JP7475186B2 - Polysulfone-based hollow fiber membrane and hollow fiber membrane module - Google Patents

Polysulfone-based hollow fiber membrane and hollow fiber membrane module Download PDF

Info

Publication number
JP7475186B2
JP7475186B2 JP2020072517A JP2020072517A JP7475186B2 JP 7475186 B2 JP7475186 B2 JP 7475186B2 JP 2020072517 A JP2020072517 A JP 2020072517A JP 2020072517 A JP2020072517 A JP 2020072517A JP 7475186 B2 JP7475186 B2 JP 7475186B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
polysulfone
based hollow
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020072517A
Other languages
Japanese (ja)
Other versions
JP2021169058A (en
Inventor
健祐 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2020072517A priority Critical patent/JP7475186B2/en
Priority to CN202110303419.4A priority patent/CN113522050B/en
Publication of JP2021169058A publication Critical patent/JP2021169058A/en
Application granted granted Critical
Publication of JP7475186B2 publication Critical patent/JP7475186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Description

この発明は、ポリスルホン系中空糸膜および中空糸膜モジュールに関する。 This invention relates to polysulfone-based hollow fiber membranes and hollow fiber membrane modules.

中空糸膜を用いた膜分離法は単位容積当たりの処理量が多いことから、家庭用又は工業用の浄水器膜モジュール、人口透析器用の膜モジュール、加湿膜モジュール、除湿膜モジュールなどの幅広い分野で用いられている。 Membrane separation methods using hollow fiber membranes have a high throughput per unit volume, and are therefore used in a wide range of fields, such as membrane modules for household or industrial water purifiers, membrane modules for artificial dialysis machines, humidification membrane modules, and dehumidification membrane modules.

中空糸膜の材料として親水性高分子が注目されており例えば、ポリスルホン系樹脂等が親水性高分子として用いられている。親水性のポリスルホン系樹脂は、その製造時に親水性高分子を添加することで製造されている。親水性高分子からなる中空糸膜を備えた中空糸膜モジュールを用いて一定時間、水溶液の処理を行う場合、中空糸膜の細孔内に水分子が保持される。このため、該中空糸膜モジュール内に空気が混入すると空気がモジュール内に溜まり、透水性が低下する場合があった。 Hydrophilic polymers have been attracting attention as materials for hollow fiber membranes, and for example, polysulfone-based resins are used as hydrophilic polymers. Hydrophilic polysulfone-based resins are produced by adding hydrophilic polymers during production. When an aqueous solution is treated for a certain period of time using a hollow fiber membrane module equipped with hollow fiber membranes made of hydrophilic polymers, water molecules are retained within the pores of the hollow fiber membrane. For this reason, if air gets mixed into the hollow fiber membrane module, the air accumulates within the module, and water permeability can decrease.

そこで、中空糸膜モジュールの透水性の向上が望まれていた。従来から、疎水性高分子の中空糸膜を備えた中空糸膜モジュールを作製することで透水性を向上させる試みが行われている。 Therefore, there has been a demand for improving the water permeability of hollow fiber membrane modules. Previously, attempts have been made to improve water permeability by producing hollow fiber membrane modules equipped with hollow fiber membranes made of hydrophobic polymers.

特許文献1(特開2014-184377号公報)は、親水性中空糸膜に折れ曲がった松葉状の疎水性中空糸膜を混在させた中空糸膜束を備えた中空糸膜モジュールを開示する。
特許文献2(特開2011-72900号公報)は中空糸膜束の開口端部を筒状ケースの開口部に固定した中空糸膜モジュールであって、該中空糸膜束は親水性中空糸膜に疎水性中空糸膜を混在させたものであり、筒状ケースの端面において中空糸膜束の最外周の中空糸膜が親水性中空糸膜である中空糸膜モジュールを開示する。
Patent Document 1 (JP 2014-184377 A) discloses a hollow fiber membrane module including a hollow fiber membrane bundle in which hydrophilic hollow fiber membranes are mixed with bent pine-needle-shaped hydrophobic hollow fiber membranes.
Patent Document 2 (JP 2011-72900 A) discloses a hollow fiber membrane module in which an open end of a hollow fiber membrane bundle is fixed to an opening of a cylindrical case, the hollow fiber membrane bundle being a mixture of hydrophilic hollow fiber membranes and hydrophobic hollow fiber membranes, and the hollow fiber membranes at the outermost periphery of the hollow fiber membrane bundle at the end face of the cylindrical case are hydrophilic hollow fiber membranes.

特開2014-184377号公報JP 2014-184377 A 特開2011-72900号公報JP 2011-72900 A

従来の中空糸膜モジュールは、親水性のポリスルホン系中空糸膜に加えて空気透過性の優れた疎水性の中空糸膜を含む。このため、中空糸膜モジュールの透水性の向上が期待できるものの、製造コスト、接着性、親水性のポリスルホン系中空糸膜の傷つき防止の観点から疎水性の中空糸膜について更なる検討の余地があった。
本発明は上記事情に鑑みてなされたものであり、空気透過性に優れたポリスルホン系中空糸膜、ならびに透水性および空気透過性に優れたポリスルホン系中空糸膜モジュールを提供するものである。
Conventional hollow fiber membrane modules contain hydrophobic hollow fiber membranes with excellent air permeability in addition to hydrophilic polysulfone-based hollow fiber membranes. Although this is expected to improve the water permeability of the hollow fiber membrane module, there is room for further study of the hydrophobic hollow fiber membranes from the viewpoints of production costs, adhesiveness, and prevention of damage to the hydrophilic polysulfone-based hollow fiber membranes.
The present invention has been made in view of the above circumstances, and provides a polysulfone-based hollow fiber membrane having excellent air permeability, and a polysulfone-based hollow fiber membrane module having excellent water permeability and air permeability.

本発明の各態様は、以下のとおりである。
[1]ポリスルホン系樹脂を含み、
100kPaの加圧下における水透過量が1ml/(hr・cm)以下であり、
100kPaの加圧下における空気透過量が1000ml/(hr・cm)以上である、ポリスルホン系中空糸膜。
[2]前記水透過量が0.01~1ml/(hr・cm)である、上記[1]に記載のポリスルホン系中空糸膜。
[3]前記空気透過量が1000~60000ml/(hr・cm)である、上記[1]または[2]に記載のポリスルホン系中空糸膜。
[4]ケースと、
前記ケース内に収容された中空糸膜束と、
前記ケースに嵌合された配管部材と、
を備え、
前記中空糸膜束は、上記[1]から[3]までの何れか1つに記載のポリスルホン系中空糸膜と、親水性のポリスルホン系中空糸膜とを有する、中空糸膜モジュール。
The various aspects of the present invention are as follows.
[1] Contains a polysulfone-based resin,
The water permeation rate under a pressure of 100 kPa is 1 ml/(hr·cm 2 ) or less;
A polysulfone-based hollow fiber membrane having an air permeability of 1000 ml/(hr·cm 2 ) or more under a pressure of 100 kPa.
[2] The polysulfone-based hollow fiber membrane according to the above [1], wherein the water permeability is 0.01 to 1 ml/(hr·cm 2 ).
[3] The polysulfone-based hollow fiber membrane according to the above [1] or [2], wherein the air permeability is 1,000 to 60,000 ml/(hr·cm 2 ).
[4] A case,
A hollow fiber membrane bundle housed in the case;
A piping member fitted into the case;
Equipped with
The hollow fiber membrane bundle comprises the polysulfone-based hollow fiber membrane according to any one of the above [1] to [3] and a hydrophilic polysulfone-based hollow fiber membrane, forming a hollow fiber membrane module.

空気透過性に優れたポリスルホン系中空糸膜、ならびに透水性および空気透過性に優れたポリスルホン系中空糸膜モジュールを提供することができる。 It is possible to provide polysulfone-based hollow fiber membranes with excellent air permeability, as well as polysulfone-based hollow fiber membrane modules with excellent water permeability and air permeability.

図1は、中空糸膜の水透過量の測定方法を説明する図である。FIG. 1 is a diagram illustrating a method for measuring the water permeation rate of a hollow fiber membrane. 図2は、中空糸膜の空気透過量の測定方法を説明する図である。FIG. 2 is a diagram illustrating a method for measuring the air permeability of a hollow fiber membrane. 図3は、一実施形態に係る中空糸膜モジュールを表す図である。FIG. 3 is a diagram illustrating a hollow fiber membrane module according to one embodiment. 図4は、実施例1で得られた多孔質ポリスルホン系中空糸膜のSEM写真を表す図である。FIG. 4 is a SEM photograph of the porous polysulfone-based hollow fiber membrane obtained in Example 1. 図5は、ポリスルホン系中空糸膜のバブルポイントの測定方法を説明する図である。FIG. 5 is a diagram illustrating a method for measuring the bubble point of a polysulfone-based hollow fiber membrane.

