JP2899903B2 - Polyvinylidene fluoride porous membrane and method for producing the same - Google Patents

Polyvinylidene fluoride porous membrane and method for producing the same

Info

Publication number
JP2899903B2
JP2899903B2 JP2001309A JP130990A JP2899903B2 JP 2899903 B2 JP2899903 B2 JP 2899903B2 JP 2001309 A JP2001309 A JP 2001309A JP 130990 A JP130990 A JP 130990A JP 2899903 B2 JP2899903 B2 JP 2899903B2
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
porous membrane
organic liquid
average pore
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001309A
Other languages
Japanese (ja)
Other versions
JPH03215535A (en
Inventor
晴雄 松村
良直 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP2001309A priority Critical patent/JP2899903B2/en
Publication of JPH03215535A publication Critical patent/JPH03215535A/en
Application granted granted Critical
Publication of JP2899903B2 publication Critical patent/JP2899903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリフッ化ビニリデン樹脂からなる優れた
耐薬品性と優れた濾過性能、優れた機械的物性を備え、
かつ、微細な孔からなる三次元の均質な多孔構造を有す
る多孔膜及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention has excellent chemical resistance and excellent filtration performance and excellent mechanical properties made of polyvinylidene fluoride resin,
The present invention also relates to a porous membrane having a three-dimensional homogeneous porous structure including fine pores and a method for producing the same.

〔従来の技術〕[Conventional technology]

ポリフッ化ビニリデン樹脂は耐薬品性、耐熱性、機械
的物性に優れた諸性質を具備する多孔膜の素材として期
待される。
Polyvinylidene fluoride resin is expected as a material for a porous film having various properties excellent in chemical resistance, heat resistance, and mechanical properties.

このポリフッ化ビニリデン樹脂からなる多孔膜に関し
て幾つかの技術が開示されているが、これらの多孔膜の
殆どは湿式製膜法によって作られスキン層を有する不均
質な多孔膜である。特開昭60−97001号公報には網目状
組織を形成した多孔膜を得る方法が開示されているが、
湿式製膜法であるため機械的強度に問題がある。特開昭
58−93734号公報にはポリフッ化ビニリデン樹脂と有機
液状体及び親水性無機微粉体を混合し溶融成形し多孔膜
を得る方法が開示されているが、この方法で製造された
多孔膜にはマクロボイド(粗大孔)が多く存在し、破断
伸度が小さく高温高圧での使用に耐えられないと云う問
題点がある。
Although several techniques have been disclosed for the porous membrane made of polyvinylidene fluoride resin, most of these porous membranes are heterogeneous porous membranes made by a wet film forming method and having a skin layer. Japanese Patent Application Laid-Open No. 60-97001 discloses a method for obtaining a porous membrane having a network structure,
Since it is a wet film forming method, there is a problem in mechanical strength. JP
JP-A-58-93734 discloses a method of mixing a polyvinylidene fluoride resin with an organic liquid and a hydrophilic inorganic fine powder and melt-molding the mixture to obtain a porous film. There is a problem that many voids (coarse pores) are present, the elongation at break is small, and it cannot withstand use at high temperature and high pressure.

以上のように、従来技術においては機械的強度に優れ
た二次元の均質な多孔構造を有する多孔膜を得ることは
できなかった。
As described above, in the related art, a porous membrane having a two-dimensional homogeneous porous structure excellent in mechanical strength could not be obtained.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の目的は、上記問題点が解決されたポリフッ化
ビニリデン樹脂多孔膜及びその製造方法を提供すること
である。
An object of the present invention is to provide a polyvinylidene fluoride resin porous membrane in which the above problems have been solved and a method for producing the same.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、上記目的を達成するために鋭意研究の
結果、本発明を完成するに至った。
The present inventors have conducted intensive studies to achieve the above object, and as a result, completed the present invention.

即ち、本発明は、ポリフッ化ビニリデン樹脂からな
り、気孔率40〜90%、内部に実質的に10μ以上のマクロ
ボイドを含まず、表面層の平均孔径が0.05μ以上5μ未
満で、、かつ、表面層の平均孔径と膜断面の平均孔径の
比が0.5〜2.0の均質な連通孔からなる三次元の網状構造
を有し、かつ、最大孔径と平均孔径の比が1.2〜2.5の孔
径分布を有し、破断強度70〜200kg/cm2、破断伸度100〜
500%であるポリフッ化ビニリデン樹脂からなる多孔膜
に関するものである。
That is, the present invention is made of polyvinylidene fluoride resin, has a porosity of 40 to 90%, does not substantially contain macrovoids of 10 μ or more inside, the average pore diameter of the surface layer is 0.05 μm or more and less than 5 μm, and The ratio of the average pore diameter of the surface layer to the average pore diameter of the membrane cross section has a three-dimensional network structure composed of homogeneous communication holes of 0.5 to 2.0, and the ratio of the maximum pore diameter to the average pore diameter is 1.2 to 2.5. Has a breaking strength of 70-200 kg / cm 2 , a breaking elongation of 100-
The present invention relates to a porous membrane made of polyvinylidene fluoride resin of 500%.

更に本発明は、ポリフッ化ビニリデン樹脂と有機液状
体及び無機微粉体を混合した後、溶融成形し、次いでか
かる成形物より有機液状体及び無機微粉体を抽出するこ
とを特徴とする多孔膜の製造方法において、無機微粉体
としてメタノールMW値が30%以上である疎水性シリカを
用い、かつ、SP値が8.4〜10.5である有機液状体を用い
ることを特徴とするポリフッ化ビニリデン多孔膜の製造
方法に関するものである。
Further, the present invention provides a method for producing a porous membrane, comprising mixing a polyvinylidene fluoride resin with an organic liquid and an inorganic fine powder, followed by melt molding, and then extracting the organic liquid and the inorganic fine powder from the molded product. A method for producing a polyvinylidene fluoride porous membrane, comprising using hydrophobic silica having a methanol MW value of 30% or more as an inorganic fine powder, and using an organic liquid having an SP value of 8.4 to 10.5. It is about.

無機微粉体としては、平均一次粒子径が0.005〜0.5
μ、比表面積30〜500m2/gの範囲にあり、粉体が完全に
濡れるメタノールの容積%(MW値)が30%以上である疎
水性シリカを用いることが好ましい。有機液状体として
は、溶解パラメータ(SP値)が8.4〜10.5の範囲にある
有機液状体を用いることが好ましい。
As an inorganic fine powder, the average primary particle diameter is 0.005 to 0.5
It is preferable to use hydrophobic silica having a μ, specific surface area of 30 to 500 m 2 / g, and a volume percentage (MW value) of methanol at which the powder is completely wetted is 30% or more. As the organic liquid, it is preferable to use an organic liquid having a solubility parameter (SP value) in the range of 8.4 to 10.5.

以下本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明に用いられるポリフッ化ビニリデン樹脂として
は、フッ化ビニリデンホモポリマー及びフッ化ビニリデ
ン共重合体が挙げられ、フッ化ビニリデン共重合体とし
ては、フッ化ビニリデンと四フッ化エチレン、六フッ化
プロピレン、三フッ化塩化エチレン、又は、エチレンか
ら選ばれた1種以上との共重合体であるものが用いられ
るが、好ましくはフッ化ビニリデンホモポリマーが用い
られる。又これらのポリマーは混合されても何ら差支え
ない。
Examples of the polyvinylidene fluoride resin used in the present invention include vinylidene fluoride homopolymer and vinylidene fluoride copolymer, and examples of the vinylidene fluoride copolymer include vinylidene fluoride, ethylene tetrafluoride, and propylene hexafluoride. , Ethylene trifluoride, or a copolymer with at least one selected from ethylene is used, and vinylidene fluoride homopolymer is preferably used. These polymers can be mixed at any time.

