JPS61233026A - Production of porous film - Google Patents

Production of porous film

Info

Publication number
JPS61233026A
JPS61233026A JP7347185A JP7347185A JPS61233026A JP S61233026 A JPS61233026 A JP S61233026A JP 7347185 A JP7347185 A JP 7347185A JP 7347185 A JP7347185 A JP 7347185A JP S61233026 A JPS61233026 A JP S61233026A
Authority
JP
Japan
Prior art keywords
fine powder
component
inorganic fine
pore diameter
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7347185A
Other languages
Japanese (ja)
Other versions
JPH0433302B2 (en
Inventor
Morikazu Miura
司和 三浦
Yoshihiko Muto
武藤 善比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7347185A priority Critical patent/JPS61233026A/en
Priority to GB08530028A priority patent/GB2168981B/en
Priority to US06/808,491 priority patent/US4623670A/en
Priority to FR858518516A priority patent/FR2575480B1/en
Priority to DE19853544206 priority patent/DE3544206A1/en
Priority to US06/884,519 priority patent/US4702836A/en
Publication of JPS61233026A publication Critical patent/JPS61233026A/en
Publication of JPH0433302B2 publication Critical patent/JPH0433302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain a porous film, having improved heat resistance without deterioration in performance at high temperatures, and suitable for microfilters, etc., by incorporating a crystalline thermoplastic resin with inorganic fine powder, etc., melt molding the resultant mixture, annealing the molded film while heating, and extracting the inorganic fine powder. CONSTITUTION:(A) A crystalline thermoplastic resin, e.g. ethylene-tetrafluo roethylene copolymer, is melt incorporated with (B) inorganic fine powder having preferably 50-500m<2>/g specific surface area and 0.005-0.5mu average primary particle diameter, e.g. fine powdery silicic acid, and (C) a plasticizer in a pre ferred proportion of 15-40vol% component (A), 10-20vol% component (B) and 50-70vol% component (C) and the resultant mixture is then molded into for example hollow fibers, etc. The component (C) is then extracted and the above-mentioned molded article is annealed preferably at the melting point of the component (A) - the melting point -100 deg.C. The component (B) is further extracted to afford the aimed porous film.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、耐熱性にすぐれた多孔膜、特にミクロフィル
ター用途(:適した多孔膜の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a porous membrane with excellent heat resistance, particularly to a method for producing a porous membrane suitable for microfilter use.

〈従来の技術〉 有機高分子多孔体の製法としては焼結法、不織布法、延
伸法、相分離法、抽出法等が知られているが、均一な孔
を有し、かつ高い透過性をもつ多孔膜の製法としては相
分離法、抽出法(−よるものがすぐれている。
<Prior art> Sintering methods, nonwoven fabric methods, stretching methods, phase separation methods, extraction methods, etc. are known as methods for producing porous organic polymers, but methods that have uniform pores and high permeability are known. The best methods for producing porous membranes include phase separation and extraction methods.

このようなすぐれた多孔膜の製法の7つとじて熱可塑性
樹脂と無機微粉体および可塑剤を溶融混合し成形した後
、可塑剤を抽出、さらに無機微粉体を抽出することによ
り多孔膜を得る方法が知られている(特開昭64’−6
2/≦7号公報、特開昭63−790//号公報、特開
昭!!−/79297号公報など)。
These seven excellent methods for producing porous membranes are as follows: After melt-mixing thermoplastic resin, inorganic fine powder, and plasticizer and molding, the plasticizer is extracted, and the inorganic fine powder is further extracted to obtain a porous membrane. A method is known (Japanese Unexamined Patent Publication No. 1986-64)
2/≦7, JP-A-63-790//, JP-A-Sho! ! -/79297 publication, etc.).

く本発明が解決しようとする問題点〉 多孔膜をモジュール化するさいに高温下にさらされたり
、また高温下での熱時濾過を行う場合、多孔膜の孔径変
化および透過性の低下が認められることが多く問題とな
っている。
Problems to be Solved by the Present Invention> When a porous membrane is exposed to high temperatures when modularized, or when hot filtration is performed at high temperatures, changes in the pore diameter of the porous membrane and a decrease in permeability are observed. This is often a problem.

このような問題を解決するため、結晶性熱可塑性樹脂の
みよりなる膜をあらかじめ加熱条件下でアニール処理を
行うことが考えられるが、アニール処理による膜性能の
変化を調整するための、膜(特に厚み方向)の収縮、変
形等を拘束する手段はなく、そのため所望とする性能を
有する膜を再現性よく得ることは困難であった。
In order to solve such problems, it is conceivable to anneal the film made only of crystalline thermoplastic resin under heating conditions in advance. There is no means to restrict shrinkage, deformation, etc. in the thickness direction, and therefore it has been difficult to obtain a film with desired performance with good reproducibility.

く問題点を解決するための手段〉 本発明者らは、多孔膜の高温時の性能低下の原因として
、多孔膜を構成する結晶性熱可塑性樹脂内部に多孔膜成
形加工時に生じる1ひずみIが存在し、熱時にその1ひ
ずみIの解消がおこることが主たる要因であると考え、
その1ひずみlを最小限におさえ、高温下での性能低下
の少ない多孔膜の製法を鋭意検討した結果、通常、上記
のような箋ひずみlを解消するには加熱条件下でのアニ
ール処理が行われるが、結晶性熱可塑性樹脂のみよりな
る多孔膜に対しアニール処理を行った場合、物性は大き
く変化する。また、膜の各部位において均一に物性が変
化するわけではなく、得られた膜は不均一となり、また
、再現性を得られない場合が多い。この様な不均一な物
性変化をおこさない様、何らかの方法で膜形状を拘束し
てやればよいわけであるが、一般に、外部より膜を拘束
することは難しく、たとえ平膜であっても縦横方向の拘
束は可能であるが、膜の厚み方向の拘束は困難である。
Means for Solving Problems〉 The present inventors believe that the 1 strain I generated in the crystalline thermoplastic resin constituting the porous membrane during the porous membrane molding process is the cause of the performance deterioration of the porous membrane at high temperatures. It is believed that the main cause is that 1 strain I exists and the cancellation of that 1 strain I occurs when heated.
As a result of intensive study on a method for producing porous membranes that minimizes the strain 1 and minimizes performance deterioration under high temperatures, we found that annealing under heating conditions is usually necessary to eliminate the strain 1 described above. However, when a porous film made only of a crystalline thermoplastic resin is annealed, its physical properties change significantly. Further, the physical properties do not change uniformly in each part of the film, and the resulting film is non-uniform, and reproducibility is often not achieved. In order to prevent such non-uniform changes in physical properties, the film shape can be restrained in some way, but in general it is difficult to restrain the film from the outside, and even if it is a flat film, it is difficult to restrain it from the outside. Although restraint is possible, restraint in the thickness direction of the film is difficult.

