JPS6229524B2 - - Google Patents

Info

Publication number
JPS6229524B2
JPS6229524B2 JP3871678A JP3871678A JPS6229524B2 JP S6229524 B2 JPS6229524 B2 JP S6229524B2 JP 3871678 A JP3871678 A JP 3871678A JP 3871678 A JP3871678 A JP 3871678A JP S6229524 B2 JPS6229524 B2 JP S6229524B2
Authority
JP
Japan
Prior art keywords
fiber
membrane
cellulose derivative
hollow
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3871678A
Other languages
Japanese (ja)
Other versions
JPS54131025A (en
Inventor
Masamichi Ishida
Koji Mimura
Tooru Takemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP3871678A priority Critical patent/JPS54131025A/en
Publication of JPS54131025A publication Critical patent/JPS54131025A/en
Publication of JPS6229524B2 publication Critical patent/JPS6229524B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 本発明は透析型のセルロース誘導体中空繊維お
よびその製造法に関するものである。さらに詳し
くは透水速度の大きい、選択透過性に優れた実質
的に中空壁膜が均質な構造を有し、血液透析に適
するセルロース誘導体中空繊維およびその製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dialysis-type cellulose derivative hollow fiber and a method for producing the same. More specifically, the present invention relates to a cellulose derivative hollow fiber having a high water permeation rate, excellent permselectivity, a substantially homogeneous structure, and a cellulose derivative hollow fiber suitable for hemodialysis, and a method for producing the same.

従来より高分子膜は物質分離に利用されてきて
いるが、近年、特に、省エネルギー、装置の小型
化等の面から急速に各分野での利用が発展してき
ている。
Polymer membranes have traditionally been used for substance separation, but in recent years, their use in various fields has rapidly expanded, particularly from the standpoint of energy saving and miniaturization of devices.

高分子膜のうち中空繊維状膜は単位体積当りの
膜面積が大きく、かつ、平膜に比し強度が高く、
補強材としての支持体が不要等の利点を有してお
り分離膜としての中空繊維の開発が急速に行なわ
れつつある。
Among polymer membranes, hollow fibrous membranes have a large membrane area per unit volume and have higher strength than flat membranes.
Hollow fibers have the advantage of not requiring a support as a reinforcing material, and development of hollow fibers as separation membranes is rapidly progressing.

中空繊維状膜も平膜と同様に、均質膜と非対称
性膜があり、前者は膜表面、内部が同様な構造の
いわゆる膜の細孔の平均直径が実質的に同じであ
る膜をいい、後者は膜表面に薄い緻密層を有し、
内部はポーラスな多孔質、いわゆる、支持体の役
割をしている膜をいう。
Similar to flat membranes, hollow fibrous membranes are divided into homogeneous membranes and asymmetric membranes, and the former refers to membranes with similar structures on the membrane surface and inside, with the average diameter of the pores being substantially the same. The latter has a thin dense layer on the membrane surface,
The inside is porous, so-called a membrane that acts as a support.

特に逆浸透用および限外ロ過および透析に利用
されているセルロース誘導体中空繊維においては
この非対称性膜が主体であつた。しかし非対称性
膜は前述のごとく2層構造を有しており、物質分
離、透過の現象が実質的に膜表面の緻密層で起る
が、物質の分離に関しては緻密層の厚みの影響は
ほとんどないものの透過速度はこの厚みに依存し
ているため、この緻密層を極力薄くすることが低
分子物の透過速度いわゆる膜性能を向上させるポ
イントであつた。しかし緻密層が薄くなると膜表
面のわずかなきず、中空繊維製造工程中の、ある
いは膜を装置に組入れる場合のきずにより、緻密
層が損傷を受け予期した通りの物質の分離が行な
えない場合がある。すなわちピンホールの発生す
る確率が高いことによる。
In particular, this asymmetric membrane is the main component of cellulose derivative hollow fibers used for reverse osmosis, ultrafiltration, and dialysis. However, as mentioned above, asymmetric membranes have a two-layer structure, and the phenomena of substance separation and permeation occur essentially in the dense layer on the membrane surface, but the thickness of the dense layer has little effect on substance separation. Since the permeation rate of non-containing substances depends on this thickness, making this dense layer as thin as possible was the key to improving the permeation rate of low-molecular substances, so-called membrane performance. However, if the dense layer becomes thin, the dense layer may be damaged by slight flaws on the membrane surface, scratches during the hollow fiber manufacturing process, or when the membrane is installed in equipment, and the expected separation of substances may not be possible. . In other words, this is due to the high probability that pinholes will occur.

