JPS59169510A - Anisotropic hollow yarn membrane - Google Patents

Anisotropic hollow yarn membrane

Info

Publication number
JPS59169510A
JPS59169510A JP4232583A JP4232583A JPS59169510A JP S59169510 A JPS59169510 A JP S59169510A JP 4232583 A JP4232583 A JP 4232583A JP 4232583 A JP4232583 A JP 4232583A JP S59169510 A JPS59169510 A JP S59169510A
Authority
JP
Japan
Prior art keywords
hollow fiber
hollow yarn
solvent
membrane
ethyl cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4232583A
Other languages
Japanese (ja)
Inventor
Nobuo Yoshizumi
吉住 宣夫
Tatsuo Nogi
野木 立男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP4232583A priority Critical patent/JPS59169510A/en
Publication of JPS59169510A publication Critical patent/JPS59169510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:An anisotropic hollow yarn membrane suitable for preparing oxygen enriched air from air, obtained by spinning an org. solvent solution containing ethyl cellulose as a main component and having a specific solvent and a specific additive mixed therein. CONSTITUTION:210pts. of commercial ethyl cellulose is added to 385pts. of dimethylformamide being a solvent and dissolved therein at 210 deg.C under stirring. Succeedingly, 105pts. of ethylene glycol as a non-solvent additive is dripped and mixed in the obtained solution at the same temp. to prepare an org. solvent solution having a uniform composition. After this solution containing ethyl cellulose as a main component is filtered and defoamed, it is emitted into air by using a double wall type hollow yarn forming spinneret to be spun into a hollow yarn and, at the same time, N2 is injected into the hollow yarn. In the next step, the hollow yarn is immersed in a coagulation bath comprising a 30% aqueous dimethylformamide solution and the coagulated yarn is washed and subjected to hydrothermal treatment at 50 deg.C and the treated one is dried. By this method, an anisotropic hollow yarn membrane which has a dense outer surface layer part and an inner layer part comprising a reticulated porous layer with the peak position of a pore distribution of 300-5,000Angstrom and of which the oxygen permeation speed is 0.2m<3>/m<2>, hr, atm or more and separation coefficient is 2.3 or more, is obtained.

Description

【発明の詳細な説明】 本発明は、エチルセルロースを主成分とする異方性中空
糸膜に関するものであり、特に空気から酸素富化空気を
得るために有効な、気体の透過量が太きく、かつ選択性
がすぐれた異方性中空糸膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an anisotropic hollow fiber membrane mainly composed of ethylcellulose, which has a large gas permeation rate and is particularly effective for obtaining oxygen-enriched air from air. The present invention also relates to an anisotropic hollow fiber membrane with excellent selectivity.

膜を用いてガス混合物より特定のガスを分離する方法は
すでによく知られており、均一膜による方法と多孔質膜
による方法に大別できる。均一膜による方法はガスの膜
中への溶解速度、拡散速jfの差により混合ガスの分離
がおこり、多孔質膜の場合は100A前故の孔が多数存
在し、ガス分子の平均自由行程の差によって分離が行な
われる・後者の例としては、セルロース誘導体からなる
非対称性ケ有する中空繊維が特開昭51−112917
号明細書に、またポリアクリロニトリルを主成分とする
表面活性層、内面多孔層をもつ乾燥状半透膜が特開昭5
6.−111005号明細書に開示されている。しか1
7.これらはいずれも非対称膜(異方性膜)ではあるが
、前述した如くガス分子の平均自由行程の差によって分
離が行なわれる。これに対し本発明の外表層部に実質的
な細孔を有I2ない緻密層をもつ異方性膜においてはガ
スの膜中への溶解速度、拡散速度の差により混合ガスを
分離するものであり、このような膜を用いてはじめて。
Methods for separating specific gases from gas mixtures using membranes are already well known, and can be roughly divided into methods using homogeneous membranes and methods using porous membranes. In the method using a uniform membrane, separation of the mixed gas occurs due to the difference in the dissolution rate and diffusion rate jf of the gas in the membrane, and in the case of a porous membrane, there are many pores of about 100A, and the mean free path of the gas molecules is As an example of the latter, asymmetric hollow fibers made of cellulose derivatives are disclosed in Japanese Patent Application Laid-open No. 51-112917.
In addition, a dry semipermeable membrane having a surface active layer and an inner porous layer mainly composed of polyacrylonitrile is disclosed in JP-A No. 5
6. -111005. Only 1
7. Although these are all asymmetric membranes (anisotropic membranes), separation is performed due to the difference in mean free path of gas molecules, as described above. In contrast, the anisotropic membrane of the present invention, which has a dense layer with substantial pores and no I2 in the outer surface layer, separates mixed gases based on the difference in the rate of dissolution and diffusion of gas into the membrane. Yes, for the first time using such a membrane.

空気より酸素富化空気を得ることが可能になる。It becomes possible to obtain oxygen-enriched air from air.

また、これらの例としては1種々の機能膜素材が開発さ
れているが、いずれも分離特性と成形特性や形態保持性
を分担させた複合膜が中心であり。
In addition, various functional membrane materials have been developed as examples of these materials, but all of them are mainly composite membranes that share separation properties, molding properties, and shape retention properties.