まして、中空糸状多孔膜においては長さ方向以外の拘束
は難しく、アニール処理を施し均一な膜を得ることは難
しい。
Furthermore, it is difficult to constrain a hollow fiber-like porous membrane in any direction other than the longitudinal direction, and it is difficult to obtain a uniform membrane by annealing.

本発明者らは、無機微粉体を充填した状態の多孔膜なア
ニール処理することにより、無機微粉体自体が内部より
多孔膜の形状を拘束し、その結果、均一な膜が再現性よ
く得られることを見い出し、本発明を完成するに至った
The present inventors have found that by annealing a porous membrane filled with inorganic fine powder, the inorganic fine powder itself constrains the shape of the porous membrane from within, and as a result, a uniform membrane can be obtained with good reproducibility. This discovery led to the completion of the present invention.

すなわち、本発明は結晶性熱可塑性樹脂と無機微粉体お
よび可塑剤の混合物を溶融成形し、可塑剤のみを抽出し
た段階で加熱アニール処理を行い樹脂白蟻ひずみlを解
消した後、無機微粉体を抽出することを特徴とする多孔
膜の製造方法である。
That is, in the present invention, a mixture of a crystalline thermoplastic resin, an inorganic fine powder, and a plasticizer is melt-molded, and after only the plasticizer is extracted, heat annealing is performed to eliminate resin termite distortion, and then the inorganic fine powder is melt-molded. This is a method for producing a porous membrane characterized by extraction.

本発明における結晶性熱可塑性樹脂としては、基本的に
は膜化可能な樹脂であればいずれでもよいが、好ましく
はポリエチレン、ポリプロピレン、ポリブテン、ポリ−
グーメチルペンテン−7およびこれらの混合物、または
エチレン、プロピレン、ブテン、グーメチルペンテン−
/、ヘキセンの2種類以上の共重合物等のポリオレフィ
ン、また、エチレン−テトラフルオロエチレン共重合体
、ポリクロロトリフルオロエチレン、エチレン−クロロ
トリフルオロエチレン共重合体、テトラフルオロエチレ
ン−へキサフルオロプロペン共重合体、テトラブルオロ
エチレン−パーフルオロアルキルビニルエーテル共重合
体、ポリフッ化ビニリデン等の結晶性熱可塑性フッ素樹
脂が挙げられる。耐熱性、耐薬品性、熱時クリープ、強
度等にすぐれ、かつアニール効果の大きい点よりエチレ
ン−テトラフルオロエチレン共重合体およびポリクロロ
トリフルオロエチレンが特に好ましい。
The crystalline thermoplastic resin in the present invention may basically be any resin that can be formed into a film, but preferably polyethylene, polypropylene, polybutene, poly-
Goo-methylpentene-7 and mixtures thereof, or ethylene, propylene, butene, goo-methylpentene-7
/, polyolefins such as copolymers of two or more types of hexene, ethylene-tetrafluoroethylene copolymers, polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene copolymers, tetrafluoroethylene-hexafluoropropene Examples include crystalline thermoplastic fluororesins such as copolymers, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers, and polyvinylidene fluoride. Ethylene-tetrafluoroethylene copolymer and polychlorotrifluoroethylene are particularly preferred because they have excellent heat resistance, chemical resistance, thermal creep, strength, etc., and have a large annealing effect.

本発明に用いられる無機微粉体は、耐熱性有機液状体を
保持し担体としての機能を持つものである。すなわち溶
融成形時に耐熱性有機液状体の遊離を防止し、成形を容
易にするものであり、さらに抽出されて空孔を形成する
働きをもつものである。そしてこの無機微粉体は比表面
積!O−!00シ々かつ平均−次粒子径が0.00j〜
0.−tμの範囲(:ある微小粒子または多孔性粒子で
ある。さらに無機微粉体は耐熱性有機液状体を少なくと
も%容量、好ましくは3倍容量以上を吸収できるもので
あることが好ましい。
The inorganic fine powder used in the present invention holds a heat-resistant organic liquid and functions as a carrier. That is, it prevents the release of the heat-resistant organic liquid during melt molding and facilitates molding, and also has the function of being extracted and forming pores. And this inorganic fine powder has a specific surface area! O-! 00 Shishi and average particle diameter of 0.00j~
0. -tμ range (: certain microparticles or porous particles. Furthermore, the inorganic fine powder is preferably capable of absorbing at least % volume, preferably 3 times the volume or more of the heat-resistant organic liquid.

本発明に用いられる無機微粉体の例としては微粉珪酸、
珪酸カルシウム、珪酸アルミニウム、酸化マグネシウム
、アルミナ、炭酸カルシウム、炭酸マグネシウム、カオ
リン、珪藻土等が挙げられる。これらのうち微粉珪酸が
特に有効である。
Examples of the inorganic fine powder used in the present invention include fine silicic acid,
Examples include calcium silicate, aluminum silicate, magnesium oxide, alumina, calcium carbonate, magnesium carbonate, kaolin, diatomaceous earth, and the like. Among these, finely divided silicic acid is particularly effective.