一方セルロース誘導体中空繊維に緻密層を存在
させず均質膜構造とすると選択透過性に優れピン
ホール発生を極めて低くすることができる反面著
しく低分子物の透過速度を低下させ実用に供しえ
るものではなかつた。しかも透過速度を上げるた
めには膜厚を薄くする必要があるが、実用に供し
得る透過速度を確保するには膜厚を数μのオーダ
ーにせねばならず中空繊維の製造面、および強度
面で大きな問題があつた。
On the other hand, if cellulose derivative hollow fibers are made into a homogeneous membrane structure without the presence of a dense layer, they have excellent permselectivity and can extremely reduce the occurrence of pinholes. Ta. Moreover, in order to increase the permeation rate, it is necessary to reduce the membrane thickness, but in order to ensure a practically usable permeation rate, the membrane thickness must be on the order of several microns, which is difficult in terms of manufacturing and strength of hollow fibers. There was a big problem.

これはセルロース誘導体中空繊維を製造する方
法に基因するためである。すなわち従来の製造法
としては溶融紡糸法や、溶剤としてアセトンを主
体に使用する乾式紡糸法および半湿式紡糸法、湿
式紡糸法が主であり、前二者の方法によつて得ら
れる中空繊維は均質膜となるが極めて緻密な構造
となり、半湿式紡糸では溶剤のアセトンが凝固浴
に入る前に発揮して緻密層が形成され、完全湿式
妨糸でもアセトンの凝固速度が著しく速いため繊
維表面にやはり緻密層を形成し非対称性膜となり
やすいのである。いずれの場合も物質を分離する
性能を有する層の細孔は極めて小さな孔しか有し
ていないことにより低分子物の透過速度がここで
律速される。従つて従来のセルロース誘導体中空
繊維に実用化できる性能を持たせるためには非対
称性膜が不可欠であつた。
This is due to the method of producing cellulose derivative hollow fibers. In other words, the main conventional manufacturing methods are melt spinning, dry spinning, semi-wet spinning, and wet spinning that mainly use acetone as a solvent, and the hollow fibers obtained by the former two methods are The result is a homogeneous membrane, but an extremely dense structure. In semi-wet spinning, the solvent acetone is released before entering the coagulation bath, forming a dense layer, and even in completely wet spinning, the coagulation rate of acetone is extremely fast, resulting in the formation of a dense layer on the fiber surface. After all, it tends to form a dense layer and become an asymmetric film. In either case, the pores of the layer capable of separating substances have extremely small pores, which limits the permeation rate of low molecular weight substances. Therefore, an asymmetric membrane was indispensable in order to give conventional cellulose derivative hollow fibers practical performance.

しかし、近年、セルロース誘導体に塩類、非溶
剤等を多量に加えた紡糸原液を紡糸し、得られた
糸条を後処理することによつて壁膜に均質な細孔
を作る方法が開発され、例えば、分子量1万以上
のタンパク質等を通過させ、懸濁物質を除去する
固一液分離の分野で利用されている。しかし、こ
の膜は分子量1万以上の有用タンパク質のみを透
過させず、他の低分子量物質のみを透過除去す
る、いわゆる分子レベルでの透析膜は未だ得られ
ていない。
However, in recent years, a method has been developed to create homogeneous pores in the wall membrane by spinning a spinning dope containing a large amount of salts, non-solvents, etc. to cellulose derivatives, and post-processing the resulting yarn. For example, it is used in the field of solid-liquid separation in which proteins with a molecular weight of 10,000 or more are passed through and suspended substances are removed. However, a so-called dialysis membrane at the molecular level, which does not allow only useful proteins with a molecular weight of 10,000 or more to permeate, but only other low-molecular weight substances, has not yet been obtained.

そこで本発明者等はセルロース誘導体中空繊維
よりなり、分子量1万以上の有用タンパク質を
ほゞ完全に阻止し、しかも低分子量物のみを透過
しうる透過速度の高い均質な中空繊維膜を開発す
ることを目的として検討した結果本発明を完成し
た。
Therefore, the present inventors have developed a homogeneous hollow fiber membrane made of cellulose derivative hollow fibers, which has a high permeation rate and can almost completely block useful proteins with a molecular weight of 10,000 or more, while allowing only low molecular weight substances to pass through. As a result of studies aimed at this purpose, the present invention was completed.

