JP5176499B2 - Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane module - Google Patents

Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane module Download PDF

Info

Publication number
JP5176499B2
JP5176499B2 JP2007302656A JP2007302656A JP5176499B2 JP 5176499 B2 JP5176499 B2 JP 5176499B2 JP 2007302656 A JP2007302656 A JP 2007302656A JP 2007302656 A JP2007302656 A JP 2007302656A JP 5176499 B2 JP5176499 B2 JP 5176499B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
glycerin
hollow
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007302656A
Other languages
Japanese (ja)
Other versions
JP2009125650A (en
Inventor
伸也 小山
仁 大野
英之 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007302656A priority Critical patent/JP5176499B2/en
Publication of JP2009125650A publication Critical patent/JP2009125650A/en
Application granted granted Critical
Publication of JP5176499B2 publication Critical patent/JP5176499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

水性流体の処理に好適に利用される多孔質中空糸膜に関する。より詳しくは、水処理、血液処理、食品分野など水性流体の処理に好適に使用することができる多孔質中空糸膜およびその製造方法、および中空糸膜モジュールに関する。   The present invention relates to a porous hollow fiber membrane suitably used for the treatment of an aqueous fluid. More specifically, the present invention relates to a porous hollow fiber membrane that can be suitably used for the treatment of aqueous fluids such as water treatment, blood treatment, and the food field, a method for producing the same, and a hollow fiber membrane module.

従来、中空糸膜は、その製造方法や出荷形態の違い等により、中空部に流動パラフィンやミリスチン酸イソプロピル等の中空糸膜素材に対して不活性な液体または水が充填されたものや液体が充填されていないもの、などが知られている。(例えば、特許文献1参照)。   Conventionally, hollow fiber membranes have a hollow portion filled with an inert liquid or water or a liquid filled with hollow fiber membrane materials such as liquid paraffin and isopropyl myristate due to differences in manufacturing method and shipping form. What is not filled is known. (For example, refer to Patent Document 1).

また例えば、ポリスルホン系樹脂とポリビニルピロリドンに代表される親水性材料とからなる非対称構造の中空糸膜では、実質的に水を含まない状態でバンドル化された中空糸膜集合体がある。(例えば、特許文献2参照)。   Further, for example, a hollow fiber membrane having an asymmetric structure made of a polysulfone-based resin and a hydrophilic material typified by polyvinyl pyrrolidone includes a bundle of hollow fiber membranes that are bundled in a state that does not substantially contain water. (For example, refer to Patent Document 2).

これら、気体や疎水性の液体と接触した状態で保存された中空糸膜集合体では、長期間の保存によって中空糸膜の疎水化が進行し、モジュールに成型後、水性流体でプライミングしても、その直後には十分な性能を発揮できない問題があった。   In these hollow fiber membrane assemblies stored in contact with a gas or a hydrophobic liquid, the hollow fiber membrane is hydrophobized by long-term storage, and after molding into a module, it can be primed with an aqueous fluid. Immediately after that, there was a problem that sufficient performance could not be exhibited.

中空部に流動パラフィンなどの疎水性液体が充填されたチーズでは、膜孔保持と親水性付与のため膜壁部分にグリセリンなどの親水性物質が充填されたものが知られているが、依然、中空部側の膜表面は疎水性の液体と接触しているため、長期間保存時には部分的に疎水化してしまうことが避けられなかった。
特開平5−64730号公報 特開平6−296686号公報
In cheese filled with a hydrophobic liquid such as liquid paraffin in the hollow part, it is known that the membrane wall part is filled with a hydrophilic substance such as glycerin in order to retain the membrane pores and impart hydrophilicity, Since the membrane surface on the hollow portion side is in contact with the hydrophobic liquid, it is inevitable that the membrane becomes partially hydrophobic during long-term storage.
JP-A-5-64730 JP-A-6-296686

本発明は、上記従来技術に鑑み、長期間の保存や、高温および/または低湿環境での乾燥後も、水性流体でのプライミング直後に速やかに所望の性能を発揮可能な多孔質中空糸膜およびその製造方法、および中空糸膜モジュールを提供することを目的とする。   In view of the above prior art, the present invention provides a porous hollow fiber membrane capable of quickly exhibiting desired performance immediately after priming with an aqueous fluid, even after long-term storage and drying in a high temperature and / or low humidity environment. An object of the present invention is to provide a manufacturing method thereof and a hollow fiber membrane module.

本発明は、上記目的を達成するために、以下の構成を含む。
(1)多孔質中空糸膜の紡糸工程に連続して、70〜90重量%のグリセリン水溶液またはグリセリン誘導体水溶液への多孔質中空糸膜の浸漬、液切りを繰り返し行うことで該多孔質中空糸膜の中空部および細孔部に満たされた水をグリセリン水溶液またはグリセリン誘導体水溶液と置換し、引き続き乾燥し、水分率を3〜12重量%に調整された多孔質中空糸膜を充填してなる中空糸膜モジュールであって、温度60℃以下、湿度20%以下で保存されていることを特徴とする中空糸膜モジュール。
(2)前記中空糸膜モジュールをプライミング処理した際、処理後5分後の透水性であるUFR(A)と処理後30分後の透水性であるUFR(B)との比(UFR(A)/UFR(B))が90%以上であることを特徴とする(1)に記載の中空糸膜モジュール。
In order to achieve the above object, the present invention includes the following configurations.
(1) In succession to the spinning step of the porous hollow fiber membrane, the porous hollow fiber is repeatedly immersed and drained in a 70 to 90% by weight glycerin aqueous solution or glycerin derivative aqueous solution. The water filled in the hollow part and the pore part of the membrane is replaced with an aqueous glycerin solution or an aqueous glycerin derivative solution, followed by drying and filling with a porous hollow fiber membrane adjusted to a moisture content of 3 to 12% by weight. a hollow fiber membrane module, the hollow fiber membrane module, characterized in that it is stored at a temperature 60 ° C. or less, humidity of 20% or less.
(2) When the hollow fiber membrane module is primed, the ratio of UFR (A), which is water permeable 5 minutes after treatment, to UFR (B), which is water permeability 30 minutes after treatment (UFR (A ) / UFR (B)) is 90% or more, the hollow fiber membrane module according to (1).

本発明によれば、細孔内部だけでなく、中空部にも親水化剤を充填することによって、従来の空気、窒素ガスなどの気体や、流動パラフィンなどの疎水性流体が充填された中空糸膜に比べて、中空糸膜表面の部分的な疎水化を抑制することができ、このため長期保存や、高温および/または低湿環境下での乾燥後も、水性流体でのプライミング直後に速やかに所望の性能を発揮可能となる。このような利点から本発明の多孔質中空糸膜および中空糸膜モジュールは、水処理、血液処理、食品分野など水性流体の処理に好適に使用することができる。   According to the present invention, a hollow fiber filled with a conventional gas, such as air or nitrogen gas, or a hydrophobic fluid, such as liquid paraffin, by filling not only the inside of the pores but also the hollow portion with a hydrophilizing agent. Compared to membranes, it can suppress partial hydrophobicity of the surface of the hollow fiber membrane, and therefore, immediately after priming with an aqueous fluid, even after long-term storage and drying in a high temperature and / or low humidity environment Desired performance can be exhibited. Because of these advantages, the porous hollow fiber membrane and the hollow fiber membrane module of the present invention can be suitably used for aqueous fluid treatment such as water treatment, blood treatment, and food.