本発明に用いられるフッ化ビニリデン共重合体は、重
量平均分子量(w)が100,000〜1,000,000であること
が好ましい。更に好ましくは、150,000〜500,000であ
る。wが100,000未満のフッ化ビニリデン共重合体を
用いた場合、得られる多孔膜は伸びが50%以下と小さく
脆いものとなってしまい、実用に供することができな
い。wが1,000,000を超えるフッ化ビニリデン共重合
体を用いた場合は、溶融時の流動性が小さいため、Tダ
イ押出成形による薄膜成形性や射出成形による成形体の
成形性が悪くなる。更に、フッ化ビニリデン共重合体が
形成する網状構造体表面の平均孔径が0.05μ未満とな
り、開孔面積が減少し、空孔度も低下し、透過性能が低
下し好ましくない。
The vinylidene fluoride copolymer used in the present invention preferably has a weight average molecular weight (w) of 100,000 to 1,000,000. More preferably, it is 150,000 to 500,000. When a vinylidene fluoride copolymer having a w of less than 100,000 is used, the resulting porous membrane has a small elongation of 50% or less and is brittle, and cannot be put to practical use. When a vinylidene fluoride copolymer having a w of more than 1,000,000 is used, since the fluidity at the time of melting is small, the thin film moldability by T-die extrusion molding and the moldability of a molded article by injection molding are deteriorated. Furthermore, the average pore size on the surface of the network structure formed by the vinylidene fluoride copolymer is less than 0.05 μ, the open area is reduced, the porosity is also reduced, and the permeability is undesirably reduced.

本発明の膜は、均質な連通孔からなる三次元の網状構
造を有する。本発明の膜は、多孔膜中のどの10μ角をと
っても同一の構造を有している。第1図(a)〜(c)
に本発明の膜の外表面、内表面及び断面の典型的な電子
顕微鏡写真を示す。本発明の膜の平均孔径(多孔膜表面
の走査型電子顕微鏡写真で観察される開孔部200個の長
径と短径の平均を荷重平均して算出)は、0.05μ以上5
未満である。平均孔径が0.05μ未満では、孔径が小さ過
ぎて本発明の目的とする多孔膜の特性を発揮し得ない。
又、平均孔径が5μ以上ではピンホール欠陥に相当し、
膜機能が保持され得ない。
The membrane of the present invention has a three-dimensional network structure composed of homogeneous communication holes. The membrane of the present invention has the same structure at any 10 μ square in the porous membrane. FIG. 1 (a) to (c)
Shows a typical electron micrograph of the outer surface, inner surface and cross section of the film of the present invention. The average pore size of the membrane of the present invention (calculated by weighting the average of the major axis and minor axis of 200 pores observed in a scanning electron micrograph of the porous membrane surface) is 0.05 μm or more and 5 μm or more.
Is less than. If the average pore size is less than 0.05 μm, the pore size is too small to exhibit the properties of the porous membrane intended in the present invention.
On the other hand, if the average pore diameter is 5μ or more, it corresponds to a pinhole defect,
The membrane function cannot be maintained.

又、本発明の膜は、内部に実質的に10μ以上のマクロ
ボイドを含まない(本発明で云う内部とは、多孔膜を切
って見た時の断面を云う。)。更に、表面層(外表面及
び内表面)の平均孔径と膜断面の平均孔径の比が0.5〜
2.0で均質な連通孔からなる三次元の網状構造を有して
いる。この構造は、ポリフッ化ビニリデン樹脂、有機液
状体及び疎水性のシリカの原料より溶融成形し製膜を行
うことによって達成される。又、本発明の膜は最大孔径
(ASTM F316−70及びE128−61のバブルポイント法によ
り測定)と平均孔径(ASTM F316−70のハーフドライ法
により測定)の比が1,2〜2.5で狭い孔径分布を有し、優
れた濾過性能及び優れた分画特性を備えている。又、本
発明の膜の気孔率(気孔率=空孔容積/多孔膜容積×10
0、空孔容積=含水重量−絶乾重量)は40〜90%であ
る。気孔率が90%を超えると樹脂が少なすぎて強度が小
さく、40%未満では透過性能の優れた膜を得るためには
不適当である。
Further, the film of the present invention does not substantially contain macrovoids of 10 μm or more inside (the term “inside” in the present invention refers to a cross section of a porous film cut off). Furthermore, the ratio of the average pore diameter of the surface layer (outer surface and inner surface) to the average pore diameter of the membrane cross section is 0.5 to
It has a three-dimensional network structure consisting of uniform communication holes at 2.0. This structure is achieved by melt-molding a polyvinylidene fluoride resin, an organic liquid material, and a raw material of hydrophobic silica to form a film. The membrane of the present invention has a narrow ratio of 1,2 to 2.5 between the maximum pore size (measured by the bubble point method of ASTM F316-70 and E128-61) and the average pore size (measured by the half dry method of ASTM F316-70). It has a pore size distribution, and has excellent filtration performance and excellent fractionation characteristics. Further, the porosity of the membrane of the present invention (porosity = pore volume / porous membrane volume × 10
0, pore volume = water content-absolute weight) is 40 to 90%. If the porosity exceeds 90%, the resin is too small and the strength is low, and if the porosity is less than 40%, it is unsuitable for obtaining a membrane having excellent permeability.

又、本発明の膜は、溶融成形法により成膜を行うこと
によって、ポリフッ化ビニリデン樹脂の分子の絡み合い
が高度に達成されることによって破断強度が70〜200Kg/
cm2、破断伸度が100〜500%であり、機械的強伸度が飛
躍的に向上した物性を備えている。破断強度が70Kg/cm2
未満、又は破断伸度が100%未満では、機械的強度が弱
く実用に供することができない。又、本製造方法におい
ては、破断強度が200Kg/cm2を超えるもの、及び破断伸
度が500%を超えるものは得られていない。
Further, the film of the present invention is formed by a melt molding method, the entanglement of the molecules of polyvinylidene fluoride resin is achieved by a high degree of breaking strength by 70-200Kg /.
cm 2 , elongation at break is 100 to 500%, and the material has mechanical properties with dramatically improved elongation. Breaking strength 70Kg / cm 2
If the elongation at break is less than 100%, or the elongation at break is less than 100%, the mechanical strength is weak and cannot be put to practical use. Further, in the present production method, a material having a breaking strength exceeding 200 kg / cm 2 and a material having a breaking elongation exceeding 500% were not obtained.

本発明の製造方法を説明する。 The manufacturing method of the present invention will be described.

本発明に用いられる有機液状体は、成形物中より抽出
され、成形物に多孔性を付与するものである。有機液状
体は溶融成形時に液体であり、かつ、不活性であること
が必要である。更に、有機液状体は、溶解パラメータ
(SP値)が、8.4〜10.5の範囲のものが好ましい。更に
好ましくは、8.4〜9.9である。
The organic liquid used in the present invention is extracted from a molded product and imparts porosity to the molded product. The organic liquid material is required to be liquid at the time of melt molding and inert. Further, the organic liquid preferably has a solubility parameter (SP value) in the range of 8.4 to 10.5. More preferably, it is 8.4 to 9.9.

この範囲のものを用いることにより、溶融成形時に、
有機液状体は適度にポリフッ化ビニリデン樹脂中に溶解
し、冷却固化時には大半が無機微粉体表面に吸着した状
態を形成する。この結果、良好な成形性、抽出性、機械
的強度の多孔質が得られる。更に、有機液状体のSP値を
8.4〜10.5の範囲で選ぶことによりポリフッ化ビニリデ
ン樹脂多孔体の平均孔径を0.05〜5μの間に調節するこ
とが可能である。
By using those in this range, during melt molding,
The organic liquid material is appropriately dissolved in the polyvinylidene fluoride resin, and when cooled and solidified, most of the organic liquid material is in a state of being adsorbed on the surface of the inorganic fine powder. As a result, a porous material having good moldability, extractability, and mechanical strength can be obtained. Furthermore, the SP value of the organic liquid
By selecting from the range of 8.4 to 10.5, it is possible to adjust the average pore diameter of the polyvinylidene fluoride resin porous body to be between 0.05 and 5 μm.

有機液状体のSP値が10.5を超えると、ポリフッ化ビニ
リデン樹脂への溶解性が増加し、冷却時にミクロ相分離
が起こりにくくなる。この結果、溶融物の溶着は十分に
行われ、機械的強度は向上する反面、有機液状体の造孔
性が低下し、ポリフッ化ビニリデン樹脂多孔体の平均孔
径が0.05μ以下となり、かつ、有機液状体と無機微粉体
を抽出した際、収縮が大きくて気孔率が低下し、外観も
悪化する。
When the SP value of the organic liquid exceeds 10.5, the solubility in the polyvinylidene fluoride resin increases, and microphase separation hardly occurs during cooling. As a result, the fusion of the melt is sufficiently performed, and while the mechanical strength is improved, the porosity of the organic liquid material is reduced, and the average pore diameter of the polyvinylidene fluoride resin porous material is 0.05 μ or less, and the organic When the liquid and the inorganic fine powder are extracted, the shrinkage is large, the porosity decreases, and the appearance deteriorates.

