコール、ポリエチレングリコールがより好ましい。ポリエチレングリコールとしては分子量200、400のものを用いるのが、室温で液体であり取り扱い性に優れる点で好ましい。
さらに、紡糸原液には、酸化防止剤や微孔形成剤などの添加剤を必要に応じて加えることも可能である。
紡糸原液中の溶媒/非溶媒比は紡糸原液の安定性が高まることや均質膜構造を得やすいことなどから97/3〜40/60とするのが好ましい。90/10〜50/50がより好ましく、80/20〜60/40がさらに好ましい。
Further, as the non-solvent for the polymer, glycerin, ethylene glycol, triethylene glycol, polyethylene glycol, and the like are preferably used. From the viewpoint of compatibility with the solvent, washing removal property, and safety, triethylene glycol and polyethylene glycol are preferable. More preferred. Polyethylene glycol having a molecular weight of 200 or 400 is preferably used because it is liquid at room temperature and has excellent handleability.
Furthermore, additives such as an antioxidant and a micropore forming agent can be added to the spinning dope as necessary.
The solvent / non-solvent ratio in the spinning dope is preferably 97/3 to 40/60 because the stability of the spinning dope increases and a homogeneous membrane structure is easily obtained. 90 / 10-50 / 50 is more preferable, and 80 / 20-60 / 40 is more preferable.

本発明において、中空形成剤としては特に限定されないが、紡糸原液を凝固させない液体であれば、本願発明の効果がより効果的に発現されるため好ましい。そのような中空形成剤として具体的には、ノナン、デカン、ウンデカン、ドデカン、流動パラフィン、ミリスチン酸イソプロピルなどが挙げられる。安全性や入手のしやすさ、ノズル温度を高めることができるなどの点から流動パラフィン、ミリスチン酸イソプロピルがより好ましい。   In the present invention, the hollow forming agent is not particularly limited, but a liquid that does not coagulate the spinning dope is preferable because the effects of the present invention are more effectively expressed. Specific examples of such a hollow forming agent include nonane, decane, undecane, dodecane, liquid paraffin, and isopropyl myristate. Liquid paraffin and isopropyl myristate are more preferable from the viewpoints of safety, availability, and nozzle temperature.

前記紡糸原液と中空形成剤とをニ重管状ノズルより吐出する際のノズル温度は100〜185℃とするのが好ましい。このような温度範囲であれば、紡糸原液粘度や中空形成剤沸点との関係もあるが、安定した吐出が得られるだけでなく、紡糸原液の凝固や相分離を制御し易いため好ましい。110〜180℃がより好ましく、120〜175℃がさらに好ましい。   The nozzle temperature when discharging the spinning dope and the hollow forming agent from the double tubular nozzle is preferably 100 to 185 ° C. Within such a temperature range, there is a relationship with the spinning solution viscosity and the hollow forming agent boiling point, but it is preferable because not only stable discharge is obtained but also the coagulation and phase separation of the spinning solution are easily controlled. 110-180 degreeC is more preferable, and 120-175 degreeC is further more preferable.

ノズルより吐出された紡糸原液は、3〜150mmのエアギャップ部を通過させて凝固浴に浸漬する。エアギャップ長が短すぎると、凝固浴液面の揺れが生じた際に液面とノズル面が接触し糸切れが生じるとか、凝固浴の温度が低い場合にノズル温度が安定しないなどの問題が生じることがある。逆に、エアギャップ長が長すぎると、紡糸原液が重力の影響を受けて中空糸膜のディメンジョンに斑が生じやすくなるとか、糸切れが発生することもあり、品質面、操業面で問題を生ずることがある。したがって、エアギャップ長は3〜100mmがより好ましく、3〜50mmがさらに好ましい。
エアギャップ部の温度や湿度は膜構造に少なからず影響を与えるので、適宜調整手段を講じるのが好ましいが、本願発明においてはノズル温度が比較的高いこともあり、エアギャップ部を外気と遮断する部材で囲む程度でも十分に紡糸や中空糸膜性能、品質の安定性を確保することが可能である。
The spinning dope discharged from the nozzle is immersed in a coagulation bath through an air gap of 3 to 150 mm. If the air gap length is too short, the liquid surface and nozzle surface come into contact with each other when the liquid surface of the coagulation bath sways, causing thread breakage, or the nozzle temperature is not stable when the temperature of the coagulation bath is low. May occur. On the other hand, if the air gap length is too long, the spinning dope will be affected by gravity and the hollow fiber membrane dimensions will be easily spotted, or thread breakage may occur, which causes problems in terms of quality and operation. May occur. Therefore, the air gap length is more preferably 3 to 100 mm, and further preferably 3 to 50 mm.
Since the temperature and humidity of the air gap portion have a considerable influence on the film structure, it is preferable to take appropriate adjustment means. However, in the present invention, the nozzle temperature may be relatively high, and the air gap portion is shut off from the outside air. It is possible to ensure sufficient spinning, hollow fiber membrane performance and quality stability even when surrounded by the members.

エアギャップを通過した紡糸原液は、凝固浴に浸漬し、凝固および相分離を進行させる。ここで凝固液としては、製膜溶液の調製に用いた溶媒および非溶媒と水との混合液を用いるのが好ましい。凝固液組成により得られる中空糸膜の構造、特性が変化するため、溶媒、非溶媒、水の混合比率は目的とする膜構造、膜特性にあわせて試行錯誤により決定する必要がある。本発明において凝固液の調製に用いる溶媒、非溶媒は、製膜溶液の調製に用いたものと同じものを使用することが好ましく、さらに製膜時の経時的な組成変化を抑制するため製膜溶液中の溶媒、非溶媒比と同じにするのが好ましい。   The spinning dope that has passed through the air gap is immersed in a coagulation bath to cause coagulation and phase separation to proceed. Here, as the coagulation liquid, it is preferable to use the solvent used for the preparation of the film-forming solution and a mixed liquid of a non-solvent and water. Since the structure and characteristics of the hollow fiber membrane obtained by the coagulation liquid composition change, it is necessary to determine the mixing ratio of the solvent, non-solvent, and water by trial and error according to the target membrane structure and membrane characteristics. In the present invention, the solvent and non-solvent used for the preparation of the coagulation liquid are preferably the same as those used for the preparation of the film-forming solution, and in addition, the film-forming is performed in order to suppress the change in composition over time during film-forming. It is preferable to use the same solvent and non-solvent ratio in the solution.

本発明の中空糸膜は、均質構造がより好ましいとしたが、先述した紡糸原液中のポリマー濃度以外にも、中空形成剤種やエアギャップ長、凝固浴条件などを前記範囲とすることが膜構造決定に少なからず影響を与える。   The hollow fiber membrane of the present invention has a more preferable homogeneous structure. However, in addition to the polymer concentration in the spinning dope described above, it is preferable that the hollow forming agent type, the air gap length, the coagulation bath conditions, etc. be within the above ranges. It has a considerable impact on structure determination.