多孔質中空糸膜の膜壁部分(細孔内部)に加えて、中空部分にも親水化剤を充填することによって、多孔質膜の部分的な疎水化をも抑制することができ、このため長期保存や、高温および/または低湿環境での乾燥後も、水性流体でのプライミング直後に速やかに所望の性能を発揮可能となる。   In addition to the membrane wall portion (inside the pores) of the porous hollow fiber membrane, filling the hollow portion with a hydrophilizing agent can also suppress partial hydrophobicity of the porous membrane. Even after long-term storage and drying in a high-temperature and / or low-humidity environment, desired performance can be quickly exhibited immediately after priming with an aqueous fluid.

以下に本発明の実施の形態について詳細に説明する。
本発明においては、多孔質中空糸膜の細孔内部に加えて、中空部にも親水化剤が充填されているのが好ましい。多孔質中空糸膜の細孔内部だけでなく、中空部にも親水化剤を充填し、多孔質中空糸膜の保管あるいはモジュール製造することによって、前記課題を解決できることが検討の結果より見出された。
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, it is preferable that the hollow portion is filled with a hydrophilizing agent in addition to the inside of the pores of the porous hollow fiber membrane. As a result of the study, it was found that the above problems can be solved by filling the hollow portion with a hydrophilizing agent not only inside the pores of the porous hollow fiber membrane but also storing the porous hollow fiber membrane or manufacturing a module. It was done.

本発明において、多孔質中空糸膜の細孔内部および中空部に充填する親水化剤としては、グリセリンまたはグリセリン誘導体を用いるのが好ましい。例えば、血液浄化用途の中空糸膜においては従来、孔径保持剤としてグリセリンが用いられ、また膜の親水化剤としてはポリビニルピロリドンやポリエチレングリコールなどが用いられている。グリセリンを膜の細孔内に充填した場合には、グリセリンが高粘性液体であること、細孔径が十分小さいことより比較的短時間であれば細孔内からの脱落はほとんどみられず、またプライミング等の洗浄操作により容易に除去可能である。また、安全性の点からも好ましく用いられている。一方、ポリビニルピロリドンやポリエチレングリコールは、親水化剤としては好ましく用いられるが、血液中への溶出の問題や孔径保持剤としての利用ができないなどの不利な面がある。   In the present invention, it is preferable to use glycerin or a glycerin derivative as the hydrophilizing agent that fills the pores and the hollow part of the porous hollow fiber membrane. For example, in a hollow fiber membrane for blood purification, glycerin has been conventionally used as a pore size retaining agent, and polyvinylpyrrolidone, polyethylene glycol, or the like has been used as a membrane hydrophilizing agent. When glycerin is filled into the pores of the membrane, the glycerin is a highly viscous liquid, and the pore diameter is sufficiently small so that there is almost no falling out of the pores in a relatively short time. It can be easily removed by a cleaning operation such as priming. It is also preferably used from the viewpoint of safety. On the other hand, polyvinylpyrrolidone and polyethylene glycol are preferably used as a hydrophilizing agent, but have disadvantages such as a problem of elution into blood and inability to use as a pore diameter retaining agent.

本発明者は、従来孔径保持剤として利用されてきたグリセリンまたはグリセリン誘導体を細孔内部だけでなく中空部にも充填しておくことにより、中空糸膜の製造工程や保管時、中空糸膜モジュール作成時においても中空糸膜の疎水化を抑制できると考えた。しかし、グリセリンを中空部に充填すること自体は容易に可能だが、充填したグリセリンが中空部から脱落、漏洩しないようにするための配慮が必要である。   The present inventor has filled glycerin or a glycerin derivative, which has been conventionally used as a pore diameter retaining agent, not only in the pores but also in the hollow part, so that the hollow fiber membrane module can be used during the manufacturing process and storage of the hollow fiber membrane. It was considered that the hydrophobicity of the hollow fiber membrane could be suppressed even during the production. However, although it is possible to easily fill the hollow part with glycerin, it is necessary to consider that the filled glycerin does not drop and leak from the hollow part.

本発明において、中空部に充填した親水化剤(グリセリン等)の脱落、漏洩を防止するためには、中空糸膜の構造を適正化するとともに、保管時の配慮が必要である。
中空糸膜の構造としては、内表面側に少なくとも緻密層を有することが好ましい。外表面側にも緻密層を有すると二重の防御壁ができるため好ましい。また、緻密層の厚みや細孔径、空隙率を特定の範囲にするのがより好ましい。緻密層の厚みは、中空糸膜の膜厚にもよるが0.1〜5μm程度あればよい。緻密層が薄すぎると欠点が露呈しやすくなり、親水化剤の漏洩に繋がることがあるため0.2μm以上がより好ましく、0.3μm以上がさらに好ましい。緻密層の細孔径は、1〜50nmであることが好ましく、2〜35nmであることがより好ましく、3〜20nmであることがさらに好ましい。緻密層の細孔径が前記範囲であれば、グリセリン等の親水化剤が細孔を通過して膜外に漏洩するのを効果的に防止することができる。
In the present invention, in order to prevent the hydrophilic agent (such as glycerin) filled in the hollow part from dropping off or leaking, it is necessary to optimize the structure of the hollow fiber membrane and to consider it during storage.
The structure of the hollow fiber membrane preferably has at least a dense layer on the inner surface side. It is preferable to have a dense layer on the outer surface side because a double barrier can be formed. Moreover, it is more preferable that the thickness, the pore diameter, and the porosity of the dense layer are in a specific range. The thickness of the dense layer may be about 0.1 to 5 μm although it depends on the thickness of the hollow fiber membrane. If the dense layer is too thin, defects are likely to be exposed and may lead to leakage of the hydrophilizing agent, so 0.2 μm or more is more preferable, and 0.3 μm or more is more preferable. The pore diameter of the dense layer is preferably 1 to 50 nm, more preferably 2 to 35 nm, and even more preferably 3 to 20 nm. When the pore diameter of the dense layer is within the above range, it is possible to effectively prevent a hydrophilizing agent such as glycerin from leaking out of the membrane through the pores.

本発明は、種々の用途に利用される多孔質中空糸膜に適用することができるが、特に血液浄化用中空糸膜への適用がより好適である。したがって、多孔質中空糸膜の内径は150μm以上300μm以下とするのが好ましい。中空糸膜の内径が小さすぎると血流の線速度が高くなるため、血球成分がダメージを受ける可能性がある。中空糸膜の内径が大きすぎると血液の剪断速度や圧力損失が高まらず、中高分子量物質の透過に寄与するろ過の効果が小さくなり、また不足する膜性能を補うためにモジュール(血液浄化器)のサイズを大きくしなければならないなど使用の利便性を損なう可能性がある。したがって、中空糸膜の内径は160μm以上280μm以下がより好ましく、170μm以上260μm以下がさらに好ましい。   The present invention can be applied to porous hollow fiber membranes used for various applications, and in particular, application to blood purification hollow fiber membranes is more preferable. Therefore, the inner diameter of the porous hollow fiber membrane is preferably 150 μm or more and 300 μm or less. If the inner diameter of the hollow fiber membrane is too small, the blood flow linear velocity increases, and the blood cell component may be damaged. If the hollow fiber membrane is too large in diameter, the blood shear rate and pressure loss will not increase, the filtration effect contributing to the permeation of medium high molecular weight substances will be reduced, and a module (blood purifier) to compensate for the lack of membrane performance There is a possibility that the convenience of use may be impaired, such as having to increase the size. Therefore, the inner diameter of the hollow fiber membrane is more preferably 160 μm or more and 280 μm or less, and further preferably 170 μm or more and 260 μm or less.