1.ポリスルホン系中空糸膜
本発明のポリスルホン系中空糸膜は、ポリスルホン系樹脂を含み、100kPaの加圧下における水透過量が1ml/(hr・cm)以下であり、100kPaの加圧下における空気透過量が1000ml/(hr・cm)以上である。本発明のポリスルホン系樹脂は、スルホニル基(-SO-)を含む繰り返し単位を有する樹脂であり、疎水構造を有するため、樹脂全体としても疎水性となる。このためポリスルホン系中空糸膜が水に接触した場合であってもその内部に水を含みにくいため、優れた空気透過性を有することができる。特に、本発明のポリスルホン系中空糸膜は、100kPaの加圧下において水透過量が1ml/(hr・cm)以下、および空気透過量が1000ml/(hr・cm)以上の優れた空気透過性を有することができる。なお、後述するように、上記「100kPaの加圧下における空気透過量」とは、ポリスルホン系中空糸膜を保持した円筒容器内にイオン交換水を供給して200kPaGとなるように加圧後、円筒容器内の水を除去し、さらに円筒容器内に空気を供給して100kPaGとなるように加圧した時の空気の漏れ出る体積を表す。
1. Polysulfone-based hollow fiber membrane The polysulfone-based hollow fiber membrane of the present invention contains a polysulfone-based resin, and has a water permeation rate of 1 ml/(hr·cm 2 ) or less under a pressure of 100 kPa, and an air permeation rate of 1000 ml/(hr·cm 2 ) or more under a pressure of 100 kPa. The polysulfone-based resin of the present invention is a resin having a repeating unit containing a sulfonyl group (-SO 2 -), and has a hydrophobic structure, so that the resin as a whole is hydrophobic. Therefore, even when the polysulfone-based hollow fiber membrane comes into contact with water, it is difficult for water to be contained therein, and therefore it can have excellent air permeability. In particular, the polysulfone-based hollow fiber membrane of the present invention can have excellent air permeability, with a water permeation rate of 1 ml/(hr·cm 2 ) or less and an air permeation rate of 1000 ml/(hr·cm 2 ) or more under a pressure of 100 kPa. As described later, the above "air permeation amount under a pressure of 100 kPa" refers to the volume of air leaking out when ion-exchanged water is supplied into a cylindrical container holding a polysulfone-based hollow fiber membrane, the container is pressurized to 200 kPaG, the water in the cylindrical container is removed, and air is further supplied into the cylindrical container and pressurized to 100 kPaG.

ポリスルホン系中空糸膜に用いるポリスルホン系樹脂は、該ポリスルホン系樹脂を構成する繰り返し単位中にスルホニル基(-SO-)を含む高分子を意味する。ポリスルホン系樹脂としては例えば、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルホン等を挙げることができる。より具体的には、ポリスルホン、ポリエーテルスルホン、およびポリフェニレンスルホンは下記のように表される。 The polysulfone-based resin used in the polysulfone-based hollow fiber membrane means a polymer containing a sulfonyl group (-SO 2 -) in the repeating unit constituting the polysulfone-based resin. Examples of polysulfone-based resins include polysulfone, polyethersulfone, polyphenylenesulfone, etc. More specifically, polysulfone, polyethersulfone, and polyphenylenesulfone are represented as follows.

ポリスルホン系中空糸膜は、100kPaの加圧下において水透過量が0.01~1ml/(hr・cm)であることが好ましい。100kPaの加圧下において空気透過量が1000~60000ml/(hr・cm)であることが好ましい。ポリスルホン系中空糸膜の水透過量および空気透過量がこれらの範囲内にあることによって、ポリスルホン系中空糸膜は優れた空気透過性を有することができる。また、本発明の中空糸膜モジュールは、空気透過性に優れたポリスルホン系中空糸膜を含むため、空気が該中空糸膜モジュール内に留まらず、透水量の低下を抑制できる。この結果、透水性および空気透過性に優れたポリスルホン系中空糸膜モジュールを提供することができる。 The polysulfone-based hollow fiber membrane preferably has a water permeability of 0.01 to 1 ml/(hr·cm 2 ) under a pressure of 100 kPa. The polysulfone-based hollow fiber membrane preferably has an air permeability of 1000 to 60000 ml/(hr·cm 2 ) under a pressure of 100 kPa. When the water permeability and air permeability of the polysulfone-based hollow fiber membrane are within these ranges, the polysulfone-based hollow fiber membrane can have excellent air permeability. Furthermore, since the hollow fiber membrane module of the present invention includes a polysulfone-based hollow fiber membrane with excellent air permeability, air does not remain within the hollow fiber membrane module, and a decrease in the water permeability can be suppressed. As a result, a polysulfone-based hollow fiber membrane module with excellent water permeability and air permeability can be provided.

以下では、図1および2を参照して、ポリスルホン系中空糸膜の水透過量および空気透過量の測定方法を説明する。 Below, we will explain how to measure the water permeability and air permeability of polysulfone-based hollow fiber membranes with reference to Figures 1 and 2.

(a)水透過量の測定
図1Aに示すように、直径が8mm、長さ7.5cmで両端が開口した円筒容器11を準備する。円筒容器11内に6cmのポリスルホン系中空糸膜13を1本、U字状に変形した状態で収容する。次いで、ポッティング剤12(エポキシ樹脂;クィックセット(商品名)、コニシ株式会社製)を用いて円筒容器11の一端側にポリスルホン系中空糸膜13を封止固定する。この後、円筒容器11の他端側を樹脂ヘッド10で封止する。
(a) Measurement of water permeation rate As shown in Fig. 1A, a cylindrical container 11 with a diameter of 8 mm, a length of 7.5 cm, and open ends is prepared. A 6 cm polysulfone-based hollow fiber membrane 13 is placed in the cylindrical container 11 in a deformed U-shape. Next, the polysulfone-based hollow fiber membrane 13 is sealed and fixed to one end of the cylindrical container 11 using a potting agent 12 (epoxy resin; Quickset (product name), manufactured by Konishi Co., Ltd.). The other end of the cylindrical container 11 is then sealed with a resin head 10.

次に、図1Bに示すように、樹脂ヘッド10を貫通して円筒容器11内にまで届くように管15を設ける。管15は2つに分岐しており一方は圧力計14、他方はイオン交換水の供給管16に連通している。この後、供給管16から円筒容器11内にイオン交換水を1分間、供給して円筒容器11内を圧力計の値が100kPaGとなるように加圧する。この際、円筒容器11のポッティング剤12で封止した端部側から漏れ出る水17の体積を測定した。次いで、水17の漏出量を、ポリスルホン系中空糸膜13の側面表面積(ポリスルホン系中空糸膜13の直径×3.14×ポリスルホン系中空糸膜13の長さ)および時間(1/60)で除することで水透過量(ml/(hr・cm))を算出した。 Next, as shown in FIG. 1B, a tube 15 is provided so as to penetrate the resin head 10 and reach the inside of the cylindrical container 11. The tube 15 branches into two, one of which is connected to a pressure gauge 14 and the other to a supply tube 16 for ion-exchanged water. After this, ion-exchanged water is supplied from the supply tube 16 into the cylindrical container 11 for one minute, and the inside of the cylindrical container 11 is pressurized so that the pressure gauge value becomes 100 kPaG. At this time, the volume of water 17 leaking from the end side of the cylindrical container 11 sealed with the potting agent 12 was measured. Next, the amount of water 17 leaking was divided by the side surface area of the polysulfone-based hollow fiber membrane 13 (diameter of the polysulfone-based hollow fiber membrane 13 x 3.14 x length of the polysulfone-based hollow fiber membrane 13) and time (1/60) to calculate the water permeation amount (ml/(hr·cm 2 )).

