JPS6118402A - Hollow yarn membrane for gas separation and preparation thereof - Google Patents
Hollow yarn membrane for gas separation and preparation thereofInfo
- Publication number
- JPS6118402A JPS6118402A JP59137283A JP13728384A JPS6118402A JP S6118402 A JPS6118402 A JP S6118402A JP 59137283 A JP59137283 A JP 59137283A JP 13728384 A JP13728384 A JP 13728384A JP S6118402 A JPS6118402 A JP S6118402A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- membrane
- fiber membrane
- oxygen
- hollow yarn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 81
- 238000000926 separation method Methods 0.000 title claims abstract description 34
- 239000012510 hollow fiber Substances 0.000 claims abstract description 66
- 239000000463 material Substances 0.000 claims abstract description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000001301 oxygen Substances 0.000 claims abstract description 31
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 31
- OMIHGPLIXGGMJB-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]hepta-1,3,5-triene Polymers C1=CC=C2OC2=C1 OMIHGPLIXGGMJB-UHFFFAOYSA-N 0.000 claims abstract description 17
- 230000035699 permeability Effects 0.000 claims abstract description 14
- 239000011248 coating agent Substances 0.000 claims abstract description 10
- 238000000576 coating method Methods 0.000 claims abstract description 10
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000007789 gas Substances 0.000 claims description 29
- 229920000642 polymer Polymers 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000011049 filling Methods 0.000 claims description 2
- 239000002861 polymer material Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 2
- 238000009987 spinning Methods 0.000 abstract description 15
- 239000002904 solvent Substances 0.000 abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 8
- 229920001400 block copolymer Polymers 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- ICMZFZGUTLNLAJ-UHFFFAOYSA-N 2,6-dimethyl-7-oxabicyclo[4.1.0]hepta-2,4-diene Chemical compound CC1=CC=CC2(C)OC12 ICMZFZGUTLNLAJ-UHFFFAOYSA-N 0.000 abstract description 2
- 230000001112 coagulating effect Effects 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 abstract 1
- 239000002994 raw material Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 239000011550 stock solution Substances 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 238000005345 coagulation Methods 0.000 description 7
- 230000015271 coagulation Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 6
- -1 polypropylene Polymers 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000012456 homogeneous solution Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- YWLQHMWZJVYCFM-UHFFFAOYSA-N 4,5-dimethyl-7-oxabicyclo[4.1.0]hepta-1(6),2,4-triene Chemical compound CC1=CC=C2OC2=C1C YWLQHMWZJVYCFM-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- GCSJLQSCSDMKTP-UHFFFAOYSA-N ethenyl(trimethyl)silane Chemical compound C[Si](C)(C)C=C GCSJLQSCSDMKTP-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/52—Polyethers
- B01D71/522—Aromatic polyethers
- B01D71/5223—Polyphenylene oxide, phenyl ether polymers or polyphenylethers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は気体分離用中空糸膜およびその製造法に関する
ものであり、特に空気から酸素富化空気を得るために有
効な、気体の透過量が大きく、かつ選択性にすぐれた中
空糸膜およびその製造方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hollow fiber membrane for gas separation and a method for producing the same. The present invention relates to a hollow fiber membrane with a high selectivity and a method for producing the same.
[従来の技術]
膜を用いて気体混合物より特定の気体を分離、濃縮する
方法はすでによく知られているが、空気から酸素富化空
気を得る場合にも、いかに小型のI装胃で、いかに大量
の気体透過量を得るかが大きな技術課題である。通常均
一膜中を通過する酸素(および窒素)の透過速度QOZ
、Qizおよび分離係数(α)は次式で表わされる。[Prior Art] The method of separating and concentrating a specific gas from a gas mixture using a membrane is already well known, but when obtaining oxygen-enriched air from air, no matter how small the I-package is, A major technical challenge is how to obtain a large amount of gas permeation. Permeation rate of oxygen (and nitrogen) through a normal homogeneous membrane QOZ
, Qiz and the separation coefficient (α) are expressed by the following equation.
Q OL= P o>/ n % QNZ = P I
J2L/αα= Pa2/ PNZ = Qo、/ Q
sz。QOL= P o>/n% QNZ=PI
J2L/αα= Pa2/ PNZ = Qo, / Q
sz.
Q:気体の透過速度[a(/ad −sec −cmH
q ]P:気体の透過係数[cy#−ava/cl −
sea −ci+)1o]
α:分離係数
Q:WI厚[cm]
つまり、Po、、Pu2、αは膜素材で決定されるファ
クターであり、Potおよびαの大きい素材の開発と、
その素材の膜厚(n)を小さくする技術が重要である。Q: gas permeation rate [a(/ad -sec -cmH
q ]P: Gas permeability coefficient [cy#-ava/cl-
sea -ci+)1o] α: Separation coefficient Q: WI thickness [cm] In other words, Po, Pu2, α are factors determined by the membrane material, and the development of materials with large Pot and α,
A technique for reducing the film thickness (n) of the material is important.
更に実際使用する場合には膜の形態も重要であり、単位
体積当りの表面積が大きい中空糸膜が平膜より一般的に
有利であるとされている。Furthermore, in actual use, the form of the membrane is also important, and hollow fiber membranes having a larger surface area per unit volume are generally considered to be more advantageous than flat membranes.
さて多孔質中空繊維支持体上に機能ポリマーをコーティ
ングした、いわゆる気体分離用複合中空糸膜としては種
々知られてい゛る。例えば特開昭54−102292号
公報ではポリプロピレン等の中空糸にシリコーン、ポリ
−2,6ジメチルフエニレンオキシド、エチルセルロー
スなどの高分子薄膜を形成させた複合中空糸が開示され
ている。Now, various so-called composite hollow fiber membranes for gas separation, in which a functional polymer is coated on a porous hollow fiber support, are known. For example, JP-A-54-102292 discloses a composite hollow fiber in which a thin film of a polymer such as silicone, poly-2,6 dimethylphenylene oxide, or ethyl cellulose is formed on a hollow fiber such as polypropylene.