異方性膜に関するものは少なく、あっても実用上あるい
は製造上に問題がある。例えば空気中の酸素の富化を目
的と1.たセルロースエステル異方性カメが特開+18
57−7206号明軸書に開示さヵ、ているが、異方性
構造を保持するために凍結乾燥。
There are few examples of anisotropic membranes, and even if there are, there are practical or manufacturing problems. For example, if the purpose is to enrich oxygen in the air, 1. The cellulose ester anisotropic turtle was published in Japanese Unexamined Publication +18
No. 57-7206, the method is freeze-dried to maintain the anisotropic structure.

俗媒置換法等の非常に手間のかかる方法を用いなければ
ならないと言う製造上の難点を有している。
It has the disadvantage of manufacturing by using a very labor-intensive method such as the common medium substitution method.

また膜の性能特性の点でも必ず[2も満足すべきもので
なく9選択性の高い異方性膜は酸素透過速度が小さく、
酸素透過速度の大きい膜は選択性が低いよいうジレンマ
があった。
In addition, in terms of membrane performance characteristics, [2 is also not satisfactory; 9 Anisotropic membranes with high selectivity have a low oxygen permeation rate;
The dilemma was that a membrane with a high oxygen permeation rate would have low selectivity.

妊て本発明者らは従来より酸素の選択湾過膜素について
詳細に調へた。その結果エチルセルロースの異方性中空
糸膜で、エチルセルロースの有する本質的な選択性を保
持しつつ、きわめて大きな酸素透過速度が得られる中空
糸膜を見出122本発明に到達した。
The present inventors have previously investigated in detail oxygen selective filtering membrane elements. As a result, they discovered an anisotropic hollow fiber membrane made of ethyl cellulose and achieved an extremely high oxygen permeation rate while retaining the essential selectivity of ethyl cellulose.122 The present invention was achieved.

すなわち本発明は、エチルセルロースを主成分とする中
空繊維膜であり、外表層部に緻密層をもち、内層部およ
び内表層部は孔径分布のピークの位置が300〜50D
OAの範囲にある網目状多孔層である。酸素透過速度が
0.2 m”/ m’ ・hr −atm以2上で、か
つ分離係数(窒素に対する酸素の透過速度比)が23以
上である異方性中空糸膜である。
That is, the present invention is a hollow fiber membrane mainly composed of ethylcellulose, which has a dense layer in the outer surface layer, and the peak position of the pore size distribution in the inner layer and inner surface layer is 300 to 50D.
It is a network porous layer in the OA range. It is an anisotropic hollow fiber membrane having an oxygen permeation rate of 0.2 m''/m'·hr -atm or more and a separation coefficient (permeation rate ratio of oxygen to nitrogen) of 23 or more.

本発明で用いるエチルセルロースは特に品種ケ化 また中空糸膜の形成成分はエチルセルロースを主体とす
るが、その素材特性を犬きく低下させない範囲で他の高
分子物質を添加混合して加工性や品質を変化させること
ができる。具体的には、セルロースアセテート、ポリス
ルホンなどの分離性能のすぐれた。成形性の良好なポリ
マーが好捷しく用いられる。
The ethyl cellulose used in the present invention is particularly silicified, and the forming component of the hollow fiber membrane is mainly ethyl cellulose, but other polymeric substances may be added and mixed within the range that does not significantly deteriorate the material properties to improve processability and quality. It can be changed. Specifically, it has excellent separation performance for cellulose acetate, polysulfone, etc. Polymers with good moldability are preferably used.

本発明におけるエチルセルロース異方性中空糸膜は、外
表層部に実質的な細孔を有しない緻密層をもち、内層部
および内表層部は孔径分布のピークの位置が′500〜
5000Aの範囲にある網目状多孔層である。実質的な
細孔を有しない緻密層とば、気体に対してエチルセルロ
ース固有の選択性と実質的に回じ選択性を示す層であり
、具体的には分離係数(窒素に対する酸素の透過速度比
)が23以」二の選択性を示す層である。またこの緻密
層の厚さけ気体の透過性を決定するものであり。
The ethyl cellulose anisotropic hollow fiber membrane of the present invention has a dense layer without substantial pores in the outer surface layer, and the peak position of the pore size distribution in the inner layer and inner surface layer is between '500 and
It is a network porous layer in the range of 5000A. A dense layer with no substantial pores is a layer that exhibits the inherent selectivity of ethyl cellulose and substantial circular selectivity with respect to gases, specifically the separation coefficient (permeation rate ratio of oxygen to nitrogen). ) is a layer exhibiting selectivity of 23 or more. The thickness of this dense layer also determines the gas permeability.

