JPS60209205A - Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride - Google Patents

Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride

Info

Publication number
JPS60209205A
JPS60209205A JP6515284A JP6515284A JPS60209205A JP S60209205 A JPS60209205 A JP S60209205A JP 6515284 A JP6515284 A JP 6515284A JP 6515284 A JP6515284 A JP 6515284A JP S60209205 A JPS60209205 A JP S60209205A
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
membrane
hollow fiber
porous membrane
polyethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6515284A
Other languages
Japanese (ja)
Other versions
JPH0371168B2 (en
Inventor
Shinsuke Takegami
竹上 信介
Koji Fukuda
福田 紘二
Juji Konagaya
重次 小長谷
Masao Murano
村野 政生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6515284A priority Critical patent/JPS60209205A/en
Publication of JPS60209205A publication Critical patent/JPS60209205A/en
Publication of JPH0371168B2 publication Critical patent/JPH0371168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prepare hollow yarn porous membrane having high roundness and asymmetric structure by extruding a solution comprising polyvinylidene fluoride, PEG, and DMA through an annular nozzle, and guiding the extruded product contg. liquid in the inside as it is into coagulating bath. CONSTITUTION:Polyvinylidene fluoride type polymer is dissolved in a mixed solvent comprising dimethyl acetamide and polyethylene glycol having <=1,000 mol.wt. in 95:5-80:20 proportion to prepare a solution having 5-30wt% concn. The soln, is extruded through an annular nozzle while holding temp. at >=50 deg.C, and a solvent mixture comprising 60:40-40:60 dimethyl acetamide and polyethylene glycol is introduced into the inside of the hollow yarn. After passing the extruded yarn through a space having a specified distance, it is guided into a coagulating bath holding an aq. soln. contg. <20wt% solvent mixture comprising dimethyl acetamide and polyethylene glycol, and heat-treated in the water while restricting the shrinkage to <=10%.

Description

【発明の詳細な説明】 声発明はポリフッ化ビニリデン系分離膜の製造jJ門に
関するものである0更に詳しくは耐熱性、耐薬品性に優
れたポリフッ化ビニリデン系重合体からなる非対称構造
を持つ中空糸状多孔膜に関するものである。
[Detailed Description of the Invention] The invention relates to the production of polyvinylidene fluoride separation membranes.More specifically, the invention relates to the production of polyvinylidene fluoride separation membranes. This invention relates to a filamentous porous membrane.

近年、高分子膜の有する気体の選択分離性や液体の選択
透過性を利用して混合気体や混合液体の分離を試みるこ
とが盛んに行われている。しかしながら、かかる高分子
膜を透過する気体又は液体の透過速度は一般に非常に小
さく、商業的局外で気体又は液体の分s11濃縮を行う
ことは可成りの困難を伴う。即ち、高分子膜を透過する
気体又は液体の透過量は一般に高分子膜の面積と高分子
膜両側の濃度差、圧力差に比例し、高分子の膜厚に反比
例することが知られている。膜厚と耐圧性は実質的に相
反する性質を有するものであって、高分子膜を用いて商
業的規模で気体又は液体の分離を行うためにはかかる矛
盾の克服が不可避であり、多大の困難を伴うのである@
かかる矛盾の効果的解消を目的として、高分子膜の中空
糸化により装〉1単位容積当りの膜面積の向上と単位膜
厚当りの1圧性の向上を計る方法として、膜の非対称化
1又は複合膜化による単位膜厚当りの耐圧性の向上が試
みられている。
BACKGROUND ART In recent years, attempts have been made to separate mixed gases and mixed liquids by utilizing the gas selective separation property and liquid selective permeability of polymer membranes. However, the permeation rate of gas or liquid through such polymer membranes is generally very low, and it is quite difficult to carry out fractional concentration of gas or liquid outside of a commercial station. In other words, it is known that the amount of gas or liquid that permeates through a polymer membrane is generally proportional to the area of the polymer membrane, the concentration difference on both sides of the polymer membrane, and the pressure difference, and inversely proportional to the thickness of the polymer membrane. . Membrane thickness and pressure resistance are essentially contradictory properties, and in order to perform gas or liquid separation on a commercial scale using polymer membranes, it is unavoidable to overcome this contradiction, which requires a great deal of effort. It is accompanied by difficulties.
In order to effectively resolve this contradiction, we have developed a method to improve membrane area per unit volume and pressure per unit membrane thickness by making polymer membranes hollow fibers. Attempts have been made to improve pressure resistance per unit film thickness by forming composite films.