本発明に用いられる可塑剤は、成形物中より抽出され、
成形物に多孔性を賦与するためのものである。可塑剤は
少なくとも7気圧での沸点が、成形温度以上であり、か
つ成形温度で液体であり、ポリマーに実質的に不活性で
あることが必要である。たとえば、ポリエチレン、ポリ
プロピレン等のポリオレフィン(;好適なものとしては
、フタル酸ジプチル、フタル酸ジー(2−エチルヘキシ
ル)等のフタル酸誘導体;セパシン酸ジー(2−エチル
ヘキシル)等のセパシン酸誘導体;アジピン酸ジー(,
2−エチルヘキシル)等のアジピン酸誘導体ニトリメリ
ット酸トリー(,2−エチルヘキシル)等のトリメリッ
ト酸誘導体やこれら2種以上の混合系等が挙げられる。
The plasticizer used in the present invention is extracted from the molded product,
It is used to impart porosity to the molded product. The plasticizer must have a boiling point at least 7 atmospheres above the molding temperature, be liquid at the molding temperature, and be substantially inert to the polymer. For example, polyolefins such as polyethylene and polypropylene (preferred examples include phthalic acid derivatives such as diptyl phthalate and di-(2-ethylhexyl) phthalate; sepacic acid derivatives such as di-(2-ethylhexyl) sepacic acid; and adipic acid. G (,
Examples include adipic acid derivatives such as nitrimellitic acid tri(2-ethylhexyl), trimellitic acid derivatives such as nitrimellitic acid tri(2-ethylhexyl), and mixtures of two or more of these.

また、エチレン−テトラフルオロエチレン共重合体やポ
リクロロトリフルオロエチレン等のフッ素系熱可塑性樹
脂に好適なものとしては、クロロトリフルオロエチレン
オリゴマー、ヘキサフルオロプロピレンオキチイドオリ
ゴマー、ヘキサフルオロエチレンオリゴマー等のフッ素
系オリゴマー:フッ素系シリコーンオイルあるいはこれ
ら2種以上の混合系、またはこれらとジメチル系シリコ
ーンオイル、フェニルメチル系シリコーンオイル等のシ
リコーンオイル:フタル酸ジー(2−エチルヘキシル)
、フタル酸ジノニル、フタル酸ジクレデシル等の低揮発
性フタル酸誘導体;トリメリット酸1−!J−C2−エ
デルヘキシル)等の低揮発性トリメリット酸誘導体など
との混合系等が挙げられる。
In addition, suitable fluorine-based thermoplastic resins such as ethylene-tetrafluoroethylene copolymer and polychlorotrifluoroethylene include chlorotrifluoroethylene oligomer, hexafluoropropylene oxytide oligomer, and hexafluoroethylene oligomer. Fluorine-based oligomer: Fluorine-based silicone oil or a mixture of two or more of these, or silicone oil such as dimethyl-based silicone oil or phenylmethyl-based silicone oil: Di(2-ethylhexyl phthalate)
, low volatility phthalic acid derivatives such as dinonyl phthalate and dicredecyl phthalate; trimellitic acid 1-! Mixed systems with low-volatile trimellitic acid derivatives such as (J-C2-edelhexyl) and the like can be mentioned.

本発明の製造方法(:おいては、まず結晶性熱可塑性樹
脂、無機微粉体および可塑剤の3種を混合する。それぞ
れの組成比は、結晶性熱可塑性樹脂10〜60容量係、
好ましくは/j−4tO容量チ、無機微粉体2〜X!容
量係、好ましくはlO〜20容量チ、可塑剤30〜7!
容量鴫、好ましくは!θ〜7θ容量チである。
In the manufacturing method of the present invention (:), first, three types of crystalline thermoplastic resin, inorganic fine powder, and plasticizer are mixed.The composition ratio of each is 10 to 60% by volume of crystalline thermoplastic resin,
Preferably /j-4tO capacity 1, inorganic fine powder 2~X! Capacity factor, preferably lO~20 capacity, plasticizer 30~7!
Capacity Shig, preferably! θ to 7θ capacity Chi.

結晶性熱可塑性樹脂が/θ容量係未満では、樹脂が少な
すぎるため得られる多孔膜の強度は小さく、また成形性
も悪い。一方、60容量係を超えると気孔率の大きな多
孔膜は得られず、透過性が低くなるため好ましくない。
If the crystalline thermoplastic resin is less than the /θ capacity coefficient, the resin is too small and the resulting porous membrane has low strength and poor moldability. On the other hand, if the volume ratio exceeds 60, a porous membrane with a high porosity cannot be obtained and the permeability becomes low, which is not preferable.

無機微粉体が7容量慢未満では有効な多孔膜を作るのに
必要な可塑剤を吸着することができず、成形が困難とな
り、。
If the inorganic fine powder has a volume of less than 7, it will not be able to adsorb the plasticizer necessary to create an effective porous membrane, making molding difficult.

lA2容量係を超えると溶融時の流動性は悪く、かつ得
られる成形品は脆く実用に供することが出来ない。可塑
剤が30容量係未満では、可塑剤の液孔形成に対する寄
与率が低下し、得られる多孔膜の気孔率は小さく、実質
的に多孔膜として有効なものは得られず、7!容量チを
こえると成形が困難となり、また、機械的強度も低く、
多孔膜として好ましいものは得られない。
If the volume ratio exceeds 1A2, the fluidity during melting will be poor and the resulting molded product will be brittle and cannot be put to practical use. If the plasticizer is less than 30% by volume, the contribution rate of the plasticizer to liquid pore formation decreases, the porosity of the resulting porous membrane is small, and a porous membrane that is substantially not effective is obtained. If the capacity exceeds 1, it will be difficult to mold, and the mechanical strength will also be low.
A desirable porous membrane cannot be obtained.