すなわち本発明は、繊維の長さ方向に連続した
中空部を有し、繊維壁膜の厚みが10〜70μでかつ
それが多数の細孔より形成され、それらが互いに
連なつた多孔質網状構造体となつており、しかも
該細孔は実質的に直径0.5μ以上の空洞を含ま
ず、かつ、細孔の直径の実質的平均値が10〜500
Åで、かつ、繊維壁膜の膨潤度が0.5以上である
セルロース誘導体中空繊維及びセルロース誘導体
に対する非溶剤を0.2〜20重量%、不揮発性有機
溶剤99.8〜80重量%よりなる混合溶剤にセルロー
ス誘導体をその固形分含有量Cが20〜35重量%の
範囲となるように溶解した原液を下記温度tに保
ちつつ鞘芯型紡糸ノズルの鞘部より紡出し、同時
に芯部より液体を注入しさらに凝固浴中で凝固せ
しめることにより上記したようなセルロース誘導
体中空繊維を製造することにある。
In other words, the present invention provides a porous network structure in which the fibers have a continuous hollow part in the length direction, the fiber wall membrane has a thickness of 10 to 70μ, and is formed by a large number of pores, which are connected to each other. Moreover, the pores do not substantially contain cavities with a diameter of 0.5μ or more, and the substantial average value of the pore diameters is 10 to 500.
The cellulose derivative is added to a mixed solvent consisting of 0.2 to 20% by weight of a non-solvent for the cellulose derivative and 0.2 to 20% by weight of a non-solvent for the cellulose derivative and 99.8 to 80% by weight of a nonvolatile organic solvent. The stock solution dissolved so that the solid content C is in the range of 20 to 35% by weight is spun from the sheath of a sheath-core type spinning nozzle while maintaining the temperature t below, and at the same time, liquid is injected from the core and further solidified. The object of the present invention is to produce cellulose derivative hollow fibers as described above by coagulating them in a bath.

10(0.0104C+1.23)≦t≦10(0.0232C+1.28) 本発明での中空繊維の中空部の直径は100μ〜
1000μが好ましく、特に200〜500μが好ましい。
又中空繊維壁膜とは中空繊維の中空部の外側に存
在する繊維部分をいう。
10 ( 0.0104C+ 1.23) ≦t≦10 ( 0.0232C+ 1.28) The diameter of the hollow portion of the hollow fiber in the present invention is 100μ~
1000μ is preferred, particularly 200 to 500μ.
Further, the hollow fiber wall membrane refers to the fiber portion existing outside the hollow portion of the hollow fiber.

さらに本発明での細孔の直径は電子顕微鏡又は
水銀ポロシメーターで測定することができる。又
本発明での膨潤度Pとは次式により算出した値で
ある。
Furthermore, the diameter of the pores in the present invention can be measured using an electron microscope or a mercury porosimeter. Further, the degree of swelling P in the present invention is a value calculated by the following formula.

P=(ρa/ρ−1) ρ:中空繊維の見掛比重 ρa:空孔を有しない繊維の比重 さらに本発明における中空繊維膜壁の厚みは10
〜70μなる範囲にあることが必要であり、この厚
みが10μ以下では中空繊維の機械的強度が十分で
なく、かつ使用時に於ける中空部がつぶれ易いた
め好ましくない、一方、この厚みが70μを越えて
厚くなる際には分離工程中に於ける低分子量物質
の分離能が低下するので透析型中空繊維として利
用することが難しくなる。
P=(ρa/ρ-1) ρ: Apparent specific gravity of hollow fiber ρa: Specific gravity of fiber without pores Furthermore, the thickness of the hollow fiber membrane wall in the present invention is 10
If the thickness is less than 10μ, the mechanical strength of the hollow fiber will not be sufficient and the hollow portion will easily collapse during use, so it is not preferable. If it becomes thicker than this, the ability to separate low molecular weight substances during the separation process will decrease, making it difficult to use it as a dialysis type hollow fiber.

また、本発明の中空繊維壁膜中には、直径0.5
μ以上の空洞を含まぬことが必要であり、0.5μ
上の径の空洞が存在するとピンホールの原因とな
る。中空繊維壁膜の細孔は水銀ポロミメーターで
測定した場合の直径の平均値をいゝ、それが10〜
500Å、とくに30〜300Åの範囲にあることが必要
である。この細孔の直径の平均値が10Åよりも小
さい場合には分離膜としての分離効果が低下し、
一方、この直径の平均値が500Åを越えて大きく
なると分離工程において有用タンパク質をも透過
するようになり膜の分離能が劣るようになるので
好ましくない。
In addition, the hollow fiber wall membrane of the present invention has a diameter of 0.5
It is necessary to not include cavities larger than μ, and 0.5μ
The presence of cavities of the upper diameter causes pinholes. The average diameter of the pores in a hollow fiber wall membrane is measured using a mercury poromimeter, which is 10 to
It is necessary that the thickness be 500 Å, particularly in the range of 30 to 300 Å. If the average diameter of these pores is smaller than 10 Å, the separation effect of the separation membrane will decrease.
On the other hand, if the average value of the diameter becomes larger than 500 Å, useful proteins will also pass through the membrane in the separation process, which is undesirable since the separation ability of the membrane will be degraded.