ポリフッ化ビニリデン系中空糸多孔膜の製造方法に関す
るものは極めて多く、例えば特開昭aS−6693!l
、特開昭55−696!Iフ、特開昭515−9993
4、特開昭56−86怠osなどによって明らかにされ
ているが、これらの方法はいずれも製膜原液に界面活性
剤を含んでいるのみならず、中空糸多孔膜の製造方法で
最も重要な因子となる中空糸の内液凝固液に温水を用い
ている。
There are quite a lot of publications regarding the manufacturing method of polyvinylidene fluoride hollow fiber porous membranes, such as JP-A-S-6693! l
, JP-A-55-696! Ifu, Japanese Patent Publication No. 515-9993
4. As revealed in Japanese Patent Application Laid-open No. 1986-86, etc., all of these methods not only contain surfactants in the membrane-forming stock solution, but also contain surfactants, which are the most important method for producing hollow fiber porous membranes. Warm water is used to coagulate the internal liquid of the hollow fiber, which is a major factor.

このような場合、紡糸原液を環状ノズルから線状に押し
出したゲル状物の凝固速度が早く、中空糸膜の真円性が
損なわれるのみならず、非対称構造を有する中空糸膜の
緻密層の孔径が大きくなり好ましくない。中空糸の真円
性が損なわれると耐圧性が低下する。又、非対称構造を
有する中空糸膜の緻屈層の孔径が大きくなると気体分離
能または液体分離機能が低下する。
In such a case, the solidification rate of the gel-like material linearly extruded from the annular nozzle from the spinning dope is fast, which not only impairs the roundness of the hollow fiber membrane but also damages the dense layer of the hollow fiber membrane, which has an asymmetric structure. The pore size becomes large, which is not preferable. When the roundness of the hollow fibers is impaired, the pressure resistance decreases. Furthermore, when the pore diameter of the narrow layer of a hollow fiber membrane having an asymmetric structure becomes large, the gas separation ability or liquid separation function decreases.

非対称構造を有する中空糸膜の#密層側に高分子薄膜を
担持させてなる気体又は液体の複台化分アリを製造する
場合1支持体となる多孔質中空糸fL?孔径分布が複合
膜の性能に大きく1餐する011にわち、多孔質中空糸
膜の孔径が大きい場合に一セ゛気体又は液体の透過時の
圧損等の抵抗が小さく、透過量の増大が計れるが、反面
、かかる多孔質中空゛、糸膜の緻密層面に高分子薄膜を
彰成せしめた場谷2、高分子薄膜の耐圧性の低下、ピン
ホール等の高−子薄膜の欠陥の発生、高分子薄膜の膜厚
の増大等必ずしも好ましくない。即ち、高分子薄膜を担
持した複合化中空糸膜で気体又は液体を分離、濃縮を行
う場合1膜透過量の増大を計るには、高分子薄膜の膜厚
の低下が重要な因子となる。かかる膜厚の低下を計りつ
つ高分子膜の耐圧性を実質的に高めるには1気体又は液
体が透過する高分子薄膜を極力微少部分に分割して支持
膜に担持せしめることが望ましく、かかる目的を達成す
るためには高分子膜支持体として機能せしめる多孔質中
空糸膜面の微細孔径が50.5100Xに微細孔分布の
極大値を有するものが望ましく1且つピンホールの発生
を防止することが望ましい。
When manufacturing a gas or liquid multi-unit system in which a polymer thin film is supported on the dense layer side of a hollow fiber membrane having an asymmetric structure, a porous hollow fiber fL that serves as a support 1 is used. Regarding 011, the pore size distribution greatly affects the performance of the composite membrane, and when the pore size of the porous hollow fiber membrane is large, the resistance such as pressure drop when gas or liquid permeates is small, and the amount of permeation can be increased. However, on the other hand, when a thin polymer film is formed on the dense layer surface of the porous hollow fiber membrane, the pressure resistance of the thin polymer film decreases, and defects such as pinholes occur in the thin polymer film. An increase in the thickness of the polymer thin film is not necessarily desirable. That is, when separating and concentrating gas or liquid using a composite hollow fiber membrane supporting a thin polymer membrane, the reduction in the thickness of the thin polymer membrane is an important factor in increasing the permeation amount per membrane. In order to substantially increase the pressure resistance of the polymer membrane while reducing the thickness of the membrane, it is desirable to divide the thin polymer membrane through which gas or liquid is permeable into as small a portion as possible and have them supported on the support membrane. In order to achieve this, it is desirable that the micropore diameter of the porous hollow fiber membrane surface that functions as a polymer membrane support has a maximum value of micropore distribution of 50.5100X, and the generation of pinholes can be prevented. desirable.