これら3成分の混合は、ヘンシェルミキサー、■−ブレ
ンダー、リボンプレンダー等の混合機を用いた通常の混
合法で行なわれる。三成分の混合順については特C二規
定はないが、まず無機微粉体と可塑剤を混合し、無機微
粉体(二可塑剤を吸着させた後、結晶性熱可塑性樹脂を
加え、再混合することが好ましい。
These three components are mixed by a conventional mixing method using a mixer such as a Henschel mixer, a -blender, a ribbon blender, or the like. There is no special C2 regulation regarding the mixing order of the three components, but first the inorganic fine powder and the plasticizer are mixed, and after the inorganic fine powder (two plasticizers have been adsorbed), the crystalline thermoplastic resin is added and mixed again. It is preferable.

得られた混合物は、押出機等を用い溶融混練成形される
。この場合、混合物を直接、混練成形することも可能で
あるが、一度溶融混線を行いペレット化した後成形する
方が好ましい。
The obtained mixture is melt-kneaded and molded using an extruder or the like. In this case, although it is possible to directly knead and mold the mixture, it is preferable to perform melt mixing once to form pellets, and then mold the mixture.

このようにして得られた3成分混合成形物より、可塑剤
の抽出を行う。抽出溶剤としては、可塑剤を溶解しつる
ものであり、かつ、使用する結晶性熱可塑性樹脂および
無機微粉体を抽出条件下にて、実質的に溶解、変性させ
るものであってはならない。
The plasticizer is extracted from the three-component mixture molded product thus obtained. The extraction solvent must be capable of dissolving the plasticizer and must not substantially dissolve or modify the crystalline thermoplastic resin and inorganic fine powder used under the extraction conditions.

次に、可塑剤抽出が終了し、結晶性熱可塑性樹脂と無機
微粉体よりなる成形品に、加熱アニール処理を行う。ア
ニール処理温度としては、原理的には結晶性熱可塑性樹
脂のガラス転移点以上の温度であればよいが、アニール
処理にかかる時間等、生産性を考え、結晶性熱可塑性樹
脂の融点から、融点マイナス700℃の範囲であること
が好ましい。また、予想される使用温度(組立て工程等
での加熱条件を含む)より高い温度で処理する方が、よ
り効果的であり、好ましい。処理時間は、処理温度との
兼ね合いとなるが、通常、数分から数日の範囲である。
Next, after the plasticizer extraction is completed, the molded article made of the crystalline thermoplastic resin and the inorganic fine powder is subjected to heat annealing treatment. In principle, the annealing treatment temperature may be any temperature higher than the glass transition point of the crystalline thermoplastic resin, but considering the time required for annealing treatment and productivity, the melting point Preferably, the temperature is in the range of -700°C. Further, it is more effective and preferable to perform the treatment at a temperature higher than the expected usage temperature (including heating conditions in the assembly process, etc.). The treatment time depends on the treatment temperature, but is usually in the range of several minutes to several days.

アニール処理後、無機微粉体は抽出されるが、抽出(:
用いられる薬品は、抽出条件下(二で、使用する結晶性
熱可塑性樹脂を実質的に溶解、変性することなく、無機
微粉体を溶解するものであれば、特に限定されるもので
はない。
After the annealing process, the inorganic fine powder is extracted, but the extraction (:
The chemical used is not particularly limited as long as it dissolves the inorganic fine powder under the extraction conditions (2) without substantially dissolving or modifying the crystalline thermoplastic resin used.

く作用〉 上記のようにして、アニール処理を施す工程を含む製造
方法により得られた膜は、アニール処理を含まない製造
方法(二より得られた膜と比較して、熱時における膜物
性の変化は著しく小さくなる。
As described above, the film obtained by the manufacturing method including the step of annealing has better film physical properties during heating compared to the film obtained by the manufacturing method (2) that does not include the annealing treatment. The changes will be significantly smaller.

〈実施例〉 以下、本発明を明らかにするために実施例を示すが、本
発明はこれらの実施例によって限定されるものではない
<Examples> Examples are shown below to clarify the present invention, but the present invention is not limited by these Examples.

尚、本発明に示されている諸物性は、次の測定方法によ
った。
The various physical properties shown in the present invention were determined by the following measurement method.

く組成比(容量嗟)〉 各組成の添加重電を真比重にて除した値から算出。Composition ratio (capacity) Calculated from the value obtained by dividing the added heavy electricity of each composition by the true specific gravity.

く気孔率(チ)〉 気孔率=(空孔容積/多孔膜容積)X100空孔容積=
含水重量−絶乾重量 く最大孔径(μ)〉(バブルポイント法)人8TM?3
7乙−70およびE/、2♂−6ノにより測定。
Porosity (ch)〉 Porosity = (pore volume / porous membrane volume) x 100 pore volume =
Water-containing weight - absolute dry weight, maximum pore diameter (μ)〉(bubble point method) 8TM? 3
Measured by 7o-70 and E/, 2♂-6no.

く透水量(27m”h・atm at 2 j ℃) 
>2♂℃、差圧/秘伺にて測定。
Water permeability (27 m”h・atm at 2 j ℃)
>2♂℃, differential pressure/Measured at private inspection.

〈平均孔径(μ)〉 水銀圧入法ポロンメーターにて測定。<Average pore diameter (μ)> Measured using a mercury intrusion method poron meter.

実施例/ 微粉珪酸〔アエロジル R−972(商品名)〕//、
/容量チ、クロロトリフルオロエチレンオリゴマー〔ダ
イフロイル #、20(商品名)〕クフタ。
Example/ Fine powder silicic acid [Aerosil R-972 (trade name)] //,
/Capacity Ch, Chlorotrifluoroethylene Oligomer [Dyfroil #, 20 (trade name)] Kufta.