本発明において、中空糸膜の膜厚は10μm以上50μm未満が好ましい。中空糸膜の膜厚が薄すぎると、透過性能は高まるが必要な強度を維持することが困難な場合がある。また、膜厚が大きすぎると、物質の透過抵抗が大きくなり、除去物質の透過性が不充分となる可能性がある。また、モジュールのサイズを大きくする必要があるなど、使用の利便性を損なう可能性がある。さらに、膜厚が厚すぎると、後述する紡糸製膜段階において、中空形成剤を親水化剤溶液に置換する際の作業性や効率が低下することがある。したがって、中空糸膜の膜厚は13μm以上40μm以下がより好ましく、16μm以上30μm以下がさらに好ましい。   In the present invention, the thickness of the hollow fiber membrane is preferably 10 μm or more and less than 50 μm. If the thickness of the hollow fiber membrane is too thin, the permeation performance is improved, but it may be difficult to maintain the required strength. On the other hand, if the film thickness is too large, the permeation resistance of the substance increases, and the permeability of the removed substance may be insufficient. In addition, there is a possibility that the convenience of use may be impaired because the size of the module needs to be increased. Furthermore, if the film thickness is too thick, the workability and efficiency when the hollow forming agent is replaced with the hydrophilizing agent solution may be reduced in the spinning film forming step described later. Therefore, the film thickness of the hollow fiber membrane is more preferably 13 μm or more and 40 μm or less, and further preferably 16 μm or more and 30 μm or less.

本発明の中空糸膜を得るためには、ポリマー、溶媒、非溶媒からなる紡糸原液および芯液(中空形成材)に凝固性のある液体を使用して、ノズルから同時に吐出し、空走部を通過させた後、凝固浴に導き、中空糸膜形状を固定する。得られた中空糸膜を洗浄浴にて過剰の溶媒、非溶媒を除去し、膜孔保持剤を中空部および細孔内部に含浸させた後、乾燥して巻き取る。   In order to obtain the hollow fiber membrane of the present invention, a spinning solid solution composed of a polymer, a solvent, a non-solvent, and a core liquid (hollow forming material) is used as a coagulable liquid and simultaneously discharged from a nozzle. Then, the hollow fiber membrane shape is fixed. Excess solvent and non-solvent are removed from the obtained hollow fiber membrane in a washing bath, and the membrane pore retainer is impregnated into the hollow portion and the inside of the pore, and then dried and wound up.

本発明において、中空糸膜を構成する材料(ポリマー)としては、主としてセルロースアセテート系ポリマーを使用するのが好ましい。セルロースアセテート系ポリマーとしては、疎水性と親水性のバランス、補体活性の抑制や血液のクロッティングの無い返血性の良さといった血液適合性の面から水酸基がある程度キャップされたセルロースジアセテートやセルローストリアセテートが入手が容易であり、特に好ましい。   In the present invention, it is preferable to mainly use a cellulose acetate polymer as a material (polymer) constituting the hollow fiber membrane. Cellulose acetate-based polymers include cellulose diacetate and cellulose triacetate capped to some extent from the viewpoint of blood compatibility, such as the balance between hydrophobicity and hydrophilicity, suppression of complement activity, and good blood return without blood clotting. Is easily available and is particularly preferable.

中空糸膜の性能と膜の強度、緻密層の細孔径や厚み、空隙率をバランスさせるためには、紡糸原液中のセルロースアセテート系ポリマー濃度を16重量%以上25重量%以下に設定するのが好ましく、17重量%以上23重量%以下とするのがより好ましい。   In order to balance the performance of the hollow fiber membrane and the strength of the membrane, the pore diameter and thickness of the dense layer, and the porosity, the cellulose acetate polymer concentration in the spinning dope should be set to 16 wt% or more and 25 wt% or less. Preferably, it is more preferably 17% by weight or more and 23% by weight or less.

本発明において、セルロースアセテート系ポリマーの溶媒としては、N−メチルピロリドン(以下、NMPと称することがある)、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドなどを使用するのが好ましい。これらの溶媒は水と良好な相溶性を有し、セルロースアセテート系ポリマーに対して凝固性を示す。また、非溶媒としてはエチレングリコール、トリエチレングリコール(以下、TEGと称することがある)、ポリエチレングリコール、グリセリン、プロピレングリコール、アルコール類などがある。   In the present invention, it is preferable to use N-methylpyrrolidone (hereinafter sometimes referred to as NMP), dimethylformamide, dimethylacetamide, dimethylsulfoxide and the like as the solvent for the cellulose acetate polymer. These solvents have good compatibility with water and exhibit coagulability with respect to the cellulose acetate polymer. Non-solvents include ethylene glycol, triethylene glycol (hereinafter sometimes referred to as TEG), polyethylene glycol, glycerin, propylene glycol, alcohols, and the like.

本発明において、芯液としては前記溶媒、非溶媒および水からなる水溶液が一般に使用できるが、その他に膨潤剤、その他の添加物を含む場合もあり得る。本発明の中空糸膜は、細孔内部だけでなく、中空部にも親水化剤を充填したものである。すなわち、紡糸原液や凝固液に用いる非溶媒として、前記親水化剤を用いるのが作業性、コストの面から好ましいが、これに限定されるものではなく、所望する膜構造や膜性能に合わせ適宜設定すればよい。   In the present invention, as the core liquid, an aqueous solution composed of the above-mentioned solvent, non-solvent and water can be generally used, but may further contain a swelling agent and other additives. The hollow fiber membrane of the present invention is not only filled with pores but also filled with a hydrophilizing agent in the hollow part. That is, it is preferable from the viewpoint of workability and cost that the hydrophilizing agent is used as the non-solvent used in the spinning dope and the coagulating solution, but the present invention is not limited to this. You only have to set it.

セルロースアセテート系ポリマーを原料として使用する場合、前記芯液の水分含量が低すぎると、ポリマーに対する凝固性が低下するため、紡糸原液中のポリマー濃度を高めても緻密層の形成やポロシティが不均一になりやすい。したがって、前記芯液中の水分含量は10質量%以上が好ましい。30質量%以上がより好ましく、50質量%以上がさらに好ましく、70質量%以上がさらにより好ましく、水単独で用いるのが特に好ましい。一方、該芯液の水分含量が高くなりすぎるとノズルから吐出された紡糸原液の凝固が急激に進行するために曳糸性が低下し、糸切れや中空糸膜の変形が発生するなどの障害が発生しやすくなる。ここで、本発明においては、従来公知のセルロースアセテート系ポリマーに比較して低粘度のセルロースアセテート系ポリマーを使用しており、理由はよくわからないが、該芯液の水分含量を高めても糸切れの発生のない、良好な紡糸安定性を得られることがわかった。   When a cellulose acetate polymer is used as a raw material, if the water content of the core liquid is too low, the coagulation property of the polymer is lowered. Therefore, even if the polymer concentration in the spinning stock solution is increased, the formation of a dense layer and the porosity are not uniform. It is easy to become. Therefore, the water content in the core liquid is preferably 10% by mass or more. 30 mass% or more is more preferable, 50 mass% or more is further more preferable, 70 mass% or more is further more preferable, It is especially preferable to use water alone. On the other hand, if the water content of the core liquid becomes too high, the spinning dope discharged from the nozzle is rapidly solidified, so that the spinnability is deteriorated and yarn breakage or deformation of the hollow fiber membrane occurs. Is likely to occur. Here, in the present invention, a cellulose acetate polymer having a lower viscosity than a conventionally known cellulose acetate polymer is used, and the reason is not clear. However, even if the water content of the core liquid is increased, the yarn breakage is lost. It was found that good spinning stability can be obtained without occurrence of.