凝固浴から引き出した中空糸膜は、引き続き洗浄工程に導き、中空糸膜製膜に用いた溶媒、非溶媒等を除去する。洗浄装置の構成や用いる洗浄液については特に限定されるものではないが、洗浄液については溶媒、非溶媒と相溶性のあるものであればよく、水、アルコールなどを用いる事が可能であり、水を用いるのがより好ましい。さらに好ましくは、中空糸膜の汚染防止や洗浄効率の面より限外ろ過処理した水をさらに逆浸透膜処理した水を用いる。   The hollow fiber membrane withdrawn from the coagulation bath is subsequently guided to a washing step to remove the solvent, non-solvent and the like used for the hollow fiber membrane formation. The structure of the cleaning apparatus and the cleaning liquid to be used are not particularly limited, but the cleaning liquid may be any solvent and non-solvent compatible, and water, alcohol, etc. can be used. More preferably it is used. More preferably, from the viewpoint of preventing contamination of the hollow fiber membrane and washing efficiency, water obtained by further performing reverse osmosis membrane treatment is used.

洗浄終了後の中空糸膜は、続いて中空糸膜細孔に孔径保持剤を含浸させるための工程に導かれる。本発明においては、孔径保持剤としてグリセリン、グリセリン誘導体を用いるのが好ましい。前記グリセリン類は医薬品や化粧料の用途として用いられる安全性の高い物質であるが、室温では粘度が高いため、原液のままでは中空糸膜細孔内に含浸させるのは容易ではない。したがって、グリセリンと水とを混合したものを100℃以下に加熱した後、中空糸膜と接触させることにより細孔内に含浸するようにしている。溶液中のグリセリン濃度や温度は、中空糸膜の細孔の大きさや数、分布状態によって適宜設定する必要があるが、本発明の中空糸膜のUFR範囲のものであれば、15〜90重量%のグリセリン水溶液を30〜80℃に加熱した後、中空糸膜を浸漬し細孔内に含浸させるのが好ましい。グリセリン濃度が低過ぎると、中空糸膜細孔内への含浸性は高まるが乾燥によって水が蒸発した分だけ細孔が収縮するため、所期の膜特性を得られない可能性がある。したがって、グリセリン濃度は18重量%以上がより好ましく、21重量%以上がさらに好ましい。また、グリセリン濃度が高過ぎると、細孔径の保持効果は高まるが、粘度が高まるため細孔内への含浸性が低下することがある。また、グリセリン水溶液の粘度を低下させるためには温度を上げれば良いが、そうするとグリセリン自体が熱酸化されたり、中空糸膜にダメージを与える可能性がある。したがって、グリセリン濃度は87重量%以下がより好ましく、84重量%以下がさらに好ましい。   The hollow fiber membrane after completion of the cleaning is subsequently led to a process for impregnating the pore diameter retainer into the hollow fiber membrane pores. In the present invention, it is preferable to use glycerin or a glycerin derivative as the pore diameter retaining agent. The glycerins are highly safe substances used for pharmaceuticals and cosmetics, but have a high viscosity at room temperature. Therefore, it is not easy to impregnate the hollow fiber membrane pores with the stock solution. Accordingly, a mixture of glycerin and water is heated to 100 ° C. or lower and then brought into contact with the hollow fiber membrane to impregnate the pores. The glycerin concentration and temperature in the solution need to be appropriately set depending on the size and number of pores of the hollow fiber membrane, and the distribution state, but if the hollow fiber membrane of the present invention is in the UFR range, 15 to 90 wt. % Aqueous glycerin solution is heated to 30 to 80 ° C., and then the hollow fiber membrane is immersed and impregnated in the pores. If the glycerin concentration is too low, the impregnation property into the pores of the hollow fiber membrane is enhanced, but the pores contract by the amount of water evaporated by drying, so that the desired membrane characteristics may not be obtained. Accordingly, the glycerin concentration is more preferably 18% by weight or more, and further preferably 21% by weight or more. On the other hand, if the glycerin concentration is too high, the effect of maintaining the pore diameter is increased, but the viscosity is increased, so that the impregnation property into the pores may be lowered. In order to reduce the viscosity of the aqueous glycerin solution, the temperature may be increased. However, the glycerin itself may be thermally oxidized or the hollow fiber membrane may be damaged. Therefore, the glycerin concentration is more preferably 87% by weight or less, and still more preferably 84% by weight or less.

グリセリン水溶液を含浸させた中空糸膜は、次に乾燥工程にて乾燥される。乾燥温度は40〜120℃が好ましい。ここで、中空糸膜を乾燥させる目的としては、中空糸膜に含まれる水を蒸発させて中空糸膜の軽量化を行うだけでなく、血液浄化器の組立て性の確保(ポッティング剤が残存する水と反応し接着不良を起こすことを防ぐ)、グリセリンの脱落防止(余剰の水を蒸発させることによりグリセリンの流動性を低下させる)、膜構造の固定化(保管時や輸送時の温度変化による細孔の拡大縮小を防ぐ)などが挙げられる。乾燥温度が低過ぎると瞬時に水を蒸発させることができず、グリセリンの脱落を招くことがある。したがって、乾燥温度は45℃以上がより好ましく、50℃以上がさらに好ましい。また、乾燥温度が高過ぎると、グリセリンが熱酸化を起こすことがある。したがって、乾燥温度は115℃以下がより好ましく、110℃以下がさらに好ましい。   The hollow fiber membrane impregnated with the glycerin aqueous solution is then dried in a drying step. The drying temperature is preferably 40 to 120 ° C. Here, the purpose of drying the hollow fiber membrane is not only to reduce the weight of the hollow fiber membrane by evaporating the water contained in the hollow fiber membrane, but also to ensure the assembly of the blood purifier (the potting agent remains) Prevents poor adhesion due to reaction with water), prevents glycerin from falling off (decreases fluidity of glycerin by evaporating excess water), immobilizes membrane structure (due to temperature changes during storage and transportation) And the like). If the drying temperature is too low, water cannot be instantly evaporated and glycerin may fall off. Therefore, the drying temperature is more preferably 45 ° C. or higher, and further preferably 50 ° C. or higher. Also, if the drying temperature is too high, glycerin may undergo thermal oxidation. Therefore, the drying temperature is more preferably 115 ° C. or less, and further preferably 110 ° C. or less.

このようにして得られた中空糸膜は、内径が150〜300μm、膜厚が10〜50μm、空隙率が30〜85%であることが好ましい。内径が小さすぎると、血液浄化器に中空形成剤押し出し用の気体を導入した際に、圧力損失が大きいため、中空形成剤を効率よく除去できない可能性がある。逆に内径が大きすぎると、気体の線速度が高まらず、効率よく中空形成剤を除去できないことがある。一方、空隙率が低すぎて問題となることは少ないが、空隙率が高すぎると、気体の圧力に耐え切れずに中空糸膜に亀裂が入るとか、破裂する可能性がある。したがって、本発明の効果を顕著に発揮させるのは、空隙率が40〜85%であり、50〜85%である。前記空隙率を有する中空糸膜の性能としては、透水性が70〜400ml/m2/hr/mmHgである。 The hollow fiber membrane thus obtained preferably has an inner diameter of 150 to 300 μm, a film thickness of 10 to 50 μm, and a porosity of 30 to 85%. If the inner diameter is too small, there is a possibility that when the gas for extruding the hollow forming agent is introduced into the blood purifier, the pressure loss is large and the hollow forming agent cannot be removed efficiently. Conversely, if the inner diameter is too large, the linear velocity of the gas will not increase, and the hollow forming agent may not be removed efficiently. On the other hand, there is little problem because the porosity is too low, but if the porosity is too high, the hollow fiber membrane may crack or burst without being able to withstand the pressure of the gas. Therefore, it is the porosity of 40 to 85% and 50 to 85% that the effects of the present invention are remarkably exhibited. As the performance of the hollow fiber membrane having the porosity, the water permeability is 70 to 400 ml / m 2 / hr / mmHg.