又、SP値が8.4未満であると、樹脂への溶解性が低下
し、成形時に遊離する。このために樹脂同士の溶着が妨
げられ、成形性が悪化し、かつ、ポリフッ化ビニリデン
樹脂の網状構造の平均孔径が5μ以上に粗大となり、強
伸度が低下する。
On the other hand, if the SP value is less than 8.4, the solubility in the resin is reduced and the resin is released during molding. For this reason, welding between the resins is hindered, moldability is deteriorated, and the average pore diameter of the network structure of the polyvinylidene fluoride resin becomes coarse to 5 μ or more, and the strong elongation is reduced.

本発明に用いられるSP値が8.4〜10.5の有機液状体の
例としては、フタル酸ジエチル(DEP)、フタル酸ジブ
チル(DBP)、フタル酸ジオクチル(DOP)等のフタル酸
エステルやリン酸エステル等が挙げられる。これらのう
ち、特にフタル酸ジオクチル、フタル酸ジブチル、及び
これらの混合物が好ましい。
Examples of the organic liquid having an SP value of 8.4 to 10.5 used in the present invention include phthalate esters and phosphate esters such as diethyl phthalate (DEP), dibutyl phthalate (DBP), and dioctyl phthalate (DOP). Is mentioned. Of these, dioctyl phthalate, dibutyl phthalate, and mixtures thereof are particularly preferred.

本発明に用いられる無機微粉体は、有機液状体を保持
する担体としての機能を持ち、更にミクロ相分離の核と
しての機能を持つものである。即ち、溶融成形時に有機
液状体の遊離を防止し、成形を容易にするものであり、
ミクロ相分離の核として有機液状体を高度にミクロ分散
させ、有機液状体の凝集を高度に防止する働きを持つ。
更に、抽出されて空孔を形成する働きを持つ。
The inorganic fine powder used in the present invention has a function as a carrier for holding an organic liquid material, and further has a function as a nucleus for microphase separation. That is, to prevent release of the organic liquid during melt molding, to facilitate molding,
As a core of microphase separation, the organic liquid is highly micro-dispersed, and has a function of highly preventing aggregation of the organic liquid.
Further, it has a function of being extracted to form voids.

本発明に用いられる無機微粉体は、疎水性のシリカで
ある。疎水性シリカとは、親水性シリカの表面のシラノ
ール基をジメチルシランやジメチルジクロロシラン等の
有機ケイ素化合物と化学的に反応させ、親水性シリカの
表面をメチル基等で置換し疎水化させたシリカを云う。
本発明に用いられる疎水性シリカは、平均一次粒径が0.
005〜0.5μ、比表面積30〜500m2/gの範囲にあり、粉体
が完全に濡れるメタノールの容量%(MW値)が30%以上
である疎水性のシリカが好ましい。
The inorganic fine powder used in the present invention is hydrophobic silica. Hydrophobic silica is silica obtained by chemically reacting silanol groups on the surface of hydrophilic silica with an organosilicon compound such as dimethylsilane or dimethyldichlorosilane, and replacing the surface of the hydrophilic silica with methyl groups or the like to make it hydrophobic. I say
The hydrophobic silica used in the present invention has an average primary particle size of 0.1.
Hydrophobic silica having a 005 to 0.5 μm and a specific surface area of 30 to 500 m 2 / g, and having a volume percentage (MW value) of 30% or more of methanol to completely wet the powder is preferable.

なお、ここで述べる粉体が完全に濡れるメタノールの
容量%は、メタノールウェッタビリティー法により測定
した値である。
In addition, the volume percentage of methanol at which the powder is completely wetted is a value measured by a methanol wettability method.

疎水性シリカを用いることにより、シリカ同士の凝集
がなくなり、又疎水性であるポリフッ化ビニリデン樹脂
及び有機液状体との親和性が親水性のシリカを用いる場
合に比べて増加するので、無機微粉体の高度なミクロ分
散が達成され、その結果、マクロボイドの生成を防止
し、マクロボイドのない微細な均一な三次元の多孔構造
を持ったポリフッ化ビニリデン樹脂多孔体が生成される
と考えられる。
By using hydrophobic silica, aggregation of silica is eliminated, and affinity with hydrophobic polyvinylidene fluoride resin and organic liquid material is increased as compared with the case of using hydrophilic silica. It is considered that a high degree of microdispersion is achieved, and as a result, the formation of macrovoids is prevented, and a porous polyvinylidene fluoride resin having a fine and uniform three-dimensional porous structure without macrovoids is generated.

又、親水性のシリカを用いた場合には、成形性が悪化
し、得られる成形品にマクロボイドが多く存在し、ポリ
フッ化ビニリデン樹脂の網目構造も不均一になり、強伸
度が低下する。
When hydrophilic silica is used, the moldability deteriorates, the resulting molded article has many macrovoids, the network structure of the polyvinylidene fluoride resin becomes uneven, and the strong elongation decreases. .

又、疎水性のシリカを用いた場合には、無機微粉体の
高度なミクロ分散が達成され、その結果、マクロボイド
の生成を防止することにより、親水性のシリカを用いた
場合に比べて薄膜化が可能となる。
In addition, when hydrophobic silica is used, a high degree of micro-dispersion of the inorganic fine powder is achieved, and as a result, the formation of macrovoids is prevented. Is possible.

本発明の多孔膜の製造方法を更に詳しく説明する。 The method for producing a porous membrane of the present invention will be described in more detail.

まず、ポリフッ化ビニリデン樹脂、有機液状体及び疎
水性シリカを混合する。その混合割合はポリフッ化ビニ
リデン樹脂10〜60容量%、好ましくは15〜40容量%、有
機液状体30〜75容量%、好ましくは50〜70容量%、疎水
性シリカ7〜42容量%、好ましくは10〜20容量%であ
る。
First, a polyvinylidene fluoride resin, an organic liquid, and hydrophobic silica are mixed. The mixing ratio of the polyvinylidene fluoride resin is 10 to 60% by volume, preferably 15 to 40% by volume, the organic liquid is 30 to 75% by volume, preferably 50 to 70% by volume, and the hydrophobic silica is 7 to 42% by volume, preferably 10-20% by volume.

ポリフッ化ビニリデン樹脂が10容量%未満では、樹脂
量が少なすぎて強度が小さく、成形性も悪い。60容量%
を超えると、気孔率の大きい多孔膜が得られず好ましく
ない。
If the polyvinylidene fluoride resin is less than 10% by volume, the amount of the resin is too small, resulting in low strength and poor moldability. 60% by volume
If it exceeds, a porous film having a high porosity cannot be obtained, which is not preferable.

有機液状体が30容量%未満では、有機液状体の空孔形
成に対する寄与が低下し、得られる多孔膜の気孔率は40
%を下回り、実質的に多孔膜として有効なものが得られ
ない。75容量%を超えると、成形が困難となり、機械的
強度の高い多孔膜は得られない。
When the content of the organic liquid is less than 30% by volume, the contribution of the organic liquid to the formation of pores is reduced, and the porosity of the obtained porous membrane is 40%.
%, It is not possible to obtain a porous membrane which is substantially effective. If it exceeds 75% by volume, molding becomes difficult, and a porous film having high mechanical strength cannot be obtained.

疎水性シリカが7容量%未満では、有効な多孔膜を作
るのに必要な有機液状体を吸着することができず、混合
物が粉末又は顆粒状態を保つことができず、成形が困難
となる。一方、42容量%を超えると、溶融時の流動性が
悪く、かつ、得られる成形品は脆くて実用に供すること
ができない。
If the amount of the hydrophobic silica is less than 7% by volume, an organic liquid material necessary for forming an effective porous membrane cannot be adsorbed, and the mixture cannot maintain a powder or granule state, which makes molding difficult. On the other hand, if it exceeds 42% by volume, the fluidity at the time of melting is poor, and the obtained molded product is brittle and cannot be put to practical use.

また、粒体が完全に濡れるメタノールの容量%(MW
値)が30%未満であるシリカを用いると、シリカ同士が
凝集してしまい、又、疎水性であるポリフッ化ビニリデ
ン樹脂及び有機液状体との親和性も親水性のシリカを用
いた場合と比べて改善されず、得られる成形品にはマク
ロボイドが多く存在し、膜の機械的特性を低下させる。
In addition, the volume% of methanol (MW
Value) is less than 30%, the silica aggregates with each other, and the affinity for the hydrophobic polyvinylidene fluoride resin and the organic liquid is lower than that of the case where the hydrophilic silica is used. The resulting molded article has many macrovoids, which lowers the mechanical properties of the film.