本発明の中空糸膜の構造を決定する因子として、紡糸原液中のポリマー濃度やノズル温度などが影響するが、加えてノズルから吐出された紡糸原液が凝固浴に浸漬されるまでの間の空中走行部の長さ(時間)にも影響を受ける。本発明において、空中走行部の長さは10mm以上600mm以下とするのが好ましい。また、空中走行部を外気と遮断し、内部を0℃以上50℃以下に設定することが好ましい。空中走行部の長さと温度を前記範囲とすることにより、中空糸膜外表面近傍の膜構造を親水化剤の漏洩防止性と膜性能とのバランスを良好に保つことができる。一方、紡糸原液の内表面側では外表面側からの脱溶媒の影響を受けるより前に、芯液によるポリマーの凝固を完了させ緻密層を形成させることが可能となる。   Factors that determine the structure of the hollow fiber membrane of the present invention are affected by the polymer concentration in the spinning dope, the nozzle temperature, etc. In addition, the air until the spinning dope discharged from the nozzle is immersed in the coagulation bath. It is also affected by the length (time) of the running section. In the present invention, it is preferable that the length of the aerial traveling portion is 10 mm or more and 600 mm or less. Moreover, it is preferable to block the aerial traveling part from the outside air and set the interior to 0 ° C. or more and 50 ° C. or less. By setting the length and temperature of the aerial traveling portion within the above ranges, the membrane structure in the vicinity of the outer surface of the hollow fiber membrane can keep a good balance between the leakage preventing property of the hydrophilizing agent and the membrane performance. On the other hand, on the inner surface side of the spinning dope, it is possible to complete the coagulation of the polymer with the core solution and form a dense layer before being affected by the solvent removal from the outer surface side.

紡糸製膜の安定性を高めるためには、空中走行部の長さは10mm以上300mm以下がより好ましく、紡糸口金からの紡糸原液の吐出斑の影響を相殺するには10mm以上150mm以下がさらに好ましい。空中走行部の温度はコントロールが容易な点で3℃以上45℃以下が好ましく、性能面で有用タンパクの漏れ量を抑制するには5℃以上40℃以下がより好ましい。
空中走行部の長さと温度は、ノズルドラフトや紡糸速度により適正範囲が変わるものであって、本発明の範囲はノズルドラフトが1〜5程度、紡糸速度が30〜90m/min.の場合を想定している。
In order to improve the stability of the spinning film formation, the length of the aerial traveling part is more preferably 10 mm or more and 300 mm or less, and 10 mm or more and 150 mm or less is more preferable to offset the influence of the spinning stock discharge from the spinneret. . The temperature of the aerial traveling section is preferably 3 ° C. or higher and 45 ° C. or lower in terms of easy control, and more preferably 5 ° C. or higher and 40 ° C. or lower in order to suppress the leakage of useful proteins in terms of performance.
The appropriate range of the length and temperature of the aerial traveling section varies depending on the nozzle draft and spinning speed. The scope of the present invention assumes that the nozzle draft is about 1 to 5 and the spinning speed is 30 to 90 m / min. doing.

本発明において、適正な中空糸膜構造を得るためには凝固浴の条件を適正化することも重要な要件の1つである。外表面側の空隙率や開孔径を小さくするためには凝固浴中の溶媒濃度を低くし、温度を低くすることが有効である。凝固浴中の溶媒濃度は50重量%以上80重量%以下、凝固浴温度は20℃以上70℃以下が好ましい。凝固浴からの中空糸膜の曳きだし性および空中走行部の温度コントロールの容易性を確保する面から、溶媒濃度は55重量%以上77重量%以下、凝固浴温度は30℃以上50℃以下がより好ましく、溶媒濃度が60重量%以上75重量%以下、凝固浴温度が35℃以上45℃以下がさらに好ましい。   In the present invention, in order to obtain an appropriate hollow fiber membrane structure, it is also an important requirement to optimize the conditions of the coagulation bath. In order to reduce the void ratio and pore diameter on the outer surface side, it is effective to lower the solvent concentration in the coagulation bath and lower the temperature. The solvent concentration in the coagulation bath is preferably 50% by weight to 80% by weight, and the coagulation bath temperature is preferably 20 ° C. or more and 70 ° C. or less. From the viewpoint of securing the hollow fiber membrane from the coagulation bath and the ease of temperature control of the aerial running part, the solvent concentration should be 55 to 77% by weight, and the coagulation bath temperature should be 30 to 50 ° C. More preferably, the solvent concentration is 60 wt% or more and 75 wt% or less, and the coagulation bath temperature is 35 ° C. or more and 45 ° C. or less.

凝固浴から曳き出した中空糸膜は、引き続き水洗浴にて過剰の溶媒、非溶媒を除去するために洗浄を行う。短時間に洗浄を行うためには、水洗浴の温度を出来るだけ高くする方がよい。しかし、温度が高すぎると、膜構成材料の劣化や膜形状、膜構造に欠陥が生じる可能性もあるので、30〜90℃程度で洗浄を行うのが好ましく、40〜90℃がより好ましく、50〜85℃がさらに好ましい。   The hollow fiber membrane squeezed out from the coagulation bath is subsequently washed in a water washing bath to remove excess solvent and non-solvent. In order to perform cleaning in a short time, it is better to raise the temperature of the washing bath as much as possible. However, if the temperature is too high, the film constituent material may be deteriorated or the film shape or the film structure may be defective. Therefore, the washing is preferably performed at about 30 to 90 ° C, more preferably 40 to 90 ° C, 50-85 degreeC is further more preferable.

水洗工程を経た中空糸膜は続いて、細孔内部および中空部への親水化剤の充填工程へ移行させる。本発明においては、グリセリン水溶液への多孔質中空糸膜の浸漬、液切りを繰り返し行うことで、細孔内部への親水化剤であるグリセリン水溶液を充填すると同時に、該多孔質中空糸膜の中空部に満たされた中空形成剤をグリセリン水溶液と置換する。ここで、グリセリンの濃度は70〜95重量%とするのが好ましい。グリセリン濃度が低すぎると、後段の中空糸膜乾燥工程における水分蒸発に伴う細孔径の縮小や中空糸膜形状の変形(潰れ、偏平化)が起こる可能性がある。また、グリセリン濃度が高すぎると、流動性が低下するために充填や置換が不十分になることがある。したがって、グリセリン濃度は75〜93重量%がより好ましく、80〜90重量%がさらに好ましい。
グリセリン水溶液の温度は、グリセリン濃度にもよるが、前記範囲であれば、80〜95℃程度が好ましい。このような温度範囲であれば、グリセリン水溶液の流動性が確保され、充填性や置換性の面で好ましい。
本発明において、グリセリン水溶液への浸漬、液切りの各時間や頻度は、中空糸膜の内径や膜厚、膜構造にも関係するので一概には言えないが、内径150〜300μm、膜厚10〜50μm程度であれば、浸漬、液切りを各3〜10秒程度、浸漬、液切りを1工程として3〜10回程度行えば足りるといえる。
The hollow fiber membrane that has undergone the water washing step is then transferred to the step of filling the inside of the pores and the hollow portion with the hydrophilizing agent. In the present invention, by repeatedly immersing the porous hollow fiber membrane in the glycerin aqueous solution and draining it, the glycerin aqueous solution as the hydrophilizing agent is filled into the pores, and at the same time the hollow hollow fiber membrane is hollow. The hollow forming agent filled in the part is replaced with an aqueous glycerin solution. Here, the concentration of glycerin is preferably 70 to 95% by weight. If the glycerin concentration is too low, the pore diameter may be reduced and the hollow fiber membrane shape may be deformed (crushed or flattened) due to moisture evaporation in the subsequent hollow fiber membrane drying step. On the other hand, if the glycerin concentration is too high, the fluidity is lowered and filling and replacement may be insufficient. Therefore, the glycerin concentration is more preferably 75 to 93% by weight, and further preferably 80 to 90% by weight.
The temperature of the glycerin aqueous solution depends on the glycerin concentration, but is preferably about 80 to 95 ° C. within the above range. If it is such a temperature range, the fluidity | liquidity of glycerin aqueous solution will be ensured and it is preferable at the surface of a filling property or substitution property.
In the present invention, the time and frequency of immersing and draining in the glycerin aqueous solution are related to the inner diameter, the film thickness, and the membrane structure of the hollow fiber membrane, and thus cannot be said unconditionally. If it is about ˜50 μm, it can be said that it is sufficient to perform immersion and liquid removal for about 3 to 10 seconds each, and about 3 to 10 times for immersion and liquid removal as one step.