本発明の方法は、孔径保持剤付着率が比較的高い中空糸膜に対して適用するのが、その効果が顕著に表れるため好ましい。具体的には、孔径保持剤付着率が30〜80重量%が好ましい。効果がより顕著に表れるのは、45〜80重量%であり、さらに60〜80重量%である。孔径保持剤付着率が比較的低い場合には、中空形成剤除去のための気体押し出し条件にそれほどの配慮を必要としない。   It is preferable to apply the method of the present invention to a hollow fiber membrane having a relatively high pore diameter retention agent adhesion rate because the effect is remarkably exhibited. Specifically, the pore diameter retention agent adhesion rate is preferably 30 to 80% by weight. The effect appears more remarkably in the range of 45 to 80% by weight, and further in the range of 60 to 80% by weight. When the pore diameter retention agent adhesion rate is relatively low, the gas extrusion conditions for removing the hollow forming agent do not require much consideration.

得られた中空糸膜は、約5,000〜20,000本の束にして血液浄化器等のケースに収容し、端部を接着樹脂により固定した後、樹脂の一部を切断することにより中空部を開口させ血液浄化器とする。中空部に油状物質が充填された状態のままでは、血液浄化器として使用できないので、血液浄化器を作製する前あるいは作製した後に中空部の油状物質を除去する必要がある。本発明においては、油状物質の除去性や作業効率の面から、血液浄化器作製後に油状物質の除去を行う方法を採用する。   The obtained hollow fiber membrane is bundled in a bundle of about 5,000 to 20,000, accommodated in a case such as a blood purifier, the end is fixed with an adhesive resin, and then a part of the resin is cut. The hollow part is opened to make a blood purifier. If the hollow portion is filled with an oily substance, it cannot be used as a blood purifier. Therefore, it is necessary to remove the oily substance in the hollow part before or after the blood purifier is manufactured. In the present invention, a method of removing the oily substance after manufacturing the blood purifier is adopted from the viewpoint of oily substance removal and work efficiency.

油状物質を除去する方法としては、炭化水素系溶剤や界面活性剤水溶液などの液体を用いて油状物質を除去する方法、圧空や遠心力、自然落下を利用する方法があるが、それぞれ一長一短あり、本発明においては、気体を用いて特定の湿度、温度、圧力条件で油状物質を押し出す方法を採用する。   As a method for removing the oily substance, there are a method of removing the oily substance using a liquid such as a hydrocarbon solvent or a surfactant aqueous solution, a method of using compressed air, centrifugal force, and natural fall, but each has advantages and disadvantages. In the present invention, a method of extruding an oily substance using a gas under specific humidity, temperature and pressure conditions is employed.

本発明において、中空糸膜中空部に充填されている油状物質を除去するのに用いる気体の種類としては、空気及び窒素、アルゴン、ヘリウム等の不活性ガスが用いられるが、取扱い性やコスト面より空気が好適に使用される。   In the present invention, as the type of gas used to remove the oily substance filled in the hollow portion of the hollow fiber membrane, air and inert gas such as nitrogen, argon, helium, etc. are used. Air is preferably used.

本発明において、中空糸膜中空部より油状物質を押し出す際の気体の温度は5℃以上40℃以下とするのが好ましい。気体の温度が低すぎると供給する気体中の水分が配管中で凝結し配管を詰らせることがあるので、気体の温度は10℃以上がより好ましく、15℃以上が更に好ましい。逆に、気体の温度が高すぎると孔径保持剤の粘性が下がり、細孔より脱落することがあるので、気体の温度は38℃以下がより好ましく、35℃以下が更に好ましい。   In this invention, it is preferable that the temperature of the gas at the time of extruding an oily substance from a hollow part of a hollow fiber membrane shall be 5 degreeC or more and 40 degrees C or less. If the temperature of the gas is too low, moisture in the supplied gas may condense in the pipe and clog the pipe. Therefore, the temperature of the gas is more preferably 10 ° C or higher, and further preferably 15 ° C or higher. On the other hand, if the gas temperature is too high, the viscosity of the pore diameter holding agent is lowered and may fall out of the pores, so the gas temperature is more preferably 38 ° C. or less, and even more preferably 35 ° C. or less.

本発明において、中空糸膜中空部より油状物質を押し出す際に用いる気体の相対湿度は30%以上70%以下が好ましい。グリセリン、ポリエチレングリコール、ポリプロピレングリコール等の孔径保持剤を有する中空糸膜の水分率は、血液浄化器組立工程に於いて5%以上20%以下の範囲内に維持されることが好ましい。中空糸膜は低湿度雰囲気下に暴露されると乾燥が進行し、収縮して細孔径や空隙率が低下し、中空糸膜性能が低下することがある。従って中空糸膜の水分率は5%以上が好ましい。逆に、高湿度雰囲気に暴露されると中空糸膜の孔径保持剤が吸湿して孔径保持剤の粘性が低下し細孔から脱落することがある。また、脱落したグリセリンが中空糸膜中空部を閉塞して、臨床使用時に血液の不通化を引き起こす場合がある。従って中空糸膜の水分率は20%以下が好ましい。気体を用いて中空糸膜中空部の油状物質を除去する際に、気体の湿度が低すぎると中空糸膜細孔内に充填されている孔径保持剤が脱水され前記課題につながる。また、気体の湿度が高すぎると孔径保持剤が吸湿するため前記課題の発生につながる。したがって、用いる気体の相対湿度は35%以上65%以下がより好ましい。   In the present invention, the relative humidity of the gas used for extruding the oily substance from the hollow portion of the hollow fiber membrane is preferably 30% or more and 70% or less. It is preferable that the moisture content of the hollow fiber membrane having a pore diameter retaining agent such as glycerin, polyethylene glycol, or polypropylene glycol is maintained within a range of 5% or more and 20% or less in the blood purifier assembly process. When the hollow fiber membrane is exposed to a low-humidity atmosphere, the drying proceeds, shrinks, the pore diameter and the porosity decrease, and the hollow fiber membrane performance may deteriorate. Therefore, the moisture content of the hollow fiber membrane is preferably 5% or more. Conversely, when exposed to a high-humidity atmosphere, the pore diameter retainer of the hollow fiber membrane may absorb moisture, causing the viscosity of the pore diameter retainer to decrease and fall out of the pores. Further, the dropped glycerin may block the hollow portion of the hollow fiber membrane and cause blood impermeability during clinical use. Therefore, the moisture content of the hollow fiber membrane is preferably 20% or less. When the oily substance in the hollow portion of the hollow fiber membrane is removed using gas, if the humidity of the gas is too low, the pore diameter holding agent filled in the hollow fiber membrane pores is dehydrated, leading to the above problems. In addition, if the humidity of the gas is too high, the pore diameter retaining agent absorbs moisture, leading to the occurrence of the above problem. Therefore, the relative humidity of the gas used is more preferably 35% or more and 65% or less.