又、上記欠点により薄膜化が困難であり、更にマクロ
ボイドが多く存在し、ピンホールの原因となり、生産性
(良品の収率)が劣ると云う問題点が生じる。
In addition, it is difficult to form a thin film due to the above-mentioned drawbacks, and furthermore, there are many macrovoids, which causes pinholes, resulting in poor productivity (yield of good products).

本発明に供せられる配合物は主にポリフッ化ビニリデ
ン樹脂、疎水性シリカ、有機液状体の三者により構成さ
れる。しかしながら、他に本発明の効果を大きく阻害し
ない範囲で、滑剤、酸化防止剤、紫外線吸収剤、可塑
剤、成形助剤等を必要に応じて添加することは何ら差支
えない。
The composition used in the present invention is mainly composed of a polyvinylidene fluoride resin, hydrophobic silica, and an organic liquid. However, other additives such as lubricants, antioxidants, ultraviolet absorbers, plasticizers, molding aids, etc. may be added as needed without significantly impairing the effects of the present invention.

これら3成分の混合には、ヘンシェルミキサー、V−
ブレンダー、リボンブレンダー等の配合機を用いた通常
の混合法で充分である。3成分の混合順序としては、3
成分を同時に混合するよりも、まず疎水性シリカと有機
液状体を混合して、疎水性シリカに有機液状体を充分に
吸着させ、次いでポリフッ化ビニリデン樹脂を配合して
混合するのが、溶融成形性の向上、得られる多孔物の空
孔度及び機械的強度の向上に有効である。
A Henschel mixer, V-
An ordinary mixing method using a blender such as a blender or a ribbon blender is sufficient. The mixing order of the three components is 3
Rather than mixing the components at the same time, first, the hydrophobic silica and the organic liquid are mixed, the organic liquid is sufficiently adsorbed on the hydrophobic silica, and then the polyvinylidene fluoride resin is mixed and mixed. This is effective in improving the properties and the porosity and mechanical strength of the obtained porous material.

この混合物は押出機、バンバリーミキサー、2本ロー
ル、ニーダー等の溶融混練装置により混練される。得ら
れる混練物は溶融成形法により成形されるが、本発明方
法に用いられる溶融成形法としては、Tダイ法、インフ
レーション法、中空のダイスを用いた方法等の押出成
形、カレンダー成形、圧縮成形、射出成形等がある。
又、混合物を押出機、ニーダー等の混練・押出の両機能
を有する装置により直接成形することも可能である。
This mixture is kneaded by a melt kneading device such as an extruder, a Banbury mixer, a two-roll mill, or a kneader. The resulting kneaded material is molded by a melt molding method. Examples of the melt molding method used in the method of the present invention include extrusion molding such as T-die method, inflation method, and method using a hollow die, calender molding, and compression molding. , Injection molding and the like.
Further, the mixture can be directly molded by an apparatus having both functions of kneading and extrusion, such as an extruder and a kneader.

これらの成形法により、3成分混合物は0.025〜2.5mm
の肉厚の膜に成形される。0.025〜2.5mmの膜状物、特に
0.025〜0.30mmの薄膜の成形には、押出成形が特に有効
である。又、膜の形状としては、中空糸状、チューブ
状、平膜状等が可能である。
By these molding methods, the three-component mixture is 0.025 to 2.5 mm
Into a thick film. 0.025-2.5mm film, especially
Extrusion molding is particularly effective for forming a thin film of 0.025 to 0.30 mm. The shape of the membrane may be hollow fiber, tube, flat membrane, or the like.

得られた膜から溶剤を用いて有機液状体の抽出を行
う。抽出に用いる溶剤は、有機液状体を溶解し得るもの
であるが、ポリフッ化ビニリデン樹脂を実質的に溶解す
るものであってはならない。
The organic liquid is extracted from the obtained film using a solvent. The solvent used for the extraction is capable of dissolving the organic liquid, but must not substantially dissolve the polyvinylidene fluoride resin.

抽出は回分法や向流多段法等の膜状物の一般的な抽出
方法により容易に行われる。抽出に用いられる溶剤とし
ては、メタノール、アセトン等が挙げられるが、特に1,
1,1−トリクロロエタン、トリクロルエチレン等のハロ
ゲン系炭化水素が好ましい。又、抽出が終了した多孔膜
中には、有機液状体が物の性能を損なわない範囲で残存
することが許される。しかし、残存量が大きいと多孔膜
の気孔率が低下するために好ましくない。有機液状体の
多孔膜中での残存量は3容量%以下好ましくは1容量%
以下である。
The extraction is easily performed by a general method for extracting a film-like substance such as a batch method or a multi-stage countercurrent method. Examples of the solvent used for the extraction include methanol, acetone and the like.
Halogen hydrocarbons such as 1,1-trichloroethane and trichloroethylene are preferred. In addition, the organic liquid is allowed to remain in the porous membrane from which extraction has been completed, as long as the performance of the substance is not impaired. However, a large residual amount is not preferable because the porosity of the porous membrane decreases. The remaining amount of the organic liquid in the porous membrane is 3% by volume or less, preferably 1% by volume.
It is as follows.

有機液状体の抽出が完了した半抽出多孔膜は必要に応
じて溶剤の乾燥を行っても良い。次いで疎水性シリカの
溶剤で疎水性シリカの抽出を行う。抽出に先立ち、半抽
出多孔膜を50〜100%のエチルアルコール水溶液に浸漬
した後、水に浸漬して水になじませると、抽出が更に効
率良くむらなく行われる。抽出は回分法、向流多段法等
の一般的な抽出方法により数秒ないし数十時間のうちに
容易に終了する。
The solvent may be dried on the semi-extracted porous membrane from which the extraction of the organic liquid has been completed, if necessary. Next, the hydrophobic silica is extracted with a solvent of the hydrophobic silica. Prior to the extraction, the semi-extracted porous membrane is immersed in a 50 to 100% aqueous ethyl alcohol solution and then immersed in water to be absorbed in water, so that the extraction is performed more efficiently and evenly. The extraction can be easily completed within a few seconds to several tens of hours by a general extraction method such as a batch method or a countercurrent multistage method.

疎水性シリカの抽出に用いられる溶剤としては、苛性
ソーダ、苛性カリのようなアルカリ水溶液が用いられ
る。その他ポリフッ化ビニリデン樹脂を実質的に溶解せ
ず、疎水性シリカを溶解するものであれば特に限定され
るものではない。又、抽出が終了した多孔膜中には、疎
水性シリカが物の性能を損なわない範囲で残存すること
が許される。しかし、残存量が大きいと多孔膜の気孔率
が低下するために好ましくない。疎水性シリカの多孔膜
中での残存量は3容量%以下、好ましくは1容量%以下
である。
As a solvent used for extracting the hydrophobic silica, an aqueous alkali solution such as caustic soda and caustic potash is used. There is no particular limitation as long as it does not substantially dissolve the polyvinylidene fluoride resin and dissolves the hydrophobic silica. Further, in the porous membrane after completion of the extraction, hydrophobic silica is allowed to remain within a range that does not impair the performance of the product. However, a large residual amount is not preferable because the porosity of the porous membrane decreases. The remaining amount of the hydrophobic silica in the porous membrane is 3% by volume or less, preferably 1% by volume or less.

又、苛性ソーダのアルコール溶液等を用いて、有機液
状体と疎水性シリカを同時に抽出することも可能であ
る。しかし、有機液状体、疎水性シリカの順で抽出する
ことが好ましい。
Further, it is also possible to simultaneously extract the organic liquid and the hydrophobic silica using an alcohol solution of caustic soda or the like. However, it is preferable to extract the organic liquid and the hydrophobic silica in this order.

又、孔径を大きくしたり、気孔率を高めるために、有
機液状体、疎水性シリカの一方又は両方を抽出した多孔
膜を一軸又は二軸に延伸を行うこともできる。
In addition, in order to increase the pore diameter or increase the porosity, the porous membrane from which one or both of the organic liquid material and the hydrophobic silica is extracted may be uniaxially or biaxially stretched.