(b)空気透過量の測定
図1Aと同じように、円筒容器11内の一端側にポリスルホン系中空糸膜13を1本、U字状に変形した状態で収容した後、ポッティング剤で封止固定する。この後、円筒容器11の他端側を樹脂ヘッド10で封止する。次に、図2Aに示すように、樹脂ヘッド10を貫通して円筒容器11内にまで届くように管15を設ける。管15は2つに分岐しており一方は圧力計14、他方はイオン交換水および空気の供給管16に連通している。この後、供給管16から円筒容器11内に空気を1分間、供給して円筒容器11内を圧力計の値が100kPaGとなるように加圧する。この際、円筒容器11のポッティング剤12で封止した端部側から漏れ出る空気18の体積を測定した。次いで、空気18の体積をポリスルホン系中空糸膜13の側面表面積(ポリスルホン系中空糸膜13の直径×3.14×ポリスルホン系中空糸膜13の長さ)および時間(1/60)で除することで、空気透過量(無加圧時)(ml/(hr・cm))とした。
(b) Measurement of air permeability As in FIG. 1A, one polysulfone-based hollow fiber membrane 13 is accommodated in one end of the cylindrical container 11 in a deformed U-shape, and then sealed and fixed with a potting agent. After that, the other end of the cylindrical container 11 is sealed with a resin head 10. Next, as shown in FIG. 2A, a tube 15 is provided so as to penetrate the resin head 10 and reach the inside of the cylindrical container 11. The tube 15 branches into two, one of which is connected to a pressure gauge 14, and the other is connected to a supply tube 16 for ion-exchanged water and air. After that, air is supplied from the supply tube 16 into the cylindrical container 11 for one minute, and the inside of the cylindrical container 11 is pressurized so that the pressure gauge value becomes 100 kPaG. At this time, the volume of air 18 leaking from the end side of the cylindrical container 11 sealed with the potting agent 12 was measured. Next, the volume of air 18 was divided by the lateral surface area of the polysulfone-based hollow fiber membrane 13 (diameter of the polysulfone-based hollow fiber membrane 13 x 3.14 x length of the polysulfone-based hollow fiber membrane 13) and time (1/60) to obtain the air permeation rate (unpressurized) (ml/(hr·cm 2 )).

次いで、図2Bに示すように円筒容器11内を大気圧に戻した後、供給管16から円筒容器11内にイオン交換水を1分間、供給して円筒容器11内を圧力計の値が200kPaGとなるように加圧する。次に、図2Cに示すように円筒容器11内に満たした水を取り除いた後、供給管16から円筒容器11内に空気を1分間、供給して円筒容器11内を圧力計の値が100kPaGとなるように加圧する。この際、円筒容器11のポッティング剤12で封止した端部側から漏れ出る空気18の体積を測定し、図2Aと同様に算出することで空気透過量(200kPaGイオン交換水加圧後)(ml/(hr・cm))とした。本願発明で規定の「100kPaの加圧下における空気透過量」とは、上記のように円筒容器11内にイオン交換水を供給して200kPaGとなるように加圧後、円筒容器11内の水を除去し、さらに円筒容器11内に空気を供給して100kPaGとなるように加圧した時の空気の漏れ出る体積を表す(図2B、2C)。 Next, as shown in Fig. 2B, the pressure inside the cylindrical container 11 is returned to atmospheric pressure, and then ion-exchanged water is supplied from the supply pipe 16 into the cylindrical container 11 for one minute, so that the pressure gauge value inside the cylindrical container 11 becomes 200 kPaG. Next, as shown in Fig. 2C, the water filled in the cylindrical container 11 is removed, and then air is supplied from the supply pipe 16 into the cylindrical container 11 for one minute, so that the pressure gauge value inside the cylindrical container 11 becomes 100 kPaG. At this time, the volume of air 18 leaking from the end side of the cylindrical container 11 sealed with the potting agent 12 is measured, and calculated in the same manner as in Fig. 2A to obtain the air permeation amount (after pressurization with ion-exchanged water of 200 kPaG) (ml/(hr·cm 2 )). The "air permeability under a pressure of 100 kPa" as defined in the present invention refers to the volume of air leaking out when ion-exchanged water is supplied into the cylindrical container 11 as described above, the pressure is increased to 200 kPaG, the water in the cylindrical container 11 is removed, and air is further supplied into the cylindrical container 11 and the pressure is increased to 100 kPaG (Figures 2B and 2C).

次いで、図2Dに示すように円筒容器11内を大気圧に戻した後、供給管16から円筒容器11内にイオン交換水を1分間、供給して円筒容器11内を圧力計の値が300kPaGとなるように加圧する。次に、図2Eに示すように円筒容器11内に満たした水を取り除いた後、供給管16から円筒容器11内に空気を1分間、供給して円筒容器11内を圧力計の値が100kPaGとなるように加圧する。この際、円筒容器11のポッティング剤12で封止した端部側から漏れ出る空気18の体積を測定し、図2Aと同様に算出することで空気透過量(300kPaGイオン交換水加圧後)(ml/(hr・cm))とした。 Next, as shown in Fig. 2D, the pressure inside the cylindrical container 11 is returned to atmospheric pressure, and then ion-exchanged water is supplied into the cylindrical container 11 from the supply pipe 16 for one minute, so that the pressure inside the cylindrical container 11 is pressurized to a value of 300 kPaG on the pressure gauge. Next, as shown in Fig. 2E, the water filling the cylindrical container 11 is removed, and then air is supplied into the cylindrical container 11 from the supply pipe 16 for one minute, so that the pressure inside the cylindrical container 11 is pressurized to a value of 100 kPaG on the pressure gauge. At this time, the volume of air 18 leaking out from the end side of the cylindrical container 11 sealed with the potting agent 12 is measured, and calculated in the same manner as in Fig. 2A to obtain the air permeation amount (after pressurization with ion-exchanged water of 300 kPaG) (ml/(hr·cm 2 )).

2.ポリスルホン系中空糸膜の製造方法
本発明のポリスルホン系中空糸膜は例えば、非溶媒誘起相分離法(NIPS;Nonsolvent Induced Phase Separation)、熱誘起相分離法(TIPS;Thermally Induced Phase Separation)によって製造することができる。好ましくは、湿式紡糸法、乾湿式紡糸法等の非溶媒誘起相分離法(NIPS;Nonsolvent Induced Phase Separation)によってポリスルホン系中空糸膜を製造するのが良い。より具体的には、最初に紡糸原液を準備した後、二重環状構造の中空糸紡糸ノズルの外管から直接または空走により紡糸原液を凝固浴中に押し出し、これと同時に該中空糸紡糸ノズルの内管から紡糸原液に対して非相溶性の芯液を押し出すことによって製膜する。このようにして得られたポリスルホン系中空糸膜は必要に応じて水洗し、次いで乾燥処理を行う。
2. Method for Producing Polysulfone-Based Hollow Fiber Membrane The polysulfone-based hollow fiber membrane of the present invention can be produced, for example, by a nonsolvent-induced phase separation method (NIPS) or a thermally-induced phase separation method (TIPS). Preferably, the polysulfone-based hollow fiber membrane is produced by a nonsolvent-induced phase separation method (NIPS) such as a wet spinning method or a dry-wet spinning method. More specifically, after preparing a spinning dope, the spinning dope is extruded into a coagulation bath directly or by idling from the outer tube of a hollow fiber spinning nozzle having a double ring structure, and at the same time, a core liquid that is incompatible with the spinning dope is extruded from the inner tube of the hollow fiber spinning nozzle to produce a membrane. The polysulfone-based hollow fiber membrane thus obtained is washed with water as required, and then dried.

紡糸原液は、ポリスルホン系樹脂、ポリスルホン系樹脂を溶解可能な溶媒、および添加剤を含有し、親水性高分子を含まない。ポリスルホン系樹脂としては市販のものを用いることができ例えば、Ultrason(登録商標) S3010、S6010、E1010、E2010、E3010、E3010P、E6020P、P3010(何れも、BASF社製)、ユーデル(登録商標) P-1700、P-3500、ベラデル(登録商標) 3100P、3000P、3000MP、RADEL(登録商標) R-5000,R-5500(何れも、SOLVAY社製)等を挙げることができる。溶媒としてはポリスルホンを溶解可能なものであれば特に限定されないが、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、リン酸トリエチル等が挙げられ、好ましくは溶解性が高いN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒を用いることができる。 The spinning solution contains a polysulfone resin, a solvent capable of dissolving the polysulfone resin, and additives, but does not contain a hydrophilic polymer. Commercially available polysulfone resins can be used, such as Ultrason (registered trademark) S3010, S6010, E1010, E2010, E3010, E3010P, E6020P, and P3010 (all manufactured by BASF), Udel (registered trademark) P-1700, P-3500, Veradel (registered trademark) 3100P, 3000P, and 3000MP, and RADEL (registered trademark) R-5000 and R-5500 (all manufactured by SOLVAY). The solvent is not particularly limited as long as it can dissolve polysulfone, but examples include tetrahydrofuran, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, triethyl phosphate, etc., and preferably aprotic polar solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, and N-methyl-2-pyrrolidone, which have high solubility, can be used.

