JPS5832171B2 - Method for manufacturing porous membrane - Google Patents

Method for manufacturing porous membrane

Info

Publication number
JPS5832171B2
JPS5832171B2 JP51073807A JP7380776A JPS5832171B2 JP S5832171 B2 JPS5832171 B2 JP S5832171B2 JP 51073807 A JP51073807 A JP 51073807A JP 7380776 A JP7380776 A JP 7380776A JP S5832171 B2 JPS5832171 B2 JP S5832171B2
Authority
JP
Japan
Prior art keywords
volume
porous membrane
membrane
organic liquid
electrical resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51073807A
Other languages
Japanese (ja)
Other versions
JPS52156776A (en
Inventor
良直 土井
茂雄 金子
収 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP51073807A priority Critical patent/JPS5832171B2/en
Publication of JPS52156776A publication Critical patent/JPS52156776A/en
Publication of JPS5832171B2 publication Critical patent/JPS5832171B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 本発明は、ポリオレフィン樹脂と無機微粉体から成り、
微細な孔を多数有し、機械的強度に優れた多孔膜を製造
する方法に関するものである。
[Detailed description of the invention] The present invention consists of a polyolefin resin and an inorganic fine powder,
The present invention relates to a method for manufacturing a porous membrane having many fine pores and excellent mechanical strength.

また本発明は、水湿潤性をもち、電解液中において従来
になく小さい電気抵抗を示し、蓄電池隔離板、電解隔膜
として有用な多孔膜の製造に関するものである。
The present invention also relates to the production of a porous membrane that is water-wettable, exhibits an unprecedentedly low electrical resistance in an electrolytic solution, and is useful as a storage battery separator or an electrolytic diaphragm.

従来より、(1)塩化ビニル樹脂に樹脂の溶剤、可塑剤
、シリカを混練して成形後、乾燥することよりなる多孔
膜の製造方法(特公昭37−2922)、(2)塩化ビ
ニル樹脂粉末とシリカ微粉末の混合物を焼結することよ
りなる多孔膜の製造方法(特公昭35−3092)、(
3)SLMI = o、重量平均分子量300000以
上の高分子量ポリオレフィン樹脂、シリカプロセスオイ
ルの混合物を溶融成形した後、プロセスオイルを抽出す
ることよりなる多孔膜の製造方法(特公昭45−320
97)等が知られている。
Conventionally, (1) a method for producing a porous membrane comprising kneading a resin solvent, a plasticizer, and silica with vinyl chloride resin, molding, and drying (Japanese Patent Publication No. 37-2922), (2) vinyl chloride resin powder. A method for producing a porous membrane by sintering a mixture of and fine silica powder (Japanese Patent Publication No. 35-3092), (
3) SLMI = o, a method for producing a porous membrane comprising melt-molding a mixture of a high molecular weight polyolefin resin having a weight average molecular weight of 300,000 or more and silica process oil, and then extracting the process oil (Japanese Patent Publication No. 45-320
97) etc. are known.

多孔膜を蓄電池隔離板として使用する場合、電解液中に
おいて低い電気抵抗が要求される。
When porous membranes are used as battery separators, low electrical resistance is required in the electrolyte.

特に近年、高性能隔離板として、少くとも0.001Ω
dm”7枚以下(JISC−2313により測定)、好
ましくは0.0006Ωa 、j/枚以下の電気抵抗で
あることが望まれる。
Especially in recent years, as a high-performance separator, at least 0.001Ω
It is desired that the electrical resistance be 7 dm" or less (measured according to JISC-2313), preferably 0.0006 Ωa, j/sheet or less.

この要求を満足するためには、0.2%以上の膜厚を有
するものについては厚み0.1%当りの電気抵抗を0.
0003Ωdm′以下と、従来になく低くするか、0.
0003Ωdm2/Q、1mm厚以上の電気抵抗を有す
るものは、0.2%以下の薄膜とする必要がある。
In order to satisfy this requirement, for films with a film thickness of 0.2% or more, the electrical resistance per 0.1% thickness must be reduced to 0.
0003 Ωdm' or lower than ever before, or 0.
A film having an electrical resistance of 0003Ωdm2/Q and a thickness of 1 mm or more needs to be a thin film of 0.2% or less.

しかしながら、(1)、(2)で製造される塩化ビニル
樹脂の多孔膜は、機械的強度と柔軟性に欠けるため、厚
みが0.4 mm以下では実用上有効なものは得られず
、0.4順以上のものでは電気抵抗は0.001Ωdi
”7枚以上となり、高性能隔膜としての要求を満たすも
のは得られない。
However, the porous vinyl chloride resin membranes produced in (1) and (2) lack mechanical strength and flexibility, so if the thickness is 0.4 mm or less, a practically effective membrane cannot be obtained. .4 or higher, the electrical resistance is 0.001Ωdi
``With 7 or more membranes, it is impossible to obtain a membrane that meets the requirements for a high-performance diaphragm.

また(3)は膜に柔軟性を賦与するために、分子量30
0000以上、SLMI=Oの高分子量ポリオレフィン
を用いている。
In addition, (3) has a molecular weight of 30 to give flexibility to the membrane.
0,000 or more, a high molecular weight polyolefin with SLMI=O is used.

これにより柔軟性は解決されるが成形性が悪く、かつ単
位厚み当りの電気抵抗が0.0003Ωd m / 0
.1 mrn以上に高いため、0.0006Ωdm”7
枚以下の電気抵抗をもつ高性能蓄電池隔離板を製造する
ことは困難である。
This solves the problem of flexibility, but the moldability is poor, and the electrical resistance per unit thickness is 0.0003 Ωd m / 0.
.. 0.0006 Ωdm"7 because it is higher than 1 mrn
It is difficult to produce high-performance battery separators with electrical resistances of less than 100 nm.

本発明者らは、実用上充分な機械的強度と柔軟性を備え
、かつ低い電気抵抗の多孔膜を実現するために鋭意研究
を重ねた結果、0.0006Ωdm”。
The inventors of the present invention have conducted extensive research to realize a porous membrane with practically sufficient mechanical strength and flexibility, and low electrical resistance.

枚と従来になく低い電気抵抗、良好な薄膜成形性、充分
な機械的強度、柔軟性の全てを兼ね備えた多孔膜の製造
法を発明するに至った。
We have now invented a method for producing a porous membrane that has unprecedentedly low electrical resistance, good thin film formability, sufficient mechanical strength, and flexibility.

本発明により、0.0003Ωd m”/ 0.1關以
下と従来になく低い電気抵抗と、0.05%厚までの薄
膜化が可能となり、電気抵抗が従来品の1/10と飛躍
的に小さい高性能蓄電池隔離板の実現を可能とした。
The present invention makes it possible to achieve an electrical resistance as low as 0.0003 Ωd m"/0.1 or less, and to make the film as thin as 0.05%, dramatically reducing the electrical resistance to 1/10 of conventional products. This made it possible to realize a small, high-performance storage battery separator.