そこでは支持体中空糸にN2ガス透過速度の比較的大き
なものを用いているが、しかしかかる粗な躾の表面に薄
くて欠陥のないコーテイング膜を作ることができず、高
いαを維持するためには膜厚を大きくせざるを得ない。In this method, a support hollow fiber with a relatively high N2 gas permeation rate is used, but it is not possible to create a thin and defect-free coating film on such a rough surface, and it is necessary to maintain a high α. Therefore, the film thickness must be increased.
よって複合膜の透過速度が小さくなるという欠点があっ
た。また特開昭53−86684号公報では、複合膜の
分離性能におよぼす支持膜の分離性能や構造について述
べているが、もともと支持膜素材のPo、が比較的小さ
いのであるから、複合膜の透過速度が小さくならざるを
得なかった。その他、特公昭54−17052号公報で
は酢酸セルロース中空繊維等にシリコーンをコーティン
グしたもの、特開昭54−103788号公報では多孔
質ポリ塩化ビニリデン中空糸に高分子薄膜を形成させた
ものなどが開示されているが事情はさして変わらない。Therefore, there was a drawback that the permeation rate of the composite membrane was low. In addition, JP-A-53-86684 describes the separation performance and structure of the support membrane that affect the separation performance of the composite membrane, but since Po of the support membrane material is relatively small to begin with, the permeation of the composite membrane is The speed had to be reduced. In addition, Japanese Patent Publication No. 54-17052 discloses a cellulose acetate hollow fiber coated with silicone, and JP-A-54-103788 discloses a porous polyvinylidene chloride hollow fiber coated with a thin polymer film. However, the situation does not change much.
さて、従来よりポリ2,6一ジ置換フエニレンオキシ丁
は酸素の選択透過性が高いことからコーティング材料と
して使われてきた。ポリ2,6−ジ置換フェニレンオキ
シド中空糸膜は製造条件の選択により表面に均一層を有
する(つまり分離係数がポリ2,6−ジ置換フェニレン
オキシド固有の値に近い)多孔質中空繊維も製造可能で
ある。Heretofore, poly-2,6-disubstituted phenyleneoxyethylene has been used as a coating material because of its high oxygen permselectivity. Poly 2,6-disubstituted phenylene oxide hollow fiber membranes can also be produced as porous hollow fibers that have a uniform layer on the surface (that is, the separation coefficient is close to the value unique to poly 2,6-disubstituted phenylene oxide) by selecting manufacturing conditions. It is possible.
しかし、そうしようとすればどうしても緻密層の厚さが
増し、酸素の透過速度は低下する。However, if this is attempted, the thickness of the dense layer will inevitably increase and the oxygen permeation rate will decrease.
そこで、緻密層が薄くなるように製造条件を選ぶと、中
空糸膜の分離係数はポリ2.6−ジ置換フェニレンオキ
シド本来の特性より低下するようになる。つまり薄くし
て欠陥のない緻密層はつ(れない。Therefore, if manufacturing conditions are selected so that the dense layer becomes thinner, the separation coefficient of the hollow fiber membrane becomes lower than the original properties of poly2,6-disubstituted phenylene oxide. In other words, it is impossible to create a thin, defect-free dense layer.
[発明が解決しようとする問題点]
本発明の目的は、中空糸多孔膜素材として十分な成形性
を有し、さらに酸素の透過速度(Qo、)が高く、分離
係数(α)に優れたポリ2,6−ジ置換フェニレンオキ
シドを主体としてなる中空糸膜を得ることにある。[Problems to be Solved by the Invention] The object of the present invention is to provide a material that has sufficient formability as a hollow fiber porous membrane material, has a high oxygen permeation rate (Qo, ), and has an excellent separation coefficient (α). The object of the present invention is to obtain a hollow fiber membrane mainly composed of poly-2,6-disubstituted phenylene oxide.
[問題点を解決するための手段] 本発明は次の構成を有する。[Means for solving problems] The present invention has the following configuration.
(1) ポリ2.6−ジ置換フェニレンオキシド系多
孔質中空繊維に該ポリマ素材より酸素透過係数の大きい
目詰材を塗布したことを特徴とするポリ2゜6−ジ置換
フェニレンオキシドを主体としてなる気体分離用中空糸
膜。(1) Poly 2.6-di-substituted phenylene oxide based porous hollow fibers coated with a plugging material having a higher oxygen permeability coefficient than the polymer material. A hollow fiber membrane for gas separation.
(2) 目詰材の酸素透過係数がi、oxio−a7
−am/al−sea −csHg (25℃)以上で
ある特許請求の範囲第1項記載の気体分離用中空糸膜。(2) The oxygen permeability coefficient of the plugging material is i, oxio-a7
-am/al-sea-csHg (25°C) or higher, the hollow fiber membrane for gas separation according to claim 1.
を含む重合体である特許請求の範囲第1項記載の気体分
離用中空糸膜。The hollow fiber membrane for gas separation according to claim 1, which is a polymer comprising:
本発明に用いられるポリフェニレンオキシドはこの重合
体を主体とするブレンド物をも含む。The polyphenylene oxide used in the present invention also includes blends mainly composed of this polymer.
このような重合体の代表例としてはポリ−2゜6ジメチ
ルフエニレンオキシドを挙げることかできる。上記ポリ
2,6−ジ置換フェニレンオキシドの低分子量の重合体
は紡糸性に難点があるので好ましくなく、数平均分子量
(GPC法)が1万以上、更に好ましくは3万以上のも
のがよい。A typical example of such a polymer is poly-2.6 dimethylphenylene oxide. Low molecular weight polymers of the above-mentioned poly-2,6-disubstituted phenylene oxide are not preferred because they have problems in spinnability, and those with a number average molecular weight (GPC method) of 10,000 or more, more preferably 30,000 or more are preferable.