細孔内部および中空部にグリセリン水溶液が充填された中空糸膜は、乾燥工程を経てボビンにチーズ状に巻き取る。ここで、乾燥後の中空糸膜の水分率は13重量%以下に調整することが好ましい。水分率が高すぎると、中空糸膜を保管する際に雰囲気中の水分を吸湿し、漏洩や脱落の原因となる。また、中空糸膜モジュールを作成する際の中空糸膜端部封止に使用するウレタン等の樹脂と水が反応して発泡するとか、ウレタンオリゴマーなどの副生成物が生ずるなどの不具合が生じることがある。逆に、水分率が低すぎると、却って吸湿性が高まるため保管条件をシビアにコントロールする必要が生じる。したがって、乾燥後の中空糸膜の水分率は3〜12重量%がより好ましく、4〜11重量%がさらに好ましく、5〜10重量%がさらにより好ましい。   The hollow fiber membrane in which the glycerin aqueous solution is filled in the pores and in the hollow part is wound around a bobbin in a cheese shape through a drying process. Here, the moisture content of the hollow fiber membrane after drying is preferably adjusted to 13% by weight or less. If the moisture content is too high, moisture in the atmosphere is absorbed when the hollow fiber membrane is stored, causing leakage and dropping. In addition, when a hollow fiber membrane module is produced, a resin such as urethane used for sealing an end of the hollow fiber membrane reacts with water and foams, or a by-product such as a urethane oligomer occurs. There is. On the other hand, if the moisture content is too low, the hygroscopicity is increased, so that it is necessary to control the storage conditions severely. Therefore, the moisture content of the hollow fiber membrane after drying is more preferably 3 to 12% by weight, further preferably 4 to 11% by weight, and still more preferably 5 to 10% by weight.

上記、得られた中空糸膜を複数本束ね、ハウジングケースに挿入し、端部を樹脂にて接着する際、ウレタン系接着剤を使用する。該ウレタン系接着剤に関しては主剤としてポリオール、硬化剤としてポリイソシアネートを使用しウレタン結合により硬化反応が進行するものであれば特に限定はなく、またポリイソシアネート成分として芳香族系のもの、脂肪族系のものがあるが、いずれも使用することができる。樹脂の取り扱い性や用途に応じて求められる特性等を考慮して、ポリオール成分とポリイソシアネート成分を適宜選択するのが好ましい。   A plurality of the obtained hollow fiber membranes are bundled, inserted into the housing case, and a urethane adhesive is used when the ends are bonded with resin. The urethane adhesive is not particularly limited as long as it uses a polyol as a main agent and a polyisocyanate as a curing agent and the curing reaction proceeds by a urethane bond, and the polyisocyanate component is aromatic or aliphatic. Any of these can be used. It is preferable to appropriately select the polyol component and the polyisocyanate component in consideration of the handling properties of the resin and the characteristics required depending on the application.

本発明の多孔質中空糸膜および該多孔質中空糸膜を収納したモジュールは、温度60℃以下程度、湿度20%以下程度で保管するのが好ましい。温度が高すぎたり、湿度が高すぎると、中空糸膜の水分率を前記した範囲に調整したとしても、保管中の吸湿、ひいては吸湿による親水化剤の流動性が増すことにより、中空部や細孔内部から親水化剤が脱落、漏洩することがある。親水化剤が脱落、漏洩すると、細孔の収縮や中空糸膜形状の変形などにつながり、性能低下や品質低下の原因となることがある。   The porous hollow fiber membrane of the present invention and the module containing the porous hollow fiber membrane are preferably stored at a temperature of about 60 ° C. or less and a humidity of about 20% or less. If the temperature is too high or the humidity is too high, even if the moisture content of the hollow fiber membrane is adjusted to the above-described range, moisture absorption during storage, and consequently the fluidity of the hydrophilizing agent due to moisture absorption increases, The hydrophilizing agent may fall off and leak from the inside of the pores. If the hydrophilizing agent falls off and leaks, it may lead to shrinkage of the pores or deformation of the hollow fiber membrane shape, which may cause performance degradation or quality degradation.

本発明の方法によって得られる多孔質中空糸膜は、特に内表面の疎水化抑制の手段を講じているため、使用時のプライミング性(再湿潤性)に優れる。具体的には、プライミング処理後5分後の透水性(UFR(A))とプライミング処理後30分後の透水性(UFR(B))との比(UFR(A)/UFR(B))が90%以上であるのが好ましい。例えば、多孔質中空糸膜を血液浄化用途に使用する場合、透析施設においてプライミング処理から臨床使用までの時間は最短でおよそ5〜10分程度である。このような施設においてはプライミング直後より所期性能を発現する必要が生ずる。したがって、UFR(A)/UFR(B)は93%以上であるのがより好ましく、96%以上であるのがさらに好ましい。   The porous hollow fiber membrane obtained by the method of the present invention is excellent in priming property (rewetting property) at the time of use because it particularly takes measures for suppressing the hydrophobization of the inner surface. Specifically, ratio of water permeability (UFR (A)) 5 minutes after priming to water permeability (UFR (B)) 30 minutes after priming (UFR (A) / UFR (B)) Is preferably 90% or more. For example, when the porous hollow fiber membrane is used for blood purification, the time from priming treatment to clinical use in a dialysis facility is about 5 to 10 minutes at the shortest. In such a facility, it is necessary to express the desired performance immediately after priming. Therefore, UFR (A) / UFR (B) is more preferably 93% or more, and still more preferably 96% or more.

従来、ポリスルホン系高分子からなる多孔質中空糸膜に代表されるように、中空糸膜の親水性を改善(向上)させるために、ポリビニルピロリドン(PVP)やポリエチレングリコール等の親水性成分を添加した中空糸膜が知られている。しかし、PVPは高分子量の親水性材料であるため容易に血液中に溶出し、高分子量であるが故に生体内に蓄積するという問題がある。本発明の中空糸膜は、親水化剤としてグリセリンまたはグリセリン誘導体を使用するので、血液浄化用途などに使用した際にも、プライミング処理において速やかに洗い流され、生体への悪影響の懸念がない。   Conventionally, hydrophilic components such as polyvinylpyrrolidone (PVP) and polyethylene glycol have been added to improve (improve) the hydrophilicity of hollow fiber membranes, as typified by porous hollow fiber membranes made of polysulfone polymers. Hollow fiber membranes are known. However, since PVP is a high molecular weight hydrophilic material, it easily dissolves into blood and accumulates in the living body because of its high molecular weight. Since the hollow fiber membrane of the present invention uses glycerin or a glycerin derivative as a hydrophilizing agent, even when used for blood purification or the like, it is quickly washed away in the priming treatment, and there is no fear of adverse effects on the living body.

以下、実施例にて本発明の好ましい実施態様を説明する。ただし、本発明はこれに何ら限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to Examples. However, the present invention is not limited to this.

(中空糸膜の膜厚測定)
倍率200倍の投影機で中空糸膜の断面を投影し、各視野内で最大、最小、中程度の大きさの中空糸の内径(A)および外径(B)を測定し、各中空糸の膜厚を次式で求め、
膜厚=(B−A)/2
1視野15個の中空糸膜の平均を算出する。
(Measurement of film thickness of hollow fiber membrane)
The cross section of the hollow fiber membrane is projected with a projector with a magnification of 200 times, and the inside diameter (A) and the outside diameter (B) of the hollow fiber having the maximum, minimum, and medium sizes are measured in each field of view. The film thickness of
Film thickness = (B−A) / 2
Calculate the average of 15 hollow fiber membranes per field of view.