更に中空繊維膜壁の膨潤度は0.5以上であるこ
とが必要であり、この値が0.5よりも小さいと網
状組織の形成ができにくくなり、中空繊維の低分
子物の透過速度が大巾に低下する。
Furthermore, the degree of swelling of the hollow fiber membrane wall needs to be 0.5 or more; if this value is less than 0.5, it becomes difficult to form a network structure, and the permeation rate of low molecular weight substances through the hollow fibers decreases significantly. do.

本発明の実施に際して使用するセルロース誘導
体としては酢酸セルローズ、プロピオン酸セルロ
ース、エチルセルロース等のセルロースエステル
類、セルロースエーテル類であるが、とくに酢酸
セルロースであることが好ましい。セルロース誘
導体を溶解するのに用いられる溶剤としてジメチ
ルホルムアミド、ジメチルアセトアミド、ジメチ
ルスルホキシド、ジオキサン、酢酸などであり、
本発明を実施するに際して用いる非溶剤としては
水、メタノール、グリセリン、ベンゾール、キシ
レンなど、とくに水が好ましい。これら非溶剤の
溶剤に対する添加量は0.2〜20重量%なる範囲で
あることが好ましく、この添加量が0.2重量%未
満ではセルロース誘導体含有紡糸液の粘度が著る
しく高くなり、中空繊維の製造が困難となり、一
方、非溶剤を20重量%以上含む溶剤にてはセルロ
ース誘導体の溶解を十分に行い得なくなる。
Cellulose derivatives used in the practice of the present invention include cellulose esters and cellulose ethers such as cellulose acetate, cellulose propionate, and ethyl cellulose, with cellulose acetate being particularly preferred. Solvents used to dissolve cellulose derivatives include dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, acetic acid, etc.
The non-solvent used in carrying out the present invention includes water, methanol, glycerin, benzole, xylene and the like, with water being particularly preferred. The amount of these non-solvents added to the solvent is preferably in the range of 0.2 to 20% by weight; if this amount is less than 0.2% by weight, the viscosity of the cellulose derivative-containing spinning solution increases significantly, making it difficult to produce hollow fibers. On the other hand, a solvent containing 20% by weight or more of a non-solvent will not be able to sufficiently dissolve the cellulose derivative.

紡糸原液中にはセルロース誘導体を固形分含量
20〜35重量%となるように溶解することが必要で
あるが、この濃度が20重量%よりも低い場合には
得られる中空繊維の強度が不足する場合も生ずる
ので好ましくなく、一方、この濃度が35重量%を
越えて多い場合には紡糸原液中に未溶解物が生じ
たり、紡糸操作がうまくゆかなくなる傾向がある
ので好ましくない。
The solid content of cellulose derivatives in the spinning stock solution
It is necessary to dissolve the solution at a concentration of 20 to 35% by weight, but if this concentration is lower than 20% by weight, the strength of the resulting hollow fibers may be insufficient, so it is not preferable. If the amount exceeds 35% by weight, undissolved substances tend to occur in the spinning dope and the spinning operation tends to fail, which is not preferable.

上記紡糸原液を用いて中空繊維を作る場合の凝
固浴としてはセルロース誘導体の溶剤の水溶液で
あることが好ましく、とくに本発明の特定構造の
中空繊維を作る場合には、その温度を 10(0.0104C+1.23)≦t≦10(0.0232C+1.28) (式中Cは紡糸液中の重合体の固形分重量%を示
す) なる条件を満足せしめるようにすることが必要で
ある。この温度が10(0.0104C+1.23)よりも低い場合
には紡糸性が著るしく低下するので好ましくな
く、一方、この温度が10(0.0232C+1.28)よりも高く
なると中空部の形成が不十分となり、接着糸、糸
斑等の欠陥が多発するようになるので好ましくな
く、この範囲を図示したものが第1図である。
When making hollow fibers using the above-mentioned spinning dope, the coagulation bath is preferably an aqueous solution of a cellulose derivative solvent, and particularly when making hollow fibers with a specific structure of the present invention, the temperature is set to 10 (0 . 0104C+1 . 23) ≦t≦10 (0 . 0232C+1 . 28) (In the formula, C represents the solid weight percent of the polymer in the spinning solution.) It is necessary to satisfy the following condition. be. If this temperature is lower than 10 ( 0.0104C+1.23 ) , the spinnability will drop significantly, which is undesirable, while if this temperature is higher than 10 ( 0.0232C+1.28 ) , This is not preferable because the formation of the hollow portion becomes insufficient and defects such as adhesive threads and thread spots occur frequently, and this range is illustrated in FIG.