本発明の異方性中空糸膜のように実質的な緻密層の場合
には2例えはエチルセルロース固有の酸素て゛ 透過係数を、実測(また酸素透過速度欠除することによ
り算出できる。この緻密層の厚さは、小さいほど透過速
度が大きくなり好ましいが、あ1り小さすきると機械的
強度の点で問題が生じるので。
In the case of a substantially dense layer such as the anisotropic hollow fiber membrane of the present invention, the oxygen permeability coefficient specific to ethyl cellulose can be calculated by actual measurement (or by excluding the oxygen permeation rate). The smaller the thickness, the higher the permeation rate, which is preferable, but if the thickness is too small, problems will arise in terms of mechanical strength.

001〜5μ、好ましくは001〜2μである。001-5μ, preferably 001-2μ.

本発明でいう酸素透過速度の0.2 m’/ m’ 、
 hr、atm以」ことは、完全な緻密層の場合には、
約02μ以下の厚さに相当する。
The oxygen permeation rate in the present invention is 0.2 m'/m',
hr, atm or more'', which means that in the case of a complete dense layer,
This corresponds to a thickness of approximately 0.2 μm or less.

内層部および内表層部は孔径分布のピークの位置がろO
O〜50DO′Aの範囲にある網目状多孔層であり、こ
の層を通過する気体に対しては実質的に伺らの選択性を
示さないものである。
The peak position of the pore size distribution in the inner layer and inner surface layer is
It is a network-like porous layer in the range of 0 to 50 DO'A, and shows virtually no selectivity for gases passing through this layer.

この多孔層は直接性能に影響しないが、多孔層の孔径分
布のピーク位置と緻密層の緻密度、厚さとは深い関係が
ある。つまり、孔径分布のピーク位置が500A未満の
場合には緻密層の厚さが厚くなり、気体透過速度が低下
し、逆に5000Aを越える場合には緻密層が薄くなり
すぎ、不完全な緻密層となるため分離係数が大幅に低下
する。つまり性能を決定する緻密層の緻密度、厚さの制
御を多孔層の孔径分布のピーク位置で制御可能であ為こ
とから多孔層の孔径分布のピーク位置は非常に重要であ
り300〜5DOOAの範囲が好ましい。
Although this porous layer does not directly affect performance, there is a deep relationship between the peak position of the pore size distribution of the porous layer and the density and thickness of the dense layer. In other words, when the peak position of the pore size distribution is less than 500A, the thickness of the dense layer becomes thick and the gas permeation rate decreases, whereas when it exceeds 5000A, the dense layer becomes too thin and the dense layer is incomplete. Therefore, the separation coefficient decreases significantly. In other words, the density and thickness of the dense layer, which determine performance, can be controlled by the peak position of the pore size distribution of the porous layer, so the peak position of the pore size distribution of the porous layer is very important. A range is preferred.

更に好ましくは500〜5DOOAの範囲である。More preferably, it is in the range of 500 to 5 DOOA.

またこの多孔層は緻密層を支えると共に中空糸膜と1−
で必要な機械的強度を維持する役割があり。
In addition, this porous layer supports the dense layer and the hollow fiber membrane and 1-
It plays a role in maintaining the necessary mechanical strength.

中空糸膜の外径にもよるが9通常500μ以下。Although it depends on the outer diameter of the hollow fiber membrane, it is usually 500μ or less.

好ましくは10〜200μの範囲のものが好ましい。Preferably, the diameter is in the range of 10 to 200μ.

本発明の異方性中空糸膜は、具体的には例えば添加剤と
して非溶剤を含むエチルセルロースの有機溶剤溶液を紡
糸口金を通して空気中に押し出り次いで該溶剤を含む水
系凝固浴に導き、中空糸膜構造を形成させ、更に熱水処
理を施すことにより膜構造を安定化17.その後に乾燥
することにより製造可能である。
Specifically, the anisotropic hollow fiber membrane of the present invention is produced by extruding an organic solvent solution of ethyl cellulose containing a non-solvent as an additive into the air through a spinneret, and then introducing it into an aqueous coagulation bath containing the solvent. Stabilize the membrane structure by forming a thread membrane structure and further applying hot water treatment 17. It can be manufactured by drying after that.

上記異方性中空糸膜の製造法は、外表層部に実質的な細
孔を有しない薄い緻密層をもち、内層部および内表層部
は孔径分布のピークの位置が300〜5000Aの範囲
にある網目状多孔層である異方性中空糸膜の製造法のほ
んの一例にすきす、必要に応じて工程の一部を省略ある
いけ変更してもよく、更に他の工程を加えてもよい。
The above method for producing an anisotropic hollow fiber membrane has a thin dense layer with no substantial pores in the outer surface layer, and a peak position of the pore size distribution in the inner layer and inner surface layer in the range of 300 to 5000 A. This is just one example of a method for manufacturing an anisotropic hollow fiber membrane that is a network-like porous layer; some of the steps may be omitted or changed as necessary, and other steps may be added. .

エチルセルロースの溶剤としては特に限定はないが、具
体的にはN−メチル−2−ピロリドン(以下NM’Pと
略す)、ジメチルホルムアミド(以下]) M Fと略
す)、ジメチルアセトアミド(以下D M ACト略t
 ) 、アセトン、エタノール、ベンセン、トルエン等
を挙げることができる。 。
There are no particular limitations on the solvent for ethylcellulose, but specific examples include N-methyl-2-pyrrolidone (hereinafter abbreviated as NM'P), dimethylformamide (hereinafter abbreviated as MF), and dimethylacetamide (hereinafter abbreviated as DMAC). t omitted
), acetone, ethanol, benzene, toluene, etc. .