(中空糸膜内表面の細孔径)
中空糸膜内表面を10万倍の電子顕微鏡で観察し、写真(SEM写真)を撮影する。その画像を画像解析ソフトで処理して、中空糸膜内表面の細孔径を求める。画像解析ソフトは、例えばImage Pro Plus(Media Cybernetics,Inc.)を使用して測定する。取り込んだ画像を孔部と閉塞部が識別されるように強調・フィルタ操作を実施する。その後、孔部の細孔径を測定し、孔内部に下層のポリマー鎖が見て取れる場合には、孔を結合して一孔とみなして測定する。これを10視野実施してその平均を求める。初期操作としてスケール設定を実施する。
(Pore diameter on the inner surface of the hollow fiber membrane)
The inner surface of the hollow fiber membrane is observed with an electron microscope with a magnification of 100,000 times, and a photograph (SEM photograph) is taken. The image is processed with image analysis software to determine the pore diameter on the inner surface of the hollow fiber membrane. The image analysis software is measured using, for example, Image Pro Plus (Media Cybernetics, Inc.). The emphasis / filtering operation is performed on the captured image so that the hole and the blockage are identified. Thereafter, the pore diameter of the pores is measured, and when the lower polymer chain can be seen inside the pores, the pores are combined and regarded as one hole. This is carried out 10 views and the average is obtained. Set the scale as the initial operation.

(緻密層厚みの測定)
本発明における中空糸膜の緻密層の厚みは、以下のようにして求めた。
中空糸膜断面を3000倍の倍率で走査型電子顕微鏡(SEM)にて観察を行い、明らかに孔、ボイドが観察されない部分を緻密層と定義し、その部分の厚みを測定した。
(Measurement of dense layer thickness)
The thickness of the dense layer of the hollow fiber membrane in the present invention was determined as follows.
The cross section of the hollow fiber membrane was observed with a scanning electron microscope (SEM) at a magnification of 3000 times, a portion where no pores or voids were clearly observed was defined as a dense layer, and the thickness of the portion was measured.

(中空糸膜モジュールのプライミング)
中空糸膜モジュールを縦置きにし、イオン交換し水を流量100ml/minで中空部側に流し始め十分に気泡を除去し、1000ml以上のイオン交換水を流し終わったら、中空部出口側から中空糸外側部分へ回路を接続し、5分間流す。
(Priming of hollow fiber membrane modules)
The hollow fiber membrane module is placed vertically, ion exchange is performed, water is started to flow to the hollow part side at a flow rate of 100 ml / min, air bubbles are sufficiently removed, and after 1000 ml or more of ion exchange water has been poured, the hollow fiber is discharged from the hollow part outlet side Connect the circuit to the outer part and let it flow for 5 minutes.

(中空糸膜の透水性の測定)
透水性の測定に関しては、以下の手順で実施する。
中空糸膜を3000〜20000本充填した中空糸膜モジュールを作製する。計算に用いる中空糸膜面積は、中空糸内径(ID)基準とし、接着部分を除いた有効長(L)から有効膜面積を計算する。予め純水を中空糸膜内部(中空部)、中空糸膜外部(モジュール内)の順に通水し、気泡を除去する。モジュールおよび内部に充填された純水を37℃に調整した後、中空糸膜内部(中空部)に通じるモジュール入口から37℃の純水によって圧力をかけて、膜の内側と外側の圧力差、すなわち膜間圧力差(P)を生じせしめ、1分間に膜を通して膜外側に出てくる純水の量(W)を測定する。4点の異なったPにおける1分間のWを測定し、PとWを2次元座標にプロットして、それらの近似直線の傾きを数値として求める。次に下記式により中空糸膜の透水性(UFR、ml/(m・h・mmHg))を計算する。UFR=W(ml/min)×60(min/h)÷A(m)÷P(mmHg)ここで、有効膜面積A(m)=ID(μm)×10−6×π×L(m)×中空糸本数である。
(Measurement of water permeability of hollow fiber membrane)
The water permeability is measured according to the following procedure.
A hollow fiber membrane module filled with 3000 to 20000 hollow fiber membranes is produced. The hollow fiber membrane area used for the calculation is based on the hollow fiber inner diameter (ID), and the effective membrane area is calculated from the effective length (L) excluding the bonded portion. Pure water is passed through the hollow fiber membrane in advance (hollow part) and the hollow fiber membrane outside (inside the module) in this order to remove bubbles. After adjusting the pure water filled in the module and the inside to 37 ° C., pressure is applied by pure water at 37 ° C. from the module inlet leading to the inside (hollow part) of the hollow fiber membrane, the pressure difference between the inside and outside of the membrane, That is, a transmembrane pressure difference (P) is generated, and the amount (W) of pure water that flows out of the membrane through the membrane in one minute is measured. Measure W for one minute at four different P points, plot P and W on two-dimensional coordinates, and determine the slopes of these approximate lines as numerical values. Next, the water permeability (UFR, ml / (m 2 · h · mmHg)) of the hollow fiber membrane is calculated by the following formula. UFR = W (ml / min) × 60 (min / h) ÷ A (m 2 ) ÷ P (mmHg) where effective membrane area A (m 2 ) = ID (μm) × 10 −6 × π × L (M) x number of hollow fibers.

(中空糸膜の水分率)
本発明における多孔質中空糸膜の水分率は、以下の式により計算した。
水分率%=100×(Ww−Wd)/Wd
ここで、Wwは乾燥前の中空糸膜重量(g)、Wdは、120℃の乾熱オーブンで2時間以上乾燥後(絶乾後)の中空糸膜重量(g)である。
(Water content of hollow fiber membrane)
The moisture content of the porous hollow fiber membrane in the present invention was calculated by the following formula.
Moisture percentage% = 100 × (Ww−Wd) / Wd
Here, Ww is the weight (g) of the hollow fiber membrane before drying, and Wd is the weight (g) of the hollow fiber membrane after being dried in a dry heat oven at 120 ° C. for 2 hours or more (after absolutely dry).