かかる孔径分布を持つ中空糸多孔質膜をポリフッ化ビニ
リデン系重合体で製造する方法について鋭意研究した結
果ポリフッ化ビニリデン系重合体7′・tytア七ドア
ミドとエチレングリコールからyrL6i肱宥液体を前
記線状体の内側に導入い次いで所定長さの空間を通して
前記線状体を導き、次いで上船混合溶剤をgo重量%未
満含有する水溶液からなる凝固浴に前記線状体を導入す
ることを特徴とするポリフッ化ビニリデン系中空糸多孔
膜の製造方法により真円性を有し、中空糸膜面の微細孔
径が50〜200Xに微細孔分布の極大値を有するポリ
フッ化ビニリデン系中空糸多孔膜の製造が可能になるこ
とを見い出し本発明に到達した・かくの如き製造方法に
よって得られたポリフッ化ビニリデン系中空糸多孔膜は
平滑で緻密な構造を有する活性層部分と多孔質のスポン
ジ構造を有する支持層部分を持っている。膜の断面をみ
れば多孔質構造における孔は大きく、活性層部はど小さ
く勾配がつけられることになる0このように膜の両面が
異った孔径分布を有する非対称性の分離膜が得られ、実
際面での気体又は液体の分離操作で処理能力が増大する
ことになる。
As a result of intensive research into a method for producing a hollow fiber porous membrane with such a pore size distribution using polyvinylidene fluoride polymer, the yrL6i laxative liquid was prepared from polyvinylidene fluoride polymer 7'-tyt 7'amide and ethylene glycol. the linear body is introduced into the inside of the linear body, the linear body is then guided through a space of a predetermined length, and the linear body is then introduced into a coagulation bath consisting of an aqueous solution containing less than 5% by weight of a mixed solvent. Production of a polyvinylidene fluoride hollow fiber porous membrane having roundness and a maximum micropore distribution with a micropore diameter of 50 to 200X on the hollow fiber membrane surface by a method for producing a polyvinylidene fluoride hollow fiber porous membrane. The present invention was achieved by discovering that the polyvinylidene fluoride hollow fiber porous membrane obtained by such a manufacturing method has an active layer portion with a smooth and dense structure and a supporting layer with a porous sponge structure. It has layer parts. Looking at the cross section of the membrane, the pores in the porous structure are large, and the active layer is small and has a gradient. In this way, an asymmetric separation membrane with different pore size distributions on both sides of the membrane can be obtained. , the throughput will be increased in practical gas or liquid separation operations.