従来のポリスルホン系樹脂は疎水性のため、水透過性の高い膜を調整するためには、紡糸原液の添加剤として親水性の材料を添加し、相安定性を不安定化させることで、膜を水透過性が高い構造に多孔質化させて、ポリスルホン系中空糸膜を製膜する必要がある。この際、親水性の材料として、高分子系のもの(代表的な材料としては、ポリビニルピロリドンがある)を使用することで、製造時の洗浄時や使用時の通水後もポリスルホン系中空糸膜は親水性を維持できる。ポリビニルピロリドンは分子量の異なるものが市販されているので、製膜溶液の粘度(紡糸時の安定性に影響する)や相安定性の調整は容易ではあるが、製膜後にポリスルホン系中空糸膜中に残存する。このため、透水性を発現させるためには熱水での洗浄が必要となる。洗浄後もポリビニルピロリドンの一部はポリスルホン系中空糸膜中に残存するので、その親水性でポリスルホン系中空糸膜の透水性が発現される。
一方、本発明では、紡糸原液の添加剤として高分子系親水剤として汎用されているポリビニルピロリドンを使用しないことで、製膜後のポリスルホン系中空糸膜の100kPaの加圧下における水透過量を1ml/(hr・cm)以下とし、空気透過量を1000ml/(hr・cm)以上とすることができる。添加剤としては上記の作用を有するものであれば特に限定されないが例えば、エチレングリコール、トリエチレングリコール、平均分子量が900以下のポリエチレングリコール、水等の親水性の溶液が挙げられる。添加剤の濃度が上記範囲内であることによって、紡糸原液が適度な粘度を有すると共に製膜後のポリスルホン系中空糸膜の水透過量および空気透過量を上記の好適な範囲とすることができる。紡糸安定性を高めるために、粘度の高い樹脂を用いても良い。
Conventional polysulfone resins are hydrophobic, so in order to prepare a membrane with high water permeability, it is necessary to add a hydrophilic material as an additive to the spinning solution to destabilize the phase stability and make the membrane porous to a structure with high water permeability, thereby forming a polysulfone hollow fiber membrane. In this case, by using a polymeric material (a representative material is polyvinylpyrrolidone) as the hydrophilic material, the polysulfone hollow fiber membrane can maintain its hydrophilicity even after washing during production or after passing water during use. Since polyvinylpyrrolidone is commercially available in different molecular weights, it is easy to adjust the viscosity of the membrane-forming solution (which affects the stability during spinning) and the phase stability, but it remains in the polysulfone hollow fiber membrane after membrane formation. For this reason, washing with hot water is required to express water permeability. Since a part of polyvinylpyrrolidone remains in the polysulfone hollow fiber membrane even after washing, the hydrophilicity of the polysulfone hollow fiber membrane is expressed.
On the other hand, in the present invention, by not using polyvinylpyrrolidone, which is widely used as a polymeric hydrophilic agent as an additive to the spinning dope, the water permeation amount of the polysulfone-based hollow fiber membrane after the membrane formation under a pressure of 100 kPa can be set to 1 ml/(hr·cm 2 ) or less, and the air permeation amount can be set to 1000 ml/(hr·cm 2 ) or more. The additive is not particularly limited as long as it has the above-mentioned action, and examples thereof include hydrophilic solutions such as ethylene glycol, triethylene glycol, polyethylene glycol having an average molecular weight of 900 or less, and water. By the concentration of the additive being within the above-mentioned range, the spinning dope has an appropriate viscosity, and the water permeation amount and the air permeation amount of the polysulfone-based hollow fiber membrane after the membrane formation can be set to the above-mentioned suitable range. In order to improve the spinning stability, a resin with a high viscosity may be used.

紡糸原液の芯液および凝固浴は、ポリスルホンに非相溶性の溶媒、例えばジメチルアセトアミド、エチレングリコール、水等を用いることができる。また、芯液および凝固浴の温度は特に限定されないが、安定的に製膜を行うために好ましくは-20~60℃、より好ましくは0~30℃であるのがよい。紡糸原液の室温での粘度は製膜安定性を高めるために300mPa・s以上であるのが好ましい。製膜後のポリスルホン系中空糸膜の乾燥処理条件は、ポリスルホン系中空糸膜が十分に乾燥される条件であれば特に限定されないが例えば、20~80℃、好ましくは25~60℃で0.5~4時間、行うのが良い。 The core liquid of the spinning dope and the coagulation bath can be a solvent incompatible with polysulfone, such as dimethylacetamide, ethylene glycol, water, etc. The temperatures of the core liquid and the coagulation bath are not particularly limited, but are preferably -20 to 60°C, more preferably 0 to 30°C, in order to stably form the membrane. The viscosity of the spinning dope at room temperature is preferably 300 mPa·s or more in order to enhance the stability of the membrane formation. The conditions for drying the polysulfone-based hollow fiber membrane after membrane formation are not particularly limited as long as the polysulfone-based hollow fiber membrane is sufficiently dried, but for example, it is recommended to perform the drying process at 20 to 80°C, preferably 25 to 60°C, for 0.5 to 4 hours.

ポリスルホン系中空糸膜の孔径は、紡糸原液中のポリマーの濃度、添加剤の濃度、紡糸条件等を調節することによって適宜、所望の範囲に制御することができる。ポリスルホン系中空糸膜の孔径に応じて、ポリスルホン系中空糸膜を精密ろ過から限外ろ過まで様々な用途に使用することができる。 The pore size of the polysulfone hollow fiber membrane can be appropriately controlled within the desired range by adjusting the polymer concentration in the spinning dope, the additive concentration, the spinning conditions, etc. Depending on the pore size of the polysulfone hollow fiber membrane, the polysulfone hollow fiber membrane can be used for a variety of applications, from microfiltration to ultrafiltration.

3.中空糸膜モジュール
一実施形態の中空糸膜モジュールは、ケースと、ケース内に収容された中空糸膜束と、ケースに嵌合された配管部材を備える。この中空糸膜束は、疎水性のポリスルホン系中空糸膜と、親水性のポリスルホン系中空糸膜とを有する。疎水性のポリスルホン系中空糸膜は、ポリスルホン系樹脂を含み、100kPaの加圧下における水透過量が1ml/(hr・cm)以下であり、100kPaの加圧下における空気透過量が1000ml/(hr・cm)以上の特性を有する。このように中空糸膜モジュールは、疎水性のポリスルホン系中空糸膜および親水性のポリスルホン系中空糸膜を有するため、優れた水透過性および空気透過性と処理能力とを両立させることができる。ポリスルホン系中空糸膜および親水性のポリスルホン系中空糸膜を同時に製膜して中空糸膜束を得ることができるため、中空糸膜モジュールの製造コストを低減することができる。紡糸原液の組成および紡糸条件等を調節することによって、ポリスルホン系中空糸膜は親水性のポリスルホン系中空糸膜と同程度の孔径を有することができる。従って、ポッティング剤によりケース内に中空糸膜束を固定する場合には、ポリスルホン系中空糸膜および親水性のポリスルホン系中空糸膜内に好適にポッティング剤が含浸し、アンカー効果により中空糸膜間の接着および中空糸膜束とケース内壁との接着を良好なものとすることができる。また、紡糸原液の組成および紡糸条件等を調節することによって、ポリスルホン系中空糸膜は親水性のポリスルホン系中空糸膜と同程度の機械的強度を有することができる。従って、中空糸膜束を作製する際に、疎水性のポリスルホン系中空糸膜が、親水性のポリスルホン系中空糸膜を傷つけることを効果的に防止することができる。
3. Hollow fiber membrane module A hollow fiber membrane module of one embodiment includes a case, a hollow fiber membrane bundle housed in the case, and a piping member fitted to the case. The hollow fiber membrane bundle has a hydrophobic polysulfone-based hollow fiber membrane and a hydrophilic polysulfone-based hollow fiber membrane. The hydrophobic polysulfone-based hollow fiber membrane contains a polysulfone-based resin and has a water permeation rate of 1 ml/(hr·cm 2 ) or less under a pressure of 100 kPa and an air permeation rate of 1000 ml/(hr·cm 2 ) or more under a pressure of 100 kPa. In this way, since the hollow fiber membrane module has a hydrophobic polysulfone-based hollow fiber membrane and a hydrophilic polysulfone-based hollow fiber membrane, it is possible to achieve both excellent water permeability, air permeability, and processing capacity. Since the hollow fiber membrane bundle can be obtained by simultaneously forming the polysulfone-based hollow fiber membrane and the hydrophilic polysulfone-based hollow fiber membrane, the manufacturing cost of the hollow fiber membrane module can be reduced. By adjusting the composition of the spinning dope and the spinning conditions, etc., the polysulfone-based hollow fiber membrane can have a pore size similar to that of the hydrophilic polysulfone-based hollow fiber membrane. Therefore, when the hollow fiber membrane bundle is fixed in the case by the potting agent, the potting agent is suitably impregnated into the polysulfone-based hollow fiber membrane and the hydrophilic polysulfone-based hollow fiber membrane, and the adhesion between the hollow fiber membranes and the hollow fiber membrane bundle and the inner wall of the case can be improved by the anchor effect. In addition, by adjusting the composition of the spinning dope and the spinning conditions, etc., the polysulfone-based hollow fiber membrane can have a mechanical strength similar to that of the hydrophilic polysulfone-based hollow fiber membrane. Therefore, when the hollow fiber membrane bundle is produced, it is possible to effectively prevent the hydrophobic polysulfone-based hollow fiber membrane from damaging the hydrophilic polysulfone-based hollow fiber membrane.