本発明による多孔膜は、耐薬品性に優れたポリフッ化
ビニリデン樹脂からなり、かつ、狭い孔径分布と複雑な
網状構造により、優れた透水性や透気性と、高い濾過性
能を兼ね備えたミクロフィルターを実現するものであ
る。
The porous membrane according to the present invention is made of a polyvinylidene fluoride resin having excellent chemical resistance, and has a narrow pore size distribution and a complicated network structure, thereby providing a microfilter having excellent water permeability and air permeability, and high filtration performance. It will be realized.

本発明による多孔膜は、その優れた耐薬品性、機械的
物性を利用して、ヒマワリ油、ナタネ油等の植物油の精
製に使用することができる。又、鉱物油の精製、醗酵ブ
ロスからの有価物の回収、薬品の精製等に使用すること
ができる。更に、大量の水中の微粒子の除去を行うミク
ロフィルターとして使用することができる。
The porous membrane according to the present invention can be used for refining vegetable oils such as sunflower oil and rapeseed oil by utilizing its excellent chemical resistance and mechanical properties. Further, it can be used for purification of mineral oil, recovery of valuables from fermentation broth, purification of chemicals, and the like. Further, it can be used as a microfilter for removing a large amount of fine particles in water.

〔実施例〕〔Example〕

次に実施例を示す。本例に示される諸物性は、次の測
定方法によった。
Next, examples will be described. Various physical properties shown in this example were measured by the following measurement methods.

重量平均分子量(w) GPCによるポリスチレン換算分子量、 GPC測定装置:東洋ソーダ製LS−8000、カラム:GMHX
L、溶媒:DMF、カラム温度:40℃。
Weight average molecular weight (w) Molecular weight in terms of polystyrene by GPC, GPC measurement device: Toyo Soda LS-8000, column: GMHX
L, solvent: DMF, column temperature: 40 ° C.

組成比(容量%) 各組成の添加重量を真比重によって除した値から算出
した。
Composition ratio (% by volume) It was calculated from the value obtained by dividing the added weight of each composition by the true specific gravity.

気孔率(%) 気孔率(%)=(空孔容積/多孔膜容積)×100、 空孔容積=含水重量−絶乾重量。Porosity (%) Porosity (%) = (pore volume / porous membrane volume) × 100, pore volume = water-containing weight−absolute dry weight.

比表面積(m2/g) BET吸着法により測定。Specific surface area (m 2 / g) Measured by BET adsorption method.

平均孔径(μ)(電子顕微鏡写真より計算) 多孔膜表面の走査型電子顕微鏡写真で観察される開孔
部200個の長径と短径の平均を加重平均して算出。
Average pore size (μ) (calculated from electron micrographs) Calculated as the weighted average of the major axis and minor axis of the 200 pores observed in the scanning electron micrograph of the surface of the porous membrane.

平均孔径(μ)(ハーフドライ法) ASTM F316−70により測定。Average pore size (μ) (half dry method) Measured according to ASTM F316-70.

最大孔径(μ)(バブルポイント法) ASTM F316−70及びE128−61により測定。Maximum pore size (μ) (bubble point method) Measured according to ASTM F316-70 and E128-61.

透水量(l/m2・hr・atm・25℃) 25℃、差圧1Kg/cm2にて測定。Water permeability (l / m 2 · hr · atm · 25 ° C) Measured at 25 ° C and differential pressure 1Kg / cm 2 .

破断強度(Kg/cm2)、破断伸度(%) インストロン型引張試験機によりASTM D882に準じて
測定(歪速度2.0mm/mm・min)。
Breaking strength (Kg / cm 2 ), breaking elongation (%) Measured with an Instron type tensile tester according to ASTM D882 (strain rate 2.0 mm / mm · min).

溶解パラメータ(SP値) 次式により算出(Smallの式) SP値=dΣG/M、 d:比重、G:モル索引定数。Dissolution parameter (SP value) Calculated by the following formula (Small's formula) SP value = dΣG / M, d: specific gravity, G: molar index constant.

粉体が完全に濡れるメタノールの容量%(MW値) シリカ0.2gをビーカに採取し、純水50mlを加える。電
磁攪拌しながら液面下へメタノールを加え、液面上にシ
リカが認められなかった点を終点とし、要したメタノー
ル量から次式より算出する。
The volume% (MW value) of methanol in which the powder is completely wetted Collect 0.2 g of silica in a beaker and add 50 ml of pure water. Methanol is added below the liquid surface with electromagnetic stirring, and the point at which no silica is observed on the liquid surface is defined as the end point, and is calculated from the required amount of methanol by the following equation.

MW値=X/(50+X)×100、 X:メタノール使用量(ml)。 MW value = X / (50 + X) × 100, X: methanol consumption (ml).

実施例1 MW値50%、平均一次粒径16mμ、比表面積110m2/gの疎
水性シリカ〔アエロジルR−972(商品名)〕14.8容量
%、フタル酸ジオクチル(SP値:8.9)48.5容量%、フタ
ル酸ジブチル(SP値:9.4)4.4容量%をヘンシェルミキ
サーで混合し、これにw=242,000のポリフッ化ビニ
リデン〔クレハKFポリマー#1000(商品名)〕32.3容量
%を添加し、再度ヘンシェルミキサーで混合した。
Example 1 Hydrophobic silica [Aerosil R-972 (trade name)] having an MW value of 50%, an average primary particle diameter of 16 mμ and a specific surface area of 110 m 2 / g, 14.8% by volume, and 48.5% by volume of dioctyl phthalate (SP value: 8.9) And 4.4% by volume of dibutyl phthalate (SP value: 9.4) were mixed in a Henschel mixer, and 32.3% by volume of polyvinylidene fluoride (Kureha KF polymer # 1000 (trade name)) with w = 242,000 was added thereto. And mixed.

該混合物を30mmφ二軸押出機で混合し、ペレットにし
た。このペレットを30mmφ二軸押出機に中空糸状紡口を
取り付けた中空糸製造装置にて中空糸状に成形した。成
形された中空糸を60℃の1,1,1−トリクロロエタン中に
1時間浸漬して、フタル酸ジオクチル及びフタル酸ジブ
チルを抽出した後、乾燥させた。
The mixture was mixed with a 30 mmφ twin screw extruder to form pellets. The pellet was formed into a hollow fiber shape by a hollow fiber manufacturing apparatus equipped with a 30 mmφ twin screw extruder and a hollow fiber spout. The molded hollow fiber was immersed in 1,1,1-trichloroethane at 60 ° C. for 1 hour to extract dioctyl phthalate and dibutyl phthalate, and then dried.

次いで、50%エチルアルコール水溶液に30分間浸漬
し、更に水中に移して30分浸漬して、中空糸を親水化し
た。更に70℃、20%苛性ソーダ水溶液中に1時間浸漬し
て疎水性シリカを抽出した後、水洗し、乾燥した。
Next, the hollow fiber was immersed in a 50% ethyl alcohol aqueous solution for 30 minutes, transferred to water, and immersed for 30 minutes to hydrophilize the hollow fiber. After further immersing in a 20% aqueous solution of caustic soda at 70 ° C. for 1 hour to extract hydrophobic silica, it was washed with water and dried.

得られたポリフッ化ビニリデン多孔膜の性能は、外径
2.00mm、内径1.10mmで、気孔率66.0%、電子顕微鏡写真
より計算される外表面、内表面及び断面の平均孔径は夫
々1.87μ、0.86μ及び1.05μであり、外表面の平均孔径
と膜断面の平均孔径の比は1.78で、内表面と平均孔径と
膜断面の平均孔径の比は0.82であった。又、ハーフドラ
イ法による平均孔径は0.59μでバブルポイント法による
最大孔径は0.91μで、最大孔径と平均孔径の比は1.54で
あった。透水量7000l/m2・hr・atm・25℃であり、破断
強度は115Kg/cm2、破断伸度は300%であった。
The performance of the obtained polyvinylidene fluoride porous membrane depends on the outer diameter.
2.00mm, inner diameter 1.10mm, porosity 66.0%, average pore diameter of outer surface, inner surface and cross section calculated from electron micrographs are 1.87μ, 0.86μ and 1.05μ, respectively. The ratio of the average pore diameter of the cross section was 1.78, and the ratio of the average pore diameter of the inner surface to the average pore diameter of the membrane cross section was 0.82. The average pore diameter by the half dry method was 0.59 μm, the maximum pore diameter by the bubble point method was 0.91 μm, and the ratio of the maximum pore diameter to the average pore diameter was 1.54. The water permeability was 7000 l / m 2 · hr · atm · 25 ° C, the breaking strength was 115 kg / cm 2 , and the breaking elongation was 300%.