ポリ2,6−ジ置換フェニレンオキシドの溶剤としでは
特に制限はないが、具体的にはベンゼン、トルエン、ク
ロロホルム、更には加温することにより均一溶液となる
N−メチル−2ピロリドン、ジメチルホルムアミド、ジ
メチルアセトアミド等を挙げることができる。更に必要
ならポリ2,6−ジ置換フェニレンオキシドの非溶剤を
添加剤として加えることもできる。There are no particular restrictions on the solvent for poly-2,6-disubstituted phenylene oxide, but specific examples include benzene, toluene, chloroform, N-methyl-2-pyrrolidone, dimethylformamide, which becomes a homogeneous solution upon heating, Dimethylacetamide and the like can be mentioned. Furthermore, if necessary, a non-solvent of poly2,6-disubstituted phenylene oxide can be added as an additive.
紡糸原液は選択した溶剤、添加剤の種類により多少異な
るが、ポリ2,6−ジ置換フェニレンオキシド濃度は2
0〜40重置%が好ましい。The spinning solution differs slightly depending on the selected solvent and additives, but the concentration of poly2,6-disubstituted phenylene oxide is 2.
0 to 40% overlap is preferred.
ポリマ濃度が低すぎる場合は原液粘度の低下により気体
注入法による中空糸膜の形成が困難になるとともに、吐
出原液流の紡糸性(曳糸性)が低下するので好ましくな
い。逆にポリマ濃度が高すぎる場合は、添加剤量にもよ
るが、得られる中空糸膜の多孔化の程度が小さく、さら
に原液粘度が高いことから紡糸温度を高く設定するため
、乾湿式紡糸法においては乾式部での中空糸膜の表面緻
密層の形成が過度に促進されると考えられる。そのため
このような中空糸膜は、酸素透過速度が小さくて好まし
くない。If the polymer concentration is too low, it is not preferable because the viscosity of the stock solution decreases, making it difficult to form a hollow fiber membrane by the gas injection method, and the spinnability (stringinability) of the discharged stock solution flow decreases. On the other hand, if the polymer concentration is too high, depending on the amount of additives, the degree of porosity of the resulting hollow fiber membrane will be small, and the spinning temperature will be set high due to the high viscosity of the raw solution, resulting in a wet-dry spinning method. It is thought that the formation of a dense layer on the surface of the hollow fiber membrane in the dry section is excessively promoted. Therefore, such a hollow fiber membrane has a low oxygen permeation rate and is not preferable.
また、本発明の紡糸原液は、溶剤、添加剤の組合せやそ
の組成により多少異なるが、原液温度が低下すると原液
は急激に高くなりゲル化する。この性質は気体注入法で
中空糸膜を成形する場合、非常に有利である。またゲル
化と共←相分離し不透明ゲルとなる特徴がある。したが
って紡糸温度(口金温度)の設定も重要である。設定温
度が低すぎると曳糸性がなくなり紡糸状態が不安定とな
るとともに、凝固糸は極端に弱くなり取扱い上不利であ
る。また設定温度が高すぎると原液粘度が低くなりすぎ
気体注入法で中空糸膜を形成させることが困難となる。Further, the spinning stock solution of the present invention varies somewhat depending on the combination of solvent and additives and its composition, but when the stock solution temperature decreases, the stock solution rapidly increases in temperature and gels. This property is very advantageous when forming hollow fiber membranes by the gas injection method. It also has the characteristic of co←phase separation with gelation to form an opaque gel. Therefore, setting the spinning temperature (orifice temperature) is also important. If the set temperature is too low, the spinnability will be lost and the spinning state will become unstable, and the coagulated yarn will become extremely weak, which is disadvantageous in terms of handling. Furthermore, if the set temperature is too high, the viscosity of the stock solution becomes too low, making it difficult to form a hollow fiber membrane by the gas injection method.
紡糸温度を高めに設定し、口金から押出されたゾル状態
の中空糸のゲル化、相分離が進まないうちに凝固浴に導
くと、比較的表面の緻密な中空糸膜が得られ、逆に紡糸
温度を低目に設定すると、比較的粗な構造の中空糸膜と
なる。つまり紡糸温度を高めに設定し、乾式部(口金か
ら凝固液面までの1!111舗)を偵かくすることによ
り、そのままで選択性を示す(α〉1)中空糸膜が得ら
れる。If the spinning temperature is set high and the hollow fibers in the sol state extruded from the spinneret are introduced into the coagulation bath before gelation and phase separation progress, a hollow fiber membrane with a relatively dense surface can be obtained; If the spinning temperature is set to a low value, a hollow fiber membrane with a relatively rough structure will be obtained. In other words, by setting the spinning temperature to a high value and evacuating the dry section (1!111 points from the spinneret to the surface of the coagulating liquid), a hollow fiber membrane that exhibits selectivity (α>1) can be obtained as it is.
条件により異なるが紡糸温度は50〜160℃、乾式部
は211〜50m1の範囲で選択される。Although it varies depending on the conditions, the spinning temperature is selected in the range of 50 to 160°C, and the dry section is selected in the range of 211 to 50 m1.
次に凝固浴としては、使用した溶剤の溶液が用いられ、
溶剤が水溶性の場合には水溶液が好ましく用いられる。Next, a solution of the used solvent is used as a coagulation bath,
When the solvent is water-soluble, an aqueous solution is preferably used.
通常、浴組成としては溶剤を5%以上含むものが好まし
い。溶剤の比率が少なすぎる場合は凝固時にいわゆるス
キン層の形成が過渡に促進される傾向があり、i%II
[原液を用いた場合と同様に、分離係数(α)は良好だ
が、酸素透過速度の小さい中空糸膜になりやすい。Usually, the bath composition preferably contains 5% or more of a solvent. If the proportion of the solvent is too small, the formation of a so-called skin layer during solidification tends to be transiently promoted, and i% II
[Same as when using the stock solution, the separation coefficient (α) is good, but the hollow fiber membrane tends to have a low oxygen permeation rate.