以下では、図3を参照して、一実施形態に係る中空糸膜モジュールを説明する。なお、下記実施形態は本発明の中空糸膜モジュールの一例を表すものであり、本発明の中空糸膜モジュールは図3に示す形態のものに限定されない。図3は一実施形態に係る中空糸膜モジュールの模式的断面図である。なお、図3は中空糸膜モジュールの中心軸線を含む面で中空糸膜モジュールを切断した断面図である。 The hollow fiber membrane module according to one embodiment will be described below with reference to FIG. 3. Note that the following embodiment shows one example of the hollow fiber membrane module of the present invention, and the hollow fiber membrane module of the present invention is not limited to the form shown in FIG. 3. FIG. 3 is a schematic cross-sectional view of a hollow fiber membrane module according to one embodiment. Note that FIG. 3 is a cross-sectional view of the hollow fiber membrane module cut along a plane including the central axis of the hollow fiber membrane module.

図3の中空糸膜モジュール100は、有底筒状のケース50と、ケース50内に収納される中空糸膜束30と、ケース50の一端側に嵌合して固定される配管部材20とを備えている。中空糸膜束30は、両端がケース50の一端側である開口部側を向くように折り曲げられた状態でケース50内に収納されている。より具体的には、複数の中空糸膜が束にされた中空糸膜束30は、その中央付近が湾曲状(略U字状)に折り曲げられた状態でケース50内に収納されている。中空糸膜束30は、1本の疎水性のポリスルホン系中空糸膜30bと、複数本の親水性のポリスルホン系中空糸膜30aとから構成されている。疎水性のポリスルホン系中空糸膜30bは、ポリスルホン系樹脂を含み、100kPaの加圧下における水透過量が1ml/(hr・cm)以下であり、100kPaの加圧下における空気透過量が1000ml/(hr・cm)以上の特性を有する。また、ケース50内には、各中空糸膜の中空内部を開放させつつ、ケース50の一端側で中空糸膜束30の両端部をケース50に対して固定する封止固定部40が設けられている。より具体的には、各中空糸膜の中空内部が開放されつつ、ケース50の開口部が封止固定部40により封止された状態で、中空糸膜束30がケース50に固定されている。封止固定部40は、硬化したエポキシ樹脂などの封止材料(ポッティング材料)により構成される。 The hollow fiber membrane module 100 in Fig. 3 includes a cylindrical case 50 with a bottom, a hollow fiber membrane bundle 30 housed in the case 50, and a piping member 20 fitted and fixed to one end of the case 50. The hollow fiber membrane bundle 30 is housed in the case 50 in a state where both ends are bent toward the opening side, which is one end of the case 50. More specifically, the hollow fiber membrane bundle 30, which is a bundle of multiple hollow fiber membranes, is housed in the case 50 in a state where the central portion thereof is bent in a curved shape (approximately U-shaped). The hollow fiber membrane bundle 30 is composed of one hydrophobic polysulfone-based hollow fiber membrane 30b and multiple hydrophilic polysulfone-based hollow fiber membranes 30a. The hydrophobic polysulfone-based hollow fiber membrane 30b contains a polysulfone-based resin and has a water permeability of 1 ml/(hr·cm 2 ) or less under a pressure of 100 kPa and an air permeability of 1000 ml/(hr·cm 2 ) or more under a pressure of 100 kPa. In addition, a sealing and fixing part 40 is provided in the case 50, which fixes both ends of the hollow fiber membrane bundle 30 to the case 50 at one end side of the case 50 while opening the hollow interior of each hollow fiber membrane. More specifically, the hollow fiber membrane bundle 30 is fixed to the case 50 with the opening of the case 50 sealed by the sealing and fixing part 40 while opening the hollow interior of each hollow fiber membrane. The sealing and fixing part 40 is made of a sealing material (potting material) such as a hardened epoxy resin.

以上のように構成される図3の中空糸膜モジュール100は例えば、図示しない浄水器本体内に配置される。このとき、ケース50は開口部側が鉛直方向下向きに配置される。そして、ケース50の他端側に設けられた流入口21から流入された液体(水道水など)中に含まれる異物は、中空糸膜による膜分離処理により除去される。中空糸膜による膜分離処理が施された後の液体は、配管部材20に設けられた流出口22から流出される。 The hollow fiber membrane module 100 in FIG. 3 configured as described above is placed, for example, in a water purifier body (not shown). At this time, the case 50 is placed with the opening side facing vertically downward. Foreign matter contained in the liquid (tap water, etc.) flowing in from the inlet 21 provided on the other end side of the case 50 is removed by membrane separation processing using the hollow fiber membrane. After the membrane separation processing using the hollow fiber membrane is performed, the liquid flows out from the outlet 22 provided in the piping member 20.

図3の中空糸膜モジュール100において、中空糸膜束30は、1本の疎水性のポリスルホン系中空糸膜30b、および複数本の親水性のポリスルホン系中空糸膜30aを有する。このため、中空糸膜モジュール100は、優れた水透過性および空気透過性と処理能力とを両立させることができる。この中空糸膜束30はポリスルホン系中空糸膜30bおよび親水性のポリスルホン系中空糸膜30aを同時に製膜することで得ることができるため、中空糸膜モジュール100の製造コストを低減することができる。紡糸原液の組成および紡糸条件等を調節することによって、中空糸膜束30を構成するポリスルホン系中空糸膜30bおよび親水性のポリスルホン系中空糸膜30aの孔径を同程度とすることができる。従って、中空糸膜束30をポッティング剤によりケース50内に固定して封止固定部40を形成する場合には、ポリスルホン系中空糸膜30bおよび親水性のポリスルホン系中空糸膜30a内に好適にポッティング剤が含浸し、アンカー効果により中空糸膜間の接着および中空糸膜束30とケース50の内壁との接着を良好なものとすることができる。また、紡糸原液の組成および紡糸条件等を調節することによって、中空糸膜束30を構成するポリスルホン系中空糸膜30bおよび親水性のポリスルホン系中空糸膜30aの機械的強度を同程度とすることができる。従って、中空糸膜束30を作製する際に、ポリスルホン系中空糸膜30bが親水性のポリスルホン系中空糸膜30aを傷つけることを効果的に防止することができる。 In the hollow fiber membrane module 100 of FIG. 3, the hollow fiber membrane bundle 30 has one hydrophobic polysulfone-based hollow fiber membrane 30b and multiple hydrophilic polysulfone-based hollow fiber membranes 30a. Therefore, the hollow fiber membrane module 100 can achieve both excellent water permeability and air permeability and processing capacity. This hollow fiber membrane bundle 30 can be obtained by simultaneously forming the polysulfone-based hollow fiber membrane 30b and the hydrophilic polysulfone-based hollow fiber membrane 30a, so the manufacturing cost of the hollow fiber membrane module 100 can be reduced. By adjusting the composition of the spinning solution and the spinning conditions, etc., the pore diameters of the polysulfone-based hollow fiber membrane 30b and the hydrophilic polysulfone-based hollow fiber membrane 30a constituting the hollow fiber membrane bundle 30 can be made approximately the same. Therefore, when the hollow fiber membrane bundle 30 is fixed in the case 50 by a potting agent to form the sealing fixing part 40, the potting agent is suitably impregnated into the polysulfone-based hollow fiber membrane 30b and the hydrophilic polysulfone-based hollow fiber membrane 30a, and the adhesion between the hollow fiber membranes and the adhesion between the hollow fiber membrane bundle 30 and the inner wall of the case 50 can be improved by the anchor effect. In addition, by adjusting the composition of the spinning solution and the spinning conditions, the mechanical strength of the polysulfone-based hollow fiber membrane 30b and the hydrophilic polysulfone-based hollow fiber membrane 30a constituting the hollow fiber membrane bundle 30 can be made to be approximately the same. Therefore, when the hollow fiber membrane bundle 30 is produced, it is possible to effectively prevent the polysulfone-based hollow fiber membrane 30b from damaging the hydrophilic polysulfone-based hollow fiber membrane 30a.