本発明において、中空糸膜中空部に充填されている油状物質を除去するのに用いる気体の中空糸膜中空部への導入圧力は、0.05〜0.20MPaとするのが好ましい。圧力が低すぎると中空部に存在する油状物質を十分除去できなかったり、除去するまでに長時間を要したりすることがあるので、気体の圧力は0.06MPa以上がより好ましく、0.07MPa以上が更に好ましい。逆に圧力が高すぎると中空糸膜が破損したり、紡糸工程、血液浄化器組立工程で生じた微小なキズを拡大したりする可能性があるので、気体の圧力は0.19MPa以下が好ましく、0.18MPa以下が更に好ましい。   In the present invention, the pressure for introducing the gas used to remove the oily substance filled in the hollow portion of the hollow fiber membrane into the hollow portion of the hollow fiber membrane is preferably 0.05 to 0.20 MPa. If the pressure is too low, the oily substance present in the hollow portion may not be sufficiently removed or it may take a long time to remove, so the gas pressure is more preferably 0.06 MPa or more, and 0.07 MPa. The above is more preferable. On the other hand, if the pressure is too high, the hollow fiber membrane may be damaged, or micro scratches generated in the spinning process and blood purifier assembly process may be enlarged. Therefore, the gas pressure is preferably 0.19 MPa or less. 0.18 MPa or less is more preferable.

本発明において、中空糸膜中空部へ供給される調温調湿気体の調整方法は特に限定しない。あらかじめ調温調湿した気体をコンプレッサー等で送気してもよいし、送気ラインの途中に加湿タンクを設けて調整した気体を用いてもよい。   In the present invention, the method for adjusting the temperature-controlled humidity gas supplied to the hollow portion of the hollow fiber membrane is not particularly limited. A gas whose temperature and humidity are adjusted in advance may be supplied by a compressor or the like, or a gas adjusted by providing a humidification tank in the middle of an air supply line may be used.

本発明においては、中空糸膜中空部の油状物質を除去する際に、中空糸膜束を血液浄化器ケースに充填して両端部をウレタン樹脂で固定した後に調温調湿気体を導入する方法を採用するのが好ましい。中空糸膜束の両端部をウレタン樹脂で固定した後に調温調湿気体を中空部に流せば、効率よく中空形成剤を除去することが可能となり、中空糸膜細孔内にグリセリン等の親水性の孔径保持剤が充填されている、いわゆるHigh Flux中空糸膜でも、孔径保持剤の脱落を抑制するとともに、ウレタン樹脂接着不良を起こすことなく、効率的に中空形成剤を除去することが可能となる。このような配慮をすることにより、中空糸膜性能の低下や品質の低下を回避することが可能となる。   In the present invention, when removing the oily substance in the hollow part of the hollow fiber membrane, a method of introducing a temperature-controlled humidity gas after filling the hollow fiber membrane bundle into the blood purifier case and fixing both ends with urethane resin Is preferably adopted. If both ends of the hollow fiber membrane bundle are fixed with a urethane resin and then a temperature-controlled humidity gas is allowed to flow into the hollow part, the hollow forming agent can be efficiently removed, and hydrophilic such as glycerin is contained in the hollow fiber membrane pores. Even with so-called High Flux hollow fiber membranes, which are filled with a porous pore size retainer, it is possible to efficiently remove the hollow forming agent without causing the pore size retainer to drop off and without causing poor urethane resin adhesion. It becomes. By taking such consideration into consideration, it is possible to avoid a decrease in the performance and quality of the hollow fiber membrane.

(透水性の測定)
透析器の血液出口部回路(圧力測定点よりも出口側)を鉗子により流れを止め全濾過とする。37℃に保温した純水を加圧タンクに入れ、レギュレーターにより圧力を制御しながら、37℃恒温槽で保温した透析器へ純水を送り、透析液側から流出した濾液量をメスシリンダーで測定する。膜間圧力差(TMP)は
TMP=(Pi+Po)/2
とする。ここでPiは透析器入り口側圧力、Poは透析器出口側圧力である。TMPを4点変化させ濾過流量を測定し、それらの関係の傾きから透水性(mL/hr/mmHg)を算出する。このときTMPと濾過流量の相関係数は0.999以上でなくてはならない。また回路による圧力損失誤差を少なくするために、TMPは100mmHg以下の範囲で測定する。中空糸膜の透水性は膜面積と透析器の透水性から算出する。
UFR(H)=UFR(D)/A
ここでUFR(H)は中空糸膜の透水性(ml/m2/hr/mmHg)、UFR(D)は透析器の透水性(ml/hr/mmHg)、Aは透析器の膜面積(m2)である。
(Measurement of water permeability)
The blood outlet circuit (outlet side of the pressure measurement point) of the dialyzer is stopped by a forceps and subjected to total filtration. Purified water kept at 37 ° C is put into a pressurized tank, and the pressure is controlled by a regulator. The pure water is sent to a dialyzer kept warm in a 37 ° C constant temperature bath, and the amount of filtrate flowing out from the dialysate side is measured with a graduated cylinder. To do. The transmembrane pressure difference (TMP) is TMP = (Pi + Po) / 2
And Here, Pi is the dialyzer inlet side pressure, and Po is the dialyzer outlet side pressure. The TMP is changed at four points, the filtration flow rate is measured, and the water permeability (mL / hr / mmHg) is calculated from the slope of the relationship. At this time, the correlation coefficient between TMP and the filtration flow rate must be 0.999 or more. In order to reduce the pressure loss error due to the circuit, TMP is measured in the range of 100 mmHg or less. The water permeability of the hollow fiber membrane is calculated from the membrane area and the water permeability of the dialyzer.
UFR (H) = UFR (D) / A
Here, UFR (H) is the water permeability of the hollow fiber membrane (ml / m 2 / hr / mmHg), UFR (D) is the water permeability of the dialyzer (ml / hr / mmHg), and A is the membrane area of the dialyzer ( m 2 ).

(水分率の測定法)
本発明における中空糸膜の水分率は、以下の式により計算する。
水分率(wt%)=100×(Ww−Wd)/Ww
ここで、Wwは中空糸膜重量(g)、Wdは、120℃の乾熱オーブンで2時間乾燥後(絶乾後)の中空糸膜重量(g)である。ここで、Wwは1〜2gの範囲内とすることで、2時間後に絶乾状態(これ以上重量変化がない)にすることができる。
(Measurement method of moisture content)
The moisture content of the hollow fiber membrane in the present invention is calculated by the following formula.
Moisture content (wt%) = 100 × (Ww−Wd) / Ww
Here, Ww is the weight (g) of the hollow fiber membrane, and Wd is the weight (g) of the hollow fiber membrane after being dried for 2 hours in a dry heat oven at 120 ° C. (after absolutely dry). Here, by setting Ww within the range of 1 to 2 g, it can be in an absolutely dry state (no more weight change) after 2 hours.