凝固浴温度については特に制限はないが10〜60℃の
浴温が好ましく用いられる。浴温が高いほど平均的に粗
な膜構造にな−リ、逆に低温浴はど、前述した高濃度原
液から得られる中空糸膜と同様、表面開孔率が非常に小
さい、いわゆる均一膜を形成しやすいと考えられ、分離
係数は大きいが、酸素透過速度の小さい中空糸膜になる
。There is no particular restriction on the coagulation bath temperature, but a bath temperature of 10 to 60°C is preferably used. The higher the bath temperature, the rougher the membrane structure on average; conversely, the lower the temperature, the more the membrane structure becomes so-called uniform membrane with very small surface porosity, similar to the hollow fiber membrane obtained from the high-concentration stock solution mentioned above. This results in a hollow fiber membrane with a high separation coefficient but a low oxygen permeation rate.
また熱水処理温度は50〜100℃の範囲が好ましく用
いられる。この熱水処理工程は凝固で形成された膜構造
を固定化する意味で重要である。Further, the hot water treatment temperature is preferably in the range of 50 to 100°C. This hot water treatment step is important in terms of fixing the membrane structure formed by coagulation.
つまり中空糸膜に残存する溶媒や添加剤を除去するとと
もに熱処理を施して、中空糸の乾燥時の寸法変化を抑制
する。この工程は紡糸に直結した目詰材の浸漬処理を可
能にするには欠かせないものである。In other words, solvents and additives remaining in the hollow fiber membrane are removed and heat treatment is performed to suppress dimensional changes during drying of the hollow fiber. This step is indispensable in order to enable dipping treatment of the plugging material directly connected to spinning.
本発明に用いられるポリ2.6−ジ置換フヱニレンオキ
シド多孔質中空繊維は、ガス分子の平均自由行程の差に
よって分離が行なわれるのではなく、ガスの膜中への溶
解速度、拡散速度の差により混合ガスを分離するもので
あり、1.0を越える分離係数(Qo、/Quz)を示
す多孔質中空繊維である。In the poly 2,6-disubstituted phenylene oxide porous hollow fiber used in the present invention, separation is not performed by the difference in the mean free path of gas molecules, but by the dissolution rate and diffusion rate of the gas into the membrane. It is a porous hollow fiber that separates mixed gases based on the difference in the separation coefficient (Qo, /Quz) exceeding 1.0.
すなわち、目詰材による処理を行なわずともある程度酸
素富化性能を示す中空糸膜である。In other words, it is a hollow fiber membrane that exhibits oxygen enrichment performance to some extent even without treatment with a plugging material.
なお目詰前のポリ2.6−ジ置換フェニレンオキシド膜
の分離係数は本発明の効果を達成するには1.0を越え
て2.5未満、更に好ましくは1゜0を越えて2.0未
満がよい。分離係数が1.0以下であると目詰材による
酸素富化性能の顕在化が十分でなく、2.5以上だと、
酸素透過量が小さくなりすぎて十分な効果が得られない
。In order to achieve the effects of the present invention, the separation coefficient of the poly2,6-disubstituted phenylene oxide membrane before clogging is more than 1.0 and less than 2.5, more preferably more than 1.0 and less than 2.5. Less than 0 is better. If the separation coefficient is less than 1.0, the oxygen enrichment performance by the plugging material will not be fully realized, and if it is more than 2.5,
The amount of oxygen permeation becomes too small and a sufficient effect cannot be obtained.
本発明の特許請求の範囲第1項記載の「ポリ2゜6−ジ
置換フェニレンオキシドを主体としてなる気体分離用中
空糸膜Jの意味は、上述のような意味であり、全く分離
性能のない多孔質支持体に酸素富化性能の良好な素材を
コーチイブした複合中空糸膜と異なるものである。The meaning of "hollow fiber membrane J for gas separation mainly composed of poly-2゜6-disubstituted phenylene oxide" described in claim 1 of the present invention is as described above, and is a membrane having no separation performance at all. This is different from a composite hollow fiber membrane in which a porous support is coated with a material with good oxygen enrichment performance.
目詰材としては、酸素透過係数がポリ2.6−ジ置換フ
ェニレンオキシドと同等以上つまり1゜6x10−9o
(・CI/r:d−sec −co+HG (25℃)
以上、さらに好ましくは1.0x10−8cyJ−cm
lli −sec −cml−I 0以上のものが好ま
しい。具体に含む重合体やビニルシラン系重合体
のように側鎖にケイ素を含む重合体などが挙げられる。As a plugging material, the oxygen permeability coefficient is equal to or higher than that of poly2.6-disubstituted phenylene oxide, that is, 1°6x10-9o.
(・CI/r:d-sec-co+HG (25℃)
Above, more preferably 1.0x10-8cyJ-cm
lli -sec -cml-I 0 or more is preferred. Specific examples thereof include polymers containing silicon in their side chains, such as polymers containing silicon in their side chains, such as vinyl silane polymers.
後者の例として、例えばトリメチルビニルシラン重合体
が挙げられるが、既に説明した釘(本発明に用いる目詰
材としては透過係数の大きなものがより望ましく、前述
した、シルフェニレン構造単位とシクロキサン構造単位
を含む重合体の中から好ましく選択される。Examples of the latter include, for example, trimethylvinylsilane polymers, but the nails described above (a material with a large permeability coefficient is more desirable as a plugging material used in the present invention), It is preferably selected from among the polymers containing.