また添加剤としては、エチルセルロースの非溶剤であり
、中空糸膜の形成時に多孔化を容易にするものであれば
よいが、更に水洗工程で除去が可能な水溶性物質で、エ
チルセルロースの有機溶剤溶液に対し増粘効果を示すも
のがより好ましい。
In addition, additives may be used as long as they are non-solvents for ethylcellulose and can facilitate the formation of porosity during the formation of hollow fiber membranes, but they can also be water-soluble substances that can be removed in the water washing process and can be used in organic solvent solutions of ethylcellulose. More preferred are those that exhibit a thickening effect on.

具体的にはポリエチレングリコール、エチレングリコー
ル(以下EGと略す)、グリセリン等の多価アルコール
類、トリトンx−,100等の界面活性剤があげられる
。実際の選択にあたっては溶剤と添加剤の組合せに注意
を要する。
Specific examples include polyhydric alcohols such as polyethylene glycol, ethylene glycol (hereinafter abbreviated as EG), glycerin, and surfactants such as Triton x-100. In actual selection, care must be taken regarding the combination of solvent and additive.

紡糸原液の組成としては選択した溶剤、添加剤の種類に
より多少異なるがエチルセルロースを生体とするポリマ
濃度としては20〜40重量係。
The composition of the spinning dope varies somewhat depending on the solvent and additives selected, but the concentration of the polymer containing ethyl cellulose as a living body is 20 to 40% by weight.

添加剤量は3L1)以上で9紡糸原液が紡糸温度で均一
な曳糸性のある溶液であれば50係まで添カ日してもよ
いが9通常は30%程度以下が曳糸性の点で好丑しい。
The amount of additive is 3L (1) or more, and if the spinning stock solution has uniform stringiness at the spinning temperature, it may be added up to 50 days, but usually 30% or less is the point for stringability. It's so ugly.

ポリマ濃度が低すぎる場合は、原液粘度の低下により気
体注入法による中空糸膜の形成が困難になるとともに、
吐出原液流の紡糸性(曳糸性)が低下するので好ましく
ない。逆にポリマ濃度が高すぎる場合は、添加剤量にも
よるが、得られる中空糸膜の多孔化の程度が小さく、さ
らに原液粘度が高いことから紡糸温度を高く設定するた
め、乾湿式紡糸法においては乾式部での中空糸膜の表面
緻密層の形成が過度に促進されると考えられる。
If the polymer concentration is too low, the viscosity of the stock solution decreases, making it difficult to form a hollow fiber membrane using the gas injection method.
This is not preferable because the spinnability (threadability) of the discharged stock solution flow is reduced. On the other hand, if the polymer concentration is too high, depending on the amount of additives, the degree of porosity of the resulting hollow fiber membrane will be small, and the spinning temperature will be set high due to the high viscosity of the raw solution, resulting in a wet-dry spinning method. It is thought that the formation of a dense layer on the surface of the hollow fiber membrane in the dry section is excessively promoted.

そのためこのよう、な中空糸膜は、酸素透過速度が小さ
くて好捷しくない。
Therefore, such a hollow fiber membrane has a low oxygen permeation rate and is not suitable.

またエチルセルロースを主体とする紡糸原液は溶剤、添
加剤の組合せやその組成により多少異なるが、原液粘度
の温度依存性が高い。つまり原液温度が低下すると原液
粘度は急激に高くなりゲル化しやすい。この特性は気体
注入法で中空糸膜を成形する場合、非常に有利な特性で
ある。またゲル化と共に相分離12.不透明ゲルとなる
特徴がある。この温度変化のみで相分離する特性は多孔
構造を形成させる際有用である。
Furthermore, the viscosity of the spinning dope mainly composed of ethyl cellulose is highly temperature dependent, although it varies somewhat depending on the combination of solvent and additives and its composition. In other words, when the temperature of the stock solution decreases, the viscosity of the stock solution increases rapidly and gelation tends to occur. This characteristic is very advantageous when forming hollow fiber membranes by the gas injection method. In addition, phase separation occurs along with gelation 12. It has the characteristic of being an opaque gel. This property of phase separation due to temperature change alone is useful when forming a porous structure.

つまり紡糸温度(口金温度)の設定も2本発明のj膜構
造を形成させる重要な因子の−っである。
In other words, setting the spinning temperature (die temperature) is also an important factor in forming the membrane structure of the present invention.

設定温度が低すぎると曳糸性がなくなり紡糸状態が不安
定となるとともに、凝固糸は極端に弱くなり取扱い上不
利である。また設定温度が高すぎると原液粘度が低くな
りすき気体注入法で中空糸膜を形成させることが困難と
なる。
If the set temperature is too low, the spinnability will be lost and the spinning state will become unstable, and the coagulated yarn will become extremely weak, which is disadvantageous in terms of handling. Moreover, if the set temperature is too high, the viscosity of the stock solution will become low, making it difficult to form a hollow fiber membrane by the gas injection method.