即ち、本発明は、重量平均分子量300000未満、数
平均分子量15000以上のポリオレフィン樹脂10〜
60容量%、無機微粉体7〜42容量%かつポリオレフ
ィン:無機微粉体=2:3〜9:1、溶解パラメーター
(SP値)8.4〜9.9の有機液状体30〜75容量
%を混合し、当該混合物を溶融成形し、次いで、この成
形物から有機液状体の溶剤で有機液状体を抽出すること
により、多孔膜を製造する方法である。
That is, the present invention provides polyolefin resins having a weight average molecular weight of less than 300,000 and a number average molecular weight of 15,000 or more.
60% by volume, 7 to 42% by volume of inorganic fine powder, polyolefin:inorganic fine powder = 2:3 to 9:1, and 30 to 75% by volume of organic liquid having a solubility parameter (SP value) of 8.4 to 9.9. This is a method for manufacturing a porous membrane by mixing the mixture, melt-molding the mixture, and then extracting the organic liquid from the molded product using a solvent for the organic liquid.

本発明の特徴は、第一に原料の選定にある。The first feature of the present invention lies in the selection of raw materials.

ポリオレフィン樹脂は、重量平均分子量(Mw)が少く
とも300000未満であることが必要であって、好ま
しくは250000以下であり、かつ数平均分子量(M
n)が15000以上であることが必要であって、好ま
しくは17000以上である。
The polyolefin resin needs to have a weight average molecular weight (Mw) of at least less than 300,000, preferably 250,000 or less, and a number average molecular weight (Mw) of at least 250,000 or less.
n) is required to be 15,000 or more, preferably 17,000 or more.

Mnが15000未満のポリオレフィン樹脂を用いた場
合、得られる多孔膜は伸びが数%と極端に小さく脆いも
のとなってしま(・、実用に供することができない。
When a polyolefin resin having Mn of less than 15,000 is used, the resulting porous membrane has an extremely small elongation of a few percent and is brittle (-, it cannot be put to practical use.

Mwが300000以上のポリオレフィン樹脂では、溶
融時の流動性が小さいため、成形性が悪く、さらにポリ
オレフィン樹脂が形成する網状構造体表面の平均開孔径
が0.05μ以下となり、開孔面積が減少し、空孔度も
低下し、0.0003Ωd m2/ 0.1 myn以
上に電気抵抗が増大して好ましくない。
Polyolefin resins with an Mw of 300,000 or more have low fluidity during melting, resulting in poor moldability, and furthermore, the average pore diameter on the surface of the network structure formed by the polyolefin resin is 0.05μ or less, resulting in a decrease in pore area. The porosity also decreases, and the electrical resistance increases to more than 0.0003 Ωd m2/0.1 myin, which is not preferable.

本発明におけるポリオレフィン樹脂としては、Mw<
300000. Mn≧15000の範囲のものであれ
ば、ポリエチレン、ポリプロピレン、ポリブテンおよび
これらの混合物、またはエチレン、プロピレン、ブテン
、ヘキセンの二種以上の共重合物であってもよい。
As the polyolefin resin in the present invention, Mw<
300000. As long as Mn≧15,000, polyethylene, polypropylene, polybutene, a mixture thereof, or a copolymer of two or more of ethylene, propylene, butene, and hexene may be used.

これらの樹脂のうち、ポリエチレンまたはエチレンが主
なる共重合体が特に好ましい。
Among these resins, polyethylene or a copolymer mainly composed of ethylene is particularly preferred.

無機微粉体は有機液状体を保持し、担体としての機能を
持つものである。
The inorganic fine powder holds the organic liquid and functions as a carrier.

即ち、溶融成形時に有機液状体の遊離を防止し、成形を
容易にするものである。
That is, it prevents the release of organic liquid during melt molding and facilitates molding.

さらに無機微粉体は多孔膜に水湿潤性を賦与するもので
ある。
Furthermore, the inorganic fine powder imparts water wettability to the porous membrane.

無機微粉体は平均粒径0.005〜0.5B、比表面積
50〜500 m/9の範囲にある微小粒子または多孔
性粒子であることが好まし鴇さらに無機微粉体は有機液
状体を少くとも2/3倍容量、好ましくは3倍容量以上
を吸収し、粉末または顆粒状態を保つことが好ましい。
The inorganic fine powder is preferably a fine particle or porous particle having an average particle size of 0.005 to 0.5B and a specific surface area of 50 to 500 m/9. It is preferable that both absorb 2/3 times the volume, preferably 3 times the volume or more, and maintain a powder or granule state.

また無機微粉体は一種で用いる場合は必ず親水性であり
、二種以上を混合して用いる場合は少くとも一種が親水
性であることが好ましい。
Further, when one type of inorganic fine powder is used, it is always hydrophilic, and when two or more types are used in combination, it is preferable that at least one type is hydrophilic.

本発明に用いられる無機微粉体の例としては、微粉珪酸
、珪酸カルシウム、珪酸アルミニウム、アルミナ、炭酸
カルシウム、炭酸マグネシウム、カオリンクレー、微粉
タルク、酸化チタン、珪藻土、カーボンブラック等が挙
げられる。
Examples of the inorganic fine powder used in the present invention include finely divided silicic acid, calcium silicate, aluminum silicate, alumina, calcium carbonate, magnesium carbonate, kaolin clay, finely divided talc, titanium oxide, diatomaceous earth, and carbon black.

鉛蓄電池用隔離板の用途には微粉珪酸が特に有効である
Finely divided silicic acid is particularly effective for use as separators for lead-acid batteries.

しかしながら、これに限定されるものではない。However, it is not limited to this.

本発明に用いられる有機液状体は成形物中より抽出され
、成形物に多孔性を賦与するものである。
The organic liquid used in the present invention is extracted from the molded product and imparts porosity to the molded product.

有機液状体は溶融成形時に液体であり、かつ不活性であ
ることが要求される。
The organic liquid is required to be liquid and inert during melt molding.

さらに有機液状体は溶解パラメーター(SP値)が8.
4〜9.9の範囲のものでなくてはならない。
Furthermore, the organic liquid has a solubility parameter (SP value) of 8.
Must be in the range of 4 to 9.9.

この範囲のものを用いることにより溶融成形時、有機液
状体は適度にポリオレフィン樹脂中に溶解し、かつ大半
が無機微粉体表面に吸着した状態を形成する。
By using a material within this range, during melt molding, the organic liquid is appropriately dissolved in the polyolefin resin, and most of the organic liquid is adsorbed on the surface of the inorganic fine powder.

この結果、良好な成形性、抽出性、機械的強度、低電気
抵抗の多孔膜が得られる。
As a result, a porous membrane with good moldability, extractability, mechanical strength, and low electrical resistance can be obtained.