容量係、シリコーンオイル(KF  qt−3so (
商品名) ) / 2.’l %をヘンシェルミキサー
で混合し、これ(ニエチレンーテトラフルロエチレン共
重合体(770yCOP  Z−(5’♂コθ(商品名
))、2g、7容量チを添加し、再度ヘンシェルミキサ
ーにて混合した。
Capacity section, silicone oil (KF qt-3so (
Product name) ) / 2. % was mixed in a Henschel mixer, 2g of this (niethylene-tetrafluoroethylene copolymer (770yCOP Z-(5'♂Coθ (trade name)), 7 volumes of H was added, and the mixture was mixed again with a Henschel mixer. Mixed at .

得られた混合物を30 ttas二軸押出機で混合し、
ペレットとした後、3L−二軸押出機に中空状紡口を取
り付けた中空糸製造装置にて中空糸状に成形した。成形
された中空糸より/、/、/−) !Jクロロエタンを
用いて、シリコーンオイル、クロロトリフルオロエチレ
ンオリゴマーを抽出し、乾燥した。
The resulting mixture was mixed in a 30 ttas twin screw extruder,
After forming pellets, they were molded into hollow fibers using a hollow fiber manufacturing device equipped with a 3L twin-screw extruder equipped with a hollow spinneret. From molded hollow fiber /, /, /-)! Silicone oil and chlorotrifluoroethylene oligomer were extracted using J chloroethane and dried.

微粉珪酸とエチレン−テトラフルオロエチレン共重合体
よりなる中空糸に、200℃にて7時間のアニール処理
を施した。その後、水酸化ナトリクム水溶液を用いて微
粉珪酸を抽出、水洗、乾燥して中空糸状の多孔膜を得た
A hollow fiber made of finely divided silicic acid and an ethylene-tetrafluoroethylene copolymer was annealed at 200° C. for 7 hours. Thereafter, fine powder silicic acid was extracted using an aqueous sodium hydroxide solution, washed with water, and dried to obtain a hollow fiber-like porous membrane.

得られた多孔膜の膜物性は、最大孔径θ、36(μ)、
透水量/グ3θ(t//・h−atm at 2 j 
℃)、気孔率≦2憾、平均孔径0.2j(μ)であった
The physical properties of the obtained porous membrane are as follows: maximum pore diameter θ, 36 (μ),
Water permeability/g3θ (t//・h-atm at 2 j
℃), porosity ≦2, and average pore diameter 0.2j (μ).

この膜を170℃の雰囲気(;り時間放置した後1=、
物性評価を行ったところ、最大孔径0.3乙(μ)、透
水量/3θ0 (tAr?・h−atm at 2 r
 ℃)、気孔率2チ減 ぞれもとの物性に対する変化率は、最大孔径θチ、透水
量り幅減、気孔率2チ減、平均孔径0係であった。
After leaving this film in a 170°C atmosphere (1=,
When physical properties were evaluated, the maximum pore diameter was 0.3 (μ), water permeability/3θ0 (tAr? h-atm at 2 r
℃), the porosity decreased by 2 inches, and the rate of change with respect to the original physical properties was the maximum pore diameter θ, the water permeability width decreased, the porosity decreased by 2 inches, and the average pore size decreased by 0.

比較例/ 実施例/において、200℃、7時間のアニール処理す
ることを除き、他は同様にして中空糸状の多孔膜を得た
Comparative Example/Example/A hollow fiber-like porous membrane was obtained in the same manner as in Example/, except that the annealing treatment was performed at 200° C. for 7 hours.

得られた多孔膜の膜物性は、最大孔径0.36(μ)、
透水量// 00 (L/rr?・h・atm at 
2 j ℃)気孔率g/%、平均孔径0.23μであっ
た。
The physical properties of the obtained porous membrane were as follows: maximum pore diameter of 0.36 (μ);
Water permeability // 00 (L/rr?・h・atm
2 j °C) porosity g/% and average pore diameter 0.23μ.

次いで、この膜をl♂O℃の雰囲気下グ時間放置した後
に、物性評価を行ったところ、最大孔径0.29 (I
t) 、透水量! A O(27m”h・atm at
 2 j ℃)気孔率!!チ、平均孔径θ、、20(μ
)であり、それぞれのもとの物性に対する変化率は、最
大孔径19憾減、透水量グタチ減、気孔率/θチ減、平
均孔径/3チ減であった。実施例7の場合と比較して著
しく大きい。
Next, this membrane was left to stand for a period of time at l♂O℃, and the physical properties were evaluated. As a result, the maximum pore diameter was 0.29 (I
t), water permeability! A O (27m”h・atm
2 j ℃) Porosity! ! h, average pore diameter θ, 20(μ
), and the rate of change with respect to the original physical properties was as follows: maximum pore size decreased by 19 degrees, water permeability decreased by 1 inch, porosity/θ decreased by 3 degrees, and average pore diameter decreased by 3 degrees. This is significantly larger than in Example 7.

実施例λ 微粉珪酸〔アICIジル R−cp7s(商品名)〕7
3.3容量係、クロロトリフルオロエチレンオリゴマー
〔ダイフロイル #100(商品名)〕60.0容量係
をヘンシェルミキサーで混合し、これにエチレン−テト
ラフルオロエチレン共重合体〔アフロンCOP Z−♂
♂2θ(商品名)〕26.7容量チを添加し、再度ヘン
シェルミキサーにて混合した。
Example λ Fine powder silicic acid [ICI Zil R-cp7s (trade name)] 7
3.3 volume and 60.0 volume of chlorotrifluoroethylene oligomer [Daifloil #100 (trade name)] were mixed in a Henschel mixer, and to this was added ethylene-tetrafluoroethylene copolymer [Aflon COP Z-♂
26.7 volumes of ♂2θ (trade name) was added and mixed again using a Henschel mixer.