紡糸温度を高めに設定し9口金から押出されたゾル状態
の中空糸のゲル化、相分離が進まないうちに凝固浴に導
くと、比較的表面の緻密な中空糸膜が得られ、逆に紡糸
温度を低めに設定したり。
If the spinning temperature is set high and the hollow fibers in the sol state extruded from the nine spindles are introduced into the coagulation bath before gelation and phase separation progress, a hollow fiber membrane with a relatively dense surface will be obtained; Set the spinning temperature lower.

乾式部(口金面から凝固液面までの距離)を長くしたシ
すると比較的粗な膜構造の中空糸膜となる。
If the dry part (distance from the mouth surface to the solidified liquid level) is lengthened, the hollow fiber membrane will have a relatively rough membrane structure.

つまり紡糸温度や乾式部を適当に選択することにより本
発明の実質的な細孔を有しない緻密層を表層部にもつ異
方性中空糸膜が得られる。原液組成、ポリマ濃度等によ
り異なるが、紡糸温度としては50〜160°C9乾式
長としては02cm〜50cmの範囲で選択される。
In other words, by appropriately selecting the spinning temperature and drying zone, it is possible to obtain the anisotropic hollow fiber membrane of the present invention having a dense layer in the surface layer having no substantial pores. Although it varies depending on the composition of the stock solution, polymer concentration, etc., the spinning temperature is selected from 50 to 160° C.9 and the dry length is selected from the range of 0.2 cm to 50 cm.

次に凝固浴としては、使用した溶剤の水溶液が好1しく
用いられる。通常浴組成としては溶剤を5%以上含むも
のが好ましい。溶剤の比率が少なすぎる場合は凝固時に
いわゆるスキン層の形成が過度に促進される傾向があり
、高濃度原液を用いた場合と同様に9分離係数(α)0
ま良好だが、酸素透過速度の小さい中空糸膜になりやす
い。
Next, as the coagulation bath, an aqueous solution of the used solvent is preferably used. Usually, the bath composition preferably contains 5% or more of a solvent. If the proportion of the solvent is too small, the formation of a so-called skin layer during coagulation tends to be excessively promoted, and as with the case of using a high concentration stock solution, the separation coefficient (α) of 9
It's good, but it tends to be a hollow fiber membrane with a low oxygen permeation rate.

凝固浴温度については特に限定はないが10〜60℃の
浴温か好ましく用いられる。浴温か高いほど平均的に粗
な膜構造になり、逆に低温浴はど前述[また高濃度原液
から得られる中空糸膜と同様表面開孔率が非常に小さい
、いわゆる緻密層を形成しやすいと考えられ9分離係数
の大きい中空糸膜を得やすい。
There are no particular limitations on the temperature of the coagulation bath, but a bath temperature of 10 to 60°C is preferably used. The higher the bath temperature, the rougher the membrane structure will be on average; conversely, a lower temperature bath will tend to form a so-called dense layer with a very small surface porosity, similar to the hollow fiber membranes obtained from high-concentration stock solutions. 9, it is easy to obtain a hollow fiber membrane with a large separation coefficient.

また熱水処理温度は50〜100’aの範囲が好ましく
用いられる。この熱水処理工程は凝固で形成された膜構
造を固定化する意味で重要である。
The hot water treatment temperature is preferably in the range of 50 to 100'a. This hot water treatment step is important in terms of fixing the membrane structure formed by coagulation.

つtり中空糸膜に残存する溶媒や添加剤を除去するとと
もに熱処理を施して、中空糸の乾燥時の寸法変化を抑制
する。
Solvents and additives remaining in the hollow fiber membranes are removed and heat treatment is performed to suppress dimensional changes during drying of the hollow fibers.

熱水処理の完了した中空糸膜は通常の方法、つまり熱風
あるいは加熱ローラ面と接触させることにより乾燥され
る。乾燥温度は通常30〜100℃の範囲が選択される
After the hydrothermal treatment, the hollow fiber membrane is dried in a conventional manner, ie, by contacting it with hot air or a heated roller surface. The drying temperature is usually selected within the range of 30 to 100°C.

本発明における中空糸膜の孔径分布は水銀圧入法で測定
した。すなわち水銀圧入法で測定した累積細孔体積(V
)と孔径(r)の関係から、cLV/’d (Jog 
r )とrの関係を出して求たものである。
The pore size distribution of the hollow fiber membrane in the present invention was measured by mercury porosimetry. In other words, the cumulative pore volume (V
) and pore diameter (r), cLV/'d (Jog
It was obtained by calculating the relationship between r ) and r.

孔径分布のピークとは累積細孔体積と孔径の関係図で傾
きの・一番大きなところに対応する。
The peak of the pore size distribution corresponds to the point where the slope is the largest in the relationship diagram between cumulative pore volume and pore size.