また、一実施形態の中空糸膜モジュールは様々な技術分野で多種の用途に使用することができる。中空糸膜モジュールの用途は特に限定されないが例えば、浄水器膜モジュール、工業用膜モジュール、人工透析膜モジュール、加湿膜モジュール、除湿膜モジュール等として使用することができる。 In addition, the hollow fiber membrane module of one embodiment can be used for a variety of applications in various technical fields. The applications of the hollow fiber membrane module are not particularly limited, but it can be used, for example, as a water purifier membrane module, an industrial membrane module, an artificial dialysis membrane module, a humidification membrane module, a dehumidification membrane module, etc.

4.中空糸膜モジュールの製造方法
一実施形態に係る中空糸膜モジュールの製造方法は特に限定されないが例えば、以下のようにして中空糸膜モジュールを作製することができる。最初に中空糸膜束を作製する。中空糸膜束の製造方法としては例えば、以下の3つの方法を挙げることができる。
4. Manufacturing method of hollow fiber membrane module The manufacturing method of the hollow fiber membrane module according to one embodiment is not particularly limited, but for example, the hollow fiber membrane module can be manufactured as follows. First, a hollow fiber membrane bundle is manufactured. The following three methods can be mentioned as examples of the manufacturing method of the hollow fiber membrane bundle.

第1の方法では、予め親水性のポリスルホン系中空糸膜を複数、作製しこれらを束ねることで親水性のポリスルホン系中空糸膜束を作製する。次いで、親水性のポリスルホン系中空糸膜束中に、1以上の本発明のポリスルホン系中空糸膜を混入させることで中空糸膜束を作製する。
第2の方法では、予め親水性のポリスルホン系中空糸膜と、本発明のポリスルホン系中空糸膜とを別々に作製した後、各々の中空糸膜をボビンに巻き取る。次いで、親水性のポリスルホン系中空糸膜および本発明のポリスルホン系中空糸膜をそれぞれ、ボビンから引き出しながら親水性のポリスルホン系中空糸膜と本発明のポリスルホン系中空糸膜を合糸して中空糸膜束として1つのボビンに巻き取る。
第3の方法では、二重環状構造の中空糸紡糸ノズルの外管からポリスルホン系中空糸膜用の紡糸原液、内管から芯液を凝固浴中に押し出して、本発明のポリスルホン系中空糸膜を製膜する。これと同時に、別に設けた二重環状構造の中空糸紡糸ノズルの外管から親水性のポリスルホン系中空糸膜用の紡糸原液、内管から芯液を凝固浴中に押し出して親水性のポリスルホン系中空糸膜を製膜する。次いで、これらの本発明のポリスルホン系中空糸膜と親水性のポリスルホン系中空糸膜を同じボビンに巻き取り、巻き取った中空糸膜から中空糸膜束を作製する。
In the first method, a plurality of hydrophilic polysulfone-based hollow fiber membranes are prepared in advance and bundled together to prepare a hydrophilic polysulfone-based hollow fiber membrane bundle, and then one or more polysulfone-based hollow fiber membranes of the present invention are mixed into the hydrophilic polysulfone-based hollow fiber membrane bundle to prepare a hollow fiber membrane bundle.
In the second method, a hydrophilic polysulfone-based hollow fiber membrane and a polysulfone-based hollow fiber membrane of the present invention are separately produced in advance, and then each hollow fiber membrane is wound up on a bobbin. Next, while the hydrophilic polysulfone-based hollow fiber membrane and the polysulfone-based hollow fiber membrane of the present invention are pulled out from the bobbin, the hydrophilic polysulfone-based hollow fiber membrane and the polysulfone-based hollow fiber membrane of the present invention are combined to form a hollow fiber membrane bundle, which is wound up on one bobbin.
In the third method, the spinning dope for the polysulfone hollow fiber membrane is extruded from the outer tube of a hollow fiber spinning nozzle having a double ring structure, and the core liquid is extruded from the inner tube into a coagulation bath to produce the polysulfone hollow fiber membrane of the present invention. At the same time, the spinning dope for the hydrophilic polysulfone hollow fiber membrane is extruded from the outer tube of a hollow fiber spinning nozzle having a double ring structure separately provided, and the core liquid is extruded from the inner tube into a coagulation bath to produce a hydrophilic polysulfone hollow fiber membrane. Next, the polysulfone hollow fiber membrane of the present invention and the hydrophilic polysulfone hollow fiber membrane are wound on the same bobbin, and a hollow fiber membrane bundle is produced from the wound hollow fiber membranes.

特に、第3の方法では、本発明のポリスルホン系中空糸膜と親水性のポリスルホン系中空糸膜を同時に製膜して中空糸膜束を作製することができるため、工程数を短縮して中空糸膜束の製造工程を簡略化することができる。この結果、中空糸膜束の製造コストを低減することができる。例えば、1個の二重環状構造の中空糸紡糸ノズルを用いて本発明のポリスルホン系中空糸膜を製膜し、これと同時に31個の二重環状構造の中空糸紡糸ノズルを用いて親水性のポリスルホン系中空糸膜を製膜した後、これらの中空糸膜からなる中空糸膜束を作製することができる。 In particular, in the third method, the polysulfone-based hollow fiber membrane of the present invention and a hydrophilic polysulfone-based hollow fiber membrane can be simultaneously formed to produce a hollow fiber membrane bundle, thereby shortening the number of steps and simplifying the manufacturing process of the hollow fiber membrane bundle. As a result, the manufacturing cost of the hollow fiber membrane bundle can be reduced. For example, the polysulfone-based hollow fiber membrane of the present invention can be formed using one hollow fiber spinning nozzle with a double ring structure, and at the same time, hydrophilic polysulfone-based hollow fiber membranes can be formed using 31 hollow fiber spinning nozzles with a double ring structure, and then a hollow fiber membrane bundle consisting of these hollow fiber membranes can be produced.

次に、上記のようにして作製した中空糸膜束をケース内に収容させた後、ケース内にポッティング剤を注入させることで中空糸膜束をケースに封止固定する。次いで、ケースの中空糸膜束を封止固定した端部側を切断した後、ケース内を密閉するように配管部材を嵌合させることにより中空糸膜モジュールを作製する。 Next, the hollow fiber membrane bundle prepared as described above is placed in a case, and then a potting agent is injected into the case to seal and fix the hollow fiber membrane bundle to the case. Next, the end of the case where the hollow fiber membrane bundle is sealed and fixed is cut, and then piping members are fitted to seal the inside of the case, thereby producing a hollow fiber membrane module.

以下、実施例及び比較例に基づいて、本発明の好適な例を具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Below, preferred examples of the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to these examples.