(実施例1)
紡糸原液として、セルローストリアセテート(ダイセル化学工業社製)19.0重量%、N‐メチル‐2‐ピロリドン(三菱化学社製)68.9重量%、トリエチレングリコール(三井化学社製)12.1重量%を180℃にて混合溶解した。これを公知の方法で脱泡した後、焼結フィルターに通し、2重管構造の紡糸用口金の外管から垂直下方に向け吐出した。同時に内管には逆浸透処理水(RO水)を芯液として供給した。紡糸用口金から吐出された中空糸は13mmの空走部分を通過後、凝固浴、水洗浴、グリセリン浴を経て、オンライン乾燥された後、ワインダーによって60m/分の巻上げ速度でボビンにチーズ状に巻き取った。凝固浴の組成はNMP/TEG/水=59.5/10.5/30.0、温度は45℃に設定した。グリセリン浴中のグリセリン濃度は88.0重量%とし、温度は92℃に設定した。また、浸漬と液切りを3回繰り返すことにより、中空部に満たされた中空形成剤をグリセリン水溶液と完全に置換した。乾燥後の中空糸膜の内径、膜厚はそれぞれ203μm、20μmであった。また、乾燥後の中空糸膜水分率は12重量%であった。得られた中空糸膜を10,200本集束し、切断してハウジングケースに挿入した。端部をウレタン接着剤を用いて接着し、作製した中空糸膜モジュールを、60℃、湿度20%以下の条件で12時間放置後、イオン交換水にてプライミングを実施し、プライミング後5分、30分、60分、180分、12時間後に透水性を測定した。
Example 1
As the spinning dope, cellulose triacetate (Daicel Chemical Industries, Ltd.) 19.0% by weight, N-methyl-2-pyrrolidone (Mitsubishi Chemical Co., Ltd.) 68.9% by weight, triethylene glycol (Mitsui Chemicals) 12.1 The wt% was mixed and dissolved at 180 ° C. This was degassed by a known method, passed through a sintered filter, and discharged vertically downward from the outer tube of a spinneret having a double tube structure. At the same time, reverse osmosis treated water (RO water) was supplied to the inner tube as a core liquid. The hollow fiber discharged from the spinneret passes through a 13 mm idle running part, passes through a coagulation bath, a water washing bath, a glycerin bath, and is dried online, and then is turned into a cheese on a bobbin at a winding speed of 60 m / min by a winder. Winded up. The composition of the coagulation bath was set to NMP / TEG / water = 59.5 / 10.5 / 30.0, and the temperature was set to 45 ° C. The glycerin concentration in the glycerin bath was 88.0% by weight, and the temperature was set at 92 ° C. Moreover, the hollow forming agent filled in the hollow portion was completely replaced with the glycerin aqueous solution by repeating the dipping and draining three times. The inner diameter and the film thickness of the hollow fiber membrane after drying were 203 μm and 20 μm, respectively. The moisture content of the hollow fiber membrane after drying was 12% by weight. 10,200 hollow fiber membranes thus obtained were converged, cut and inserted into a housing case. The end part was bonded using a urethane adhesive, and the produced hollow fiber membrane module was allowed to stand for 12 hours at 60 ° C. and a humidity of 20% or less, and then subjected to priming with ion-exchanged water, 5 minutes after priming, Water permeability was measured after 30 minutes, 60 minutes, 180 minutes and 12 hours.

(実施例2)
紡糸原液として、セルローストリアセテート(ダイセル化学工業社製)20.0重量%、N‐メチル‐2‐ピロリドン(三菱化学社製)64.0重量%、トリエチレングリコール(三井化学社製)16.0重量%を180℃にて混合溶解した。これを公知の方法で脱泡した後、焼結フィルターに通し、2重管構造の紡糸用口金の外管から垂直下方に向け吐出した。同時に内管にはRO水を芯液として供給した。紡糸用口金から吐出された中空糸は25mmの空走部分を通過後、凝固浴、水洗浴、グリセリン浴を経て、オンライン乾燥された後、ワインダーによって60m/分の巻上げ速度でボビンに巻き取った。凝固浴の組成はNMP/TEG/水=56.0/14.0/30.0、温度は55℃に設定した。グリセリン浴中のグリセリン濃度は78.0重量%とし、温度は80℃に設定した。また、浸漬と液切りを3回繰り返すことにより、中空部に満たされた中空形成剤をグリセリン水溶液と完全に置換した。乾燥後の中空糸膜の内径、膜厚はそれぞれ198μm、22μmであった。また、乾燥後の中空糸膜水分率は6重量%であった。得られた中空糸膜を10,200本集束し、切断してハウジングケースに挿入した。端部をウレタン接着剤を用いて接着し、作製した中空糸膜モジュールを、60℃、湿度20%以下の条件で12時間放置後、イオン交換水にてプライミングを実施し、プライミング後5分、30分、60分、180分、12時間後に透水性を測定した。
(Example 2)
As the spinning dope, cellulose triacetate (manufactured by Daicel Chemical Industries) 20.0% by weight, N-methyl-2-pyrrolidone (manufactured by Mitsubishi Chemical) 64.0% by weight, triethylene glycol (manufactured by Mitsui Chemicals) 16.0% The wt% was mixed and dissolved at 180 ° C. This was degassed by a known method, passed through a sintered filter, and discharged vertically downward from the outer tube of a spinneret having a double tube structure. At the same time, RO water was supplied to the inner tube as a core liquid. The hollow fiber discharged from the spinneret passed through an empty running portion of 25 mm, passed through a coagulation bath, a water washing bath, and a glycerin bath, dried on-line, and then wound around a bobbin by a winder at a winding speed of 60 m / min. . The composition of the coagulation bath was set to NMP / TEG / water = 56.0 / 14.0 / 30.0, and the temperature was set to 55 ° C. The glycerin concentration in the glycerin bath was 78.0 wt%, and the temperature was set at 80 ° C. Moreover, the hollow forming agent filled in the hollow portion was completely replaced with the glycerin aqueous solution by repeating the dipping and draining three times. The hollow fiber membranes after drying had an inner diameter and a film thickness of 198 μm and 22 μm, respectively. The moisture content of the hollow fiber membrane after drying was 6% by weight. 10,200 hollow fiber membranes thus obtained were converged, cut and inserted into a housing case. The end part was bonded using a urethane adhesive, and the produced hollow fiber membrane module was allowed to stand for 12 hours at 60 ° C. and a humidity of 20% or less, and then subjected to priming with ion-exchanged water, 5 minutes after priming, Water permeability was measured after 30 minutes, 60 minutes, 180 minutes and 12 hours.

(比較例1)
実施例1と同様にして中空糸膜を得た。得られた中空糸膜を温度60℃、湿度80%の環境下に24時間放置後、中空糸膜をハウジングケースに挿入し端部をウレタン系接着剤を用いて接着した。接着剤硬化部を観察すると、接着剤の発泡が確認され、品質面で問題があった。また、発泡による接着不良が原因と思われるリークの発生もみられた。
(Comparative Example 1)
A hollow fiber membrane was obtained in the same manner as in Example 1. The obtained hollow fiber membrane was allowed to stand in an environment of a temperature of 60 ° C. and a humidity of 80% for 24 hours, and then the hollow fiber membrane was inserted into a housing case and the ends were bonded using a urethane-based adhesive. When the adhesive cured part was observed, foaming of the adhesive was confirmed, and there was a problem in quality. Moreover, the occurrence of leaks that may be caused by poor adhesion due to foaming was also observed.

(比較例2)
紡糸原液として、セルローストリアセテート(ダイセル化学工業社製)18.0重量%、N‐メチル‐2‐ピロリドン(三菱化学社製)57.4重量%、トリエチレングリコール(三井化学社製)24.6重量%を180℃にて混合溶解させたものを用いた。これを焼結フィルターに通した後、2重管構造の紡糸用口金から垂直下方に向け吐出した。同時に内側の管には流動パラフィンを芯液として供給し、中空糸膜を形成した。この中空糸膜は60mmの蒸気雰囲気中を通過後、凝固浴、水洗浴、グリセリン浴を経て、オンライン乾燥した後、75m/分の巻上げ速度でボビンに巻き取った。グリセリン濃度は65.0重量%とし、浴温度は85℃に設定した。本比較例においては、中空形成材(芯液)として疎水性液体である流動パラフィンを用いているため、中空糸膜中空部にグリセリンが充填されなかった。乾燥後の中空糸膜の内径、膜厚はそれぞれ200μm、17μmであった。また、乾燥後の中空糸膜水分率は12重量%であった。得られた中空糸膜を10,200本集束し、切断してハウジングケースに挿入した。端部をウレタン接着剤を用いて接着し、作製した中空糸膜モジュールを、60℃、湿度20%以下の条件で12時間放置後、イオン交換水にてプライミングを実施し、プライミング後5分、30分、60分、180分、12時間後に透水性を測定した。
(Comparative Example 2)
As the spinning dope, cellulose triacetate (Daicel Chemical Industries, Ltd.) 18.0% by weight, N-methyl-2-pyrrolidone (Mitsubishi Chemical Co., Ltd.) 57.4% by weight, triethylene glycol (Mitsui Chemicals, Inc.) 24.6% What was mixed and dissolved by weight at 180 ° C. was used. This was passed through a sintered filter and then discharged vertically downward from a spinneret having a double tube structure. At the same time, liquid paraffin was supplied to the inner tube as a core liquid to form a hollow fiber membrane. The hollow fiber membrane passed through a 60 mm steam atmosphere, passed through a coagulation bath, a water washing bath, and a glycerin bath, dried on-line, and then wound on a bobbin at a winding speed of 75 m / min. The glycerin concentration was 65.0% by weight, and the bath temperature was set to 85 ° C. In this comparative example, liquid paraffin, which is a hydrophobic liquid, is used as the hollow forming material (core liquid), and thus the hollow portion of the hollow fiber membrane was not filled with glycerin. The hollow fiber membrane after drying had an inner diameter and a thickness of 200 μm and 17 μm, respectively. The moisture content of the hollow fiber membrane after drying was 12% by weight. 10,200 hollow fiber membranes thus obtained were converged, cut and inserted into a housing case. The end part was bonded using a urethane adhesive, and the produced hollow fiber membrane module was allowed to stand for 12 hours at 60 ° C. and a humidity of 20% or less, and then subjected to priming with ion-exchanged water, 5 minutes after priming, Water permeability was measured after 30 minutes, 60 minutes, 180 minutes and 12 hours.