得られた多孔膜の外表面、内表面及び横断面の電子顕
微鏡写真を第1図(a)〜(d)に夫々示す。この多孔
膜は均質な連通孔からなる三次元の網状構造を有し、内
部に10μ以上のマクロボイドは認められなかった。
Electron micrographs of the outer surface, inner surface and cross section of the obtained porous membrane are shown in FIGS. 1 (a) to (d), respectively. This porous membrane had a three-dimensional network structure consisting of homogeneous communication holes, and no macrovoids of 10 μm or more were found inside.

比較例1 シリカとしてMW値0%、平均一次粒径16mμ、比表面
積280m2/gの親水性シリカ〔ニップシルLP(商品名)〕
を用いる以外は実施例1と同様にしてポリフッ化ビニリ
デン多孔膜を得た。
Comparative Example 1 Hydrophilic silica having an MW value of 0%, an average primary particle size of 16 mμ, and a specific surface area of 280 m 2 / g [Nipsil LP (trade name)] was used as the silica.
A polyvinylidene fluoride porous membrane was obtained in the same manner as in Example 1 except that

得られたポリフッ化ビニリデン多孔膜の性能は、ハー
フドライ法による平均孔径0.40μ、バブルポイント法に
よる最大孔径1.00μ、透水量2500l/m2・hr・atm・25℃
であり、破断強度は60Kg/cm2、破断伸度は50%と非常に
低かった。得られた多孔膜の横断面の電子顕微鏡写真を
第2図に示す。多孔膜中にマクロボイドが多数見られ、
不均一な構造をしていた。
Performance of the resulting polyvinylidene fluoride porous membrane has an average pore size of 0.40μ by the half-dry method, a maximum pore size 1.00Myu, water permeability 2500l / m 2 · hr · atm · 25 ℃ by the bubble point method
The breaking strength was 60 kg / cm 2 , and the breaking elongation was very low at 50%. FIG. 2 shows an electron micrograph of a cross section of the obtained porous membrane. Many macro voids are seen in the porous membrane,
It had an uneven structure.

実施例2 実施例1と同様にしてペレットを作成し、得られたペ
レットを30mmφ二軸押出機に450mm幅のTダイを取り付
けたフィルム製造装置にて膜状に成形した。
Example 2 Pellets were prepared in the same manner as in Example 1, and the obtained pellets were formed into a film by a film manufacturing apparatus in which a T-die having a width of 450 mm was attached to a 30 mmφ twin screw extruder.

成形された膜を60℃の1,1,1−トリクロロエタン中に
1時間浸漬して、フタル酸ジオクチル及びフタル酸ジブ
チルを抽出した後、乾燥させた。
The formed film was immersed in 1,1,1-trichloroethane at 60 ° C. for 1 hour to extract dioctyl phthalate and dibutyl phthalate, and then dried.

次いで、50%エチルアルコール水溶液に30分間浸漬
し、更に水中に移して30分浸漬して膜を親水化した。更
に70℃、20%苛性ソーダ水溶液中に1時間浸漬して疎水
性シリカを抽出した後、水洗し、乾燥した。
Then, the film was immersed in a 50% ethyl alcohol aqueous solution for 30 minutes, further transferred to water and immersed for 30 minutes to hydrophilize the film. After further immersing in a 20% aqueous solution of caustic soda at 70 ° C. for 1 hour to extract hydrophobic silica, it was washed with water and dried.

得られたポリフッ化ビニリデン多孔膜の性能は、膜厚
110μで、気孔率64.0%、電子顕微鏡写真より計算され
る外表面、内表面及び断面の平均孔径は夫々1.55μ、1.
20μ及び1.32μであり、外表面の平均孔径と膜断面の平
均孔径の比は1.17で、内表面の平均孔径と膜断面の平均
孔径の比は0.91であった。又、ハーフドライ法による平
均孔径は0.67μで、バブルポイント法による最大孔径
は、1.01μで、最大孔径と平均孔径の比は1.51であっ
た。透水量15,000l/m2・hr・atm・25℃であり、破断強
度は120Kg/cm2、破断伸度は340%であった。
The performance of the obtained polyvinylidene fluoride porous membrane depends on the film thickness.
110μ, porosity 64.0%, average pore diameter of outer surface, inner surface and cross section calculated from electron micrographs are 1.55μ, 1.
The ratio of the average pore diameter of the outer surface to the average pore diameter of the membrane cross section was 1.17, and the ratio of the average pore diameter of the inner surface to the average pore diameter of the membrane cross section was 0.91. The average pore diameter by the half dry method was 0.67 μm, the maximum pore diameter by the bubble point method was 1.01 μm, and the ratio of the maximum pore diameter to the average pore diameter was 1.51. The water permeability was 15,000 l / m 2 · hr · atm · 25 ° C, the breaking strength was 120 kg / cm 2 , and the breaking elongation was 340%.

得られた多孔膜の電子顕微鏡写真は均質な連通孔から
なる三次元の網状構造を有し、内部に10μ以上のマクロ
ボイドは認められなかった。
An electron micrograph of the obtained porous membrane had a three-dimensional network structure composed of homogeneous communication holes, and no macrovoids of 10 μm or more were found inside.

比較例2 ポリフッ化ビニリデン〔Penwalt社、Kynar301F(商品
名)、w=460,000〕16重量%、N−メチル−2−ピ
ロリドン(以下NMPと略す)64重量%、シクロヘキサノ
ン10重量%、及びポリビニルピロリドン〔和光純薬、K
−30(分子量40,000)〕10重量%からなる製膜原液を調
製し、ガラス板上に流延した。大気中に5分間放置し、
流延膜が十分白濁してから水洗浄浴に浸漬してポリフッ
化ビニリデン多孔膜を得た。
Comparative Example 2 16% by weight of polyvinylidene fluoride [Penwalt, Kynar301F (trade name), w = 460,000], 64% by weight of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), 10% by weight of cyclohexanone, and polyvinylpyrrolidone [ Wako Pure Chemical, K
−30 (molecular weight: 40,000)] A stock solution of 10% by weight was prepared and cast on a glass plate. Leave it in the air for 5 minutes,
After the casting membrane became sufficiently cloudy, it was immersed in a water washing bath to obtain a polyvinylidene fluoride porous membrane.

得られたポリフッ化ビニリデン多孔膜の性能は、膜厚
130μで、ハーフドライ法による平均孔径0.63μ、バブ
ルポイント法による最大孔径1.90μ、透水量14,000l/m2
・hr・atm・25℃であり、破断強度は13Kg/cm2、破断伸
度は35%と非常に弱く、実用に供せなかった。
The performance of the obtained polyvinylidene fluoride porous membrane depends on the film thickness.
130μ, average pore diameter 0.63μ by half dry method, maximum pore diameter 1.90μ by bubble point method, water permeability 14,000l / m 2
· Hr · atm · 25 ° C, the breaking strength was 13 kg / cm 2 , and the breaking elongation was very weak at 35%, which was not practical.

比較例3 比較例2と同様にして製膜原液を調製し、ガラス板上
に流延した後直ちにNMP70重量%、メタノール15重量%
及び水15重量%からなる凝固浴に浸漬し、流延膜が白濁
してから2分後に水洗浴に浸漬してポリフッ化ビニリデ
ン多孔膜を得た。
Comparative Example 3 A membrane-forming stock solution was prepared in the same manner as in Comparative Example 2, and immediately after casting on a glass plate, NMP 70% by weight and methanol 15% by weight.
The cast film was immersed in a coagulation bath consisting of 15% by weight of water and 15% by weight of water, and 2 minutes after the cast film became cloudy, was immersed in a washing bath to obtain a polyvinylidene fluoride porous film.

得られたポリフッ化ビニリデン多孔膜の性能は、膜厚
80μで、ハーフドライ法による平均孔径0.19μ、バブル
ポイント法による最大孔径0.78μ、透水量260l/m2・hr
・atm・25℃であり、破断強度は23Kg/cm2、破断伸度は
2%と非常に弱く、実用に供せなかった。
The performance of the obtained polyvinylidene fluoride porous membrane depends on the film thickness.
80μ, average pore size 0.19μ by half dry method, maximum pore size 0.78μ by bubble point method, water permeability 260l / m 2・ hr
It was atm at 25 ° C, the breaking strength was 23 kg / cm 2 , and the breaking elongation was 2%, which was very weak and could not be put to practical use.