ここにおいて本発明におけるポリフッ化ビニリデン系重
合体とは、フッ化ビニリデンホモポリマー、及び例えば
フッ化ビエリデンーテトラフルオ田エチレン共重含体、
フッ化ビニリデン−六フッerrロビレン共重合体、エ
チレン−四フッ化エチレー′1ン共重合体等・のフッ化
ビニリデンのランダム又致lブシツタ共重合体、又はこ
れらの混合物を意味する。又これらのフッ化ビニリデン
系重合体と少量の他のポリマーの混合物も本発明に包含
される〇本発明に用いるポリフッ化ビニリデン系重合体
の溶媒はジメチルアセトアミドとポリエチレングリコー
ルとの混合溶媒が最も良く、ポリエチレングリコールは
分子量が1000以下が最も良い。
Here, the polyvinylidene fluoride-based polymer in the present invention refers to vinylidene fluoride homopolymer, and for example, biylidene fluoride-tetrafluoride ethylene copolymer,
It means a random or random copolymer of vinylidene fluoride, such as vinylidene fluoride-hexafluorobylene copolymer, ethylene-tetrafluoride ethylene copolymer, etc., or a mixture thereof. Mixtures of these vinylidene fluoride polymers and small amounts of other polymers are also included in the present invention. The best solvent for the polyvinylidene fluoride polymer used in the present invention is a mixed solvent of dimethylacetamide and polyethylene glycol. It is best for polyethylene glycol to have a molecular weight of 1000 or less.

ポリフッ化ビニリデン系重合体の溶剤としてはジエチル
アセトアミド(DMAO)以外にジメチルホルムアミド
(DM7) 、ジエチルホルムアミド(DI?)、ジエ
チルアセトアミド(DMAo)、トリメチルホスフェ−
) (TMP)M−メチルピロリドン(IMF) 、ヘ
キサメチルホスホアミド(HMPA)テトラメチル尿素
(TMV)などがあるが、ポリフッ化ビ= IJデン系
重合体の溶解性、又は重合体溶液の安定性などが悪く好
ましくない0また1ポリエチレングリコールの分子量が
1000以上になるとポリフッ化ビニリデン系重合体の
溶解性が悪くなるのみならず、製膜したポリフッ化ビニ
リデン系中空糸膜の孔径が大きくなりすぎ好ましくない
。ジメチルアセトアミドとポリエチレングリコ 。
In addition to diethylacetamide (DMAO), dimethylformamide (DM7), diethylformamide (DI?), diethylacetamide (DMAo), and trimethylphosphate can be used as solvents for polyvinylidene fluoride polymers.
) (TMP) M-methylpyrrolidone (IMF), hexamethylphosphoamide (HMPA), tetramethylurea (TMV), etc., but the solubility of the polyfluorinated bi=IJ-dene polymer or the stability of the polymer solution If the molecular weight of the polyethylene glycol exceeds 1000, the solubility of the polyvinylidene fluoride polymer will not only deteriorate, but also the pore size of the polyvinylidene fluoride hollow fiber membrane formed will become too large, which is not desirable. do not have. Dimethylacetamide and polyethylene glyco.

2@:pの混合割合は重量比で9615から801 g
The mixing ratio of 2@:p is 9615 to 801 g by weight.
.

の・鯵囲がよ(、9o:1oから1i15+15の範囲
が液中における重合体11度は5〜3031t%が良く
1B%以下の濃度では溶液の粘度が低く、紡糸が困難と
なる。一方30重に%以上では溶液の粘度が=1過ぎて
、紡゛糸が困難となる。製膜用原液は、溶゛鷹がゲル化
しないように50℃以上の高温に保つのが良く、製膜直
前に所望の温度にして調整を行えばよい。
If the range is 9o:1o to 1i15+15, the polymer 11 degree in the solution should be 5 to 3031t%, and if the concentration is less than 1B%, the viscosity of the solution is low and spinning becomes difficult.On the other hand, 30 If the viscosity of the solution exceeds 1%, spinning becomes difficult.The stock solution for film forming should be kept at a high temperature of 50°C or higher to prevent the melt from gelling. Just beforehand, the temperature can be adjusted to the desired temperature.