また、紡糸口金内側より注入する芯材となる液
体としてはセルロース誘導体重合体溶液に対する
凝固価が20以上の液体であることが好ましく、こ
の値が20よりも小さい液体を芯材として用いる場
合には、中空繊維膜壁中へのスキン層の発達が顕
著となり透水性能が良好な中空膜とすることが難
しく、また、膜壁にボイドの発生が認められるよ
うになり、ピンホールの発生し易い中空膜となる
ので好ましくない。凝固価20以上の液体の例とし
てはエタノール、メタノール、ブタノール、グリ
セリン、水等を10%以上含む不揮発性有機溶剤を
挙げることができ、この凝固価とはセルロース誘
導体の1%溶液50c.c.を撹拌しつつ芯材とする液体
を滴下し、前記溶液が白濁するまでの液体の添加
c.c.数で表示した値である。
In addition, the liquid to serve as the core material injected from the inside of the spinneret is preferably a liquid with a coagulation value of 20 or more with respect to the cellulose derivative polymer solution, and when a liquid with this value smaller than 20 is used as the core material. , the development of a skin layer in the hollow fiber membrane wall becomes noticeable, making it difficult to create a hollow membrane with good water permeability.In addition, voids are observed in the membrane wall, making it difficult to create a hollow membrane that is prone to pinholes. This is not preferable because it forms a film. Examples of liquids with a coagulation value of 20 or higher include ethanol, methanol, butanol, glycerin, non-volatile organic solvents containing 10% or more of water, etc., and this coagulation value is 50 c.c. of a 1% solution of a cellulose derivative. While stirring, drop the liquid to be used as a core material, and add the liquid until the solution becomes cloudy.
This is the value expressed in cc number.

本発明の中空繊維を製造する際に用いる凝固浴
は特に限定されるものではないが、セルロース誘
導体の不揮発性有機溶剤と非溶剤との混合物を用
いるのが好ましく、特に非溶剤として水を用いた
ものであることが好ましい。とくにその組成は有
機溶剤/非溶剤の比が10/90−50/50なる割合で
あり、20〜40℃に保たれたものを用いるのがよ
い。
The coagulation bath used in producing the hollow fibers of the present invention is not particularly limited, but it is preferable to use a mixture of a non-volatile organic solvent of a cellulose derivative and a non-solvent, and in particular water is used as the non-solvent. Preferably. In particular, it is preferable to use a composition having an organic solvent/non-solvent ratio of 10/90 to 50/50 and maintained at a temperature of 20 to 40°C.

本発明においては上述のようにして得た中空繊
維を乾燥するに先立つて、多価アルコールの水溶
液処理によつて多価アルコールを含有せしめた
後、乾燥するのが好ましい。用い得る多価アルコ
ールの具体例としてはエチレングリコール、プロ
ピレングリコール、グリセリン、トリメチロール
プロパン等を挙げることができるが、取り扱い易
さの点を考慮するとグリセリンがよい。又、多価
アルコールの中空繊維への付着量は20重量%以下
とするのが好ましく、1〜10重量%とするのがよ
り好ましい。多価アルコールの付着量が多くなる
と、その平衡水分率が高くなり乾燥した中空繊維
の強度が低下する傾向が認められる。一方、多価
アルコールの付着量が少なすぎると中空繊維の収
縮等が起り、壁膜中の多孔質構造が大きく変化
し、所望する透析性能を備えた中空繊維とするこ
とが難しくなる。
In the present invention, prior to drying the hollow fibers obtained as described above, it is preferable to treat the hollow fibers with an aqueous solution of polyhydric alcohol to contain the polyhydric alcohol, and then dry the fibers. Specific examples of polyhydric alcohols that can be used include ethylene glycol, propylene glycol, glycerin, trimethylolpropane, etc., but glycerin is preferred from the viewpoint of ease of handling. Further, the amount of polyhydric alcohol attached to the hollow fibers is preferably 20% by weight or less, more preferably 1 to 10% by weight. It is observed that as the amount of polyhydric alcohol attached increases, the equilibrium moisture content increases and the strength of the dried hollow fiber tends to decrease. On the other hand, if the amount of polyhydric alcohol attached is too small, shrinkage of the hollow fibers will occur, and the porous structure in the wall membrane will change significantly, making it difficult to obtain hollow fibers with the desired dialysis performance.

本発明の中空繊維は従来法によつて得られたセ
ルロース系中空繊維に比べ、膜壁の微細孔の口径
が均一であり、また本発明の製造方法によると所
望とする口径の微細孔を若干の条件変更によつて
容易に作ることができる。
Compared to cellulose-based hollow fibers obtained by conventional methods, the hollow fibers of the present invention have more uniform diameters of the micropores in the membrane wall, and according to the production method of the present invention, the diameters of the micropores of the desired diameter are slightly more uniform. can be easily created by changing the conditions.

以下具体的な実施例により本発明を更に詳細に
説明するが、本発明はこの範囲に限定されるもの
ではない。
The present invention will be explained in more detail below with reference to specific examples, but the present invention is not limited to this scope.