有機液状体のSP値が9.9を超えると、樹脂への溶解
性が低下し、成形時に遊離する。
When the SP value of the organic liquid exceeds 9.9, the solubility in the resin decreases and the organic liquid becomes liberated during molding.

このため樹脂同志の溶着が妨げられ、成形性が悪化し、
かつポリオレフィン樹脂の網状構造の平均開孔径が0.
5μ以上に粗大となり、強伸度が低下する。
This prevents welding of resins together, resulting in poor moldability.
and the average pore diameter of the network structure of the polyolefin resin is 0.
It becomes coarse when it is 5μ or more, and its strength and elongation decrease.

またSP値が8.4未満であると、ポリオレフィン樹脂
への溶解量が増加し、無機微粉体への吸着量が小さくな
る。
Moreover, when the SP value is less than 8.4, the amount dissolved in the polyolefin resin increases and the amount adsorbed to the inorganic fine powder becomes small.

この結果、溶融物の溶着は充分に行なわれ、成形性、機
械的強度は向上する反面、有機液状体の造孔性が低下し
、ポリオレフィン構造体の平均開孔径が0.05μ以下
となり、かつ空孔度も低下する。
As a result, the melt is sufficiently welded, and the formability and mechanical strength are improved, but the pore-forming properties of the organic liquid are reduced, and the average pore diameter of the polyolefin structure is 0.05μ or less, and Porosity also decreases.

さらに抽出性が悪化し、抽出時間も増加する。Furthermore, the extractability deteriorates and the extraction time also increases.

本発明に用L・られるSP値が8.4〜9.9の有機液
状体の例としては、フタル酸ジエチル(DEP )、フ
タル酸ジブチル(DBP ) 、フタル酸ジオクチル(
DOP)等の7タル酸エステル、セバシン酸ジオクチル
(DO8)等セバシン酸エステル、アジピン酸ジオクチ
ル等アジピン酸エステル、トリメリット酸トリオクチル
(TOTM)等トリメリット酸エステル、リン酸トリブ
チル(TBP)、IJン酸オクチルジフェニル等リン酸
エステル、ポリエチレングリコール等のグリコール類が
挙げられる。
Examples of organic liquids having an SP value of 8.4 to 9.9 used in the present invention include diethyl phthalate (DEP), dibutyl phthalate (DBP), and dioctyl phthalate (
DOP), etc., sebacate esters such as dioctyl sebacate (DO8), adipate esters such as dioctyl adipate, trimellitic acid esters such as trioctyl trimellitate (TOTM), tributyl phosphate (TBP), IJN Examples include phosphoric acid esters such as octyldiphenyl acid, and glycols such as polyethylene glycol.

本発明の製造方法をさらに詳しく説明する。The manufacturing method of the present invention will be explained in more detail.

無機微粉体、有機液状体およびポリオレフィン樹脂の合
計容量に対して、7〜42容量%、好ましくは10〜2
0容量%の無機微粉体、30〜75容量%、好ましくは
50〜70容量%の有機液状体、10〜60容量%、好
ましくは15〜40容量%のポリオレフィン樹脂の三者
を混合する。
7 to 42% by volume, preferably 10 to 2% by volume based on the total volume of the inorganic fine powder, organic liquid and polyolefin resin
The following three components are mixed: 0% by volume of inorganic fine powder, 30-75% by volume, preferably 50-70% by volume of organic liquid, and 10-60% by volume, preferably 15-40% by volume of polyolefin resin.

この時、無機微粉体量が7容量%未満では、有効な多孔
膜を作るのに必要な有機液状体を吸着することができず
、混合物は粉末または顆粒状態を保つことができず、成
形が困難となる。
At this time, if the amount of inorganic fine powder is less than 7% by volume, it will not be possible to adsorb the organic liquid necessary to make an effective porous membrane, the mixture will not be able to maintain a powder or granule state, and molding will be difficult. It becomes difficult.

一方、42容量%を超えると溶融時の流動性が悪く、か
つ得られる成形品は脆(実用に供することができない。
On the other hand, if it exceeds 42% by volume, the fluidity during melting will be poor and the resulting molded product will be brittle (unable to be put to practical use).

また有機液状体の量は30容量%未満では有機液状体の
空孔形成に対する寄与率が低下し、得られる多孔膜の空
孔度は30%を下まわり、実質的に多孔膜として有効な
ものが得られない。
Furthermore, if the amount of the organic liquid is less than 30% by volume, the contribution rate of the organic liquid to pore formation decreases, and the porosity of the resulting porous membrane is less than 30%, making it substantially effective as a porous membrane. is not obtained.

方、75容量%を超えると成形が困難となり、機械的強
度の高い多孔膜は得られない。
On the other hand, if it exceeds 75% by volume, molding becomes difficult and a porous membrane with high mechanical strength cannot be obtained.

ポリオレフィン樹脂が10容量%未満では、樹脂が少な
すぎて強度が小さく、成形性も悪L・。
If the polyolefin resin is less than 10% by volume, the resin content is too small, resulting in low strength and poor moldability.

60容量%を超えると、空孔度の犬きL・多孔膜が得ら
れず好ましくない。
If it exceeds 60% by volume, it is not preferable because a porous membrane with a low porosity cannot be obtained.

本発明に供せられる配合物は、主にポリオレフィン樹脂
、無機微粉体、有機液状体の三者により構成される。
The composition used in the present invention is mainly composed of three components: a polyolefin resin, an inorganic fine powder, and an organic liquid.

しかしながら、他に本発明の効果を大きく阻害しない範
囲で、滑剤、酸化防止剤、紫外線吸収剤、可塑剤、成形
助剤等を必要に応じて添加することは何ら差支えない。
However, there is no problem in adding other lubricants, antioxidants, ultraviolet absorbers, plasticizers, molding aids, etc. as necessary, as long as they do not significantly impair the effects of the present invention.

これら三成分の混合には、ヘンシエルミギサーV−ブレ
ンダー、リボンブレンダー等の配合機を用いた通常の混
合法で充分である。
A conventional mixing method using a blender such as a Henschelmigisser V-blender or a ribbon blender is sufficient for mixing these three components.

三成分の混合順序としては、三成分を同時に混合するよ
りも、先ず無機微粉体と有機液状体を混合して無機微粉
体に有機液状体を充分に吸着させ、次(・でポリオレフ
ィン樹脂を配合して混合するのが、溶融成形性の向上、
得られる多孔膜の空孔度および機械的強度の向上に有効
である。
Rather than mixing the three components at the same time, the order of mixing the three components is to first mix the inorganic fine powder and the organic liquid so that the inorganic fine powder sufficiently absorbs the organic liquid, and then mix the polyolefin resin in (. The purpose of mixing is to improve melt formability,
This is effective in improving the porosity and mechanical strength of the resulting porous membrane.