実施例と比較例の結果をあわせて表1に示す。   The results of Examples and Comparative Examples are shown together in Table 1.

Figure 0005176499
Figure 0005176499

上記、実施例と比較例との比較により、本発明の多孔質中空糸膜の中空部および細孔内部に親水化剤が充填されてなる中空糸膜および中空糸膜モジュールは、中空糸膜内表面の疎水化抑制に配慮がなされているので、標準的なプライミング処理における湿潤性に優れ、すなわち透水性の発現性に優れていることがわかる。   By comparing the above-mentioned Examples and Comparative Examples, the hollow fiber membrane and the hollow fiber membrane module in which the hollow portion and pores of the porous hollow fiber membrane of the present invention are filled with a hydrophilizing agent Since consideration is given to the surface hydrophobization suppression, it can be seen that the wettability in the standard priming treatment is excellent, that is, the water permeability is excellent.

本発明の多孔質中空糸膜は、細孔内部だけでなく中空部にも親水化剤が充填されているので、中空糸膜またはモジュール状態での長期間の保存や高温、低湿度環境下においても、中空糸膜の疎水化を効果的に抑制できており、種々の保存期間や保存状態、各種用途において所期性能の発現性に優れている。
Since the porous hollow fiber membrane of the present invention is filled with a hydrophilizing agent not only in the pores but also in the hollow portion, it can be stored in a hollow fiber membrane or in a module state for a long period of time or in a high temperature and low humidity environment. In addition, the hydrophobicity of the hollow fiber membrane can be effectively suppressed, and the desired performance is excellent in various storage periods, storage states, and various uses.

Claims (2)

多孔質中空糸膜の紡糸工程に連続して、70〜90重量%のグリセリン水溶液またはグリセリン誘導体水溶液への多孔質中空糸膜の浸漬、液切りを繰り返し行うことで該多孔質中空糸膜の中空部および細孔部に満たされた水をグリセリン水溶液またはグリセリン誘導体水溶液と置換し、引き続き乾燥し、水分率を3〜12重量%に調整された多孔質中空糸膜を充填してなる中空糸膜モジュールであって、温度60℃以下、湿度20%以下で保存されていることを特徴とする中空糸膜モジュール。 In succession to the spinning step of the porous hollow fiber membrane, the porous hollow fiber membrane is hollowed by repeatedly immersing and draining the porous hollow fiber membrane in a 70 to 90% by weight glycerin aqueous solution or glycerin derivative aqueous solution. The hollow fiber membrane is formed by replacing the water filled in the parts and pores with a glycerin aqueous solution or a glycerin derivative aqueous solution, followed by drying and filling a porous hollow fiber membrane with a moisture content adjusted to 3 to 12% by weight. A hollow fiber membrane module which is a module and is stored at a temperature of 60 ° C. or less and a humidity of 20% or less. 前記中空糸膜モジュールをプライミング処理した際、処理後5分後の透水性であるUFR(A)と処理後30分後の透水性であるUFR(B)との比(UFR(A)/UFR(B))が90%以上であることを特徴とする請求項1に記載の中空糸膜モジュール。
When the hollow fiber membrane module is primed, the ratio of UFR (A), which is permeable 5 minutes after treatment, to UFR (B), which is permeable 30 minutes after treatment (UFR (A) / UFR The hollow fiber membrane module according to claim 1, wherein (B)) is 90% or more.
JP2007302656A 2007-11-22 2007-11-22 Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane module Active JP5176499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302656A JP5176499B2 (en) 2007-11-22 2007-11-22 Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302656A JP5176499B2 (en) 2007-11-22 2007-11-22 Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane module

Publications (2)

Publication Number Publication Date
JP2009125650A JP2009125650A (en) 2009-06-11
JP5176499B2 true JP5176499B2 (en) 2013-04-03

Family

ID=40817113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302656A Active JP5176499B2 (en) 2007-11-22 2007-11-22 Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP5176499B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205980A (en) * 2011-03-29 2012-10-25 Kubota Corp Immersion method of membrane element and filtering operation method of membrane element
CN108636118A (en) * 2018-05-16 2018-10-12 南京帝膜净水材料开发有限公司 A kind of preparation method of complex reverse osmosis membrane
CN113481659B (en) * 2021-07-02 2022-06-14 南通大学 Method for regulating pore structure of nanofiber membrane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246699A (en) * 1975-10-08 1977-04-13 Nippon Zeon Co Method of treating hollow yarn
JP3243051B2 (en) * 1993-04-19 2002-01-07 旭化成株式会社 Membrane module
JP2003033633A (en) * 2001-05-16 2003-02-04 Toyobo Co Ltd Method for producing hollow fiber membrane and hollow fiber membrane module
JP2007054470A (en) * 2005-08-26 2007-03-08 Toyobo Co Ltd Hollow fiber membrane for blood purification and its manufacturing method

Also Published As

Publication number Publication date
JP2009125650A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5504560B2 (en) Hollow fiber membrane for liquid processing
US9776143B2 (en) Low cut-off ultrafiltration membranes
JP5720249B2 (en) Hollow fiber membrane, method for producing the same, and blood purification module
JP4940576B2 (en) Hollow fiber membrane and blood purifier
JP5440332B2 (en) Hollow fiber membrane
JP3580314B1 (en) Polysulfone-based selectively permeable hollow fiber membrane bundle and method for producing the same
JP4725524B2 (en) Cellulose acetate asymmetric hollow fiber membrane
JP5176499B2 (en) Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane module
JP6202473B2 (en) Stock solution for porous membrane
JP5136909B2 (en) Method for producing hollow fiber membrane
JP5212837B2 (en) Permselective hollow fiber membrane
JPS6159764B2 (en)
JP5473215B2 (en) Method for producing porous membrane for water treatment
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP6699750B2 (en) Cellulose acetate-based asymmetric hollow fiber membrane
JP6699751B2 (en) Cellulose acetate hollow fiber membrane
JP2008194647A (en) Hollow fiber membrane
JP2007054470A (en) Hollow fiber membrane for blood purification and its manufacturing method
CN113522050B (en) Polysulfone-based hollow fiber membrane and hollow fiber membrane module
WO2023276614A1 (en) Forward osmosis membrane and forward osmosis membrane module including same
JP7475186B2 (en) Polysulfone-based hollow fiber membrane and hollow fiber membrane module
JP5299617B2 (en) Method for producing hollow fiber membrane
JP2010063605A (en) Blood purifier having excellent impact resistance
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JPH01184001A (en) Porous membrane of polysulfone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5176499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350