測した酸素透過速度より算出した0 得られた中空糸膜の性能評価はガラス管小型モジュール
を用いて行なった。具体的には、外径OD(雷)、有効
長7(c+n)の中空糸膜をn(本)束ねて作製した小
型モジュールに、ボンベより1.0y/♂G に調圧し
た酸素を供給シフ、中空糸膜を透過してモジュールよυ
でてくる単位時間当りの酸素流量q (Hz/工)を薄
膜式流量計を用いて測定した。透過方向は中空糸外表面
から内表面であり、中空糸膜の外表面積を有効膜面積と
して酸素透過速度QO7(ぜ/ml・hr−atm)を
次式より算出した。
0 calculated from the measured oxygen permeation rate. Performance evaluation of the obtained hollow fiber membrane was performed using a small glass tube module. Specifically, oxygen regulated to 1.0y/♂G is supplied from a cylinder to a small module made by bundling n (n) hollow fiber membranes with an outer diameter OD (lightning) and an effective length of 7 (c+n). Schiff passes through the hollow fiber membrane to the module υ
The resulting oxygen flow rate q (Hz/unit) per unit time was measured using a thin film flow meter. The permeation direction was from the outer surface of the hollow fiber to the inner surface, and the oxygen permeation rate QO7 (ze/ml·hr-atm) was calculated from the following formula using the outer surface area of the hollow fiber membrane as the effective membrane area.

また窒素透過速度QN、も同様の方法で評価測定を行な
い、これらの値より分離係数(α=Q、O,/QN、 
)を算出した。
In addition, the nitrogen permeation rate QN was evaluated and measured using the same method, and from these values, the separation coefficient (α=Q, O, /QN,
) was calculated.

実施例1〜3 化 市販のエチルセルロース(関東Yfk−学、 試薬I 
DOcps)210部iDMF385部に120℃で攪
拌溶解した。同温度で撹拌を続けながらEoIDs部?
滴下部会滴下混合溶液を得た。この溶液の粘度は110
°Cで575ポイズであり、75”Cでゲル化L7.実
質的に曳糸性を示さなくなった。この原液′fr濾過濾
過池脱泡後、2重管型の中空糸用口金を通して空気中に
吐出した。同時に中空糸内部には窒素を注入圧18.5
 mm H,Oで注入した。この時の紡糸温度(口金温
度)は90°C1乾式長は5肛に保持した。次いで50
重量%DMF水溶液からなる30℃の凝固浴に浸漬した
後、水洗し、更に50°Cで50秒間熱水処理を施した
。そして引続き40°Cの熱風で乾燥後巻取った。
Examples 1 to 3 Commercially available ethyl cellulose (Kanto Yfk-gaku, Reagent I
The mixture was stirred and dissolved in 210 parts (DOcps) of 385 parts iDMF at 120°C. EoIDs section while continuing to stir at the same temperature?
A mixed solution was obtained. The viscosity of this solution is 110
575 poise at 75"C and gelatinized L7 at 75"C. It virtually no longer showed any stringiness. After degassing this stock solution'fr filtration filter, it was passed through a double-tube type hollow fiber nozzle into the air. At the same time, nitrogen was injected into the hollow fiber at a pressure of 18.5
Injected with mm H,O. At this time, the spinning temperature (mouth temperature) was maintained at 90° C., and the dry length was maintained at 5 holes. then 50
After being immersed in a 30° C. coagulation bath consisting of a wt % DMF aqueous solution, it was washed with water and further subjected to hot water treatment at 50° C. for 50 seconds. Subsequently, it was dried with hot air at 40°C and then rolled up.

得られた中空糸膜は、外径602μ、膜厚52μ、真円
度(短径/長径)98%であった。この中空糸膜の構造
を第1〜3図に、また性能、孔径分布のピーク位置およ
び緻密層の厚さく計算値)を、紡糸温度、熱水処理温度
を変更して得た中空糸膜と共に表1に示した。
The obtained hollow fiber membrane had an outer diameter of 602 μm, a membrane thickness of 52 μm, and a circularity (shorter axis/longer axis) of 98%. The structure of this hollow fiber membrane is shown in Figures 1 to 3, and its performance, peak position of pore size distribution, and calculated value of dense layer thickness are also shown along with hollow fiber membranes obtained by changing the spinning temperature and hot water treatment temperature. It is shown in Table 1.

表  1 *QO3酸素透過速度Cm”/ m’ ・hr−atm
 〕比較例1〜2 溶媒としてDMFの代りにNM、Pを用いた以外は実施
例1と同様の方法でエチルセルロース濃度65係および
28チ(添加剤EGの添加量はそれぞれ10係、 20
tI))の紡糸原液を調整した。それぞれの粘度は41
0ボイズ/14 D’0.168ポイズ/120°Cで
あり均一な溶液であった。
Table 1 *QO3 oxygen permeation rate Cm"/m' ・hr-atm
[Comparative Examples 1 to 2] Ethyl cellulose concentrations were 65 parts and 28 parts by the same method as in Example 1 except that NM and P were used instead of DMF as the solvent (the amount of additive EG added was 10 parts and 20 parts, respectively).
A spinning stock solution of tI)) was prepared. The viscosity of each is 41
The solution was 0 poise/14 D'0.168 poise/120°C, and was a homogeneous solution.