この混合物は、押出機、バンバリーミキサ−1二本ロー
ル、ニーダ−等の溶融混練装置により混練される。
This mixture is kneaded using a melt kneading device such as an extruder, a Banbury mixer with 1 and 2 rolls, or a kneader.

得られる混練物は、溶融成形方法により膜状に成形され
るが、本発明方法に用いられる溶融成形方法としては、
Tダイ法やインフレーション法等の押出成形、カレンダ
ー成形、圧扁成形、射出成形等がある。
The obtained kneaded material is molded into a film shape by a melt molding method, and the melt molding method used in the method of the present invention is as follows:
Examples include extrusion molding such as the T-die method and inflation method, calendar molding, compression molding, and injection molding.

また混合物を押出機、ニーダ−ルーダ−等の混練押出両
機能を有する装置により、直接成形することも可能であ
る。
It is also possible to directly mold the mixture using an extruder, kneader-ruder, or other device having both kneading and extrusion functions.

これらの成形法により三成分混合物は0.05〜1%の
膜状物に成形される。
These molding methods mold the ternary mixture into a 0.05-1% film.

特に0.10〜0.30%の薄膜成形にはTダイ法押出
成形が特に有効である。
In particular, T-die extrusion molding is particularly effective for forming thin films of 0.10 to 0.30%.

得られた膜状成形物からポリオレフィン樹脂の融点以下
の温度にて、用いられた有機液状体の溶剤を用いて有機
液状体の抽出を行なう。
The organic liquid is extracted from the obtained film-like molded product at a temperature below the melting point of the polyolefin resin using a solvent for the organic liquid used.

但し、該溶剤はポリオレフィン樹脂を実質的に溶解する
ものであってはならなし・。
However, the solvent must not substantially dissolve the polyolefin resin.

抽出は回分法や向流多段法等の膜状物の一般的な抽出方
法により容易に行なわれる。
Extraction is easily carried out using common extraction methods for membrane-like materials, such as a batch method or a countercurrent multi-stage method.

抽出に用いられる溶剤としては、メタノール、エタノー
ル、インプロビルアルコール等アルコール類、アセトン
等ケトン類、1・1・1−)’Jクロルエタン、トリク
ロルエチレン等塩素化炭化水素類等の一般的な溶剤で充
分である。
Solvents used for extraction include general solvents such as alcohols such as methanol, ethanol, and Improvil alcohol, ketones such as acetone, and chlorinated hydrocarbons such as 1,1,1-)'J chloroethane and trichlorethylene. That's enough.

また抽出を終了した多孔膜中には、有機液状体が膜の性
能をそこなわない範囲で残存することが許される。
Furthermore, the organic liquid is allowed to remain in the porous membrane after extraction to the extent that it does not impair the performance of the membrane.

しかし、残存量が大きいと膜の空孔度が低下するために
好ましくない。
However, if the residual amount is large, the porosity of the membrane decreases, which is not preferable.

有機液状体の多孔膜中での残存量は5容量%以下、好ま
しくは2%以下である。
The amount of organic liquid remaining in the porous membrane is 5% by volume or less, preferably 2% or less.

抽出が完了した膜状物は、ポリオレフィン樹脂の融点以
下の温度にて溶剤を乾燥除去する。
After the extraction is completed, the solvent is removed by drying the film at a temperature below the melting point of the polyolefin resin.

乾燥は常圧または減圧下、熱風または加熱ロール等の一
般的な方法によって行なわれる。
Drying is carried out under normal pressure or reduced pressure by a common method such as hot air or heated rolls.

本発明によって製造された多孔膜は、実質的にポリオレ
フィン樹脂と無機微粉体の混合物と30〜75%の空孔
により形成される。
The porous membrane produced according to the present invention is substantially formed of a mixture of polyolefin resin and inorganic fine powder and 30 to 75% pores.

ポリオレフィン樹脂および無機微粉体の組成は、ポリオ
レフィン樹脂40〜90容量%、無機微粉体io〜60
容量%、有機液状体O〜5容量%からなる。
The composition of the polyolefin resin and inorganic fine powder is 40 to 90% by volume of polyolefin resin and io to 60% by volume of inorganic fine powder.
% by volume, organic liquid O~5% by volume.

蓄電池隔離板等の柔軟性と水湿湿性および高空孔度を要
求される用途には、ポリオレフイン樹脂50〜80容量
%、無機微粉体20〜50容量%、有機液状体O〜2容
量%の組成範囲のものが好ましく・。
For applications that require flexibility, moisture resistance, and high porosity, such as storage battery separators, a composition of 50 to 80 volume % polyolefin resin, 20 to 50 volume % inorganic fine powder, and 0 to 2 volume % organic liquid is used. Preferably within that range.

本発明によって製造された多孔膜の構造は、ポリオレフ
ィン網状構造体が形成する連通の細孔と、その細孔中に
充填された無機微粉体により形成されている。
The structure of the porous membrane produced according to the present invention is formed by continuous pores formed by a polyolefin network structure and inorganic fine powder filled in the pores.

そして、このポリオレフィン樹脂網状構造体の細孔径は
、ポリオレフィン樹脂の重量平均分子量および有機液状
体のSP値により決定される。
The pore diameter of this polyolefin resin network structure is determined by the weight average molecular weight of the polyolefin resin and the SP value of the organic liquid.

ポリオレフィン樹脂網状構造体の平均表面開孔径は0.
05〜0.5μ、好ましくは0.08〜0.3μである
The average surface pore diameter of the polyolefin resin network structure is 0.
05-0.5μ, preferably 0.08-0.3μ.

また無機微粉体が充填されている状態の多孔膜の平均孔
径は、0.01〜0.1μの範囲にある。
Further, the average pore diameter of the porous membrane filled with inorganic fine powder is in the range of 0.01 to 0.1 μ.

また本発明による多孔膜の空孔度は少くとも30〜75
%、蓄電池隔離板等の用途には50〜70%であること
が好ましい。
Further, the porosity of the porous membrane according to the present invention is at least 30 to 75.
%, preferably 50 to 70% for applications such as storage battery separators.

本発明による多孔膜は0.05〜1駕の膜厚を有する。The porous membrane according to the present invention has a thickness of 0.05 to 1 inch.

充分な膜強度および電気抵抗から、蓄電池隔離板等の用
途には0.10〜0.30%の膜厚のものが特に好まし
い。
In view of sufficient film strength and electrical resistance, a film thickness of 0.10 to 0.30% is particularly preferred for applications such as storage battery separators.