このようにして作製した製膜用原液は、ゲル化温度以上
にして環状の〉ズルを介して線状に押出すと同時にジメ
チルアセトアミドとエチレングリコールからなる混合液
体を前記線状体の内側に導入し、所定長さの空間を通し
て該線状体をジメチルアセトアミドとポリエチレングリ
コールからなる混合溶剤をto*1に%未満含有する水
溶液からなる凝固浴に導入する・該線状体の内側に導入
するジメチルアセトアミドとエチレングリコールの混合
比は体積比で60240から40+60の範囲がよく、
ジエチルアセトアミドの割合が多くなりすぎると紡糸時
の糸切れが多くなったり中空糸の真円性が損なわれる。
The membrane-forming stock solution prepared in this way is extruded linearly through an annular nozzle at a temperature higher than the gelling temperature, and at the same time a mixed liquid consisting of dimethylacetamide and ethylene glycol is introduced inside the linear body. Then, the linear body is introduced through a space of a predetermined length into a coagulation bath consisting of an aqueous solution containing less than % to*1 of a mixed solvent consisting of dimethylacetamide and polyethylene glycol.・Dimethyl introduced into the inside of the linear body The mixing ratio of acetamide and ethylene glycol is preferably in the range of 60240 to 40+60 in terms of volume ratio.
If the proportion of diethylacetamide is too high, fiber breakage during spinning will increase and the roundness of the hollow fibers will be impaired.

また、エチレングリコールの割合が多くなっても凝固速
度が速くなりすぎ11、遺切れや、中空糸膜の真円性が
損なわれる。真円状の中空糸膜を安定して紡糸するには
ジメチルア−(,1アミドとエチレングリコールの混合
割合の選髪≠非常に重要である@ 凝固浴にはジメチルアセトアミドとポリエチレングリコ
ールの混合溶剤を20重量外未満含有する水溶液が用い
られるが、混合溶剤の濃度が高くなりすぎると凝固速度
が遅くなり1中空糸膜外側の緻密層の微細孔径が小さく
なりすぎ、気体又は液体の透過量が極端に低下する。凝
固浴の温度は低くなりすぎると凝固速度が遅くなり、前
記と同様に気体又は液体の透過量が低下する。好ましく
はsO℃から60℃の範囲が良い。
Furthermore, even if the proportion of ethylene glycol is increased, the coagulation rate becomes too fast11, resulting in breakage and loss of roundness of the hollow fiber membrane. In order to stably spin a perfectly circular hollow fiber membrane, the mixing ratio of dimethylacetamide and ethylene glycol is very important. An aqueous solution containing less than 20% by weight is used, but if the concentration of the mixed solvent becomes too high, the coagulation rate will slow down and the micropore diameter of the dense layer on the outside of the hollow fiber membrane will become too small, resulting in an extreme amount of gas or liquid permeation. If the temperature of the coagulation bath becomes too low, the coagulation rate slows down, and the amount of gas or liquid permeation decreases as described above.Preferably, the temperature is in the range of sO 0 C to 60 0 C.

このようにして非対称構造を賦与された中空糸多孔膜は
最後に10%以下好ましくは!1%以下の制限収縮下で
水または水性非溶剤混合物中で60℃から98℃の温度
範囲、好ましくは80℃から9B”0の温度範囲で熱処
理が施される。ここでいう、収縮率とは膜面において最
大の収縮を生じた方向の収縮量を、その初期の長さに対
しパーセントで表わした値である。収縮率が10%を越
えると気体又は液体の透過量が大巾に低下するため好ま
しくない。又、熱処理温度が60℃未満では中空糸膜構
造の固定が不十分であり一乾燥時に孔が小さくなったり
膜の性能が低下する。
The hollow fiber porous membrane endowed with an asymmetric structure in this way has a final content of preferably 10% or less! The heat treatment is carried out in water or an aqueous non-solvent mixture at a temperature range of 60°C to 98°C, preferably in a temperature range of 80°C to 9B"0, under a limited shrinkage of 1% or less. is the amount of shrinkage in the direction of maximum shrinkage on the membrane surface, expressed as a percentage of its initial length.When the shrinkage rate exceeds 10%, the amount of gas or liquid permeation decreases significantly. Furthermore, if the heat treatment temperature is lower than 60°C, the hollow fiber membrane structure will not be sufficiently fixed, and the pores will become smaller during drying and the performance of the membrane will deteriorate.