実施例3〜4 ポリフッ化ビニリデン及び疎水性シリカ、フタル酸ジ
オクチル、フタル酸ジブチルの混合割合を変えた以外は
実施例1と同様にしてポリフッ化ビニリデン多孔膜を得
た。得られたポリフッ化ビニリデン多孔膜の性能を第1
表に示す。破断伸度は何れも大きかった。
Examples 3 and 4 A polyvinylidene fluoride porous film was obtained in the same manner as in Example 1 except that the mixing ratio of polyvinylidene fluoride, hydrophobic silica, dioctyl phthalate, and dibutyl phthalate was changed. The performance of the obtained polyvinylidene fluoride porous membrane was
It is shown in the table. Elongation at break was all large.

実施例5 有機液状体としフタル酸ジヘプチル(SP値:9.1)を使
用し、ポリフッ化ビニリデン、疎水性シリカ、有機液状
体の混合割合を夫々31.3容量%、12.5容量%、56.2容量
%として、実施例1と同様にしてポリフッ化ビニリデン
多孔膜を得た。得られたポリフッ化ビニリデン多孔膜の
性能を第2表に示す。
Example 5 Diheptyl phthalate (SP value: 9.1) was used as the organic liquid, and the mixing ratio of polyvinylidene fluoride, hydrophobic silica, and the organic liquid was 31.3% by volume, 12.5% by volume, and 56.2% by volume, respectively. A polyvinylidene fluoride porous membrane was obtained in the same manner as in Example 1. Table 2 shows the performance of the obtained polyvinylidene fluoride porous membrane.

実施例6 MW値60%、平均一次粒径16mμ、比表面積75m2/gの疎
水性シリカ〔ニップシルSS−50F(商品名)〕を用いる
以外は実施例1と同様にしてポリフッ化ビニリデン多孔
膜を得た。
Example 6 A polyvinylidene fluoride porous membrane was prepared in the same manner as in Example 1 except that a hydrophobic silica having a MW value of 60%, an average primary particle size of 16 mμ, and a specific surface area of 75 m 2 / g was used. I got

得られたポリフッ化ビニリデン多孔膜の性能は、ハー
フドライ法による平均孔径0.65μ、バブルポイント法に
よる最大孔径1.10μ、透水量8,500l/m2・hr・atm・25℃
であり、破断強度は100Kg/cm2、破断伸度は250%であっ
た。
Performance of the resulting polyvinylidene fluoride porous membrane has an average pore size of 0.65μ by the half-dry method, a maximum pore size 1.10Myu, water permeability of 8,500l / m 2 · hr · atm · 25 ℃ by the bubble point method
The breaking strength was 100 kg / cm 2 and the breaking elongation was 250%.

得られた多孔膜の電子顕微鏡写真は均質な連通孔から
なる三次元の網状構造を有し、内部に10μ以上のマクロ
ボイドは認められなかった。
An electron micrograph of the obtained porous membrane had a three-dimensional network structure composed of homogeneous communication holes, and no macrovoids of 10 μm or more were found inside.

〔発明の効果〕 本発明により、優れた耐薬品性と優れた濾過性能、優
れた機械的物性を備え、かつ、微細な孔からなる均一多
孔構造を有し、破断伸度が飛躍的に向上したポリフッ化
ビニリデン多孔膜が得られるようになった。
[Effects of the Invention] The present invention has excellent chemical resistance, excellent filtration performance, excellent mechanical physical properties, and has a uniform porous structure composed of fine pores, and the elongation at break is dramatically improved. Thus, the obtained polyvinylidene fluoride porous film can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(d)は、実施例1により製造したポリ
フッ化ビニリデン中空糸繊維の表面形状を示す電子顕微
鏡写真で、第1図(a)は中空糸繊維の外側表面の形状
(倍率3000倍)、第1図(b)は中空糸繊維の内側表面
の形状(倍率3000倍)、第1図(c)は中空糸繊維の横
断面表面の形状(倍率3000倍)、第1図(d)は中空糸
繊維の横断面表面の形状(倍率200倍)を示す。 第2図は比較例1により製造したポリフッ化ビニリデン
中空糸繊維の横断面表面の形状(倍率200倍)を示す電
子顕微鏡写真である。
1 (a) to 1 (d) are electron micrographs showing the surface shape of the polyvinylidene fluoride hollow fiber produced according to Example 1, and FIG. 1 (a) shows the shape of the outer surface of the hollow fiber (see FIG. 1 (a)). FIG. 1 (b) shows the shape of the inside surface of the hollow fiber (3000 ×), and FIG. 1 (c) shows the shape of the cross-sectional surface of the hollow fiber (3000 ×). Figure (d) shows the shape (200 times magnification) of the cross-sectional surface of the hollow fiber. FIG. 2 is an electron micrograph showing the cross-sectional surface shape (magnification: 200 times) of the polyvinylidene fluoride hollow fiber fiber produced in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−97001(JP,A) 特開 昭59−16503(JP,A) 特開 昭58−59072(JP,A) 特開 昭58−93734(JP,A) 特開 昭48−56261(JP,A) (58)調査した分野(Int.Cl.6,DB名) C08J 9/26 - 9/28 102 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-97001 (JP, A) JP-A-59-16503 (JP, A) JP-A-58-59072 (JP, A) JP-A-58-590 93734 (JP, A) JP-A-48-56261 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C08J 9/26-9/28 102

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリフッ化ビニリデン樹脂からなり、気孔
率40〜90%、内部に実質的に10μ以上のマクロボイドを
含まず、表面層の平均孔径が0.05μ以上5μ未満で、か
つ、表面層の平均孔径と膜断面の平均孔径の比が0.5〜
2.0の均質な連通孔からなる三次元の網状構造を有し、
かつ、最大孔径と平均孔径の比が1.2〜2.5の孔径分布を
有し、破断強度70〜200kg/cm2、破断伸度100〜500%で
あるポリフッ化ビニリデン樹脂からなる多孔膜。
1. A surface layer comprising a polyvinylidene fluoride resin having a porosity of 40 to 90%, containing substantially no macrovoids of 10 μm or more inside, and having an average pore diameter of 0.05 μm or more and less than 5 μm in a surface layer. The ratio of the average pore diameter of the membrane to the average pore diameter of the membrane
It has a three-dimensional network structure consisting of 2.0 homogeneous communication holes,
A porous membrane made of a polyvinylidene fluoride resin having a pore size distribution in which the ratio of the maximum pore size to the average pore size is 1.2 to 2.5, a breaking strength of 70 to 200 kg / cm 2 , and a breaking elongation of 100 to 500%.
【請求項2】ポリフッ化ビニリデン樹脂と有機液状体及
び無機微粉体を混合した後、溶融成形し、次いでかかる
成形物より有機液状体及び無機微粉体を抽出することを
特徴とする多孔膜の製造方法において、無機微粉体とし
てメタノールMW値が30%以上である疎水性シリカを用
い、かつ、SP値が8.4〜10.5である有機液状体を用いる
ことを特徴とするポリフッ化ビニリデン多孔膜の製造方
法。
2. A method for producing a porous membrane, comprising mixing a polyvinylidene fluoride resin with an organic liquid and an inorganic fine powder, followed by melt molding, and then extracting the organic liquid and the inorganic fine powder from the molded product. A method for producing a polyvinylidene fluoride porous membrane, comprising using hydrophobic silica having a methanol MW value of 30% or more as an inorganic fine powder, and using an organic liquid having an SP value of 8.4 to 10.5. .
JP2001309A 1989-01-12 1990-01-08 Polyvinylidene fluoride porous membrane and method for producing the same Expired - Lifetime JP2899903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309A JP2899903B2 (en) 1989-01-12 1990-01-08 Polyvinylidene fluoride porous membrane and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-3675 1989-01-12
JP367589 1989-01-12
JP2001309A JP2899903B2 (en) 1989-01-12 1990-01-08 Polyvinylidene fluoride porous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03215535A JPH03215535A (en) 1991-09-20
JP2899903B2 true JP2899903B2 (en) 1999-06-02