(グリセリン付着率の測定法)
中空糸膜に対する孔径保持剤の付着率は、以下のようにして測定した。
得られた中空糸膜を約10000本の束とし、長さ20cm程度に切り揃え、遠心脱液により中空部の流動パラフィンを十分除去した後、完全に乾燥させ、重量Wを測定する。その後、中空糸膜束を40℃に加温した相当量の水に浸漬させ、十分に洗浄した後、120℃の乾熱オーブンで2時間乾燥させ、重量Pを測定する。次に下記式により中空糸膜に対する孔径保持剤の付着率G(wt%)を計算した。
G(wt%)=(W−P)/W×100
(Measurement method of glycerin adhesion rate)
The adhesion rate of the pore diameter retaining agent to the hollow fiber membrane was measured as follows.
The obtained hollow fiber membrane is made into a bundle of about 10,000 pieces, cut into a length of about 20 cm, sufficiently removed the liquid paraffin in the hollow portion by centrifugal drainage, completely dried, and the weight W is measured. Thereafter, the hollow fiber membrane bundle is immersed in a considerable amount of water heated to 40 ° C., thoroughly washed, dried in a 120 ° C. dry heat oven for 2 hours, and the weight P is measured. Next, the adhesion rate G (wt%) of the pore diameter retaining agent to the hollow fiber membrane was calculated by the following formula.
G (wt%) = (WP) / W × 100

(実施例1)
三酢酸セルロース(ダイセル化学社)22重量%、N−メチル−2−ピロリドン(三菱化学社)62重量%、トリエチレングリコール(三井化学社)16重量%を混合した後、加熱して溶解し紡糸原液とした。これを150℃に加熱したニ重管状ノズルの外側環状部より押し出し、同時に内管より流動パラフィンを吐出した。50mmのエアギャップ部を経てN−メチル−2−ピロリドン13重量%、トリエチレングリコール2重量%および水85重量%からなる25℃の凝固浴に導き中空糸膜を形成させた。続いて中空糸膜を45℃の水洗槽を通過させて過剰の溶剤、非溶媒を除去した後に、グリセリン浴に導いて中空糸膜細孔にグリセリン水溶液を充填し、70℃の乾燥工程を走行させて乾燥した。得られた乾燥中空糸膜の内径は200μm、膜厚は15μm、空隙率は63%であった。この中空糸膜8800本を束ねてポリカーボネート樹脂の円筒ケース内に装填し、両端部をウレタン樹脂で固着した。樹脂の一部を切断して中空部を開口し、中空糸膜内径基準の膜面積1.1m2の血液浄化器を得た。中空糸膜中空部に残存する流動パラフィンは予め自然落下により一部除去した後、温度20℃、相対湿度32%に調整した空気を0.18MPaで15分間、血液浄化器端部より中空糸膜中空部に流した。
中空形成剤を除去した血液浄化器を用いて種々評価を行った。結果を表1にまとめた。
Example 1
After mixing 22% by weight of cellulose triacetate (Daicel Chemical), 62% by weight of N-methyl-2-pyrrolidone (Mitsubishi Chemical), and 16% by weight of triethylene glycol (Mitsui Chemicals), the mixture was heated to dissolve and spun. The stock solution was used. This was extruded from the outer annular portion of a double tubular nozzle heated to 150 ° C., and at the same time, liquid paraffin was discharged from the inner tube. A hollow fiber membrane was formed through a 50 mm air gap and led to a coagulation bath at 25 ° C. consisting of 13% by weight of N-methyl-2-pyrrolidone, 2% by weight of triethylene glycol and 85% by weight of water. Subsequently, after passing the hollow fiber membrane through a water washing tank at 45 ° C. to remove excess solvent and non-solvent, the hollow fiber membrane is led to a glycerin bath and filled with a glycerin aqueous solution in the pores of the hollow fiber membrane, followed by a drying process at 70 ° C. Let dry. The obtained dry hollow fiber membrane had an inner diameter of 200 μm, a film thickness of 15 μm, and a porosity of 63%. 8800 hollow fiber membranes were bundled and loaded into a cylindrical case made of polycarbonate resin, and both ends were fixed with urethane resin. A portion of the resin was cut to open the hollow portion, and a blood purifier having a membrane area of 1.1 m 2 based on the hollow fiber membrane inner diameter reference was obtained. The liquid paraffin remaining in the hollow part of the hollow fiber membrane is partially removed by natural fall beforehand, and then the air adjusted to a temperature of 20 ° C. and a relative humidity of 32% is 0.18 MPa for 15 minutes from the end of the blood purifier. It flowed into the hollow part.
Various evaluation was performed using the blood purifier from which the hollow forming agent was removed. The results are summarized in Table 1.

(比較例1)
上記実施例1と同様の方法で得られた血液浄化器に、温度25℃、相対湿度3%の空気を0.18MPaで15分間流した。残留した流動パラフィンの量は95mg/2.1m2モジュールであった。しかし、組み立てた血液浄化器の透水性は50ml/m2/hr/mmHgと実施例1の血液浄化器よりも透水性が低くなっていた。押し出し空気の相対湿度が低いため、中空糸膜の乾燥が進行し、細孔の収縮が起こったものと思われる。
(Comparative Example 1)
The blood purifier obtained in the same manner as in Example 1 was flowed with air at a temperature of 25 ° C. and a relative humidity of 3% at 0.18 MPa for 15 minutes. The amount of liquid paraffin remaining was 95 mg / 2.1 m 2 module. However, the water permeability of the assembled blood purifier was 50 ml / m 2 / hr / mmHg, which was lower than that of the blood purifier of Example 1. Since the relative humidity of the extruded air is low, it seems that the hollow fiber membrane has been dried and the pores have contracted.

(実施例2)
上記実施例1と同様の方法で血液浄化器を得、温度35℃、相対湿度67%の空気を0.18MPaで15分間血液浄化器端部より流した。残留した流動パラフィンの量は70mg/2.1m2モジュール以下であり、組み立てた血液浄化器の透水性は80ml/m2/hr/mmHgであった。
(Example 2)
A blood purifier was obtained in the same manner as in Example 1, and air having a temperature of 35 ° C. and a relative humidity of 67% was allowed to flow from the end of the blood purifier at 0.18 MPa for 15 minutes. The amount of residual liquid paraffin was 70 mg / 2.1 m 2 or less, and the assembled blood purifier had a water permeability of 80 ml / m 2 / hr / mmHg.

(比較例2)
上記実施例1と同様の方法で得た血液浄化器に温度25℃、相対湿度40%の空気を0.04MPaで15分間血液浄化器端部より通風した。残留流動パラフィンの量は466mg/2.1m2モジュールと高値であり、除去不足であった。組み立てた血液浄化器の透水性は72ml/m2/hr/mmHgであった。
(Comparative Example 2)
A blood purifier obtained in the same manner as in Example 1 above was ventilated with air at a temperature of 25 ° C. and a relative humidity of 40% from the end of the blood purifier at 0.04 MPa for 15 minutes. The amount of residual liquid paraffin was as high as 466 mg / 2.1 m 2 module and was insufficiently removed. The water permeability of the assembled blood purifier was 72 ml / m 2 / hr / mmHg.