−1、耳のようにして得られた中空糸多孔膜はいずれ4
1℃%に湿淘した状態にあり、乾燥膜を得るために「ば
にのように熱処理門受けた中空糸多孔膜をその熱処理温
度以下の温度で乾燥する必要がある。乾燥温度が熱処理
温度より高い場合、乾燥過程に於て再び構造変化を起し
、空孔率の減少、膜の変形を、もたらすことになる。熱
処理温度以下で乾燥した膜は空孔率の変化がほとんどな
く、再び水に戻しても乾燥前の膜性能を有している。
-1, the hollow fiber porous membrane obtained like an ear will eventually become 4
In order to obtain a dry membrane, it is necessary to dry the hollow fiber porous membrane at a temperature below the heat treatment temperature.The drying temperature is the heat treatment temperature. If the temperature is higher than that, structural changes will occur again during the drying process, resulting in a decrease in porosity and deformation of the membrane.Membranes dried below the heat treatment temperature will have almost no change in porosity, and will undergo structural changes again during the drying process. Even when it is returned to water, it maintains the same membrane performance as before drying.

かくして得たポリフッ化ビニリデン系中空糸多孔膜の表
層に高分子薄膜を担持させた複合膜は高分子薄膜が極め
て薄いにもかかわらず、高い耐圧性と優れた気体又は液
体の透過性能を有する商業的に極めて優れた分10膜と
なる。
The thus obtained composite membrane, in which a thin polymer film is supported on the surface layer of a polyvinylidene fluoride-based hollow fiber porous membrane, has high pressure resistance and excellent gas or liquid permeability, even though the thin polymer film is extremely thin. 10 films with excellent performance.

実施例1 ポリフッ化ビニリデン(奥羽化学製xy*x1oo)2
8部(重量分率)溶媒としてジメチルア七トア7.2部
を混合し均一な溶液を調製し、?0℃に保温した。この
ポリマー溶液を中空糸製造用環状ノズルからキヤポンプ
を用いて押し出すと同時に1ジメチルアセトアミドとエ
チレングリコールを等容量混合した液を中空糸の内側に
導入する◎所定、長さの空間を通した後、48℃の温水
中に入れて1i41(lIlさせる。中空糸の形状は外
径SOOμ雪内径工こ一0μ箇の真円性の中空糸多孔膜
を得た透水量10−’ cd/ed −s −csHg
、空孔率は6部%”Qあった〇′実施例2 実施例1で得られた中空糸多孔膜を5%以下の制御限収
縮下および自由収縮下で40℃から96℃の熱水中・に
10分間浸漬して熱処理を施した後135℃の熱風中で
乾燥した。得られた中空糸多孔膜の性能を表1に示した
0透水量の単位は1lI8/lI/−day −atm
、窒素透過量の単位はell/8m?−m @O−cs
Hg、空孔率の単位は%で示した。
Example 1 Polyvinylidene fluoride (Ou Chemical xy*x1oo) 2
Mix 8 parts (weight fraction) of 7.2 parts of dimethyl acetate as a solvent to prepare a homogeneous solution. The temperature was kept at 0°C. This polymer solution is extruded from an annular nozzle for producing hollow fibers using a cap pump, and at the same time, a mixture of equal volumes of 1 dimethylacetamide and ethylene glycol is introduced inside the hollow fibers. After passing through a space of a predetermined length, Put it in warm water at 48℃ and make it 1i41 (lIl).The shape of the hollow fiber is the outer diameter SOOμ, the inner diameter is 0μ, and the water permeability is 10-' cd/ed -s. -csHg
, the porosity was 6 parts%"Q〇' Example 2 The hollow fiber porous membrane obtained in Example 1 was soaked in hot water at 40 to 96 °C under controlled limited shrinkage and free shrinkage of 5% or less. The hollow fiber porous membrane was immersed in water for 10 minutes for heat treatment, and then dried in hot air at 135°C.The performance of the obtained hollow fiber porous membrane is shown in Table 1. The unit of 0 water permeability is 1lI8/lI/-day atm
, the unit of nitrogen permeation is ell/8m? -m @O-cs
The units of Hg and porosity are expressed in %.