Family

ID=26334507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309A Expired - Lifetime JP2899903B2 (en) 1989-01-12 1990-01-08 Polyvinylidene fluoride porous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP2899903B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167388A (en) * 2009-01-26 2010-08-05 Emprie Technology Development LLC Manufacturing method of product having nanoporous surface
WO2012074222A2 (en) 2010-12-01 2012-06-07 엘지전자 주식회사 Preparation method of hollow fiber membrane for water treatment using cellulose-based resin
KR101415040B1 (en) 2012-08-24 2014-07-04 도레이케미칼 주식회사 Manufacturing method of PVDF asymmetric porous hollow fiber membrane
KR20170028327A (en) 2014-07-07 2017-03-13 도레이 카부시키가이샤 Separation membrane and method for producing same
KR20170116165A (en) 2014-12-26 2017-10-18 도레이 카부시키가이샤 Porous hollow fiber membrane
KR20180114067A (en) 2016-02-25 2018-10-17 도레이 카부시키가이샤 Porous hollow fiber membrane

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514461A (en) * 1993-10-05 1996-05-07 Kureha Chemical Industry Co., Ltd. Vinylidene fluoride porous membrane and method of preparing the same
EP1897606B1 (en) * 1996-12-10 2009-12-09 Asahi Kasei Kogyo Kabushiki Kaisha Process for preparing porous polyvinylidene fluoride resin membrane
WO1999067013A1 (en) * 1996-12-10 1999-12-29 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
EP1063256A4 (en) * 1998-03-16 2003-03-26 Asahi Chemical Ind Microporous film
JP4303355B2 (en) * 1999-04-26 2009-07-29 株式会社クレハ Polyvinylidene fluoride resin, porous membrane comprising the same, and battery using the porous membrane
JP2002136851A (en) * 2000-10-31 2002-05-14 Asahi Kasei Corp Ethylene-vinyl alcohol copolymer porous hollow fiber membrane and manufacturing method thereof
AU2004230360B2 (en) 2003-04-16 2010-08-05 Kureha Corporation Porous film of vinylidene fluoride resin and method for producing same
JP4761967B2 (en) 2003-10-03 2011-08-31 株式会社クレハ Vinylidene fluoride resin porous hollow fiber and method for producing the same
JP4513371B2 (en) * 2004-03-23 2010-07-28 東レ株式会社 Manufacturing method of separation membrane
WO2007043553A1 (en) 2005-10-13 2007-04-19 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same
US7977410B2 (en) * 2006-02-01 2011-07-12 Maruo Calcium Co., Ltd. Fine pore formation agent for porous resin film and composition containing the same for porous resin film
CN102348495A (en) * 2009-01-15 2012-02-08 株式会社吴羽 Vinylidene fluoride resin hollow fiber porous membrane and process for producing same
US9095824B2 (en) 2009-02-05 2015-08-04 Kureha Corporation Vinylidene fluoride resin porous film and manufacturing method therefor
US9096957B2 (en) 2009-07-14 2015-08-04 Kureha Corporation Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
KR20130040819A (en) 2010-04-12 2013-04-24 닛토덴코 가부시키가이샤 Ion-conducting organic-inorganic composite particles, particle-containing resin composition, and ion-conducting molded body
JP6058250B2 (en) * 2010-04-12 2017-01-11 日東電工株式会社 Particle-dispersed resin composition, particle-dispersed resin molded body, and production method thereof
JP5546992B2 (en) * 2010-08-13 2014-07-09 旭化成ケミカルズ株式会社 Method for producing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filtration device using porous hollow fiber membrane, and water treatment method using porous hollow fiber membrane
JP5546993B2 (en) * 2010-08-13 2014-07-09 旭化成ケミカルズ株式会社 Manufacturing method of irregular porous hollow fiber membrane, irregular porous hollow fiber membrane, module using irregular porous hollow fiber membrane, filtration device using irregular porous hollow fiber membrane, and filtration using irregular porous hollow fiber membrane Method
CN102241832B (en) * 2011-05-14 2013-08-28 中材科技股份有限公司 Polyolefin film and preparation method thereof
US10751671B2 (en) 2014-01-10 2020-08-25 Asahi Kasei Kabushiki Kaisha Porous hollow fiber membrane, method for producing same, and water purification method
US9737860B2 (en) * 2014-02-28 2017-08-22 Pall Corporation Hollow fiber membrane having hexagonal voids
US20150246320A1 (en) * 2014-02-28 2015-09-03 Pall Corporation Porous polymeric membrane with high void volume
JP6845919B2 (en) 2017-03-24 2021-03-24 旭化成株式会社 How to operate a porous membrane for membrane distillation and a module for membrane distillation
CN112827371A (en) * 2019-11-25 2021-05-25 浙江省化工研究院有限公司 PVF microporous membrane and preparation method thereof
CN110917894B (en) * 2019-12-05 2022-02-15 万华化学集团股份有限公司 Preparation method of polyvinylidene fluoride hollow fiber porous membrane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856261A (en) * 1971-11-12 1973-08-07
JPS5859072A (en) * 1981-10-05 1983-04-07 Asahi Chem Ind Co Ltd Porous film of thermoplastic resin and production thereof
JPS5893734A (en) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd Production of porous membrane of hydrophilic polyvinylidene fluoride resin
JPS5916503A (en) * 1982-07-20 1984-01-27 Teijin Ltd Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
JPS6097001A (en) * 1983-11-02 1985-05-30 Teijin Ltd Polyvinylidene fluoride porous membrane and its preparation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167388A (en) * 2009-01-26 2010-08-05 Emprie Technology Development LLC Manufacturing method of product having nanoporous surface
WO2012074222A2 (en) 2010-12-01 2012-06-07 엘지전자 주식회사 Preparation method of hollow fiber membrane for water treatment using cellulose-based resin
KR101415040B1 (en) 2012-08-24 2014-07-04 도레이케미칼 주식회사 Manufacturing method of PVDF asymmetric porous hollow fiber membrane
KR20170028327A (en) 2014-07-07 2017-03-13 도레이 카부시키가이샤 Separation membrane and method for producing same
US10702834B2 (en) 2014-07-07 2020-07-07 Toray Industries, Inc. Separation membrane and method for producing same
KR20170116165A (en) 2014-12-26 2017-10-18 도레이 카부시키가이샤 Porous hollow fiber membrane
US9901883B2 (en) 2014-12-26 2018-02-27 Toray Industries, Inc. Porous hollow fiber membrane
KR20180114067A (en) 2016-02-25 2018-10-17 도레이 카부시키가이샤 Porous hollow fiber membrane
US11058996B2 (en) 2016-02-25 2021-07-13 Toray Industries, Inc. Porous hollow fiber membrane

Also Published As

Publication number Publication date
JPH03215535A (en) 1991-09-20

Similar Documents

Publication Publication Date Title
JP2899903B2 (en) Polyvinylidene fluoride porous membrane and method for producing the same
US5022990A (en) Polyvinylidene fluoride porous membrane and a method for producing the same
KR100530614B1 (en) Method of producing highly permeable microporous polyolefin film
KR101408473B1 (en) Microporous membranes having a relatively large average pore size and methods of making the same
AU736329B2 (en) Porous polyvinylidene fluoride resin membrane and process for preparing the same
JP2657434B2 (en) Polyethylene microporous membrane, method for producing the same, and battery separator using the same
JP3347835B2 (en) Method for producing microporous polyolefin membrane
WO1999047593A1 (en) Microporous film
JP2006239680A5 (en)
JP4271750B2 (en) Microporous membrane and method for producing the same
KR101394416B1 (en) Method for Manufacturing Polyvinylidene fluoride Hollow fiber membrane and Hollow fiber membrane
JP2007181813A (en) Manufacturing method of hollow fiber membrane, and hollow fiber membrane
JP2835365B2 (en) Method for producing porous polyolefin membrane
JPS6023130B2 (en) Method for producing polyolefin porous material
JPS5832171B2 (en) Method for manufacturing porous membrane
JPH10168218A (en) Porous vinylidene fluoride resin film
JP3638401B2 (en) Method for producing polyolefin microporous membrane
JPH0311259B2 (en)
JPS5916503A (en) Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
CN1265048A (en) Porous polyvinylidene fluoride resin film and process for producing same
JP2008062227A (en) Raw material solution for preparing membrane, porous membrane, and method for preparing porous membrane
JPH09169867A (en) Microporous film and its production
KR20070102011A (en) Porous poly(vinylidene fluoride) hollow fiber membranes for high water permeance and methods to make membranes
JP4188748B2 (en) Porous molded body
JP2001300275A (en) Polyolefin hollow-fiber type porous membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11