(比較例3)
上記実施例1と同様の方法で得た血液浄化器に温度25℃、相対湿度80%の空気を0.18MPaで15分間血液浄化器端部より流した。残留した流動パラフィンの量は69mg/2.1m2モジュールと低値であったが、血液浄化器の透水率は48ml/m2/hr/mmHgと低かった。孔径保持剤量を測定したところ、実施例1に比較して低下しており、相対湿度が高かったためグリセリンが吸湿し、粘性が低下し、細孔内より脱落したのが原因と考えられた。
(Comparative Example 3)
Blood having a temperature of 25 ° C. and a relative humidity of 80% was allowed to flow through the blood purifier obtained in the same manner as in Example 1 from the end of the blood purifier at 0.18 MPa for 15 minutes. The amount of residual liquid paraffin was as low as 69 mg / 2.1 m 2 module, but the water permeability of the blood purifier was as low as 48 ml / m 2 / hr / mmHg. When the amount of the pore size retaining agent was measured, it was lower than that in Example 1. It was thought that the cause was that the glycerin absorbed moisture, the viscosity decreased, and dropped out of the pores because the relative humidity was high.

(比較例4)
上記実施例1と同様の方法で得た血液浄化器に温度25℃、相対湿度80%の空気を0.5MPaで15分間血液浄化器端部より流した。残留した流動パラフィンの量は46mg/2.1m2モジュールであったが、モジュールのリーク試験合格率が75%と低かった。押し出し空気の圧力が高すぎたためか、中空糸膜細孔内のグリセリンが脱落し、リークが発生したものと思われる。
(Comparative Example 4)
Blood having a temperature of 25 ° C. and a relative humidity of 80% was allowed to flow from the end of the blood purifier at 0.5 MPa for 15 minutes to the blood purifier obtained in the same manner as in Example 1. The amount of liquid paraffin remaining was 46 mg / 2.1 m 2 module, but the module leak test pass rate was as low as 75%. Probably because the pressure of the extrusion air was too high, glycerin in the pores of the hollow fiber membrane dropped out, and it seems that leak occurred.

(実施例3)
三酢酸セルロース(ダイセル化学社)22重量%、N−メチル−2−ピロリドン(三菱化学社)62重量%、トリエチレングリコール(三井化学社)16重量%を混合した後、加熱して溶解し紡糸原液とした。これを150℃に加熱したニ重管状ノズルの外側環状部より押し出し、同時に内管より流動パラフィンを吐出した。50mmのエアギャップ部を経てN−メチル−2−ピロリドン13重量%、トリエチレングリコール2重量%および水85重量%からなる25℃の凝固浴に導き中空糸膜を形成させた。続いて中空糸膜を45℃の水洗槽を通過させて過剰の溶剤、非溶媒を除去した後に、グリセリン浴に導いて中空糸膜細孔にグリセリン水溶液を充填し、70℃の乾燥工程を走行させて乾燥した。得られた乾燥中空糸膜の内径は200μm、膜厚は15μm、空隙率は63%であった。
この中空糸膜8800本を束ねてポリカーボネート樹脂の円筒ケース内に装填し、両端部をウレタン樹脂で固着した。樹脂の一部を切断して中空部を開口し、中空糸膜内径基準の膜面積1.1m2の血液浄化器を得た。中空糸膜中空部に残存する流動パラフィンは予め自然落下により一部除去した後、温度20℃、相対湿度32%に調整した空気を0.07MPaで15分間、血液浄化器端部より中空糸膜中空部に流した。
(Example 3)
After mixing 22% by weight of cellulose triacetate (Daicel Chemical), 62% by weight of N-methyl-2-pyrrolidone (Mitsubishi Chemical), and 16% by weight of triethylene glycol (Mitsui Chemicals), the mixture was heated to dissolve and spun. The stock solution was used. This was extruded from the outer annular portion of a double tubular nozzle heated to 150 ° C., and at the same time, liquid paraffin was discharged from the inner tube. A hollow fiber membrane was formed through a 50 mm air gap and led to a coagulation bath at 25 ° C. consisting of 13% by weight of N-methyl-2-pyrrolidone, 2% by weight of triethylene glycol and 85% by weight of water. Subsequently, after passing the hollow fiber membrane through a water washing tank at 45 ° C. to remove excess solvent and non-solvent, the hollow fiber membrane is led to a glycerin bath and filled with a glycerin aqueous solution in the pores of the hollow fiber membrane, followed by a drying process at 70 ° C. Let dry. The obtained dry hollow fiber membrane had an inner diameter of 200 μm, a film thickness of 15 μm, and a porosity of 63%.
8800 hollow fiber membranes were bundled and loaded into a cylindrical case made of polycarbonate resin, and both ends were fixed with urethane resin. A portion of the resin was cut to open the hollow portion, and a blood purifier having a membrane area of 1.1 m 2 based on the hollow fiber membrane inner diameter reference was obtained. The liquid paraffin remaining in the hollow part of the hollow fiber membrane is partly removed by natural fall beforehand, and then the air adjusted to a temperature of 20 ° C. and a relative humidity of 32% is 0.07 MPa for 15 minutes from the end of the blood purifier. It flowed into the hollow part.

(実施例4)
三酢酸セルロース(ダイセル化学社)18重量%、N−メチル−2−ピロリドン(三菱化学社)57.4重量%、トリエチレングリコール(三井化学社)24.6重量%を混合した後、加熱して溶解し紡糸原液とした。これを150℃に加熱したニ重管状ノズルの外側環状部より押し出し、同時に内管より流動パラフィンを吐出した。45mmのエアギャップ部を経てN−メチル−2−ピロリドン10.5重量%、トリエチレングリコール4.5重量%および水85重量%からなる35℃の凝固浴に導き中空糸膜を形成させた。続いて中空糸膜を50℃の水洗槽を通過させて過剰の溶剤、非溶媒を除去した後に、グリセリン浴に導いて中空糸膜細孔にグリセリン水溶液を充填し、80℃の乾燥工程を走行させて乾燥した。得られた乾燥中空糸膜の内径は200μm、膜厚は17μm、空隙率は78%であった。
この中空糸膜8800本を束ねてポリカーボネート樹脂の円筒ケース内に装填し、両端部をウレタン樹脂で固着した。樹脂の一部を切断して中空部を開口し、中空糸膜内径基準の膜面積1.1m2の血液浄化器を得た。中空糸膜中空部に残存する流動パラフィンは予め自然落下により一部除去した後、温度8℃、相対湿度67%に調整した空気を0.18MPaで15分間、血液浄化器端部より中空糸膜中空部に流した。
Example 4
After mixing 18% by weight of cellulose triacetate (Daicel Chemical), 57.4% by weight of N-methyl-2-pyrrolidone (Mitsubishi Chemical) and 24.6% by weight of triethylene glycol (Mitsui Chemicals), the mixture was heated. And dissolved into a spinning dope. This was extruded from the outer annular portion of a double tubular nozzle heated to 150 ° C., and at the same time, liquid paraffin was discharged from the inner tube. A hollow fiber membrane was formed through a 45 mm air gap portion and led to a 35 ° C. coagulation bath consisting of 10.5 wt% N-methyl-2-pyrrolidone, 4.5 wt% triethylene glycol and 85 wt% water. Subsequently, after passing the hollow fiber membrane through a 50 ° C. water-washing tank to remove excess solvent and non-solvent, the hollow fiber membrane is led to a glycerin bath and filled with a glycerin aqueous solution in the pores of the hollow fiber membrane, followed by a drying process at 80 ° C. Let dry. The obtained dry hollow fiber membrane had an inner diameter of 200 μm, a film thickness of 17 μm, and a porosity of 78%.
8800 hollow fiber membranes were bundled and loaded into a cylindrical case made of polycarbonate resin, and both ends were fixed with urethane resin. A portion of the resin was cut to open the hollow portion, and a blood purifier having a membrane area of 1.1 m 2 based on the hollow fiber membrane inner diameter reference was obtained. The liquid paraffin remaining in the hollow portion of the hollow fiber membrane is partly removed by natural fall in advance, and then the air adjusted to a temperature of 8 ° C. and a relative humidity of 67% is 0.18 MPa for 15 minutes from the end of the blood purifier. It flowed into the hollow part.