実施例 1 酢化度55%のセルロースアセテート25部を水
7.5部、ジメチルアセトアミド67.5部の混合溶剤
に80℃で2時間撹拌して溶解し、脱泡ロ過後50℃
となした。
Example 1 25 parts of cellulose acetate with a degree of acetylation of 55% was added to water.
Dissolved in a mixed solvent of 7.5 parts of dimethylacetamide and 67.5 parts of dimethylacetamide by stirring at 80℃ for 2 hours, and after degassing and filtering, 50℃.
He said.

その紡糸原液を鞘芯型紡糸ノズルの鞘部に3.0
c.c./minの割合で定量的に送入し、一方、グリセ
リン(凝固価25)を芯部に2.5c.c./minの割合で
定量的に送入した。ノズルを通過した紡糸原液−
グリセリン(成形物)を5cm空気中を落下せしめ
15℃に保たれた40%ジメチルアセトアミド水溶液
中に導き凝固せしめ40m/minの速度で捲取り80
℃で熱処理した。湿潤状態の膜構造を保持するた
め30%グリセリン水溶液で処理して40℃で乾燥し
た。
The spinning stock solution is applied to the sheath part of the sheath-core type spinning nozzle at 3.0%
cc/min, while glycerin (coagulation value 25) was quantitatively fed into the core at a rate of 2.5 cc/min. Spinning solution passed through the nozzle
Glycerin (molded product) is dropped 5 cm into the air.
It was introduced into a 40% dimethylacetamide aqueous solution kept at 15°C, solidified, and rolled up at a speed of 40 m/min.
Heat treated at ℃. In order to maintain the membrane structure in a wet state, it was treated with a 30% glycerin aqueous solution and dried at 40°C.

得られた中空繊維は内径345μ、外径400μで中
空繊維の断面の200倍及び1000倍の拡大写真を第
2,3図に示し中空繊維外側部および内側部の
10000倍拡大写真を第4,5図に示した。
The obtained hollow fiber has an inner diameter of 345μ and an outer diameter of 400μ. Figures 2 and 3 show 200x and 1000x enlarged photographs of the cross section of the hollow fiber, showing the outer and inner parts of the hollow fiber.
10,000 times enlarged photographs are shown in Figures 4 and 5.

これらの写真から判るように0.5μ以上の空洞
は存在せず、本中空繊維は均質な膜となつてい
る。又細孔の平均直径は水銀ポロシメーターで測
定した所70Åであつた。さらに中空繊維壁膜の膨
潤度は酢酸セルロースの比重lc=1.3とし繊維断
面積とデニール測定により該繊維の密度を算出
し、計算した所1.3であつた。
As can be seen from these photographs, there are no cavities larger than 0.5μ, and the hollow fiber is a homogeneous membrane. The average diameter of the pores was 70 Å as measured by a mercury porosimeter. Further, the degree of swelling of the hollow fiber wall membrane was calculated to be 1.3 by assuming the specific gravity of cellulose acetate, lc = 1.3, and calculating the density of the fiber by measuring the fiber cross-sectional area and denier.

得られた中空繊維を30本たばね両端を接着剤で
接着し尿素、クレアニチン、アルブミンの混合水
溶液を透析した所尿素、クレアニチンは十分透過
するがアルブミンはほとんど完全に阻止した。又
透水速度は2.5×10-3(c.c./cm2・min・atm)であ
つた。
Thirty of the resulting hollow fibers were glued together at both ends with an adhesive, and a mixed aqueous solution of urea, creanitine, and albumin was dialyzed. Urea and creanitine permeated sufficiently, but albumin was almost completely blocked. The water permeation rate was 2.5×10 -3 (cc/cm 2 min atm).

実施例 2 酢化度53%のセルロースジアセテート26部をジ
メチルアセトアミド66.6部、水7.4部との混合溶
剤に80℃で溶解せしめ、十分脱泡した後その温度
を60℃としギアポンプで4Hの紡糸ノズル鞘部に
1.8c.c./minの割合で送入した。同時に芯部より
30%ジメチルアセトアミド水溶液(凝固価28)を
2.1c.c./minの割合で注入し、直ちに20℃に保た
れた40%ジメチルアセトアミド水溶液の凝固浴中
で凝固させ4m/minの速度で捲取り水洗後80℃
で熱処理した。
Example 2 26 parts of cellulose diacetate with a degree of acetylation of 53% was dissolved in a mixed solvent of 66.6 parts of dimethylacetamide and 7.4 parts of water at 80°C, and after sufficient defoaming, the temperature was raised to 60°C and 4H spinning was performed using a gear pump. In the nozzle sheath
It was delivered at a rate of 1.8cc/min. At the same time from the core
30% dimethylacetamide aqueous solution (coagulation value 28)
Injected at a rate of 2.1 cc/min, immediately coagulated in a coagulation bath of 40% dimethylacetamide aqueous solution kept at 20°C, rolled up at a rate of 4 m/min, washed with water, and then heated to 80°C.
heat treated.