つまり本発明に使用される目詰材として用いられ重合体
の中でも特に好ましいのは次式で示されるシルフェニレ
ン−シロキサンブロック共重合体であり、好ましい共重
合体の各シーフェンスの長さm、nはそれぞれ10≦m
≦5000.Own≦500.0≦n/m≦20である
。That is, among the polymers used as the plugging material used in the present invention, particularly preferred is a silphenylene-siloxane block copolymer represented by the following formula, and the length of each sea fence of the preferred copolymer is m, Each n is 10≦m
≦5000. Own≦500.0≦n/m≦20.
n/mが大きすぎると、ブロック共重合体膜の強度が低
下するため好゛ましくない。If n/m is too large, the strength of the block copolymer film decreases, which is undesirable.
これらの重合体の中で、具体的にはn=380、n/m
=7のシルフェニレン・シロキサン共重合体は製膜性に
優れており、Poz=2.2x10−fad −all
o(−sea −ciHaと大きな酸素透過係数を有し
ており、特に好ましく用いられる。Among these polymers, specifically n=380, n/m
The silphenylene-siloxane copolymer with =7 has excellent film forming properties, and Poz = 2.2x10-fad -all
It has a large oxygen permeability coefficient of 0(-sea-ciHa) and is particularly preferably used.
これら目詰材の溶媒としては、上記重合体を溶解する溶
媒であればよいが、具体的には塩化メチレン、トリクロ
ロエチレン、クロロホルムなどのハロゲン化炭化水素、
テトラヒドロフラン、ジオキサンなどのエーテル化合物
、シクロヘキサン、イソペンタン、n−ヘキサン、トル
エンなどの炭化水素化合物、アセトン、シクロヘキサノ
ンなどのケトン化合物などが望ましい。The solvent for these plugging materials may be any solvent that dissolves the above polymer, but specifically, halogenated hydrocarbons such as methylene chloride, trichloroethylene, chloroform, etc.
Desirable examples include ether compounds such as tetrahydrofuran and dioxane, hydrocarbon compounds such as cyclohexane, isopentane, n-hexane, and toluene, and ketone compounds such as acetone and cyclohexanone.
上記溶剤中、特にシクロヘキサン、トルエン、クロロホ
ルムが好ましく用いられるが、支持中空糸膜に薄く塗布
し、素早く乾燥できるように、イソペンタンやn−ヘキ
サン等と混合して用いられる。Among the above-mentioned solvents, cyclohexane, toluene, and chloroform are particularly preferably used, but they are used in combination with isopentane, n-hexane, etc. so that they can be applied thinly to the supported hollow fiber membrane and dried quickly.
目詰め処理に用いられる目詰材の稀薄溶液の濃度は0.
01〜5.0重量%、より好ましくは0゜1〜2重量%
の範囲にあるのが望ましい。この範囲よりも低い場合は
目詰効果が十分でなく、またこの範囲よりも高い場合に
は厚さムラが生じやすくなる。The concentration of the dilute solution of the plugging material used in the plugging process is 0.
0.01 to 5.0% by weight, more preferably 0.1 to 2% by weight
It is desirable that it be within the range of . When it is lower than this range, the clogging effect is not sufficient, and when it is higher than this range, thickness unevenness tends to occur.
目詰材の稀薄溶液への浸漬処理は、熱水処理後の中空1
11Hを一度巻取り、その後に行なってもよいが、紡糸
に直結して、連続処理する事が好ましい。The process of dipping the plugging material in a dilute solution is to
Although 11H may be wound up once and then carried out, it is preferable to carry out continuous processing directly connected to spinning.
、 浸漬時間は溶液の濃度にもよるが、通常1分以下好
ましくは10秒以下である。処理時間が長いと溶液の取
り込み量が増し、目詰および、または被覆量が増大し好
ましくない。つまり厚い均一な膜厚の被覆を形成させる
ことは、気体透過量の低下を招く。The immersion time depends on the concentration of the solution, but is usually 1 minute or less, preferably 10 seconds or less. If the treatment time is long, the amount of solution taken in will increase, resulting in increased clogging and/or coverage, which is not preferable. In other words, forming a thick and uniform coating results in a decrease in the amount of gas permeation.
被覆膜厚は、均一である必要はなく、通常厚い部分でも
3μ以下がこのましい。更に好ましくは1μ以下、更に
最も好ましくは0.1μ以下である。The thickness of the coating film does not need to be uniform, and is preferably 3 μm or less even in the thickest portions. More preferably it is 1μ or less, and most preferably 0.1μ or less.
浸漬処理の終了した中空糸膜は非接触型の乾燥−で少な
くも表面乾燥されるのが望ましい。必要なら更に熱風、
熱ローラ等で乾燥され巻き上げられる。乾燥温度は通常
30〜100℃の範囲で選択される。。It is desirable that the hollow fiber membrane after the immersion treatment be at least surface-dried by non-contact drying. More hot air if necessary,
It is dried and rolled up using a heated roller or the like. The drying temperature is usually selected in the range of 30 to 100°C. .
[作用]
多孔質中空IIAHを酸素透過係数の大きい材料でピン
ホール等の欠陥を目詰することにより透過量を保持しな
がら分離係数を高め、目詰材より分離係数の大きい膜を
得ることができる。酸素透過係数の大きい材料を用いる
ことにより、透過量を大きく損なうことがない。すなわ
ち、潜在化していたポリ2,6−ジ置換フェニレンオキ
シドの酸素富化性能が目詰材により顕在化される。[Function] By plugging defects such as pinholes in the porous hollow IIAH with a material having a high oxygen permeability coefficient, it is possible to increase the separation coefficient while maintaining the permeation amount and obtain a membrane with a higher separation coefficient than the plugging material. can. By using a material with a large oxygen permeability coefficient, the amount of permeation is not significantly impaired. That is, the latent oxygen enrichment performance of poly2,6-disubstituted phenylene oxide is brought to light by the plugging material.
[実施例コ
以下の実施例において得られた中空糸膜の性能評価はガ
ラス管小型モジュールを用いて行なった。[Example 2] Performance evaluation of the hollow fiber membranes obtained in the following examples was carried out using a small glass tube module.