(実施例1)
ポリスルホン系樹脂(Ultrason(登録商標) S3010;BASF社製)15質量%、エチレングリコール(1級;関東化学株式会社社製)10質量%、水2質量%、ジメチルアセトアミド73質量%を含有し、室温で均一にした紡糸原液を準備した。二重環状構造の中空糸紡糸ノズルの外管から該紡糸原液、内管からジメチルアセトアミドの芯液をそれぞれ空走により水の凝固浴中に押し出すことで乾湿式紡糸により、ポリスルホン系中空糸膜を製膜した。次いで、製膜したポリスルホン系中空糸膜を室温の水中で12時間、洗浄してから60℃のオーブン中で乾燥して最終的に外径420μm、内径220μm、膜厚100μmの多孔質ポリスルホン系中空糸膜を得た。得られた多孔質ポリスルホン系中空糸膜のSEM写真を図4に示す。
Example 1
A spinning dope containing 15% by mass of polysulfone resin (Ultrason (registered trademark) S3010; manufactured by BASF), 10% by mass of ethylene glycol (first-class; manufactured by Kanto Chemical Co., Ltd.), 2% by mass of water, and 73% by mass of dimethylacetamide was prepared at room temperature. The spinning dope was extruded from the outer tube of a hollow fiber spinning nozzle having a double ring structure, and the core liquid of dimethylacetamide was extruded from the inner tube into a coagulation bath of water by free running, thereby forming a polysulfone hollow fiber membrane by dry-wet spinning. Next, the formed polysulfone hollow fiber membrane was washed in water at room temperature for 12 hours and then dried in an oven at 60 ° C. to finally obtain a porous polysulfone hollow fiber membrane having an outer diameter of 420 μm, an inner diameter of 220 μm, and a membrane thickness of 100 μm. An SEM photograph of the obtained porous polysulfone hollow fiber membrane is shown in FIG. 4.

実施例1で得られた多孔質ポリスルホン系中空糸膜についてバブルポイント、引張破断応力、引張破断伸び、水透過量および空気透過量を測定した。図5は、バブルポイントの測定方法を説明する図である。SUS管の筒部62にループ状の多孔質ポリスルホン系中空糸膜60を挿入した。この際、図5のLの部分の長さを30~40mmとした。この後、SUS管の筒部62への多孔質ポリスルホン系中空糸膜60の挿入部をエポキシ樹脂61で接着した。この多孔質ポリスルホン系中空糸膜60を容器に満たしたエタノール64に1分間、浸漬させた。次いで、SUS管の基部63から多孔質ポリスルホン系中空糸膜60に圧力を印加し、多孔質ポリスルホン系中空糸膜60の表面から気泡が出てくる時の圧力としてバブルポイントを測定した。
また、引張破断強度および引張破断伸びは多孔質ポリスルホン系中空糸膜を引張試験装置(オードグラフ;株式会社社島津製作所製)に設置し、毎分240mmの引張速度で多孔質ポリスルホン系中空糸膜を引張りながら、多孔質ポリスルホン系中空糸膜の破断時の強度を測定した。そして、多孔質ポリスルホン系中空糸膜の破断時の強度を、多孔質ポリスルホン系中空糸膜の試験前の断面積で除して引張破断応力(MPa)を算出した。また、多孔質ポリスルホン系中空糸膜の破断時の長さをL、多孔質ポリスルホン系中空糸膜の引張試験前の長さをLとした時、(L-L)/L×100から引張破断伸び(%)を算出した。多孔質ポリスルホン系中空糸膜の水透過量および空気透過量は、図1および2を参照して上述で説明した通りに測定した。各特性の測定結果を表1に示す。
The bubble point, tensile stress at break, tensile elongation at break, water permeability and air permeability were measured for the porous polysulfone-based hollow fiber membrane obtained in Example 1. FIG. 5 is a diagram for explaining the method for measuring the bubble point. A loop-shaped porous polysulfone-based hollow fiber membrane 60 was inserted into the cylindrical portion 62 of the SUS pipe. At this time, the length of the portion L3 in FIG. 5 was set to 30 to 40 mm. After this, the insertion portion of the porous polysulfone-based hollow fiber membrane 60 into the cylindrical portion 62 of the SUS pipe was bonded with an epoxy resin 61. The porous polysulfone-based hollow fiber membrane 60 was immersed in ethanol 64 filled in a container for one minute. Next, pressure was applied to the porous polysulfone-based hollow fiber membrane 60 from the base portion 63 of the SUS pipe, and the bubble point was measured as the pressure at which bubbles came out from the surface of the porous polysulfone-based hollow fiber membrane 60.
The tensile strength and elongation at break were measured by placing the porous polysulfone hollow fiber membrane in a tensile tester (Ordograph; manufactured by Shimadzu Corporation) and pulling the porous polysulfone hollow fiber membrane at a pulling speed of 240 mm per minute to measure the strength of the porous polysulfone hollow fiber membrane at break. The strength of the porous polysulfone hollow fiber membrane at break was divided by the cross-sectional area of the porous polysulfone hollow fiber membrane before the test to calculate the tensile stress at break (MPa). The length of the porous polysulfone hollow fiber membrane at break was L 1 , and the length of the porous polysulfone hollow fiber membrane before the tensile test was L 2 , and the tensile elongation at break (%) was calculated from (L 1 -L 2 )/L 2 ×100. The water permeability and air permeability of the porous polysulfone hollow fiber membrane were measured as described above with reference to Figures 1 and 2. The measurement results of each characteristic are shown in Table 1.

(比較例1)
ポリスルホン系樹脂(Ultrason(登録商標) S3010;BASF社製)15質量%、ポリビニルピロリドン K-30(PVP K-30G;Ashland社製)5質量%、エチレングリコール(1級;関東化学株式会社社製)5質量%、水2質量%、ジメチルアセトアミド73質量%を含有し、室温で均一にした紡糸原液を用いた以外は実施例1と同様にして、多孔質ポリスルホン系中空糸膜を製膜した。また、実施例1と同様にして製膜後の多孔質ポリスルホン系中空糸膜の各特性を測定した。各特性の測定結果を表1に示す。
(Comparative Example 1)
A porous polysulfone-based hollow fiber membrane was produced in the same manner as in Example 1, except that a spinning dope containing 15 mass% polysulfone-based resin (Ultrason (registered trademark) S3010; manufactured by BASF), 5 mass% polyvinylpyrrolidone K-30 (PVP K-30G; manufactured by Ashland), 5 mass% ethylene glycol (first grade; manufactured by Kanto Chemical Co., Ltd.), 2 mass% water, and 73 mass% dimethylacetamide was used, which was homogenized at room temperature. In addition, each characteristic of the porous polysulfone-based hollow fiber membrane after the membrane production was measured in the same manner as in Example 1. The measurement results of each characteristic are shown in Table 1.

表1より、実施例1の多孔質ポリスルホン系中空糸膜は比較例1の多孔質ポリスルホン系中空糸膜と比べて水透過量が小さく、200kPaG水圧印加後および300kPaG水圧印加後において空気透過量が大きいことが分かる。従って、本発明のポリスルホン系中空糸膜は空気透過性に優れたものであることが分かる。 From Table 1, it can be seen that the porous polysulfone-based hollow fiber membrane of Example 1 has a smaller water permeation amount than the porous polysulfone-based hollow fiber membrane of Comparative Example 1, and has a larger air permeation amount after application of a water pressure of 200 kPaG and after application of a water pressure of 300 kPaG. Therefore, it can be seen that the polysulfone-based hollow fiber membrane of the present invention has excellent air permeability.

上記では本発明の一実施形態について説明したが、上記実施形態の内容により本発明が限定されるものではない。また、上述した構成要素には、当業者が適宜設計できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜、組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Although one embodiment of the present invention has been described above, the present invention is not limited to the contents of the above embodiment. Furthermore, the above-mentioned components include those that a person skilled in the art could design as appropriate, those that are substantially the same, and those that are within the so-called equivalent range. Furthermore, the above-mentioned components can be combined as appropriate. Furthermore, various omissions, substitutions, or modifications of the components can be made without departing from the spirit of the above-mentioned embodiment.

また、一実施形態の中空糸膜モジュールは様々な技術分野で多種の用途に使用することができる。中空糸膜モジュールの用途は特に限定されないが例えば、浄水器膜モジュール、工業用膜モジュール、人工透析膜モジュール、加湿膜モジュール、除湿膜モジュール等として使用することができる。 In addition, the hollow fiber membrane module of one embodiment can be used for a variety of applications in various technical fields. The applications of the hollow fiber membrane module are not particularly limited, but it can be used, for example, as a water purifier membrane module, an industrial membrane module, an artificial dialysis membrane module, a humidification membrane module, a dehumidification membrane module, etc.