このように、本発明による多孔膜は微細な網状構造をも
つ高空孔度の薄膜で、良好な機械的強度と優れた柔軟性
を備え、かつ0.0006Ωdm2/枚と従来になく抜
群に低い電気抵抗を実現するものであり、本発明の多孔
膜を隔離板として用いることにより、鉛蓄電池は同容量
のものに対し、大巾に性能向上をはかることが可能とな
った。
As described above, the porous membrane according to the present invention is a highly porous thin membrane with a fine network structure, has good mechanical strength and excellent flexibility, and has an unprecedentedly low electrical resistance of 0.0006 Ωdm2/sheet. By using the porous membrane of the present invention as a separator, it has become possible to significantly improve the performance of lead-acid batteries compared to those of the same capacity.

また本発明による多孔膜は蓄電池隔離板のみならず、フ
ィルター、包装材、液状保持材、保香材等の用途に用L
・ることかできる。
In addition, the porous membrane according to the present invention can be used not only as a storage battery separator but also as a filter, packaging material, liquid retention material, fragrance preservation material, etc.
・I can do things.

次に本発明の効果を明らかにするために実施例および比
較例を示す。
Next, Examples and Comparative Examples will be shown to clarify the effects of the present invention.

しかし、本発明は、これらの実施例によって限定される
ものではない。
However, the present invention is not limited to these examples.

なお、本発明の明細書および実施例に示されている諸物
性は次の測定方法によった。
In addition, the various physical properties shown in the specification and examples of the present invention were measured by the following measurement method.

重量平均分子量(MW) 数平均分子量(沁) GPC測定装置−Waters社製Mode1 200
カラム−東洋ソーダ製G70008〜 3000S 溶剤−トリクロルベンゼン 測定温度−135℃ 粘度平均分子量(Mv)(Mv≠ぶW) 溶剤−デカリン 測定温度−135℃ [η)=6.20X10−4Mv’ (Chiang
の式) SLMI=Oのポリエチレンの重量平均分子量は本性に
より算出した。
Weight average molecular weight (MW) Number average molecular weight (MP) GPC measuring device - Waters Model 1 200
Column - Toyo Soda G70008~3000S Solvent - Trichlorobenzene measurement temperature - 135°C Viscosity average molecular weight (Mv) (Mv≠buW) Solvent - Decalin measurement temperature - 135°C [η) = 6.20X10-4Mv' (Chiang
The weight average molecular weight of polyethylene with SLMI=O was calculated based on the property.

組成比(容量%) 各組成の添加重量を真比重にて除した値から算出。Composition ratio (volume%) Calculated from the value obtained by dividing the added weight of each composition by the true specific gravity.

空孔度(%) 空孔度−空孔容積/多孔膜容積×100 空孔容積−含水重量−絶乾重量 ポリオレフィン網状構造体表面平均開孔径(μ)多孔膜
より無機微粉体を抽出除去したポリオレフィン網状構造
体表面の走査型電子顕微鏡写真で観察される開孔部20
0ケの長径と短径の平均を加重平均して算出。
Porosity (%) Porosity - pore volume / porous membrane volume x 100 pore volume - water content - bone dry weight Polyolefin network structure surface average pore diameter (μ) Inorganic fine powder was extracted and removed from the porous membrane Openings 20 observed in a scanning electron micrograph of the surface of a polyolefin network structure
Calculated by weighted average of the long axis and short axis of 0 pieces.

比表面積(m2/グ) BET吸着法により測定 多孔膜平均孔径(μ) 次式により算出 d:直径(μ) S−比表面積(m”/ y) V:細孔容積(ml/グ) 破断強度(kg/ m” )、破断伸び(%)インスト
ロン型引張試験機によりASTMD−882に準じて測
定。
Specific surface area (m2/g) Porous membrane average pore diameter (μ) measured by BET adsorption method Calculated using the following formula d: Diameter (μ) S-specific surface area (m”/y) V: Pore volume (ml/g) Fracture Strength (kg/m”), elongation at break (%) Measured using an Instron tensile tester according to ASTM D-882.

(歪速度2,0關/mmmη) 電気抵抗(Ωdm/枚、Ωd rr170.1 mm
)JIS−C−2313にしたがい測定。
(Strain rate 2.0 degrees/mmmη) Electrical resistance (Ωdm/piece, Ωdrr170.1 mm
) Measured according to JIS-C-2313.

透気度(秒/1100rIll )AST D−726Method Aにより測定。Air permeability (sec/1100rIll) ) Measured by AST D-726 Method A.

耐折強さく回) JIS−P −8115により測定 MIT型試験機 張力0.3kg/15順巾SLMI: ASTM−D−1238−65T 条件Eにより測定 溶解パラメーター(SP値) 次式により算出 d:比重 G:モル牽引定数 M:分子量 実施例 1 微粉珪酸〔アエロジル#200(商品名)、比表面積1
75m”/?、平均粒径16mμ〕 15容量%とジオ
クチルフタレー)(DOP)61容量%をヘンシェルミ
キサーで混合し、これにMw=85000、Mn=21
000、SLMI=1のポリエチレンC5untec
S−360(商品名)〕樹脂24容量%を添加、再度ヘ
ンシェルミキサーで混合した。
Bending strength measured according to JIS-P-8115 MIT type testing machine Tension 0.3 kg/15 width SLMI: ASTM-D-1238-65T Measured according to condition E Dissolution parameter (SP value) Calculated according to the following formula d: Specific gravity G: Molar traction constant M: Molecular weight Example 1 Finely divided silicic acid [Aerosil #200 (trade name), specific surface area 1
75 m"/?, average particle size 16 mμ] 15% by volume and 61% by volume of dioctyl phthalate (DOP) were mixed in a Henschel mixer, and to this, Mw = 85000, Mn = 21
000, polyethylene C5untec with SLMI=1
S-360 (trade name)] 24% by volume of resin was added and mixed again using a Henschel mixer.

当該混合物を30%φ二軸押出機で混練しペレットにし
た。
The mixture was kneaded into pellets using a 30%φ twin screw extruder.

このペレットを30%φ二軸押出機に420%巾Tダイ
を取付けたフィルム製造装置にて成形した。
The pellets were molded using a film manufacturing device equipped with a 30%φ twin-screw extruder and a 420% width T-die.

この時の押出量は12kg/Hr、引取速度は2 m
7m1yr、樹脂圧は70kg/crAであった。
The extrusion amount at this time was 12 kg/Hr, and the take-up speed was 2 m.
The capacity was 7mlyr, and the resin pressure was 70kg/crA.

成形された膜は1・1・1−トリクロロエタン(クロロ
セン)中で5分間浸漬し、DOPの抽出を行なった。
The formed membrane was immersed in 1,1,1-trichloroethane (chlorocene) for 5 minutes to extract DOP.