得られた中空繊維は実施例1と同様の構造を示
し0.5μ以上の空洞は存在せず内径は400μ、外径
480μで膨潤度1.7、平均直径60Åで尿素、クレア
ニキンは十分透過するがアルブミンはほぼ完全に
阻止した。透水速度は8.8×10-3(c.c./cm2・min・
atm)であつた。
The obtained hollow fiber had the same structure as Example 1, had no cavities larger than 0.5μ, had an inner diameter of 400μ, and an outer diameter of
With a swelling degree of 1.7 at 480 μ and an average diameter of 60 Å, urea and creanikine were sufficiently permeable, but albumin was almost completely blocked. The water permeation rate is 8.8×10 -3 (cc/cm 2・min・
ATM)

比較例 1 実施例2で重合体溶液温度を夫々90℃、25℃に
した場合前者は中空部が形成されず接着糸、糸
斑、ピンホール等の欠点が多発し、後者では安定
な紡糸ができなかつた。
Comparative Example 1 In Example 2, when the polymer solution temperature was set to 90°C and 25°C, respectively, the former did not form a hollow part and many defects such as adhesive threads, yarn unevenness, and pinholes occurred, and the latter did not allow stable spinning. Nakatsuta.

実施例 3 エチルセルロース24部にジメチルホルムアミド
70部と水6部の溶剤に80℃で溶解(十分脱泡した
後、その温度を60℃となし紡糸ノズル鞘部に3.5
c.c./minの割合で送入し一方芯部にはn−ブタノ
ール(凝固価70)を2.7c.c./minの割合で送入し
た。それらを大気中3cm落下せしめ、18℃に保た
れた30%ジメチルホルムアミド水溶液の凝固浴中
に導き凝固せしめ45m/minの速度で捲取り水洗
後75℃熱処理した。
Example 3 Dimethylformamide to 24 parts of ethyl cellulose
Dissolved in a solvent of 70 parts and 6 parts water at 80℃ (After sufficient degassing, the temperature was set to 60℃ and 3.5
cc/min, while n-butanol (coagulation value: 70) was fed into the core at a rate of 2.7 cc/min. They were dropped 3 cm into the atmosphere, introduced into a coagulation bath of 30% dimethylformamide aqueous solution kept at 18°C, coagulated, rolled up at a speed of 45 m/min, washed with water, and heat-treated at 75°C.

得られた繊維は実施例1と同様な構造を示し
0.5μ以上の空洞は存在せず内径270μ、外径370
μで膨潤度2.5であり、細孔は平均直径80Åであ
つた。この中空糸は尿素、クレアニチンは十分速
く透過するがアルブミンはほぼ完全に阻止した。
なお透水速度は7.3×10-3(c.c./min・cm2・atm)
であつた。
The obtained fiber showed a structure similar to that of Example 1.
No cavities larger than 0.5μ, inner diameter 270μ, outer diameter 370
The degree of swelling was 2.5 μ, and the pores had an average diameter of 80 Å. Urea and creanitine permeated through this hollow fiber sufficiently quickly, but albumin was almost completely blocked.
The water permeation rate is 7.3×10 -3 (cc/min・cm 2・atm)
It was hot.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の中空繊維を形成しうる重合体
溶液温度とその固形分濃度との関係を示した図で
あり、第2図は本発明の中空繊維の200倍拡大写
真を、第3図は本発明の中空糸の内側の1000倍拡
大写真、第4図及び第5図は本発明の中空糸の外
側及び内側の10000倍拡大写真である。
Figure 1 is a diagram showing the relationship between the temperature of a polymer solution capable of forming the hollow fiber of the present invention and its solid content concentration, Figure 2 is a 200 times enlarged photograph of the hollow fiber of the present invention, The figure is a 1000 times enlarged photograph of the inside of the hollow fiber of the present invention, and FIGS. 4 and 5 are 10000 times enlarged photographs of the outside and inside of the hollow fiber of the present invention.