10 樹脂ヘッド
11 円筒容器
12 ポッティング剤
13 ポリスルホン系中空糸膜
14 圧力計
15 管
16 供給管
20 配管部材
21 流入口
22 流出口
30 中空糸膜束
30a 親水性のポリスルホン系中空糸膜
30b ポリスルホン系中空糸膜
40 封止固定部
50 ケース
100 中空糸膜モジュール
10 Resin head 11 Cylindrical container 12 Potting agent 13 Polysulfone-based hollow fiber membrane 14 Pressure gauge 15 Pipe 16 Supply pipe 20 Piping member 21 Inlet 22 Outlet 30 Hollow fiber membrane bundle 30a Hydrophilic polysulfone-based hollow fiber membrane 30b Polysulfone-based hollow fiber membrane 40 Sealing and fixing part 50 Case 100 Hollow fiber membrane module

Claims (2)

ポリスルホン系樹脂を含み、
100kPaの加圧下における水透過量が0.01~1ml/(hr・cm )であり、
100kPaの加圧下における空気透過量が1000~60000ml/(hr・cm )である、ポリスルホン系中空糸膜。
Contains polysulfone resin,
The water permeability under a pressure of 100 kPa is 0.01 to 1 ml/(hr·cm 2 ) ;
A polysulfone-based hollow fiber membrane having an air permeability of 1,000 to 60,000 ml/(hr·cm 2 ) under a pressure of 100 kPa.
ケースと、
前記ケース内に収容された中空糸膜束と、
前記ケースに嵌合された配管部材と、
を備え、
前記中空糸膜束は、請求項に記載のポリスルホン系中空糸膜と、親水性のポリスルホン系中空糸膜とを有する、中空糸膜モジュール。
Case and
A hollow fiber membrane bundle housed in the case;
A piping member fitted into the case;
Equipped with
2. A hollow fiber membrane module, comprising: the hollow fiber membrane bundle comprising the polysulfone-based hollow fiber membrane according to claim 1 and a hydrophilic polysulfone-based hollow fiber membrane.
JP2020072517A 2020-04-14 2020-04-14 Polysulfone-based hollow fiber membrane and hollow fiber membrane module Active JP7475186B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020072517A JP7475186B2 (en) 2020-04-14 2020-04-14 Polysulfone-based hollow fiber membrane and hollow fiber membrane module
CN202110303419.4A CN113522050B (en) 2020-04-14 2021-03-22 Polysulfone-based hollow fiber membrane and hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072517A JP7475186B2 (en) 2020-04-14 2020-04-14 Polysulfone-based hollow fiber membrane and hollow fiber membrane module

Publications (2)

Publication Number Publication Date
JP2021169058A JP2021169058A (en) 2021-10-28
JP7475186B2 true JP7475186B2 (en) 2024-04-26

Family

ID=78094370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072517A Active JP7475186B2 (en) 2020-04-14 2020-04-14 Polysulfone-based hollow fiber membrane and hollow fiber membrane module

Country Status (2)

Country Link
JP (1) JP7475186B2 (en)
CN (1) CN113522050B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290751A (en) 2003-03-26 2004-10-21 Nok Corp Method for manufacturing steam permeable membrane
JP2014213235A (en) 2013-04-23 2014-11-17 Nok株式会社 Method for manufacturing fiber-reinforced porous hollow fiber membrane
JP2015205258A (en) 2014-04-22 2015-11-19 Nok株式会社 Fiber reinforced porous hollow fiber membrane and production method of the same
JP6121921B2 (en) 2003-04-25 2017-04-26 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Detection of herpes simplex virus type 1 and type 2 by nucleic acid amplification method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525037B2 (en) * 1988-07-12 1996-08-14 ダイセル化学工業株式会社 Polysulfone hollow fiber membrane
US5002590A (en) * 1989-09-19 1991-03-26 Bend Research, Inc. Countercurrent dehydration by hollow fibers
US5209883A (en) * 1991-04-17 1993-05-11 Hoechst Celanese Corp. Fabrication of fluoropolymer hollow fibers for asymmetric membranes
JPH11114387A (en) * 1997-10-20 1999-04-27 Mitsubishi Rayon Co Ltd Composite hollow fiber membrane and removing method of gas dissolved in aqueous solution by using composite hollow fiber membrane
KR20110021286A (en) * 2009-08-26 2011-03-04 코오롱인더스트리 주식회사 Hollow fiber membrane module for water purifier
CN102649028A (en) * 2011-02-25 2012-08-29 天津工业大学 Hydrophobic separation membrane and preparation method
CN102631844B (en) * 2012-04-25 2014-10-15 北京工业大学 Preparation method of hydrophobe polysulfone microporous membrane
JP6098269B2 (en) * 2013-03-22 2017-03-22 東レ株式会社 Hollow fiber membrane module, method for producing hollow fiber membrane module, water purifier cartridge and water purifier
CN104207390A (en) * 2014-08-13 2014-12-17 浙江伟星实业发展股份有限公司 Waterproof and moisture permeable membrane, preparation method of waterproof and moisture permeable membrane, waterproof and moisture permeable fabric and preparation method of waterproof and moisture permeable fabric
CN104474929A (en) * 2014-12-18 2015-04-01 北京碧水源膜科技有限公司 Production method of polyether sulfone hollow fiber membrane and structure regulation method of membrane
CN106540549A (en) * 2016-12-09 2017-03-29 唐山学院 A kind of high ventilative, preparation method of super-hydrophobic polyether sulphone hollow fibre film
CN109499373B (en) * 2018-12-04 2021-07-13 南京惟新环保装备技术研究院有限公司 Hollow fiber pervaporation membrane and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290751A (en) 2003-03-26 2004-10-21 Nok Corp Method for manufacturing steam permeable membrane
JP6121921B2 (en) 2003-04-25 2017-04-26 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Detection of herpes simplex virus type 1 and type 2 by nucleic acid amplification method
JP2014213235A (en) 2013-04-23 2014-11-17 Nok株式会社 Method for manufacturing fiber-reinforced porous hollow fiber membrane
JP2015205258A (en) 2014-04-22 2015-11-19 Nok株式会社 Fiber reinforced porous hollow fiber membrane and production method of the same

Also Published As

Publication number Publication date
JP2021169058A (en) 2021-10-28
CN113522050B (en) 2023-07-21
CN113522050A (en) 2021-10-22

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
US4882223A (en) Hollow fibers production method thereof and their applications particularly in the field of membrane-type separations
US9776143B2 (en) Low cut-off ultrafiltration membranes
US20040191894A1 (en) Membrane polymer compositions
KR101930147B1 (en) Hollow fiber membrane, and method for producing hollow fiber membrane
US20080197071A1 (en) Nano Composite Hollow Fiber Membrane and Method of Manufacturing the Same
CN108211809B (en) Permanently hydrophilic polyvinylidene fluoride membrane and manufacturing method thereof
WO1989000879A1 (en) Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
WO2013034611A1 (en) Hollow fiber membrane
GB2047162A (en) Anisotropic membranes
CN102527249A (en) High-density polyethylene hollow fiber microporous membrane and preparation method thereof
JP7475186B2 (en) Polysulfone-based hollow fiber membrane and hollow fiber membrane module
CA2136006C (en) Hollow fiber membrane incorporating a surfactant and process for preparing same
JP2009226397A (en) Hollow fiber membrane for humidification and membrane module for humidification
JP2005144412A (en) Polyketone hollow fiber membrane and manufacturing method of the same
JP5176499B2 (en) Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane module
KR102337165B1 (en) Composition of Polyphenylene sulfide porous hollow fiber membrane having sponge like structure, PPS porous hollow fiber membrane containing the same and Manufacturing method thereof
CN113244790A (en) Self-reinforced hollow fiber ultrafiltration membrane and preparation method and application thereof
JPWO2016182015A1 (en) Porous hollow fiber membrane and method for producing the same
KR102399330B1 (en) Acetylated alkyl cellulose separation membrane and method for preparing the same
JP3128875B2 (en) Polyphenylene sulfide sulfone hollow fiber membrane and method for producing the same
JP2015221400A (en) Manufacturing method of hollow fiber membrane for ultrafiltration membrane
JP2022161043A (en) Manufacturing method of polysulfone hollow fiver membrane
WO2023276614A1 (en) Forward osmosis membrane and forward osmosis membrane module including same
JP7351822B2 (en) Hollow fiber membrane and method for manufacturing hollow fiber membrane

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20210816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240416

R150 Certificate of patent or registration of utility model

Ref document number: 7475186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150