具体的ニハ、外径0D(C1ll)、有効長ff(cm
l)中空糸膜をn(本)束ねて作製した小型モジュール
に、ボンベより1.0に9104−Gに調圧した酸素を
供給し、中空糸膜を透過してモジュールよりでてくる単
位時間当りの酸素流mq(mα/min )を薄膜式流
量削を用いて測定した。透過方向は中空糸外表面から内
表面であり、中空糸膜の外表面積を有効膜面積として酸
素透過速度QOt(m’/Tn2・hr−atlR)を
次式により算出した。Specific Niha, outer diameter 0D (C1ll), effective length ff (cm
l) A small module made by bundling n (n) hollow fiber membranes is supplied with oxygen whose pressure is adjusted to 1.0 to 9104-G from a cylinder, and the unit time for oxygen to pass through the hollow fiber membranes and come out of the module. The oxygen flow mq (mα/min) per unit was measured using a thin film flow cutter. The permeation direction was from the outer surface of the hollow fiber to the inner surface, and the oxygen permeation rate QOt (m'/Tn2·hr-atlR) was calculated using the following formula, using the outer surface area of the hollow fiber membrane as the effective membrane area.
Qoz=□01.oc、、LX 0 、6 [vn’/
m2− hr−atmコまた窒素透過速度QNzも同様
の方法で評価測定を行ない、これらの値より分離係数(
α−QOz/QN?−)を算出した。なおこれらのガス
透過流量は25℃、760m1HG換算の流量である。Qoz=□01. oc,,LX 0,6 [vn'/
m2-hr-atm The nitrogen permeation rate QNz was also evaluated and measured using the same method, and from these values the separation coefficient (
α-QOz/QN? −) was calculated. Note that these gas permeation flow rates are calculated at 25° C. and 760 m1HG.
またヘリウムおよび炭酸ガスの透過速度、Q He %
Qcozも同様の方法で測定した。また被覆膜厚は目
詰処理膜の0604染色超薄切片(断面)の透過電顕観
察により求めた・平均被覆膜厚とは、1サンプルにつき
5カ所を観察し、その被覆膜厚を平均したものである。Also, the permeation rate of helium and carbon dioxide gas, Q He %
Qcoz was also measured in the same manner. In addition, the coating film thickness was determined by transmission electron microscopy observation of a 0604-stained ultrathin section (cross section) of the plugged membrane.The average coating film thickness is the coating film thickness observed at 5 points per sample. is the average of
実施例1〜7
ポリー2.6ジメチルーフエニレンオキシド(Mn=3
2,000、以下PPOと略す)245部をN−メチル
−2ピロリドン(以下NMPと略す)420部に120
℃で攪拌溶解した。同温度で攪拌を続けながら、エチレ
ングリコール(以下EGと略す)35部を滴下混合し均
一な溶液を得た。この溶液は85℃で相分ll(不透明
化)を開始し、80℃では実質的に曳糸性を示さなかっ
た。この溶液を120℃のホッパーに保持し400メツ
シユのステンレスフィルターを通し濾過した後、2重管
型の中空糸用口金(1,8aunφ−1゜511III
φ)を通して空気中に2.H1/minで吐出した。同
時に中空糸内部には窒素を注入圧7mmH2Oで注入し
た。この時の紡糸温度(パック温度)は86℃で、紡糸
口金と凝固液面との距離(乾式長)は5miに保持した
。次いで30%NMP水溶液からなる30℃の凝固浴に
80CI11浸漬した後、水洗し、更に80℃で約50
秒間熱水処理を施した。そして引続き連続して目詰材の
0.3%溶液に約0.2秒浸漬した後、非接触タイプの
熱風乾燥筒に通して、35℃の熱風と向流で接触させ乾
燥し20111/1ainの速度で巻取った。また目詰
材の溶液に浸漬しないものを、非処理中空糸膜として同
様に乾燥し巻取った。得られた中空糸膜は処理の有無に
無関係で、外径534μ、膜厚71μ、真円喰(短径/
長径)96%であった。Examples 1-7 Poly2.6 dimethyl-phenylene oxide (Mn=3
2,000, hereinafter abbreviated as PPO) to 420 parts of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) to 120 parts.
The mixture was stirred and dissolved at ℃. While stirring at the same temperature, 35 parts of ethylene glycol (hereinafter abbreviated as EG) was added dropwise and mixed to obtain a uniform solution. This solution started to phase (opaque) at 85°C and showed virtually no stringiness at 80°C. This solution was kept in a hopper at 120°C and filtered through a 400-mesh stainless steel filter.
φ) into the air through 2. It was discharged at H1/min. At the same time, nitrogen was injected into the hollow fiber at an injection pressure of 7 mmH2O. The spinning temperature (pack temperature) at this time was 86° C., and the distance between the spinneret and the coagulation liquid level (dry length) was maintained at 5 mi. Next, 80CI11 was immersed in a 30°C coagulation bath consisting of a 30% NMP aqueous solution, washed with water, and further heated at 80°C for about 50°C.
A second hot water treatment was performed. Then, after being continuously immersed in a 0.3% solution of plugging material for about 0.2 seconds, it was passed through a non-contact type hot air drying cylinder and dried by being brought into contact with 35°C hot air in a countercurrent flow.20111/1ain It was wound at a speed of In addition, a membrane that was not immersed in the plugging material solution was similarly dried and wound up as an untreated hollow fiber membrane. The obtained hollow fiber membrane has an outer diameter of 534μ, a membrane thickness of 71μ, and a perfect circular diameter (minor diameter/
The length was 96%.
さらに原液組成、紡糸温度、熱水処理条件等を変更して
同様の方法で得た中空糸膜の性能および参考例として非
処理膜の性能を表1に示した。Furthermore, Table 1 shows the performance of hollow fiber membranes obtained in the same manner by changing the stock solution composition, spinning temperature, hot water treatment conditions, etc., and the performance of an untreated membrane as a reference example.