55係原液の場合は、実施例1と同様の口金より紡糸温
度120°C9乾式長50mm、窒素注入圧15皿H2
0で吐出し、30%NMP水溶液からなるIO’cの凝
固浴に浸漬した後、水洗し、更に90゛Cで約1秒間熱
水処理を施した。そして引続き65゛Cの熱風で乾燥後
巻取った。得られた中空糸膜の性能は分離係数は27と
優れていたが、酸素透過速度は、 0.0’0’7m’
/m”、hr、atmと低かった。
In the case of stock solution No. 55, the spinning temperature was 120°C, the dry length was 50 mm, and the nitrogen injection pressure was 15 dishes H2 using the same spindle as in Example 1.
The sample was discharged at 0°C, immersed in an IO'c coagulation bath consisting of a 30% NMP aqueous solution, washed with water, and further subjected to hot water treatment at 90°C for about 1 second. Subsequently, it was dried with hot air at 65°C and then rolled up. The performance of the obtained hollow fiber membrane was excellent with a separation coefficient of 27, but an oxygen permeation rate of 0.0'0'7 m'
/m”, hr, and atm.

この中空糸膜の孔径分布を水銀圧入法で測定したところ
、孔径分布のピーク位置は2ooXであった。一方、2
8%原液の場合は紡糸温度93°C2乾式長7 mm 
、窒素注入圧14mmH,Oで吐出し、30%NMP水
溶液からなる50℃の凝固浴に浸漬したのち、水洗し、
更に90“Cで約1秒間熱水処理を施した。そして引続
き65°Cの熱風で乾燥した。
When the pore size distribution of this hollow fiber membrane was measured by mercury intrusion method, the peak position of the pore size distribution was 2ooX. On the other hand, 2
For 8% stock solution, spinning temperature 93°C2 dry length 7 mm
, discharged at a nitrogen injection pressure of 14 mm H, O, immersed in a coagulation bath of 30% NMP aqueous solution at 50°C, and then washed with water.
Further, it was subjected to hot water treatment at 90"C for about 1 second. Then, it was dried with hot air at 65°C.

この中空糸膜の性能は酸素透過速度は50 m’/ m
”・hr 、atm 以上と非常に大きいが9分離係数
は10とほとんど分離性能を示さなかった。この中空糸
膜の孔径分布を水銀圧入法で測定した結果、孔径分布の
ピーク位置は6DOOAであった。
The performance of this hollow fiber membrane is that the oxygen permeation rate is 50 m'/m
Although the 9-separation factor was 10, which showed almost no separation performance, the pore size distribution of this hollow fiber membrane was measured by mercury intrusion method, and the peak position of the pore size distribution was found to be 6DOOA. Ta.

実施例4 実施例1で用いたエチルセルロース122部とセルロー
ストリアセテート(イーストマン製、CA455−85
s)55部をNMP485部に120℃で攪拌溶解した
。同温度で攪拌を続けなからEG140部を滴下混合し
均一な溶液を得た。
Example 4 122 parts of ethylcellulose used in Example 1 and cellulose triacetate (manufactured by Eastman, CA455-85)
s) 55 parts were dissolved in 485 parts of NMP at 120°C with stirring. While stirring at the same temperature, 140 parts of EG was added dropwise and mixed to obtain a uniform solution.

この溶液の粘度は120℃で560ボイズであり。The viscosity of this solution was 560 voids at 120°C.

90℃でゲル化し、実質的に曳糸性を示さなくなった。It gelatinized at 90° C. and showed virtually no stringiness.

この原液を、紡糸温度100℃、乾式長20 mm。This stock solution was spun at a spinning temperature of 100°C and a dry length of 20 mm.

窒素の注入圧18.5 mm H,Of実施例1と同様
の方法で吐出し、10重量係NMP水溶液からなる50
°0の凝固浴に浸漬凝固し、水洗した後、50℃で50
秒間熱水処理を施した。そして引続@40°Cの熱風で
乾燥し巻取った。
Nitrogen was injected at an injection pressure of 18.5 mm H, and was discharged in the same manner as in Example 1.
After coagulation by immersion in a coagulation bath at °0 and washing with water,
A second hot water treatment was performed. Then, it was subsequently dried with hot air at @40°C and rolled up.

得られた中空糸膜は外径417μ、膜厚63μ。The obtained hollow fiber membrane had an outer diameter of 417μ and a membrane thickness of 63μ.

真円度96eI)であった。また水銀圧入法で測定した
中空糸膜の孔径分布のピーク位置は700Aであった。
The roundness was 96eI). Further, the peak position of the pore size distribution of the hollow fiber membrane measured by mercury intrusion method was 700A.