得られた混合物を30順メ二軸押出機で混合し、′ペレ
ットとした後、jOfls二軸押出二軸押出機C訪中空
状紡口けた中空糸製造装置にて中空糸状に成形した。成
形された中空糸よりi、/、、2− ) !Jクロロト
リフルオロエタンを用いて、クロロトリフルオロエチレ
ンオリゴマーを抽出し、乾燥した。
The resulting mixture was mixed in a 30-order twin-screw extruder to form pellets, which were then molded into hollow fibers in a hollow fiber manufacturing device equipped with a jOfls twin-screw extruder C and a hollow spinner. i,/,,2-) from the formed hollow fiber! The chlorotrifluoroethylene oligomer was extracted using J chlorotrifluoroethane and dried.

微粉珪酸とエチレン−テトラフルオロエチレン共重合体
よりなる中空糸に、200℃にて7時間のアニール処理
を施し、その後、水酸化ナトリウム水溶液を用いて微粉
珪酸を抽出、水洗、乾燥して中空糸状の多孔膜を得た。
Hollow fibers made of finely divided silicic acid and ethylene-tetrafluoroethylene copolymer were annealed at 200°C for 7 hours, and then the finely divided silicic acid was extracted using an aqueous sodium hydroxide solution, washed with water, and dried to form hollow fibers. A porous membrane was obtained.

得られた多孔膜の膜物性は、最大孔径0.3/(μ)、
透水量/72θ(t/m’・h・atm at 、2 
j ℃)、気孔率32チ、平均孔径0.、:20(μ)
であった。
The physical properties of the obtained porous membrane were as follows: maximum pore diameter 0.3/(μ);
Water permeability/72θ (t/m'・h・atm at, 2
j °C), porosity 32 cm, average pore diameter 0. , :20(μ)
Met.

この膜を/と0℃の雰囲気にZ時間放置した後に、物性
評価を行ったところ、最大孔径0.37(μ)、透水量
/乙0θ(A/m”・h・atm at 2 j ℃)
、気孔率乙6%、平均孔径θ、20(μ)であり、それ
ぞれもとの物性に対する変化率は、最大孔径θ俤。
After leaving this membrane in an atmosphere at / and 0°C for Z hours, we evaluated its physical properties and found that the maximum pore diameter was 0.37 (μ), and the water permeability was 0θ (A/m”・h・atm at 2 j °C). )
, the porosity is 6%, the average pore diameter θ is 20 (μ), and the rate of change with respect to the original physical properties is the maximum pore diameter θ.

透水量7%減、気孔率3チ減、平均孔径θチであった。Water permeation rate decreased by 7%, porosity decreased by 3 cm, and average pore diameter decreased by θ.

比較例λ 実施例コにおいて、コθ0℃、7時間のアニール処理す
ることを除き、他は同様(ニして中空糸状の多孔膜を得
た。
Comparative Example λ A hollow fiber-like porous membrane was obtained in the same manner as in Example 1 except that the annealing treatment was performed at θ0° C. for 7 hours.

得られた多孔膜の膜物性は、最大孔径0.37(μ)、
透水量/!♂0 (A/m”h−atm at 23−
 C)、気孔率67%、平均孔径θ、、20Cμ)であ
った。
The physical properties of the obtained porous membrane were as follows: maximum pore diameter of 0.37 (μ);
Water permeability/! ♂0 (A/m"h-atm at 23-
C), porosity 67%, average pore diameter θ, 20Cμ).

この膜を170℃の雰囲気下ダ時間放置した後に、物性
評価を行ったところ、最大孔径θ、2≦(/f)、透水
量♂3θ(A/m”h・atm at 2 j ’C)
 、気孔率5♂チ、平均孔径0./♂(μ)であり、そ
れぞれのもとの物性に対する変化率は、最大孔径/乙チ
減、透水量グ7チ減、気孔率/3チ減、平均孔径10%
減であった。実施例認の場合と比較して変化は著しく大
きい。
After leaving this membrane in an atmosphere at 170°C for a period of time, physical properties were evaluated, and the maximum pore diameter θ, 2≦(/f), water permeability ♂3θ (A/m”h・atm at 2 j 'C)
, porosity 5♂chi, average pore diameter 0. /♂ (μ), and the rate of change with respect to the original physical properties is maximum pore diameter / Otsuchi decrease, water permeability / 7chi decrease, porosity / 3chi decrease, average pore diameter 10%
It was a decrease. The change is significantly larger than in the example case.

実施例3 微粉珪酸〔アエロジル R−972(商品名)〕//、
/容量係、ク容量上リフルオロエチレンオリゴマー〔グ
イフロイル #20(商品名)〕り乙、2容量壬、シリ
コーンオイル(KF5’乙−3!0(商品名) ) i
 s、乙容量チをヘンシエルミキチーで混合し、これ(
:ポリクロロトリフルオロエチレン〔ダイフロン M−
300(商品名) ) 26.7容量係を添加し、再度
ヘンシェルミキサーにて混合した。
Example 3 Fine powder silicic acid [Aerosil R-972 (trade name)] //,
/ Capacity section, Lifluoroethylene oligomer [Guifluoroyl #20 (product name)], 2 capacity, silicone oil (KF5'Otsu-3!0 (product name)) i
s, mix Otsukaichi with Hensiel Mikichi, and add this (
: Polychlorotrifluoroethylene [Daiflon M-
300 (trade name)) by volume of 26.7 was added and mixed again using the Henschel mixer.

得られた混合物を30mmd二軸押出機で混合し、ペレ
ットとした後、30ttm(l二軸押出機に中空状紡口
を取り付けた中空糸製造装置にて中空糸状に成形した。
The resulting mixture was mixed in a 30 mm twin screw extruder to form pellets, and then molded into hollow fibers in a hollow fiber manufacturing apparatus in which a hollow spinneret was attached to a 30 ttm twin screw extruder.

成形された中空糸より/、/、/−ト!jクロロエタン
ヲ用いて、シリコーンオイル、クロロトリフルオロエチ
レンオリゴマーを抽出し、乾燥した。
From molded hollow fibers /, /, /-to! Silicone oil and chlorotrifluoroethylene oligomer were extracted using chloroethane and dried.