また用いた目詰材の稀薄溶液は、下記の構造式に示した
重合体であるシルフェニレン・シロキサン共重合体をシ
クロヘキサンに溶解して10%の溶液を調製し、この均
一溶液をイソペンタンで希釈して目詰材濃度0.3%に
したものを用いた。The dilute solution of the plugging material used was prepared by dissolving silphenylene-siloxane copolymer, which is a polymer shown in the structural formula below, in cyclohexane to prepare a 10% solution, and diluting this homogeneous solution with isopentane. A plugging material with a concentration of 0.3% was used.
(n=380、n/m=7)
α=2.0
Poz=2.2xlO−8
(a+t−cmlaK ・sec −cmf−I Q
)*Qo、: 1JIi素透過素度過速’/yn2・h
r −ate ]濃度 0.3%
浸漬時間 約0.2秒
実施例8〜11
実施例1で用いたポリ2,6−ジ置換フェニレンオキシ
ド245部をジメチルホルムアミド(以下DMFと略す
)455部に120℃で攪拌溶解し、均一溶液を得た。(n=380, n/m=7) α=2.0 Poz=2.2xlO-8 (a+t-cmlaK ・sec -cmf-I Q
) *Qo,: 1JIi elementary transmission element overspeed'/yn2・h
r -ate ] Concentration: 0.3% Immersion time: Approximately 0.2 seconds Examples 8 to 11 245 parts of the poly-2,6-disubstituted phenylene oxide used in Example 1 was added to 455 parts of dimethylformamide (hereinafter abbreviated as DMF). The mixture was stirred and dissolved at 120°C to obtain a homogeneous solution.
この溶液を実施例1と同様の方法で、紡糸温度70℃、
乾式長12111で1゜411φ−1,1■φの中空糸
用口金より吐出し、10%DMF水溶液からなる10℃
の凝固浴に浸漬した。水洗後の中空糸膜を80℃の熱水
浴で50秒処理した後、種々の条件で目詰処理を行ない
、45℃の熱風で乾燥し巻き取った。This solution was processed in the same manner as in Example 1 at a spinning temperature of 70°C.
Discharged from a hollow fiber nozzle of 1°411φ-1,1■φ with a dry length of 12111, and a 10% DMF aqueous solution at 10℃.
immersed in a coagulation bath. After washing, the hollow fiber membranes were treated in a hot water bath at 80°C for 50 seconds, followed by clogging treatment under various conditions, dried with hot air at 45°C, and wound up.
゛ 得られた中空糸膜の性能を表2に示した。なお目詰
処理を施さずに乾燥し、巻き取った中空糸膜の性能はQ
Ch= 5 、17 (yn”/171’ −hr−a
tlll)、α=1.05であった。゛ The performance of the obtained hollow fiber membrane is shown in Table 2. The performance of hollow fiber membranes dried and wound without clogging treatment is Q.
Ch= 5, 17 (yn"/171'-hr-a
tllll), α=1.05.
表2
実施例12
実施例2,3.7および9で得られた中空糸膜について
ヘリウム透過速度(QSa)、炭酸ガス透過速度(Qc
o−)を測定した。その結果をQ 01 、 Q SJ
zの結果とあわせてガス透過速度比として表3に示した
。Ql−1c/Qsユの比率が高く、これらの中空糸膜
はヘリウムの分離膜としても有効なことを示している。Table 2 Example 12 Helium permeation rate (QSa) and carbon dioxide gas permeation rate (Qc) for the hollow fiber membranes obtained in Examples 2, 3.7 and 9.
o-) was measured. The results are Q 01 and Q SJ
It is shown in Table 3 as a gas permeation rate ratio together with the results of z. The Ql-1c/Qs ratio is high, indicating that these hollow fiber membranes are also effective as helium separation membranes.
本発明の構成により高い酸素透過量と分離性能が両立す
る。かかる効果はポリ2,6−ジ置換フェニレンオキシ
ド単独の中空糸膜では容易に得られないものである。The configuration of the present invention achieves both high oxygen permeation and separation performance. Such an effect cannot be easily obtained with a hollow fiber membrane made solely of poly-2,6-disubstituted phenylene oxide.
[効果]
、本発明の中空糸膜は、既述の公知例に記された複合中
空糸膜に比べ酸素富化性能において優れており、酸素富
化空気の透過量を変えずに装置の小型化が可能となる。[Effects] The hollow fiber membrane of the present invention is superior in oxygen enrichment performance compared to the composite hollow fiber membranes described in the previously mentioned known examples, and can reduce the size of the device without changing the permeation amount of oxygen-enriched air. It becomes possible to
また本発明の製造方法は気体注入方式であり、熱水処理
後の中空*Hに、引続きまたは乾燥後に、連続して目詰
材の浸漬処理を施すことが可能で、そのまま乾燥すれば
、凍結乾燥や溶剤置換等の手間のかかる方法を用いるこ
となく、実用上きわめて有利な方法で高性能の気体分離
膜を製造することができる。In addition, the manufacturing method of the present invention is a gas injection method, and it is possible to continuously immerse the filling material into the hollow *H after hot water treatment or after drying, and if it is dried as it is, it will freeze. A high-performance gas separation membrane can be produced by a method that is extremely advantageous in practice without using time-consuming methods such as drying or solvent replacement.
Claims (4)
中空繊維に該ポリマ素材より酸素透過係数の大きい目詰
材を塗布したことを特徴とするポリ2,6−ジ置換フェ
ニレンオキシドを主体としてなる気体分離用中空糸膜。(1) Mainly made of poly-2,6-disubstituted phenylene oxide, which is characterized by coating poly-2,6-disubstituted phenylene oxide-based porous hollow fibers with a plugging material that has a higher oxygen permeability coefficient than the polymer material. A hollow fiber membrane for gas separation.
m^3・cm/cm^2・sec・cmHg(25℃)
以上である特許請求の範囲第1項記載の気体分離用中空
糸膜。(2) The oxygen permeability coefficient of the plugging material is 1.0×10^-^8c
m^3・cm/cm^2・sec・cmHg (25℃)
The hollow fiber membrane for gas separation according to claim 1, which is as described above.