得られた膜の厚みは0.135%、空孔度は58%、ま
た多孔膜基材の組成は、ポリエチレン樹脂61.5容量
%、微粉珪酸38.3容量%、DOP O1212容
量あった。
The thickness of the obtained membrane was 0.135%, the porosity was 58%, and the composition of the porous membrane base material was 61.5% by volume of polyethylene resin, 38.3% by volume of finely divided silicic acid, and 1212% by volume of DOP O.

多孔膜の引張強さは29 kg/crtl、破断伸びは
106%、耐折強さは2400回で優れた伸びと柔軟性
を持っていた。
The porous membrane had a tensile strength of 29 kg/crtl, an elongation at break of 106%, and a bending strength of 2,400 times, exhibiting excellent elongation and flexibility.

樹脂が形成する平均孔径(電顕観察による)0.10μ
、微粉珪酸が充填された状態での平均孔径は0.0\1
2μ(BET吸着法により測定)最大孔径0.09μで
あ?た。
Average pore size formed by resin (according to electron microscopic observation) 0.10μ
, the average pore diameter when filled with fine silicic acid is 0.0\1
2μ (measured by BET adsorption method) with a maximum pore diameter of 0.09μ? Ta.

この膜の電気抵抗は0.00022Ωd、m’/枚と極
めて低かった。
The electrical resistance of this film was extremely low at 0.00022 Ωd, m'/sheet.

また膜表面に水滴を落すと瞬間的に吸収された。Also, when a drop of water was dropped on the membrane surface, it was instantly absorbed.

実施例 2 実施例1で用いた微粉珪酸13容量%、ポリエチレンパ
ラ4’−34容量%およびトリメリット酸(TOTM、
SP値8.9)53容量%を用いて、実施例1にしたが
って多孔膜を作った。
Example 2 13% by volume of finely divided silicic acid used in Example 1, 4% by volume of polyethylene para 4'-34% and trimellitic acid (TOTM,
A porous membrane was made according to Example 1 using 53% by volume (SP value 8.9).

得られた多孔膜の組成はポリエチレン72.2容量%、
微粉珪酸27.5容量%、TOTM O,3容量%で
あった。
The composition of the obtained porous membrane was 72.2% by volume of polyethylene;
The contents were 27.5% by volume of fine silicic acid and 3% by volume of TOTM O.

膜の空孔度は49%、膜厚は0085%であった。The porosity of the membrane was 49%, and the membrane thickness was 0.085%.

多孔膜の性能は次のとおりである。The performance of the porous membrane is as follows.

破断強さ62に9./crA、破断伸び201%、耐折
強さ10000111以上、電気抵抗は0.00033
Ωdrrl/枚、水湿潤性は良好であった。
Breaking strength: 62 to 9. /crA, elongation at break 201%, folding strength 10000111 or more, electrical resistance 0.00033
Ωdrrl/sheet, and water wettability was good.

実施例 3 微粉珪酸〔ニブシルVN−3(商品名)、比六面積28
0m”/f、平均粒径i 6mtt 〕i 3.6容量
%、ジオクチルフタレート(DOP)60.8容量%、
Mw=85000、Mn = 21000、SLMI=
1のポリエチレン樹脂C5untec S −360
(商品名)、:125−6容量%を用いて、実施例1に
したがって多孔膜を製造した。
Example 3 Finely divided silicic acid [Nibsil VN-3 (trade name), Hiroku area 28
0 m”/f, average particle size i 6mtt]i 3.6% by volume, dioctyl phthalate (DOP) 60.8% by volume,
Mw=85000, Mn=21000, SLMI=
1 polyethylene resin C5untec S-360
(trade name), :125-6% by volume was used to produce a porous membrane according to Example 1.

得られた多孔膜は、実施例1と同様、強伸度、膜性能と
もに極めて良好であった。
As in Example 1, the obtained porous membrane had extremely good strength and elongation and membrane performance.

性能は表1に示した。また珪酸を抽出したポリエチレン
網状構造体表面には、平均0.12μの孔が4〜6×1
08個/crtt存在していた。
The performance is shown in Table 1. In addition, on the surface of the polyethylene network structure from which silicic acid has been extracted, there are 4 to 6 × 1 pores with an average size of 0.12μ.
There were 08 pieces/crtt.

実施例 4 Mw = 180000、Mn=17000゜SLMI
=0.04のポリエチレンと、Mw=85000、Mn
= 21000. SLMI= 1のポリエチレンを
7:3の比で混合したポリオレフィン樹脂(混合物SL
MI=0.1 )を用いた以外、全て実施例3にしたが
った。
Example 4 Mw = 180000, Mn = 17000°SLMI
=0.04 polyethylene, Mw=85000, Mn
= 21000. Polyolefin resin prepared by mixing polyethylene with SLMI=1 in a ratio of 7:3 (mixture SL
Example 3 was followed except that MI=0.1) was used.

得られた膜は実施例3より強度が向上し、極めて良好で
あった。
The obtained film had improved strength compared to Example 3 and was extremely good.

性能を表1に示した。The performance is shown in Table 1.

実施例 5 Mw = 110000、Mn=18000のプロピレ
ン−エチレン共重合樹脂(エチレン:プロピレン=99
.1 : 0.9 )を用いた以外、実施例1にしたが
った。
Example 5 Propylene-ethylene copolymer resin with Mw = 110,000 and Mn = 18,000 (ethylene:propylene = 99
.. Example 1 was followed except that 1:0.9) was used.

得られた膜の性能を表1に示した。実施例 6〜8 実施例6.7.8を表1に示した、ともに良好な機械的
強度と膜性能を示した。
Table 1 shows the performance of the obtained membrane. Examples 6-8 Examples 6, 7, and 8 are shown in Table 1, and both exhibited good mechanical strength and membrane performance.

比較例 I Mw=120000.Mn =11000、SLMI=
0.3のポリエチレンを用いた外は、実施例1にしたが
って成膜した。
Comparative example I Mw=120000. Mn=11000, SLMI=
The film was formed according to Example 1 except that 0.3% polyethylene was used.

得られた多孔膜の組成は、ポリエチレン61.4容量%
、微粉珪酸38.5容量%であった。
The composition of the obtained porous membrane was 61.4% by volume of polyethylene.
The content of fine powder silicic acid was 38.5% by volume.

空孔度は56%、膜厚はo、2s5zであった。The porosity was 56%, and the film thickness was o, 2s5z.

多孔膜の性能は次のとおりであった。The performance of the porous membrane was as follows.

引張強さ21kg/crA、破断伸び11%、耐折強さ
2回であり、柔軟性に欠け、脆いものであった。
The tensile strength was 21 kg/crA, the elongation at break was 11%, and the folding strength was 2 times, and it lacked flexibility and was brittle.

電気抵抗は0.00042Ωdi/枚であった。The electrical resistance was 0.00042 Ωdi/piece.