微粉珪酸とポリクロロトリフルオロエチレンよりなる中
空糸に、コθθ℃にて7時間のアニール処理を施した。
A hollow fiber made of finely divided silicic acid and polychlorotrifluoroethylene was annealed at θθ°C for 7 hours.

その後、水酸化ナトリクム水溶液を用いて微粉珪酸を抽
出、水洗、乾燥して中空糸状の多孔膜を得た。
Thereafter, fine powder silicic acid was extracted using an aqueous sodium hydroxide solution, washed with water, and dried to obtain a hollow fiber-like porous membrane.

得られた多孔膜の膜物性は、最大孔径θ、グλ(μ)、
透水量/θ90 (t/r?・hllatm at 2
 j ℃)、気孔率!!壬、平均孔径θ、、?、2(μ
)であった。
The physical properties of the obtained porous membrane are as follows: maximum pore diameter θ, λ (μ),
Water permeability/θ90 (t/r?・hlatm at 2
j ℃), porosity! !壬、Average pore diameter θ...? , 2(μ
)Met.

この膜を/♂θ℃の雰囲気下7時間放置した後に、物性
評価を行ったところ、最大孔径0.3り(μ)、透水量
J’ j O(t/i・h・atm at 2 j ℃
) 、気孔率30%、平均孔径O1,2θ(μ)であり
、それぞれのもとの物性に対する変化率は、最大孔径7
チ減、透水量=7%減、気孔率タチ減、平均孔径9チ減
であった。
After leaving this membrane in an atmosphere of /♂θ℃ for 7 hours, we evaluated its physical properties and found that the maximum pore diameter was 0.3 mm (μ) and the water permeability was J' j O (t/i h atm at 2 j ℃
), porosity 30%, average pore diameter O1,2θ (μ), and the rate of change with respect to each original physical property is the maximum pore diameter 7
The amount of water permeation decreased by 7%, the porosity decreased by 9%, and the average pore diameter decreased by 9%.

比較例3 実施例3において、200℃、7時間のアニール処理山
理することを除き、他は同様にして中空糸状の多孔膜を
得た。
Comparative Example 3 A hollow fiber-like porous membrane was obtained in the same manner as in Example 3, except that it was annealed at 200° C. for 7 hours.

得られた多孔膜の膜物性は、最大孔径0.32(μ)、
透水量j 70 (t/m”・h・atm at 2 
j ℃)、気孔率jj’l、平均孔径0./♂(μ)で
あった。
The physical properties of the obtained porous membrane were as follows: maximum pore diameter of 0.32 (μ);
Water permeability j 70 (t/m”・h・atm at 2
j °C), porosity jj'l, average pore diameter 0. /♂(μ).

この膜を/♂θ℃の雰囲気下7時間放置した後に、物性
評価を行ったところ、最大孔径01.2≦(μ)、透水
量/ g O(A/i・h・atm at 2 j ℃
)、気孔率32チ、平均孔径o、/s(μ)であり、そ
れぞれのもとの物性に対する変化率は、最大孔径/タチ
減、透水量75チ減、気孔率3ざチ減、平均孔径/2チ
減であった。実施例3の場合と比較して変化は著しく大
きい。
After leaving this membrane in an atmosphere of /♂θ℃ for 7 hours, we evaluated the physical properties and found that the maximum pore diameter was 01.2≦(μ), the water permeability / g O (A/i・h・atm at 2 j °C
), porosity is 32 cm, average pore diameter o, /s (μ), and the rate of change with respect to the original physical properties is: maximum pore diameter/tall decrease, water permeation rate decrease by 75 cm, porosity decrease by 3 cm, average The pore diameter was reduced by 2 inches. Compared to the case of Example 3, the change is significantly large.

〈発明の効果〉 従来、多孔膜自体を構成する結晶性熱可塑性樹脂として
は使用耐熱温度が高い(二もかかわらず、多孔膜として
は高温下に物性変化が生じ、使用に適さない場合が多く
あったが、本発明により、高温下で使用しても膜物性変
化の少ない多孔膜を安定供給することが可能となった。
<Effects of the Invention> Conventionally, crystalline thermoplastic resins constituting porous membranes themselves have a high operating temperature (despite this, physical properties of porous membranes change at high temperatures and are often unsuitable for use). However, the present invention has made it possible to stably supply a porous membrane with little change in membrane properties even when used at high temperatures.

Claims (1)

【特許請求の範囲】[Claims] 結晶性熱可塑性樹脂と無機微粉体および可塑剤の混合物
を溶融成形し、可塑剤を抽出した後、加熱アニール処理
を行い、さらに無機微粉体を抽出することを特徴とする
多孔膜の製造方法
A method for producing a porous membrane, which comprises melt-molding a mixture of a crystalline thermoplastic resin, an inorganic fine powder, and a plasticizer, extracting the plasticizer, performing a heat annealing treatment, and further extracting the inorganic fine powder.
JP7347185A 1984-12-27 1985-04-09 Production of porous film Granted JPS61233026A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7347185A JPS61233026A (en) 1985-04-09 1985-04-09 Production of porous film
GB08530028A GB2168981B (en) 1984-12-27 1985-12-05 Porous fluorine resin membrane and process for preparation thereof
US06/808,491 US4623670A (en) 1984-12-27 1985-12-13 Porous fluorine resin membrane and process for preparing the same
FR858518516A FR2575480B1 (en) 1984-12-27 1985-12-13 POROUS FLUORINATED RESIN MEMBRANE AND PREPARATION METHOD THEREOF
DE19853544206 DE3544206A1 (en) 1984-12-27 1985-12-13 POROESE MEMBRANE FROM A FLUOROPOLYMER RESIN AND METHOD FOR THE PRODUCTION THEREOF
US06/884,519 US4702836A (en) 1984-12-27 1986-07-11 Porous fluorine resin membrane and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7347185A JPS61233026A (en) 1985-04-09 1985-04-09 Production of porous film

Publications (2)