位▲数式、化学式、表等があります▼ とシロキサン構造単位▲数式、化学式、表等があります
▼ を含む重合体である特許請求の範囲第1項記載の気体分
離用中空糸膜。(3) The filling material is a polymer containing a silphenylene structural unit ▲A mathematical formula, a chemical formula, a table, etc. are available▼ and a siloxane structural unit ▲A mathematical formula, a chemical formula, a table, etc. are available▼ in the repeating unit. Hollow fiber membrane for gas separation according to item 1.
膜を、目詰材0.01〜5.0重量%含む溶液に浸漬し
て、該中空糸膜を目詰めおよび/または被覆することを
特徴とする気体分離用中空糸膜の製造方法。(4) Plugging and/or coating a poly2,6-disubstituted phenylene oxide-based hollow fiber membrane by immersing it in a solution containing 0.01 to 5.0% by weight of a plugging material. A method for producing a hollow fiber membrane for gas separation, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59137283A JPS6118402A (en) | 1984-07-04 | 1984-07-04 | Hollow yarn membrane for gas separation and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59137283A JPS6118402A (en) | 1984-07-04 | 1984-07-04 | Hollow yarn membrane for gas separation and preparation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6118402A true JPS6118402A (en) | 1986-01-27 |
Family
ID=15195058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59137283A Pending JPS6118402A (en) | 1984-07-04 | 1984-07-04 | Hollow yarn membrane for gas separation and preparation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6118402A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4877421A (en) * | 1987-11-02 | 1989-10-31 | Union Carbide Corporation | Treatment of permeable membranes |
EP0386249A1 (en) * | 1988-07-08 | 1990-09-12 | Mitsubishi Rayon Co., Ltd. | Oxygen-permeable molding and process for its production |
US5129920A (en) * | 1987-07-07 | 1992-07-14 | Delair Droogtechniek En Luchtbehandeling B.V. | Gas separation apparatus and also method for separating gases by means of such an apparatus |
US5169416A (en) * | 1989-12-12 | 1992-12-08 | Snam S.P.A. | Process for preparing modified poly-(2,6-dimethyl-p-oxyphenylene) |
US5264131A (en) * | 1990-09-12 | 1993-11-23 | Hitachi, Ltd. | Oxygen-dissolving process and an apparatus for practicing the process |
-
1984
- 1984-07-04 JP JP59137283A patent/JPS6118402A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5129920A (en) * | 1987-07-07 | 1992-07-14 | Delair Droogtechniek En Luchtbehandeling B.V. | Gas separation apparatus and also method for separating gases by means of such an apparatus |
US4877421A (en) * | 1987-11-02 | 1989-10-31 | Union Carbide Corporation | Treatment of permeable membranes |
EP0386249A1 (en) * | 1988-07-08 | 1990-09-12 | Mitsubishi Rayon Co., Ltd. | Oxygen-permeable molding and process for its production |
US5177167A (en) * | 1988-07-08 | 1993-01-05 | Mitsubishi Rayon Co., Ltd. | Oxygen-permeable shaped articles and process for producing same |
US5169416A (en) * | 1989-12-12 | 1992-12-08 | Snam S.P.A. | Process for preparing modified poly-(2,6-dimethyl-p-oxyphenylene) |
US5264131A (en) * | 1990-09-12 | 1993-11-23 | Hitachi, Ltd. | Oxygen-dissolving process and an apparatus for practicing the process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2885712B2 (en) | Polymer solution for asymmetric single membrane and asymmetric single membrane using the same | |
US4127625A (en) | Process for preparing hollow fiber having selective gas permeability | |
Wang et al. | Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation | |
Chung et al. | Development of a defect-free 6FDA-durene asymmetric hollow fiber and its composite hollow fibers | |
JP2566973B2 (en) | Method for forming hollow fiber irregular gas separation membrane | |
US4933085A (en) | Method of manufacturing an integral asymmetrical membrane | |
RU2144842C1 (en) | Asymmetric membrane for separation of gases and method for its manufacture | |
EP0732143B1 (en) | Fluid separation membranes prepared from blends of polyimide polymers | |
JPH05212255A (en) | Hollow fiber membrane | |
CA2149699A1 (en) | Process for enhancing the selectivity of mixed gas separations | |
US5443728A (en) | Method of preparing membranes from blends of polyetherimide and polyimide polymers | |
JPH0647058B2 (en) | Gas selective permeable membrane | |
US5891572A (en) | Method of preparing membranes from blends of polymers | |
US6017474A (en) | Highly permeable polyethersulfone hollow fiber membranes for gas separation | |
JP3698078B2 (en) | Method for producing asymmetric hollow fiber gas separation membrane | |
JP4057217B2 (en) | Method for producing solvent-resistant microporous polybenzimidazole thin film | |
US5209883A (en) | Fabrication of fluoropolymer hollow fibers for asymmetric membranes | |
JPS6118402A (en) | Hollow yarn membrane for gas separation and preparation thereof | |
AU658885B2 (en) | Fiber spinning process and product thereof | |
JPS59166208A (en) | Manufacture of gas separating membrane | |
JP2688882B2 (en) | Method for producing composite membrane for gas separation | |
JPS59169509A (en) | Hollow yarn membrane for separating gas and preparation thereof | |
JPS59169510A (en) | Anisotropic hollow yarn membrane | |
JPS6229524B2 (en) | ||
JPS63175116A (en) | Copolyamide-imide hollow yarn and production thereof |