表 1 、:riなお%A8のポリフッ化ビニリデン系中空糸膜
V孔−径分布を電子顕微鏡法および水銀ポロシメトリー
で測定した結果、中空糸膜の構造は表面緻密層の平均孔
径が100〜tooX1支持層は20μ属以上の巨大孔
とこの巨大孔を取り囲むように0.1−0.6μの中孔
径の孔が存在する。
Table 1: As a result of measuring the V pore diameter distribution of polyvinylidene fluoride hollow fiber membranes of A8 by electron microscopy and mercury porosimetry, the structure of the hollow fiber membranes shows that the average pore diameter of the surface dense layer is 100 to tooX1. The supporting layer has giant pores of 20 microns or more and pores with a medium pore diameter of 0.1 to 0.6 microns surrounding the giant pores.

Claims (2)

【特許請求の範囲】[Claims] (1) ポリフッ化ビニリデン系重合体を〆リエチレン
グリコールとジメチルア七ドアtドか輌な・千円とエチ
レングリコールからなる混合液体i記41状体の内側に
導入し1次いで所定長さの空間を通;して前記線状体を
導き、次いで上記混合溶剤を″’to重量%未満含有す
る水溶液からなる凝固浴に前記線状体を導入することを
特徴とするポリフッ化ビニリデン系中空糸多孔膜の製造
方法。
(1) Polyvinylidene fluoride polymer is introduced into the inside of a liquid mixture consisting of polyethylene glycol, dimethyl hydroxide, and ethylene glycol, and then a space of a predetermined length is created. a polyvinylidene fluoride hollow fiber porous membrane, characterized in that the linear body is introduced into a coagulation bath consisting of an aqueous solution containing less than ''to% by weight of the mixed solvent. manufacturing method.
(2)凝固後10%以下の°゛制限収縮下において60
℃から98℃の温度にある水または水性非溶剤混合物中
で熱処理する特許請求の範囲第(1)項記載の製造方法
(2) 60° under limited contraction of 10% or less after solidification
The method according to claim 1, wherein the process is heat-treated in water or an aqueous non-solvent mixture at a temperature of 98°C to 98°C.
JP6515284A 1984-04-03 1984-04-03 Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride Granted JPS60209205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6515284A JPS60209205A (en) 1984-04-03 1984-04-03 Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6515284A JPS60209205A (en) 1984-04-03 1984-04-03 Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride

Publications (2)

Publication Number Publication Date
JPS60209205A true JPS60209205A (en) 1985-10-21
JPH0371168B2 JPH0371168B2 (en) 1991-11-12

Family

ID=13278617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6515284A Granted JPS60209205A (en) 1984-04-03 1984-04-03 Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride

Country Status (1)

Country Link
JP (1) JPS60209205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309424B2 (en) 2001-01-31 2007-12-18 Kabushiki Kaisha Toshiba Filtering apparatus, back wash method therefor, filtering device and power plant
CN103608368A (en) * 2011-06-22 2014-02-26 大金工业株式会社 Porous polymer film and production method for porous polymer film
CN107020019A (en) * 2017-04-20 2017-08-08 厦门智蓝环保科技有限公司 A kind of ultra-fine polyvinylidene fluoride hollow fiber dry state film of high flux and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151573A (en) * 1978-05-20 1979-11-28 Nippon Zeon Co Ltd Manufacture of halogenated vinyl hollow fiber
JPS55155704A (en) * 1979-05-23 1980-12-04 Nippon Zeon Co Ltd Hollow semipermeable membrane and its production
JPS5656202A (en) * 1979-10-15 1981-05-18 Asahi Chem Ind Co Ltd Hollow porous membrane yarn made of polyvinylidene fluoride type resin
JPS5916503A (en) * 1982-07-20 1984-01-27 Teijin Ltd Porous hollow yarn membrane of polyvinylidene fluoride resin and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151573A (en) * 1978-05-20 1979-11-28 Nippon Zeon Co Ltd Manufacture of halogenated vinyl hollow fiber
JPS55155704A (en) * 1979-05-23 1980-12-04 Nippon Zeon Co Ltd Hollow semipermeable membrane and its production
JPS5656202A (en) * 1979-10-15 1981-05-18 Asahi Chem Ind Co Ltd Hollow porous membrane yarn made of polyvinylidene fluoride type resin
JPS5916503A (en) * 1982-07-20 1984-01-27 Teijin Ltd Porous hollow yarn membrane of polyvinylidene fluoride resin and its production