Publication Number Publication Date
JPS61233026A true JPS61233026A (en) 1986-10-17
JPH0433302B2 JPH0433302B2 (en) 1992-06-02

Family

ID=13519219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7347185A Granted JPS61233026A (en) 1984-12-27 1985-04-09 Production of porous film

Country Status (1)

Country Link
JP (1) JPS61233026A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422934A (en) * 1987-07-16 1989-01-25 Polyplastics Co Molded plastic product having roughened surface for surface treatment and production thereof
WO2002070115A1 (en) * 2001-03-06 2002-09-12 Asahi Kasei Kabushiki Kaisha Method for producing hollow yarn film
WO2005032700A1 (en) * 2003-10-03 2005-04-14 Kureha Corporation Vinylidene fluoride based resin porous hollow yarn and method for production thereof
JP2005516764A (en) * 2002-02-12 2005-06-09 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Halar film
WO2007043553A1 (en) * 2005-10-13 2007-04-19 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same
JP2008036635A (en) * 2001-03-06 2008-02-21 Asahi Kasei Chemicals Corp Method of manufacturing hollow fiber membrane
JP2008253922A (en) * 2007-04-05 2008-10-23 Asahi Kasei Chemicals Corp Method for filtering suspension water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131028A (en) * 1979-04-02 1980-10-11 Asahi Chem Ind Co Ltd Production of porous object of polyolefin
JPS55137209A (en) * 1979-04-09 1980-10-25 Mitsubishi Rayon Co Ltd Novel hollow fiber with fine pore and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131028A (en) * 1979-04-02 1980-10-11 Asahi Chem Ind Co Ltd Production of porous object of polyolefin
JPS55137209A (en) * 1979-04-09 1980-10-25 Mitsubishi Rayon Co Ltd Novel hollow fiber with fine pore and its production

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422934A (en) * 1987-07-16 1989-01-25 Polyplastics Co Molded plastic product having roughened surface for surface treatment and production thereof
WO2002070115A1 (en) * 2001-03-06 2002-09-12 Asahi Kasei Kabushiki Kaisha Method for producing hollow yarn film
JPWO2002070115A1 (en) * 2001-03-06 2004-07-02 旭化成ケミカルズ株式会社 Manufacturing method of hollow fiber membrane
US7128861B2 (en) 2001-03-06 2006-10-31 Asahi Kasei Chemicals Corporation Method for producing hollow yarn film
JP2008036635A (en) * 2001-03-06 2008-02-21 Asahi Kasei Chemicals Corp Method of manufacturing hollow fiber membrane
JP2005516764A (en) * 2002-02-12 2005-06-09 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Halar film
JP4656839B2 (en) * 2002-02-12 2011-03-23 シーメンス・ウォーター・テクノロジーズ・コーポレイション Halar film
US7569145B2 (en) 2003-10-03 2009-08-04 Kureha Corporation Vinylidene fluoride based resin porous hollow yarn and method for production thereof
WO2005032700A1 (en) * 2003-10-03 2005-04-14 Kureha Corporation Vinylidene fluoride based resin porous hollow yarn and method for production thereof
WO2007043553A1 (en) * 2005-10-13 2007-04-19 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same
JPWO2007043553A1 (en) * 2005-10-13 2009-04-16 旭化成ケミカルズ株式会社 Porous multilayer hollow fiber membrane and method for producing the same
JP4563457B2 (en) * 2005-10-13 2010-10-13 旭化成ケミカルズ株式会社 Porous multilayer hollow fiber membrane and method for producing the same
JP2010227932A (en) * 2005-10-13 2010-10-14 Asahi Kasei Chemicals Corp Porous multilayered hollow-fiber membrane and process for producing the same
US8137800B2 (en) 2005-10-13 2012-03-20 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same
JP2008253922A (en) * 2007-04-05 2008-10-23 Asahi Kasei Chemicals Corp Method for filtering suspension water

Also Published As

Publication number Publication date
JPH0433302B2 (en) 1992-06-02

Similar Documents

Publication Publication Date Title
US4623670A (en) Porous fluorine resin membrane and process for preparing the same
JP5524849B2 (en) Microporous membrane having relatively large average pore diameter and method for producing the same
US5022990A (en) Polyvinylidene fluoride porous membrane and a method for producing the same
JP2899903B2 (en) Polyvinylidene fluoride porous membrane and method for producing the same
CN1265868C (en) Multilayer microporous membrane
JP3979521B2 (en) Heat-resistant microporous membrane
JP3401726B2 (en) Polymer body for separation process and method for producing the same
JP2007518861A (en) Expanded polystyrene particles having a functional skin layer and method for producing the same, and functional foamed polystyrene moldings using the same and method for producing the same
JPS5893734A (en) Production of porous membrane of hydrophilic polyvinylidene fluoride resin
JPH05234578A (en) Separator for battery using organic electrolyte and its manufacture
WO1993001623A1 (en) Separator of battery wherein organic electrolyte is used and production thereof
WO2013127252A1 (en) Method for preparing perfluoro polymer hollow fiber membrane
JPS61233026A (en) Production of porous film
JPS5832171B2 (en) Method for manufacturing porous membrane
JPH09176352A (en) Production of microporous membrane
US6245270B1 (en) Process for the production of porous polyolefin
JP4978829B2 (en) Method for producing fluororesin porous body
JPS5859072A (en) Porous film of thermoplastic resin and production thereof
JPH0342025A (en) Production of polyolefin porous film
JPH10168218A (en) Porous vinylidene fluoride resin film
KR20230048081A (en) Manufacturing method of carbon molecular sieve membrane
JPS61152739A (en) Production of porous membrane of ethylene-tetrafluoroethylene copolymer
JPS614504A (en) Polychlorotrifluoroethylene porous membrane and its manufacture
JPS62106808A (en) Porous membrane of ethylene-tetrafluoroethylene copolymerizate and its preparation
JPS62106807A (en) Polychlorotrifluoroethylene porous membrane and its preparation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term