(実施例5)
ポリエーテルスルホン(住化ケムテックス社4800P)およびBASF社製PVP(K-90)をN−メチル−2−ピロリドン(NMP)とトリエチレングリコール(TEG)の混合液(重量比で8:2)にそれぞれ25重量%、3.5重量%になるよう混合し150℃で撹拌し溶解、均一な溶液とした。この溶液を減圧脱泡した後、孔径15μmの焼結フィルターで濾過し、不純物を除いて紡糸原液とし120℃でキープした。この紡糸原液を120℃に加熱した二重環状ノズルの外側環状部から吐出すると同時に、内管より流動パラフィンを中空形成剤として吐出した。吐出された紡糸原液を210mmのエアギャップ部を経て27℃の凝固浴に落とし込み凝固させた。凝固浴は15重量%NMP水溶液を用いた。凝固浴中で70%延伸をかけて中空糸型膜として成形した。凝固浴から引き上げた中空糸膜は、45℃のRO水からなる水洗浴に導き、過剰のPVPと溶媒を除去した。30重量%のグリセリン水溶液浴を経ることで細孔内へのグリセリン含浸を行った後、60℃の熱風乾燥機中に導き乾燥処理を行った。乾燥後の中空糸膜は、ワインダーにて75m/minの速度でボビンに巻取った。得られた中空糸型膜の内径は200μm、膜厚は16μm、水分率は2.1重量%であった。
この中空糸膜8800本を束ねてポリカーボネート樹脂の円筒ケース内に装填し、両端部をウレタン樹脂で固着した。樹脂の一部を切断して中空部を開口し、中空糸膜内径基準の膜面積1.1m2の血液浄化器を得た。中空糸膜中空部に残存する流動パラフィンは予め自然落下により一部除去した後、温度8℃、相対湿度67%に調整した空気を0.18MPaで20分間、血液浄化器端部より中空糸膜中空部に流した。
(Example 5)
Polyethersulfone (Sumitomo Chemtex 4800P) and BASF PVP (K-90) in a mixed solution of N-methyl-2-pyrrolidone (NMP) and triethylene glycol (TEG) (weight ratio 8: 2) They were mixed to 25 wt% and 3.5 wt%, respectively, and stirred at 150 ° C. to dissolve and make uniform solutions. This solution was degassed under reduced pressure, and then filtered through a sintered filter having a pore size of 15 μm to remove impurities, and a spinning stock solution was kept at 120 ° C. This spinning stock solution was discharged from the outer annular portion of a double annular nozzle heated to 120 ° C., and at the same time, liquid paraffin was discharged from the inner tube as a hollow forming agent. The discharged spinning solution was dropped into a 27 ° C. coagulation bath through a 210 mm air gap and coagulated. As the coagulation bath, a 15 wt% NMP aqueous solution was used. A hollow fiber membrane was formed by stretching 70% in a coagulation bath. The hollow fiber membrane pulled up from the coagulation bath was led to a water washing bath composed of 45 ° C. RO water to remove excess PVP and solvent. After passing through a 30% by weight glycerin aqueous solution bath, the pores were impregnated with glycerin, and then led into a hot air dryer at 60 ° C. for drying treatment. The dried hollow fiber membrane was wound around a bobbin with a winder at a speed of 75 m / min. The resulting hollow fiber membrane had an inner diameter of 200 μm, a film thickness of 16 μm, and a moisture content of 2.1% by weight.
8800 hollow fiber membranes were bundled and loaded into a cylindrical case made of polycarbonate resin, and both ends were fixed with urethane resin. A portion of the resin was cut to open the hollow portion, and a blood purifier having a membrane area of 1.1 m 2 based on the hollow fiber membrane inner diameter reference was obtained. The liquid paraffin remaining in the hollow portion of the hollow fiber membrane is partially removed by natural fall in advance, and then the air adjusted to a temperature of 8 ° C. and a relative humidity of 67% is maintained at 0.18 MPa for 20 minutes from the end of the blood purifier. It flowed into the hollow part.

(参考例)
実施例1と同様の方法で得た中空糸膜を用いて血液浄化器を作製した。得られた血液浄化器の端部よりn−ヘキサンを流量100ml/minで流し、中空形成剤を除去した。この血液浄化器を用いて種々の評価を行い、比較対照とした。n−ヘキサンは流動パラフィンを溶解するが、グリセリンを溶解せず、また中空糸膜を劣化しない。
(Reference example)
A blood purifier was produced using a hollow fiber membrane obtained by the same method as in Example 1. From the end of the resulting blood purifier, n-hexane was flowed at a flow rate of 100 ml / min to remove the hollow forming agent. Various evaluations were made using this blood purifier and used as a comparative control. n-Hexane dissolves liquid paraffin but does not dissolve glycerin and does not deteriorate the hollow fiber membrane.

参考例に対する実施例の結果から明らかなように、本願発明の血液浄化器の製造方法を用いることにより、血液浄化器の性能低下や品質劣化を起こさずに、安価で安全な血液浄化器を製造できることがわかった。   As is clear from the results of the examples with respect to the reference examples, by using the blood purifier manufacturing method of the present invention, a cheap and safe blood purifier can be manufactured without causing a decrease in performance or quality deterioration of the blood purifier. I knew it was possible.

Figure 2008295868
Figure 2008295868

本発明の中空糸膜の洗浄方法では、中空糸膜中空部に存在する親油性液体を選択的に除去し、孔径保持剤であるグリセリンを残存させる為、洗浄による透過性能の低下はない。またフロン等の溶剤を使用しないため地球環境への悪影響はない。また防爆設備の設置が不要であり、洗浄に溶剤を必要としないため経済的に血液透析器を製造することができる。従って、産業界に寄与することが大である。
In the method for washing a hollow fiber membrane of the present invention, the lipophilic liquid present in the hollow part of the hollow fiber membrane is selectively removed to leave the glycerin as the pore diameter retaining agent, so that the permeation performance is not lowered by washing. In addition, since no solvent such as Freon is used, there is no adverse effect on the global environment. In addition, it is not necessary to install explosion-proof equipment, and a hemodialyzer can be manufactured economically because no solvent is required for cleaning. Therefore, it is important to contribute to the industry.