比較例 2〜3 Mw=83000.Mn =7500、SLMI=0.
9のポリエチレンを用(・た以外は、実施例1にしたが
って成膜した。
Comparative Examples 2-3 Mw=83000. Mn=7500, SLMI=0.
A film was formed according to Example 1, except that polyethylene No. 9 was used.

得られた膜の破断伸びは2%、耐折強さ0回と非常に脆
かった。
The resulting membrane was extremely brittle, with an elongation at break of 2% and a bending strength of 0 times.

膜性能を表1に示した。The membrane performance is shown in Table 1.

同様に比較例3を表1に示した。比較例 4 Mw=330000.Mn =20000SLMI=0
のポリエチレンを用いた以外は実施例3にしたがった。
Similarly, Comparative Example 3 is shown in Table 1. Comparative example 4 Mw=330000. Mn=20000SLMI=0
Example 3 was followed except that polyethylene was used.

得られた膜の破断強伸度は48kg/crA、242%
で、実施例3に比べ向上するが、空孔度が51.5%と
小さく、電気抵抗も0.00033Ωd m”10.1
mm、 0.00083Ωa 、17枚と大きかった。
The breaking strength and elongation of the obtained membrane was 48 kg/crA, 242%.
Although this is improved compared to Example 3, the porosity is small at 51.5% and the electrical resistance is 0.00033Ωd m”10.1
mm, 0.00083Ωa, and 17 pieces.

比較例 5 西’w =600000. SLMI=0のポリエチレ
ンを用いた以外は実施例3にしたがった。
Comparative example 5 West'w =600000. Example 3 was followed except that polyethylene with SLMI=0 was used.

分子量が大きいため成形性が悪化し、得られた膜厚は0
.3Qmmであった。
Due to the large molecular weight, moldability deteriorates, and the resulting film thickness is 0.
.. It was 3Qmm.

膜の強伸度は63 kg/crrf、195%で、極め
て太きかったが、空孔度51%、電気抵抗0.0004
0Ωd m”/ 0.1 mm、0.0012Ωd m
”/枚と大きかった。
The membrane had a strong elongation of 63 kg/crrf and 195%, and was extremely thick, but a porosity of 51% and an electrical resistance of 0.0004.
0Ωd m”/0.1 mm, 0.0012Ωd m
” / large.

また珪酸を抽出したポリエチレン網状構造体の表面平均
開孔径は0.03μで、実施例3の0.12μに比べ大
巾に減少した。
Furthermore, the surface average opening diameter of the polyethylene network structure from which silicic acid was extracted was 0.03 μm, which was significantly reduced compared to 0.12 μm in Example 3.

比較例 6 Mw=330000.Mn=20000のポリエチレン
15容量%、微粉珪酸〔ニブシルVN−3(商品名)〕
15容15容量ロセスオイル(SP値7.9)を用いて
、実施例1にしたがって多孔膜を製造した。
Comparative example 6 Mw=330000. 15% by volume of polyethylene with Mn=20000, finely divided silicic acid [Nibsil VN-3 (trade name)]
A porous membrane was produced according to Example 1 using a 15 volume process oil (SP value 7.9).

プロセスオイルの抽出は石油エーテルを用いた。Petroleum ether was used to extract the process oil.

得られた膜は強伸度ともに比較例4に比べやΔ小さかっ
た。
The obtained film had both strength and elongation that were Δ smaller than those of Comparative Example 4.

プロセスオイルの添加量に比べ、空孔度が56%と’P
k小さく、電気抵抗も高かった。
The porosity is 56% compared to the amount of process oil added.
k was small and the electrical resistance was high.

比較例 7 Mw = 600000のポリエチレン樹脂を用いた以
外、比較例6にしたがった。
Comparative Example 7 Comparative Example 6 was followed except that polyethylene resin with Mw = 600,000 was used.

得られた膜の強度は向上するが、空孔度が52%と低下
し、電気抵抗が高かった。
Although the strength of the obtained membrane was improved, the porosity was reduced to 52% and the electrical resistance was high.

膜表面の孔径は微細になり、電子顕微鏡では観測できな
い。
The pore size on the membrane surface becomes so small that it cannot be observed with an electron microscope.

比較例 8 有機液状体としてSP値10.5のジメチルフタレート
を用いた以外、実施例3にしたがった。
Comparative Example 8 Example 3 was followed except that dimethyl phthalate with an SP value of 10.5 was used as the organic liquid.

得られた膜の平均孔径は、網状構造が(ずれ0.62μ
と粗大であり、かつ破断強伸度は17.3にρ/crr
t、40%で弱く脆かった(表2参照)。
The average pore diameter of the obtained membrane was determined by the network structure (shift of 0.62μ
and the breaking strength and elongation are 17.3 and ρ/crr.
It was weak and brittle at t, 40% (see Table 2).

比較例 9 有機液状体としてSP値7.8のプロセスオイルを用い
た以外、実施例3にしたがった。
Comparative Example 9 Example 3 was followed except that a process oil with an SP value of 7.8 was used as the organic liquid.

また抽出剤として石油エーテルを用いた。Petroleum ether was also used as an extractant.

得られた膜中には、プロセスオイルが5.6%残存して
いた。
In the obtained film, 5.6% of process oil remained.

膜の強伸度は大きいが、空隙率が50%と小さく、電気
抵抗が0.00074Ωd m”/ 0.11n11L
と大きかった。
Although the membrane has high strength and elongation, the porosity is small at 50% and the electrical resistance is 0.00074Ωd m”/0.11n11L.
It was big.

また電子顕微鏡では表面の孔径は細かすぎて測定できな
かった(表2参照)。
Furthermore, the surface pore diameter was too small to be measured using an electron microscope (see Table 2).

実施例 9 SP値9,4のジブチルフタレート(DBP)を用いた
以外、全て実施例3にしたがって多孔膜を製造した。
Example 9 A porous membrane was manufactured in accordance with Example 3 except that dibutyl phthalate (DBP) with an SP value of 9.4 was used.

得られた膜の平均孔径は0.30μで、実施例3に比べ
大きかった。
The average pore diameter of the obtained membrane was 0.30μ, which was larger than that of Example 3.

その他の物性は良好であった。Other physical properties were good.

得られた膜の性能を表2に示した。実施例 10.11
,12.13.14.15.16有機液状体をSP値の
異なる各種エステルを用いた以外は、実施例3にしたが
った。
Table 2 shows the performance of the obtained membrane. Example 10.11
, 12.13.14.15.16 Example 3 was followed except that various esters having different SP values were used as the organic liquid.

得られた膜の性能を表2に示した。Table 2 shows the performance of the obtained membrane.

ポリエチレンのSP値7.9に近ずくにしたがい、機械
的強度の向上と又もに膜性能の悪化の傾向が見られる。
As the SP value of polyethylene approaches 7.9, there is a tendency for mechanical strength to improve and membrane performance to deteriorate.