Claims (1)

【特許請求の範囲】 1 セルロース誘導体に対する非溶剤を0.2〜20
重量%、不揮発性溶剤99.8〜80重量%よりなる混
合溶剤にセルロース誘導体をその固形分含有量C
が20〜35重量%の範囲となるように溶解した原液
を下記温度tに保ちつつ鞘芯型紡糸ノズルの鞘部
より紡出し同時に芯部よりセルロース誘導体溶液
に対する凝固値が20以上の液体を注入し、さらに
凝固浴中で凝固せしめることを特徴とする繊維の
長さ方向に連続した中空部を有し、繊維壁膜の厚
みが10〜70μでかつそれが多数の細孔により形成
されそれらが互いに連なつた多孔質網状構造体と
なつており、しかも該細孔は実質的に直径0.5μ
以上の空洞を含まず、かつ細孔の直径の平均値が
10−500Åでかつ繊維壁膜の膨潤度が0.5以上であ
る透析型セルロース誘導体中空繊維の製造方法。 10(0.0104C+1.23)≦t≦10(0.0232C+1.28)
[Claims] 1. A non-solvent for cellulose derivatives of 0.2 to 20
The cellulose derivative is added to a mixed solvent consisting of 99.8 to 80% by weight of a non-volatile solvent and its solid content is C.
While keeping the stock solution dissolved in a range of 20 to 35% by weight at the temperature t below, spin it from the sheath of a sheath-core spinning nozzle, and at the same time inject a liquid with a coagulation value of 20 or more with respect to the cellulose derivative solution from the core. Furthermore, the fiber is coagulated in a coagulation bath, and has a continuous hollow part in the length direction of the fiber, the thickness of the fiber wall membrane is 10 to 70μ, and it is formed by a large number of pores. It forms a porous network structure connected to each other, and the pores are substantially 0.5μ in diameter.
Does not contain any cavities and has an average pore diameter of
A method for producing a dialyzed cellulose derivative hollow fiber having a diameter of 10-500 Å and a fiber wall swelling degree of 0.5 or more. 10 ( 0.0104C+ 1.23) ≦t≦10 ( 0.0232C+ 1.28)
JP3871678A 1978-03-31 1978-03-31 Production of hollow cellulose derivative fibers Granted JPS54131025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3871678A JPS54131025A (en) 1978-03-31 1978-03-31 Production of hollow cellulose derivative fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3871678A JPS54131025A (en) 1978-03-31 1978-03-31 Production of hollow cellulose derivative fibers

Publications (2)

Publication Number Publication Date
JPS54131025A JPS54131025A (en) 1979-10-11
JPS6229524B2 true JPS6229524B2 (en) 1987-06-26

Family

ID=12533037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3871678A Granted JPS54131025A (en) 1978-03-31 1978-03-31 Production of hollow cellulose derivative fibers

Country Status (1)

Country Link
JP (1) JPS54131025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569243B2 (en) * 1990-05-31 1997-01-08 株式会社神戸製鋼所 Method and apparatus for producing high-purity nitrogen
US7238423B2 (en) 2004-12-20 2007-07-03 Kimberly-Clark Worldwide, Inc. Multicomponent fiber including elastic elements

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204912A (en) * 1983-05-02 1984-11-20 Asahi Chem Ind Co Ltd Preparation of hollow yarn of regenerated cellulose
JP2006083292A (en) 2004-09-16 2006-03-30 Fuji Photo Film Co Ltd Method for stably producing microporous membrane and use thereof in method for separating and purifying nucleic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569243B2 (en) * 1990-05-31 1997-01-08 株式会社神戸製鋼所 Method and apparatus for producing high-purity nitrogen
US7238423B2 (en) 2004-12-20 2007-07-03 Kimberly-Clark Worldwide, Inc. Multicomponent fiber including elastic elements

Also Published As

Publication number Publication date
JPS54131025A (en) 1979-10-11

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US5833896A (en) Method of making a hollow fibre membrane
US4980063A (en) Compositions useful for preparing cellulose ester membranes for liquid separations
JPS6214642B2 (en)
US6013182A (en) Selectively permeable hollow fiber membrane and process for producing same
US4284594A (en) Method of manufacturing hollow fiber
JP2542572B2 (en) Hollow fiber
JPS6157204A (en) Dialytic hollow yarn and its preparation
JPH0478729B2 (en)
JPS6229524B2 (en)
JPS6159764B2 (en)
JPS59166208A (en) Manufacture of gas separating membrane
JPH10216489A (en) Cellulose hollow fiber membrane and its production
JP2818366B2 (en) Method for producing cellulose ester hollow fiber membrane
CN109890490B (en) Cellulose acetate series asymmetric hollow fiber membrane
JP2818352B2 (en) Manufacturing method of hollow fiber membrane
JPH0120245B2 (en)
JPS59169510A (en) Anisotropic hollow yarn membrane
JP3224307B2 (en) Manufacturing method of hollow fiber membrane
JP2000107577A (en) Production of permselective hollow fiber membranes
JP2002517326A (en) Method for producing cellulosic molded article
JPS6043442B2 (en) Manufacturing method of cellulose derivative hollow fiber with excellent permselectivity
JPH0371168B2 (en)
JPH0523554A (en) Cellulose hollow yarn
JP3205267B2 (en) Method for producing selectively permeable hollow fiber membrane