得られた中空糸膜の性能は、 QO,= 0.24 (
m/m’、 hr、atm) 、 a = 2.8であ
り、 x チルセ/L/ O−ス単独の場合と比較して
、Qo、U低下するがαの向上が認められた。また機械
的特性(中空糸膜の引張り強度)はむしろ向上した。
The performance of the obtained hollow fiber membrane is QO, = 0.24 (
m/m', hr, atm), a = 2.8, and compared with the case of x Circe/L/O-su alone, Qo and U decreased, but α was improved. Moreover, the mechanical properties (the tensile strength of the hollow fiber membrane) were rather improved.

【図面の簡単な説明】[Brief explanation of drawings]

図1は1本発明の実施例1で得られた異方性中空糸膜の
断面の、また図2,3はそれぞれ図1の断面の外表層部
および内表層部の電子顕微鏡写真であり9図1の倍率は
1000倍1図2.6は10000倍で撮影したもので
ある。
1 is an electron micrograph of a cross section of the anisotropic hollow fiber membrane obtained in Example 1 of the present invention, and FIGS. 2 and 3 are electron micrographs of the outer surface layer and inner surface layer of the cross section shown in FIG. 1, respectively. The magnification of Fig. 1 is 1000x, and Fig. 2.6 was taken at 10000x.

Claims (1)

【特許請求の範囲】[Claims] エチルセルロースを主成分とする中空繊維膜であり。外
表層部に緻密層全もち、内層部および内表層部は孔径分
布のピークの位置が500〜5000ハの範囲にある網
目状多孔層である。酸素透過法度が0.2 m” / 
m’ −hr 、atm以上でかつ分離係数(窒素に対
する酸素の透過速度比)が26以上である異方性中空糸
膜。
It is a hollow fiber membrane whose main component is ethyl cellulose. The outer surface layer has a dense layer, and the inner layer and inner surface layer are network-like porous layers in which the peak position of the pore size distribution is in the range of 500 to 5000 mm. Oxygen permeability is 0.2 m” /
m'-hr, atm or more and a separation coefficient (permeation rate ratio of oxygen to nitrogen) of 26 or more.
JP4232583A 1983-03-16 1983-03-16 Anisotropic hollow yarn membrane Pending JPS59169510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4232583A JPS59169510A (en) 1983-03-16 1983-03-16 Anisotropic hollow yarn membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4232583A JPS59169510A (en) 1983-03-16 1983-03-16 Anisotropic hollow yarn membrane

Publications (1)

Publication Number Publication Date
JPS59169510A true JPS59169510A (en) 1984-09-25

Family

ID=12632852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4232583A Pending JPS59169510A (en) 1983-03-16 1983-03-16 Anisotropic hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPS59169510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207721A2 (en) 1985-06-27 1987-01-07 A/G Technology Corporation Anisotropic membranes for gas separation
US4990165A (en) * 1987-07-31 1991-02-05 Union Carbide Industrial Gases Technology Corporation Permeable membranes for enhanced gas separation
US5160353A (en) * 1990-08-30 1992-11-03 E. I. Du Pont De Nemours & Company Gas separation membrane with ultrathin layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207721A2 (en) 1985-06-27 1987-01-07 A/G Technology Corporation Anisotropic membranes for gas separation
EP0207721B1 (en) * 1985-06-27 1991-01-23 A/G Technology Corporation Anisotropic membranes for gas separation
US4990165A (en) * 1987-07-31 1991-02-05 Union Carbide Industrial Gases Technology Corporation Permeable membranes for enhanced gas separation
US5160353A (en) * 1990-08-30 1992-11-03 E. I. Du Pont De Nemours & Company Gas separation membrane with ultrathin layer

Similar Documents

Publication Publication Date Title
JPS6214642B2 (en)
JPS58114702A (en) Polysulfone hollow fiber membrane and its production
JP2542572B2 (en) Hollow fiber
JPS59166208A (en) Manufacture of gas separating membrane
JPS59169510A (en) Anisotropic hollow yarn membrane
JP3212313B2 (en) Hollow fiber blood purification membrane and method for producing the same
JP2818366B2 (en) Method for producing cellulose ester hollow fiber membrane
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPS6229524B2 (en)
JP2818352B2 (en) Manufacturing method of hollow fiber membrane
JPS6118402A (en) Hollow yarn membrane for gas separation and preparation thereof
JP3317876B2 (en) Method for producing hollow fiber type blood purification membrane
JP2512909B2 (en) Method for producing hollow fiber porous membrane
JPS60209205A (en) Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride
JP2675197B2 (en) Manufacturing method of high strength and porous polysulfone hollow fiber membrane
JP2818355B2 (en) Manufacturing method of hollow fiber membrane
JPS59169509A (en) Hollow yarn membrane for separating gas and preparation thereof
JP2000107577A (en) Production of permselective hollow fiber membranes
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane
JP2818359B2 (en) Method for producing cellulose triacetate hollow fiber membrane
JP3224307B2 (en) Manufacturing method of hollow fiber membrane
JP2002517326A (en) Method for producing cellulosic molded article
JPS6043442B2 (en) Manufacturing method of cellulose derivative hollow fiber with excellent permselectivity
JPS6042285B2 (en) Method for producing permselective cellulose acetate hollow fibers
JPS6350513A (en) Production of hollow fiber