Claims (10)

中空糸膜束を血液浄化器ケースに装填して、両端部を接着樹脂で固定した後、温度5℃以上40℃以下、相対湿度30%以上70%以下に調温調湿した気体を中空糸膜中空部に流して、中空部に残存する中空形成剤を除去することを特徴とする血液浄化器の製造方法。   A hollow fiber membrane bundle is loaded into a blood purifier case, and both ends are fixed with an adhesive resin, and then a gas whose temperature is adjusted to a temperature of 5 to 40 ° C. and a relative humidity of 30 to 70% is hollow fiber. A method for producing a blood purifier, wherein the hollow forming agent remaining in the hollow portion is removed by flowing through the hollow portion of the membrane. 中空形成剤が油状物質であることを特徴とする請求項1に記載の血液浄化器の製造方法。   The method for producing a blood purifier according to claim 1, wherein the hollow forming agent is an oily substance. 油状物質が流動パラフィンまたはミリスチン酸イソプロピルであることを特徴とする請求項1または2に記載の血液浄化器の製造方法。   3. The method for producing a blood purifier according to claim 1, wherein the oily substance is liquid paraffin or isopropyl myristate. 中空糸膜が細孔内に孔径保持剤を含有していることを特徴とする請求項1〜3いずれかに記載の血液浄化器の製造方法。   The method for producing a blood purifier according to any one of claims 1 to 3, wherein the hollow fiber membrane contains a pore diameter retaining agent in the pores. 孔径保持剤が主としてグリセリンまたはグリセリン誘導体であることを特徴とする請求項4に記載の血液浄化器の製造方法。   The method for producing a blood purifier according to claim 4, wherein the pore diameter maintaining agent is mainly glycerin or a glycerin derivative. 孔径保持剤の付着率が30〜80重量%であることを特徴とする請求項4または5に記載の血液浄化器の製造方法。   6. The method for producing a blood purifier according to claim 4 or 5, wherein the adhesion rate of the pore diameter retaining agent is 30 to 80% by weight. 中空糸膜中空部に気体を流す際の圧力が0.05〜0.20MPaであることを特徴とする請求項1〜6いずれかに記載の血液浄化器の製造方法。   The method for producing a blood purifier according to any one of claims 1 to 6, wherein the pressure when the gas flows through the hollow portion of the hollow fiber membrane is 0.05 to 0.20 MPa. 中空糸膜の空隙率が30〜85%であることを特徴とする請求項1〜7いずれかに記載の血液浄化器の製造方法。   The method for producing a blood purifier according to any one of claims 1 to 7, wherein the hollow fiber membrane has a porosity of 30 to 85%. 請求項1〜8いずれかに記載の方法で製造されたことを特徴とする血液浄化器。   A blood purifier produced by the method according to claim 1. 油状物質の残存量が100mg/(2.1m2モジュール)以下であることを特徴とする請求項9に記載の血液浄化器。 The blood purifier according to claim 9, wherein the residual amount of the oily substance is 100 mg / (2.1 m 2 module) or less.
JP2007147245A 2007-06-01 2007-06-01 Method for producing blood purifier and blood purifier Pending JP2008295868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147245A JP2008295868A (en) 2007-06-01 2007-06-01 Method for producing blood purifier and blood purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147245A JP2008295868A (en) 2007-06-01 2007-06-01 Method for producing blood purifier and blood purifier

Publications (1)

Publication Number Publication Date
JP2008295868A true JP2008295868A (en) 2008-12-11

Family

ID=40169954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147245A Pending JP2008295868A (en) 2007-06-01 2007-06-01 Method for producing blood purifier and blood purifier

Country Status (1)

Country Link
JP (1) JP2008295868A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166008A (en) * 1984-02-07 1985-08-29 Terumo Corp Preparation of hollow yarn for dialysis
JPH07252721A (en) * 1994-03-11 1995-10-03 Terumo Corp Production of hollow fiber for dialysis
JPH08164200A (en) * 1994-12-12 1996-06-25 Teijin Ltd Production of blood dialyzer
JPH10108907A (en) * 1996-10-08 1998-04-28 Toyobo Co Ltd Membrane for hemocatharsis, its preparation and module for hemocatharsis
JPH11169457A (en) * 1997-12-16 1999-06-29 Nissho Corp Cleaning of hollow fiber membrane
JP2001190934A (en) * 2000-01-12 2001-07-17 Toyobo Co Ltd Hollow fiber membrane module with a little effluent
JP2004358433A (en) * 2003-06-09 2004-12-24 Toyobo Co Ltd Dry hollow fiber membrane and module
JP2005065725A (en) * 2003-08-22 2005-03-17 Toyobo Co Ltd Hollow fiber blood purifying membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166008A (en) * 1984-02-07 1985-08-29 Terumo Corp Preparation of hollow yarn for dialysis
JPH07252721A (en) * 1994-03-11 1995-10-03 Terumo Corp Production of hollow fiber for dialysis
JPH08164200A (en) * 1994-12-12 1996-06-25 Teijin Ltd Production of blood dialyzer
JPH10108907A (en) * 1996-10-08 1998-04-28 Toyobo Co Ltd Membrane for hemocatharsis, its preparation and module for hemocatharsis
JPH11169457A (en) * 1997-12-16 1999-06-29 Nissho Corp Cleaning of hollow fiber membrane
JP2001190934A (en) * 2000-01-12 2001-07-17 Toyobo Co Ltd Hollow fiber membrane module with a little effluent
JP2004358433A (en) * 2003-06-09 2004-12-24 Toyobo Co Ltd Dry hollow fiber membrane and module
JP2005065725A (en) * 2003-08-22 2005-03-17 Toyobo Co Ltd Hollow fiber blood purifying membrane

Similar Documents

Publication Publication Date Title
KR101392943B1 (en) Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
JP5720249B2 (en) Hollow fiber membrane, method for producing the same, and blood purification module
JP2007289886A (en) Polymeric porous hollow fiber membrane
JP2017205740A (en) Composite membrane
JP2006340977A (en) Hollow fibre membranes and blood purifier
CA2202969C (en) Selectively permeable hollow fiber membrane and process for producing same
KR20150038215A (en) Process for production of porous membrane
KR20190020799A (en) A highly retentive polyamide hollow fiber membrane prepared via controlled shrinkage
JP5136909B2 (en) Method for producing hollow fiber membrane
JP5553699B2 (en) Polyamide moisture permeable membrane and method for producing the same
JP2011050881A (en) Method of spinning hollow fiber membrane
JPS60246812A (en) Hollow polysulfone based resin fiber
JP7122202B2 (en) Water vapor separation membrane and method for producing water vapor separation membrane
JP2008178869A (en) Fiber-reinforced type hollow fiber membrane
JP6273982B2 (en) Hollow fiber membrane, method for producing the same, and module using the same
JP5176499B2 (en) Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane module
JP2008168224A (en) Hollow fiber porous membrane and its manufacturing method
JP5473215B2 (en) Method for producing porous membrane for water treatment
JP5569393B2 (en) Method for producing porous membrane
JP2008295868A (en) Method for producing blood purifier and blood purifier
WO1996035504A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
JP4985226B2 (en) Method for producing hollow fiber membrane
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP5023783B2 (en) Separation membrane module
JP2011024708A (en) Hollow fiber membrane for blood purification which is excellent in workability for module assembly, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219