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309424B2 (en) 2001-01-31 2007-12-18 Kabushiki Kaisha Toshiba Filtering apparatus, back wash method therefor, filtering device and power plant
US7754074B2 (en) 2001-01-31 2010-07-13 Kabushiki Kaisha Toshiba Filtering apparatus, back wash method therefor, filtering device and power plant
CN103608368A (en) * 2011-06-22 2014-02-26 大金工业株式会社 Porous polymer film and production method for porous polymer film
EP2725041A1 (en) * 2011-06-22 2014-04-30 Daikin Industries, Ltd. Fluoropolymer, production method for fluoropolymer, and porous polymer film
EP2725041A4 (en) * 2011-06-22 2014-12-24 Daikin Ind Ltd Fluoropolymer, production method for fluoropolymer, and porous polymer film
US9180414B2 (en) 2011-06-22 2015-11-10 Daikin Industries, Ltd. Fluoropolymer, production method for fluoropolymer, and porous polymer film
US9283525B2 (en) 2011-06-22 2016-03-15 Daikin Industries, Ltd. Porous polymer film and production method for porous polymer film
CN103608368B (en) * 2011-06-22 2016-08-17 大金工业株式会社 High-molecular porous plasma membrane and the manufacture method of high-molecular porous plasma membrane
CN107020019A (en) * 2017-04-20 2017-08-08 厦门智蓝环保科技有限公司 A kind of ultra-fine polyvinylidene fluoride hollow fiber dry state film of high flux and preparation method thereof
CN107020019B (en) * 2017-04-20 2019-10-22 厦门唯科健康产业有限公司 A kind of ultra-fine polyvinylidene fluoride hollow fiber dry state film of high throughput and preparation method thereof

Also Published As

Publication number Publication date
JPH0371168B2 (en) 1991-11-12

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
KR101699296B1 (en) Hydrophobic ozone-stable membrane made of polyvinylidene fluoride
US4612119A (en) Hollow fiber filter medium and process for preparing the same
US4399035A (en) Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same
US6497752B1 (en) Integrally asymmetrical polyolefin membrane
Wang et al. Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation
JP2635051B2 (en) Irregular gas separation membrane
US10946345B2 (en) Microporous polyvinylidene fluoride membrane
JP2566973B2 (en) Method for forming hollow fiber irregular gas separation membrane
US5049276A (en) Hollow fiber membrane
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
WO1995033549A1 (en) Porous polysulfone membrane and process for producing the same
KR101077954B1 (en) A polysulfone-based hollowfiber membrane having a excellent impact strength and water permeability and preparing the same
US7429343B2 (en) Process for producing polyolefin membrane with integrally asymmetrical structure
JPH0649708A (en) Method for continuous spinning of hollow fiber membrane by using solvent mixture as precipitant
JPS6214642B2 (en)
JPS58114702A (en) Polysulfone hollow fiber membrane and its production
JPS62117812A (en) Hollow fiber and its production
JPS6138208B2 (en)
JPS6333871B2 (en)
JPS6342006B2 (en)
JPS60209205A (en) Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride
JPH03258330A (en) Porous hollow fiber membrane
JPS59166208A (en) Manufacture of gas separating membrane
EP0420832B1 (en) Asymmetric gas separation membranes having improved strength

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term