比較例 10 実施例8に用いたMw=250000、Mn=1800
0のポリエチレンを用いた以外は、比較例6にしたがっ
た。
Comparative Example 10 Mw=250000, Mn=1800 used in Example 8
Comparative Example 6 was followed except that No. 0 polyethylene was used.

石油エーテルでプロセスオイルを抽出した後のプロセス
オイルの残存量は5%であった。
After extracting the process oil with petroleum ether, the remaining amount of process oil was 5%.

得られた多孔膜の厚みは0.297mm、気孔率は58
%であり、電気抵抗は0.00084Ωdi/枚(0,
00028Ωd m”/ 0.1 mm )と小さかっ
たが、引張り強さは19.8 kg/crr!、破断伸
びは6%と小さく脆いものであった。
The thickness of the obtained porous membrane was 0.297 mm, and the porosity was 58.
%, and the electrical resistance is 0.00084 Ωdi/sheet (0,
00028Ωd m”/0.1 mm), but the tensile strength was 19.8 kg/crr!, the elongation at break was small and brittle, 6%.

同じポリエチレンを用いた実施例8で得られた多孔膜と
比較して、電気抵抗、引張強伸度共に大巾に劣るもので
あった。
Compared to the porous membrane obtained in Example 8 using the same polyethylene, both electrical resistance and tensile strength and elongation were significantly inferior.

Claims (1)

【特許請求の範囲】[Claims] 1 無機微粉体7〜42容量%、SP値8.4〜9.9
の有機液状体30〜75容量%、重量平均分子量300
000未満、かつ数平均分子量15000以上のポリオ
レフィン樹脂10〜60容量%を混合した後溶融成形し
、次いでかSる成形物より有機液状体を抽出することを
特徴とする微孔性の多孔膜の製造方法。
1 Inorganic fine powder 7-42% by volume, SP value 8.4-9.9
organic liquid 30-75% by volume, weight average molecular weight 300
A microporous porous membrane characterized by mixing 10 to 60 volume % of a polyolefin resin having a number average molecular weight of less than 1,000 and a number average molecular weight of 15,000 or more, followed by melt molding, and then extracting an organic liquid from the molded product. Production method.
JP51073807A 1976-06-24 1976-06-24 Method for manufacturing porous membrane Expired JPS5832171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51073807A JPS5832171B2 (en) 1976-06-24 1976-06-24 Method for manufacturing porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51073807A JPS5832171B2 (en) 1976-06-24 1976-06-24 Method for manufacturing porous membrane

Publications (2)

Publication Number Publication Date
JPS52156776A JPS52156776A (en) 1977-12-27
JPS5832171B2 true JPS5832171B2 (en) 1983-07-11

Family

ID=13528797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51073807A Expired JPS5832171B2 (en) 1976-06-24 1976-06-24 Method for manufacturing porous membrane

Country Status (1)

Country Link
JP (1) JPS5832171B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183267A (en) * 1987-01-21 1988-07-28 Mazda Motor Corp Swirl chamber type diesel engine
JP2002050336A (en) * 2000-08-07 2002-02-15 Asahi Kasei Corp Separator for zinc halogen battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114702A (en) * 1984-11-09 1986-06-02 Terumo Corp Flat film type permeable membrane and preparation thereof
US4287276A (en) * 1979-06-08 1981-09-01 W. R. Grace & Co. Alkaline battery with separator of high surface area
JPS5657836A (en) * 1979-10-16 1981-05-20 Asahi Chem Ind Co Ltd Porous hydrophilic polyolefin resin membrane and its preparation
JPS5829839A (en) * 1981-08-13 1983-02-22 Mitsubishi Plastics Ind Ltd Production of microporous membrane
JPS59304A (en) * 1982-06-23 1984-01-05 Agency Of Ind Science & Technol Fpreparation of separation membrane
JPS6190705A (en) * 1984-10-09 1986-05-08 Terumo Corp Hollow yarn membrane and its production
JPS61114701A (en) * 1984-11-09 1986-06-02 Terumo Corp Flat film type permeable membrane and preparation thereof
FR2759087B1 (en) * 1997-02-06 1999-07-30 Electricite De France POROUS COMPOSITE PRODUCT WITH HIGH SPECIFIC SURFACE, PREPARATION METHOD AND ELECTRODE FOR ELECTROCHEMICAL ASSEMBLY FORMED FROM POROUS COMPOSITE FILM
JP2000208123A (en) * 1999-01-19 2000-07-28 Nippon Muki Co Ltd Separator for nonaqueous electrolyte battery
JP4943599B2 (en) * 2001-08-09 2012-05-30 セイコーエプソン株式会社 Resin filter for inkjet recording equipment
JP5868300B2 (en) * 2012-09-14 2016-02-24 旭化成ケミカルズ株式会社 Ion exchange membrane, method for producing ion exchange membrane, and electrolytic cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183267A (en) * 1987-01-21 1988-07-28 Mazda Motor Corp Swirl chamber type diesel engine
JP2002050336A (en) * 2000-08-07 2002-02-15 Asahi Kasei Corp Separator for zinc halogen battery

Also Published As

Publication number Publication date
JPS52156776A (en) 1977-12-27

Similar Documents

Publication Publication Date Title
JP2899903B2 (en) Polyvinylidene fluoride porous membrane and method for producing the same
US4335193A (en) Microporous film, particularly battery separator, and method of making
JPS5937292B2 (en) Polyolefin resin porous membrane, alkaline storage battery separator, and microfilter
US5022990A (en) Polyvinylidene fluoride porous membrane and a method for producing the same
JP4711965B2 (en) Polyolefin microporous membrane
JP4921446B2 (en) Temperature sensitive pore film
JPS5832171B2 (en) Method for manufacturing porous membrane
JP5325405B2 (en) Polyolefin microporous membrane
JPH05234578A (en) Separator for battery using organic electrolyte and its manufacture
JPWO2009136648A1 (en) High power density lithium ion secondary battery separator
WO1993001623A1 (en) Separator of battery wherein organic electrolyte is used and production thereof
JP2010007053A (en) Microporous polyolefin film
JP5241026B2 (en) Polyolefin microporous membrane and lithium ion battery separator
JP6634543B2 (en) Power storage device separator and method for manufacturing the same, and power storage device and method for manufacturing the same
JPS6023130B2 (en) Method for producing polyolefin porous material
JP2005343958A (en) Method for producing polyethylene fine porous film, fine porous film and use of the same
JPH0342025A (en) Production of polyolefin porous film
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JPH0311259B2 (en)
WO2022052469A1 (en) Polyolefin micro-porous membrane and preparation method therefor
JP3948762B2 (en) Zinc bromine secondary battery separator
JPWO2018164055A1 (en) Polyolefin microporous membrane
JPS5938242A (en) Anion-charged porous polyolefin resin membrane and production thereof
JPH0138505B2 (en)
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof