JPH0138505B2 - - Google Patents

Info

Publication number
JPH0138505B2
JPH0138505B2 JP54123210A JP12321079A JPH0138505B2 JP H0138505 B2 JPH0138505 B2 JP H0138505B2 JP 54123210 A JP54123210 A JP 54123210A JP 12321079 A JP12321079 A JP 12321079A JP H0138505 B2 JPH0138505 B2 JP H0138505B2
Authority
JP
Japan
Prior art keywords
ethylene
alcohol copolymer
vinyl alcohol
porous membrane
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54123210A
Other languages
Japanese (ja)
Other versions
JPS5649157A (en
Inventor
Yoshinao Doi
Kazuo Matsuda
Mitsuo Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12321079A priority Critical patent/JPS5649157A/en
Publication of JPS5649157A publication Critical patent/JPS5649157A/en
Publication of JPH0138505B2 publication Critical patent/JPH0138505B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、実質的にエチレン−ビニルアルコー
ル共重合体からなり、優れた親水性と、良好な機
械的物性、優れた柔軟性を備え、かつ微細な孔か
らなる網状構造を有する多孔膜およびその製造方
法に関するものである。
Detailed Description of the Invention The present invention consists essentially of an ethylene-vinyl alcohol copolymer, has excellent hydrophilicity, good mechanical properties, excellent flexibility, and has a network-like structure consisting of fine pores. The present invention relates to a porous membrane having a structure and a method for manufacturing the same.

特に本発明は、優れた耐薬品性と優れた透過性
能を備えたミクロフイルターや電池セパレーター
に適する多孔膜、さらには優れた抗溶血性、抗血
栓性、衛生性を備えた血漿分離膜として有効な多
孔膜に関するものである。
In particular, the present invention is effective as a porous membrane suitable for microfilters and battery separators with excellent chemical resistance and excellent permeation performance, and as a plasma separation membrane with excellent anti-hemolytic properties, anti-thrombotic properties, and hygiene. The present invention relates to porous membranes.

従来、エチレン−ビニルアルコール共重合体か
らなる多孔膜としては、特開昭49−113859号、特
開昭52−152877号による人工腎臓用の血液透析用
分離膜が存在する。しかし、これらの膜は血液透
析に用い、分子量300〜6000の物質を透過し、蛋
白等高分子量物の透過を阻止する目的で使用され
ることから、この膜の表面開孔径は100Å程度の
極めて微細なものであると判断され、孔径が0.05
〜1μの本発明の多孔膜とは本質的に異なるもの
である。また同時に、表面開孔径が極めて小さい
ことから、透水性等の透過性能も本発明の多孔膜
の1/1000程度と小さく、本発明の多孔膜が使用さ
れる用途には適さない。さらに、この膜は湿式成
膜法で作られ、通常の乾燥を行なつた場合、収縮
をおこし、透過性を失なつてしまうため特別の処
理を必要とするなど、多くの問題点を有してい
る。
Conventionally, as porous membranes made of ethylene-vinyl alcohol copolymers, separation membranes for hemodialysis for artificial kidneys are disclosed in JP-A-49-113859 and JP-A-52-152877. However, since these membranes are used for hemodialysis to allow substances with a molecular weight of 300 to 6,000 to permeate and to block the permeation of high-molecular weight substances such as proteins, the surface pore diameter of these membranes is extremely large, approximately 100 Å. It is judged to be microscopic, with a pore diameter of 0.05.
This is essentially different from the porous membrane of the present invention which has a thickness of ~1μ. At the same time, since the surface pore diameter is extremely small, the permeability such as water permeability is about 1/1000 of that of the porous membrane of the present invention, making it unsuitable for applications in which the porous membrane of the present invention is used. Furthermore, this membrane is made using a wet film formation method, and when it is dried normally, it shrinks and loses its permeability, so it requires special treatment. ing.

また、この他にはミクロフイルター、電池セパ
レーターとして有効で、良好な透過性能を有する
エチレン−ビニルアルコール共重合体多孔膜に関
する従来技術は見当らない。
In addition, no other prior art related to an ethylene-vinyl alcohol copolymer porous membrane that is effective as a microfilter or a battery separator and has good permeability has been found.

本発明者らは、親水性であつて、耐薬品性、生
体親和性、化学的安定性に優れたエチレン−ビニ
ルアルコール共重合体からなり、透過性能に優れ
た多孔膜を得るため鋭意研究を重ねた結果、本発
明を完成するに至つたのである。
The present inventors have conducted extensive research in order to obtain a porous membrane with excellent permeability that is made of an ethylene-vinyl alcohol copolymer that is hydrophilic and has excellent chemical resistance, biocompatibility, and chemical stability. As a result of repeated efforts, the present invention was completed.

すなわち、本発明は、実質的にエチレン含量20
〜60モル%、ケン化度80モル%以上のエチレン−
ビニルアルコール共重合体からなり、気孔率30〜
85%、表面の平均孔径0.05〜1μの連通孔からなる
網状構造を形成し、透水量が500〜50000ml/
Hr・m2・mmHgであることを特徴とするエチレン
−ビニルアルコール共重合体多孔膜である。
That is, the present invention substantially reduces the ethylene content to 20
Ethylene with a saponification degree of ~60 mol% and a saponification degree of 80 mol% or more
Made of vinyl alcohol copolymer, porosity 30~
85%, forming a network structure consisting of communicating pores with an average pore diameter of 0.05 to 1μ on the surface, and water permeability of 500 to 50,000ml/
This is an ethylene-vinyl alcohol copolymer porous membrane characterized by Hr·m 2 ·mmHg.

また、本発明は、エチレン含量20〜60モル%、
ケン化度80モル%以上のエチレン−ビニルアルコ
ール共重合体10〜60容量%、比表面積50〜500
m2/gかつ平均−次粒子径0.005〜0.5μの無機微
粉体7〜42容量%、耐熱性有機液状体30〜75容量
%を混合した後、溶融成形し、次いで、該成形物
よりエチレン−ビニルアルコール共重合体を実質
的に溶解しない有機液状体の溶剤、無機微粉体の
溶剤を用いて、有機液状体および無機微粉体を順
次または同時に抽出することを特徴とするエチレ
ン−ビニルアルコール共重合体多孔膜の製造方法
である。
In addition, the present invention has an ethylene content of 20 to 60 mol%,
Ethylene-vinyl alcohol copolymer with saponification degree of 80 mol% or more, 10-60% by volume, specific surface area 50-500
After mixing 7 to 42 volume % of inorganic fine powder with m 2 /g and average primary particle size of 0.005 to 0.5 μ and 30 to 75 volume % of a heat-resistant organic liquid, the mixture is melt-molded, and then the molded product is made of ethylene. - An ethylene-vinyl alcohol copolymer characterized in that an organic liquid and an inorganic fine powder are extracted sequentially or simultaneously using an organic liquid solvent and an inorganic fine powder solvent that do not substantially dissolve the vinyl alcohol copolymer. This is a method for producing a porous polymer membrane.

本発明に用いられるエチレン−ビニルアルコー
ル共重合体は、ランダム、ブロツク、グラフトの
いずれのタイプの共重合体であつてもよいが、該
共重合体のエチレン含量は20〜60モル%の範囲に
あることが必要である。エチレン含量が20モル%
未満では、得られる多孔膜の湿潤時の機械的物性
が低下し好ましくない。また、60モル%を超える
と、得られる多孔膜の親水性が失なわれ好ましく
ない。特に30〜45モル%のものが親水性と湿潤時
の機械的物性の両者のバランスがとれ好ましい。
The ethylene-vinyl alcohol copolymer used in the present invention may be any type of random, block, or graft copolymer, but the ethylene content of the copolymer may be in the range of 20 to 60 mol%. It is necessary that there be. Ethylene content is 20 mol%
If it is less than this, the mechanical properties of the resulting porous membrane when wetted are deteriorated, which is not preferable. Moreover, if it exceeds 60 mol%, the resulting porous membrane loses its hydrophilicity, which is not preferable. In particular, 30 to 45 mol% is preferable since it provides a good balance between hydrophilicity and mechanical properties when wet.

さらに、上記エチレン−ビニルアルコール共重
合体のケン化度は80モル%以上であることが必要
である。80モル%未満では、得られる多孔膜の機
械的物性が低下し好ましくない。好ましくは95モ
ル%以上、さらに好ましくは99モル%以上の実質
的に完全ケン化のものである。
Furthermore, the degree of saponification of the ethylene-vinyl alcohol copolymer needs to be 80 mol% or more. If it is less than 80 mol%, the mechanical properties of the resulting porous membrane will deteriorate, which is not preferable. Preferably it is 95 mol% or more, more preferably 99 mol% or more of substantially complete saponification.

このエチレン−ビニルアルコール共重合体は、
多孔膜の物性を損わない範囲で、メタクリル酸、
メタクリル酸メチル、アクリロニトリル等の共重
合可能なものが共重合されてもよい。また、多孔
膜にした後、エチレン−ビニルアルコール共重合
体をホルムアルデヒド、アセトアルデヒド等のア
ルデヒドでアセタール化したものも本発明に用い
ることができる。また、エチレン−ビニルアルコ
ール共重合体は190℃で標準荷重溶融指数
(SLMI)が0.01〜20の範囲にあることが好まし
い。0.01未満では成形加工性が悪く、20を超える
と機械的物性が低下するので好ましくない。
This ethylene-vinyl alcohol copolymer is
Methacrylic acid, as long as it does not impair the physical properties of the porous membrane.
Copolymerizable materials such as methyl methacrylate and acrylonitrile may be copolymerized. Furthermore, a porous membrane obtained by acetalizing the ethylene-vinyl alcohol copolymer with an aldehyde such as formaldehyde or acetaldehyde can also be used in the present invention. The ethylene-vinyl alcohol copolymer preferably has a standard load melting index (SLMI) of 0.01 to 20 at 190°C. If it is less than 0.01, moldability is poor, and if it exceeds 20, mechanical properties deteriorate, which is not preferable.

本発明に用いられる無機微粉体は、耐熱性有機
液状体を保持し、担体としての機能を持つもので
ある。すなわち、溶融成形時にエチレン−ビニル
アルコール共重合体に実質的に不活性であり、沸
点が190℃以上の耐熱性有機液状体の遊離を防止
し、成形を容易にするものであり、さらに抽出さ
れ空孔を形成する動きをもつものである。そし
て、この無機微粉体は、比表面積50〜500m2/g
かつ平均−次粒子径0.005〜0.5μの範囲にある微
小粒子または多孔性粒子である。さらに無機微粉
体は耐熱性有機液状体を少なくとも2/3倍容量、
好ましくは3倍容量以上を吸収し、粉末または顆
粒状態を保つことが好ましい。
The inorganic fine powder used in the present invention holds a heat-resistant organic liquid and functions as a carrier. That is, it is substantially inert to the ethylene-vinyl alcohol copolymer during melt molding, prevents the release of a heat-resistant organic liquid with a boiling point of 190°C or higher, facilitates molding, and is further extracted. It has a movement that forms pores. This inorganic fine powder has a specific surface area of 50 to 500 m 2 /g.
And they are microparticles or porous particles with an average primary particle size in the range of 0.005 to 0.5μ. Furthermore, the inorganic fine powder can hold at least 2/3 times the volume of the heat-resistant organic liquid.
It is preferable to absorb at least three times the capacity and maintain the powder or granule state.

本発明に用いられる無機微粉体の例としては、
微粉珪酸、珪酸カルシウム、珪酸アルミニウム、
酸化マグネシウム、アルミナ、炭酸カルシウム、
炭酸マグネシウム、カオリンクレー、珪藻土、食
塩等が挙げられる。これらのうち微粉珪酸が特に
有効であるが、これらに突限定されるものではな
い。
Examples of the inorganic fine powder used in the present invention include:
Fine powder silicic acid, calcium silicate, aluminum silicate,
Magnesium oxide, alumina, calcium carbonate,
Examples include magnesium carbonate, kaolin clay, diatomaceous earth, and common salt. Among these, finely divided silicic acid is particularly effective, but it is not limited thereto.

本発明に用いられる耐熱性有機液状体は、成形
物中より抽出され、成形物に多孔性を賦与するた
めのものである。耐熱性有機液体は1気圧におけ
る沸点が少なくとも190℃以上、好ましくは200℃
以上、さらに好ましくは230℃以上で、溶融成形
に耐える耐熱性を備え、溶融成形温度で液体であ
り、かつポリマーに実質的に不活性であることが
必要である。また耐熱性有機液状体の溶解パラメ
ーターが14.5〜16.5の範囲のものであることが好
ましい。さらに好ましくは15.0〜16.5である。こ
の範囲のものを用いることにより、特に優れた成
形性、抽出性等の加工性と高気孔率および優れた
機械的物性の多孔膜が得られる。
The heat-resistant organic liquid used in the present invention is extracted from the molded product and is used to impart porosity to the molded product. The heat-resistant organic liquid has a boiling point at 1 atm of at least 190°C, preferably 200°C.
As mentioned above, it is necessary to have heat resistance to withstand melt molding, more preferably at 230° C. or higher, to be liquid at the melt molding temperature, and to be substantially inert to the polymer. Further, it is preferable that the solubility parameter of the heat-resistant organic liquid is in the range of 14.5 to 16.5. More preferably, it is 15.0 to 16.5. By using a material within this range, a porous membrane with particularly excellent processability such as moldability and extractability, high porosity, and excellent mechanical properties can be obtained.

本発明に用いられる耐熱性有機液状体として
は、ジエチレングリコール、テトラメチレングリ
コール、meso−エリトリツト、1,3−プロパ
ンジオール、グリセリン、D−ソルビツト、トリ
ス(2−オキシエチル)アミン、ビス(2−オキ
シエチル)アミン、酸化トリエチルホスフイン等
がある。これらのうち衛生性などの点からグリセ
リンが最も好ましい。
Heat-resistant organic liquids used in the present invention include diethylene glycol, tetramethylene glycol, meso-erythritol, 1,3-propanediol, glycerin, D-sorbitol, tris(2-oxyethyl)amine, bis(2-oxyethyl) Examples include amines and triethylphosphine oxide. Among these, glycerin is most preferred from the viewpoint of hygiene.

本発明の多孔膜を製造するに当つては、まず、
前記のエチレン−ビニルアルコール共重合体、無
機微粉体および耐熱性有機液状体を混合する。そ
の混合割合は、エチレン−ビニルアルコール共重
合体10〜60容量%、好ましくは15〜40容量%、無
機微粉体7〜42容量%、好ましくは10〜20容量
%、耐熱性有機液状体30〜75容量%、好ましくは
50〜70容量%である。
In manufacturing the porous membrane of the present invention, first,
The ethylene-vinyl alcohol copolymer, inorganic fine powder, and heat-resistant organic liquid are mixed. The mixing ratio is 10 to 60% by volume of ethylene-vinyl alcohol copolymer, preferably 15 to 40% by volume, 7 to 42% by volume of inorganic fine powder, preferably 10 to 20% by volume, and 30 to 20% by volume of heat-resistant organic liquid. 75% by volume, preferably
50-70% by volume.

エチレン−ビニルアルコール共重合体が10容量
%未満では、樹脂が少なすぎて強度が小さく、成
形性も悪く、60容量%を超えると、気孔率の大き
い多孔膜が得られず好ましくない。無機微粉体が
7容量%未満では、有効な多孔膜を作るのに必要
な有機液状体を吸着することができず、混合物は
粉末または顆粒状態を保つことができず、成形が
困難となり、42容量%を超えると溶融時の流動性
が悪く、かつ得られる成形品は脆く実用に供する
ことができない。耐熱性有機液状体が30容量%未
満では、耐熱性有機液状体の空孔形成に対する寄
与率が低下し、得られる多孔膜の気孔率は40%を
下まわり、実質的に多孔膜として有効なものが得
られず、75容量%を超えると成形が困難となり、
機械的強度の高い多孔膜が得られない。
If the ethylene-vinyl alcohol copolymer content is less than 10% by volume, the resin content is too small, resulting in low strength and poor moldability; if it exceeds 60% by volume, a porous film with high porosity cannot be obtained, which is not preferred. If the inorganic fine powder is less than 7% by volume, it will not be able to adsorb the organic liquid necessary to make an effective porous membrane, and the mixture will not be able to maintain a powder or granule state, making it difficult to mold. If it exceeds % by volume, the fluidity during melting will be poor and the resulting molded product will be brittle and cannot be put to practical use. When the heat-resistant organic liquid is less than 30% by volume, the contribution rate of the heat-resistant organic liquid to pore formation decreases, and the porosity of the resulting porous membrane is less than 40%, making it virtually ineffective as a porous membrane. If the amount exceeds 75% by volume, molding becomes difficult.
A porous membrane with high mechanical strength cannot be obtained.

上記三成分の他に、本発明の効果を大きく阻害
しない範囲で、滑剤、酸化防止剤、紫外線吸収
剤、可塑剤、成形助剤等を必要に応じて添加する
ことは何らさしつかえない。
In addition to the above-mentioned three components, there is no problem in adding lubricants, antioxidants, ultraviolet absorbers, plasticizers, molding aids, etc., as necessary, to the extent that the effects of the present invention are not significantly impaired.

前記三成分の混合には、ヘンシエルミキサー、
V−ブレンダー、リボンブレンダー等の配合機を
用いた通常の混合法で充分である。三成分の混合
順序としては、三成分を同時に混合するよりも、
まず無機微粉体と耐熱性有機液状体を混合して無
機微粉体に耐熱性有機液状体を充分に吸着させ、
次いでエチレン−ビニルアルコール共重合体を配
合して混合するのが好ましい。
For mixing the three components, a Henschel mixer,
A conventional mixing method using a blender such as a V-blender or a ribbon blender is sufficient. As for the mixing order of the three components, rather than mixing the three components at the same time,
First, an inorganic fine powder and a heat-resistant organic liquid are mixed, and the heat-resistant organic liquid is sufficiently adsorbed on the inorganic fine powder.
Next, it is preferable to blend and mix an ethylene-vinyl alcohol copolymer.

この混合物は、押出機、バンバリーミキサー、
二本ロール、ニーダー等の溶融混練装置により混
練される。得られる混練物は、溶融成形方法によ
り成形されるが、本発明方法に用いられる溶融成
形方法としては、Tダイ法やインフレーシヨン法
等の押出成形、カレンダー成形、圧縮成形、射出
成形等がる。また混合物を押出機、ニーダールー
ダー等の混練押出両機能を有する装置により、直
接成形することも可能である。
This mixture can be processed using an extruder, a Banbury mixer,
The mixture is kneaded using a melt kneading device such as a twin roll or a kneader. The obtained kneaded product is molded by a melt molding method, and the melt molding methods used in the method of the present invention include extrusion molding such as T-die method and inflation method, calendar molding, compression molding, injection molding, etc. Ru. It is also possible to directly mold the mixture using a device having both kneading and extrusion functions, such as an extruder or a kneader-ruder.

これらの成形法により、三成分混合物は0.025
〜2.5mmの肉厚の膜に成形されるが、多孔膜の形
状としては、上記膜厚の範囲のものであれば、平
膜はもとより、エンボス膜、リブ付膜、チユーブ
状膜、中空糸状膜であつてもよい。特に0.025〜
0.30mmの薄膜の成形には、Tダイ押出成形が特に
有効である。
With these forming methods, the ternary mixture is 0.025
It is formed into a membrane with a wall thickness of ~2.5mm, but the shape of the porous membrane can be flat membrane, embossed membrane, ribbed membrane, tube-shaped membrane, hollow fiber membrane, etc., as long as the membrane thickness is within the above-mentioned range. It may also be a membrane. Especially from 0.025
T-die extrusion molding is particularly effective for forming thin films of 0.30 mm.

得られた膜から有機液状体の溶剤を用いて有機
液状体の抽出を行なう。抽出温度はエチレン−ビ
ニルアルコール共重合体の融点より10℃以上低い
温度が好ましい。抽出に用いる溶剤は、エチレン
−ビニルアルコール共重合体を実質的に溶解する
ものであつてはならない。抽出は回分法や向流多
段法等の膜状物の一般的な抽出方法により容易に
行なわれる。抽出に用いられる溶剤としては、メ
タノール、エタノール、イソプロピルアルコール
等アルコール類、アセトン等ケトン類のような一
般的な溶剤や水で充分である。また抽出を終了し
た多孔膜中には、有機液状体が物の性能をそこな
わない範囲で残存することが許される。しかし残
存量が大きいと多孔膜の気孔率が低下するために
好ましくない。有機液状体の多孔膜中での残存量
は3容量%以下、好ましくは2容量%以下であ
る。
The organic liquid is extracted from the obtained membrane using an organic liquid solvent. The extraction temperature is preferably 10°C or more lower than the melting point of the ethylene-vinyl alcohol copolymer. The solvent used for extraction must not substantially dissolve the ethylene-vinyl alcohol copolymer. Extraction is easily carried out using common extraction methods for membrane-like materials, such as a batch method or a countercurrent multi-stage method. As the solvent used for extraction, common solvents such as alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone, and water are sufficient. Further, the organic liquid is allowed to remain in the porous membrane after extraction to the extent that it does not impair the performance of the product. However, if the residual amount is large, the porosity of the porous membrane will decrease, which is not preferable. The amount of organic liquid remaining in the porous membrane is 3% by volume or less, preferably 2% by volume or less.

有機液状体の抽出が完了した半抽出多孔膜は、
必要に応じて溶剤の乾燥除去を行つてもよい。工
業的製造を行なう場合、有機液状体の抽出溶剤と
次工程の無機微粉体抽出溶剤との混入を防ぐため
に乾燥を行なう方が好ましく、たとえばエチレン
−ビニルアルコール共重合体の融点より10℃以上
低い温度で溶剤を乾燥除去する。乾燥は常圧また
は減圧下、熱風、加熱ロール等一般的な方法によ
つて行なわれる。
The semi-extracted porous membrane after the extraction of the organic liquid is
The solvent may be removed by drying if necessary. When performing industrial production, it is preferable to perform drying to prevent mixing of the extraction solvent of the organic liquid with the inorganic fine powder extraction solvent of the next step. Dry off the solvent at temperature. Drying is carried out under normal pressure or reduced pressure by a common method such as hot air or heated rolls.

有機液状体の抽出が完了した半抽出多孔膜は、
次いで無機微粉体の溶剤にて、無機微粉体の抽出
を行なう。抽出温度はエチレン−ビニルアルコー
ル共重合体の融点より10℃以上低い温度が好まし
い。抽出は、回分法、向流多段法等の一般的な抽
出方法により数秒ないし数十時間の内に容易に終
了する。
The semi-extracted porous membrane after the extraction of the organic liquid is
Next, the inorganic fine powder is extracted using a solvent for the inorganic fine powder. The extraction temperature is preferably 10°C or more lower than the melting point of the ethylene-vinyl alcohol copolymer. Extraction can be easily completed within a few seconds to several tens of hours by a general extraction method such as a batch method or a countercurrent multistage method.

無機微粉体の抽出に用いられる溶剤としては、
炭酸カルシウム、炭酸マグネシウム、酸化マグネ
シウム、珪酸カルシウム、珪酸マグネシウム等に
は、塩酸、硫酸、弗酸等の酸が、シリカ等には苛
性ソーダ、苛性カリのようなアルカリ水溶液が、
悪硫酸マグネシウム、食塩には水が用いられる。
その他、エチレン−ビニルアルコール共重合体を
実質的に溶解せず、無機微粉体を溶解するもので
あれば特に限定されるものではない。また、苛性
ソーダ水溶液等を用いて、有機液状体と無機微粉
体を同時に抽出することも可能である。抽出が終
了した多孔膜中には、無機微粉体が膜の性能を損
わない範囲で残存することが許される。無機微粉
体の多孔膜中での残存量は3容量%以下が好まし
く、より好ましくは2容量%以下である。
Solvents used for extraction of inorganic fine powder include:
Acids such as hydrochloric acid, sulfuric acid, and hydrofluoric acid are used for calcium carbonate, magnesium carbonate, magnesium oxide, calcium silicate, and magnesium silicate, and alkaline aqueous solutions such as caustic soda and caustic potash are used for silica.
Water is used for bad magnesium sulfate and salt.
Other materials are not particularly limited as long as they do not substantially dissolve the ethylene-vinyl alcohol copolymer and dissolve the inorganic fine powder. It is also possible to simultaneously extract the organic liquid and the inorganic fine powder using a caustic soda aqueous solution or the like. After extraction, the inorganic fine powder is allowed to remain in the porous membrane to the extent that it does not impair the performance of the membrane. The residual amount of the inorganic fine powder in the porous membrane is preferably 3% by volume or less, more preferably 2% by volume or less.

無機微粉末の抽出が終了した多孔膜は、先の乾
燥方法と同様の方法にて乾燥が行なわれる。ま
た、気孔率を高めるために、有機液状体、無機微
粉体の一方または相方を抽出した多孔膜を一軸ま
たは二軸に延伸を行なつてもよい。
The porous membrane from which the inorganic fine powder has been extracted is dried in the same manner as the drying method described above. Further, in order to increase the porosity, a porous membrane obtained by extracting one or both of the organic liquid and the inorganic fine powder may be uniaxially or biaxially stretched.

前記のようにして得られる本発明の多孔膜は、
実質的にエチレン−ビニルアルコール共重合体か
らなる。そして、この多孔膜の構造は、エチレン
−ビニルアルコール共重合体の網状構造が形成す
る連通の細孔によつて形成されており、エチレン
−ビニルアルコール共重合体網状構造体の表面の
平均孔径は0.05〜1μ、好ましくは0.08〜0.05μ、さ
らに好ましくは0.1〜0.3μであり、かつ狭い孔径
分布をしている。
The porous membrane of the present invention obtained as described above is
It consists essentially of ethylene-vinyl alcohol copolymer. The structure of this porous membrane is formed by communicating pores formed by the network structure of ethylene-vinyl alcohol copolymer, and the average pore diameter of the surface of the network structure of ethylene-vinyl alcohol copolymer is The pore size is 0.05 to 1μ, preferably 0.08 to 0.05μ, more preferably 0.1 to 0.3μ, and has a narrow pore size distribution.

本発明を多孔膜の気孔率は30〜85%、好ましく
は40〜80%、さらに好ましくは50〜75%である。
The porous membrane of the present invention has a porosity of 30 to 85%, preferably 40 to 80%, and more preferably 50 to 75%.

本発明の多孔膜の構造をさらに明確にするため
に、走査型電子顕微鏡(SEM)を用い、表面構
造および断面構造の観察を行つた。観擦に用いた
多孔膜は、実施例1にて得たものを用いた。ま
た、断面撮影をするために、多孔膜をメタノール
に含浸した後、液体窒素中にて凍結し、割断して
サンプルとした。第1図は本発明多孔膜の表面構
造、第2図は断面構造を示す10000倍にて撮影し
た写真である。また、第3図は撮影した個所を説
明するための模式図であり、図中1は多孔膜表
面、2は多孔膜断面、Aは表面構造撮影のための
方向、Bは断面構造撮影のための方向を示す。
In order to further clarify the structure of the porous membrane of the present invention, the surface structure and cross-sectional structure were observed using a scanning electron microscope (SEM). The porous membrane used for observation was that obtained in Example 1. In addition, in order to take cross-sectional photographs, the porous membrane was impregnated with methanol, frozen in liquid nitrogen, and cut into samples. FIG. 1 is a photograph showing the surface structure of the porous membrane of the present invention, and FIG. 2 is a photograph taken at a magnification of 10,000 times showing the cross-sectional structure. In addition, Figure 3 is a schematic diagram for explaining the photographed locations, where 1 is the surface of the porous membrane, 2 is the cross section of the porous membrane, A is the direction for photographing the surface structure, and B is the direction for photographing the cross-sectional structure. indicates the direction.

第1図の多孔膜表面には、サブミクロンオーダ
ーの直径を中心としたほぼ円形の空孔が多数あ
り、エチレン−ビニルアルコール共重合体の網状
構造体を形成していることが観察される。第2図
の多孔膜断面も第1図と同様の網状構造を形成し
ている。
It is observed that on the surface of the porous membrane in FIG. 1, there are many approximately circular pores with diameters on the order of submicrons, forming a network structure of ethylene-vinyl alcohol copolymer. The cross section of the porous membrane in FIG. 2 also forms a network structure similar to that in FIG. 1.

本発明によるエチレン−ビニルアルコール共重
合体多孔膜は、先の製造方法に記載のとおり、通
常の乾燥方法により孔構造を損うことなく容易に
乾燥が可能である。また乾燥膜は湿潤時と同等の
優れた機械的物性、柔軟性を備えており、取扱い
が容易である。さらに乾燥膜であるためヒートシ
ールが可能であり、フイルターモジユール等への
組立加工性も極めて優れたものを備えている。
The ethylene-vinyl alcohol copolymer porous membrane according to the present invention can be easily dried by a conventional drying method without damaging the pore structure, as described in the manufacturing method above. Furthermore, the dry membrane has excellent mechanical properties and flexibility equivalent to that of the wet membrane, and is easy to handle. Furthermore, since it is a dry film, it can be heat-sealed, and it has extremely excellent assembling processability into filter modules and the like.

また本発明の多孔膜は、エチレン−ビニルアル
コール共重合体からなることにより、優れた水濡
れ性を備えており、水に浸漬すると瞬時に濡れ、
即時ミクロフイルターや電池セパレーターとして
使用可能である。これに対して界面活性剤処理の
ものは、使用後再乾燥すると界面活性剤が溶出
し、水濡れ性が失なわれるが、本発明の多孔膜
は、恒久的に水濡れ性を具備している。また本発
明の多孔膜は、高い気孔率で狭い孔径分布であつ
て、かつ網状構造を形成しているため、500〜
50000ml/Hr・m2・mmHgの高い透水性能を備え、
かつ0.05〜1μの微細孔により、血球、細菌、微粒
子等の物質の透過を阻止する過性能を兼ね備
え、各種フイルター用途に適用される。特にエチ
レン−ビニルアルコール共重合体多孔膜は、生体
親和性、抗溶血性、抗血栓性が良好であり、かつ
良好な過性能を備えていることから、血液の血
球と血漿を分離する血漿分離膜や、細菌除去膜
等、医療用ミクロフイルターとして特に有効であ
る。
Furthermore, since the porous membrane of the present invention is made of an ethylene-vinyl alcohol copolymer, it has excellent water wettability, and when immersed in water, it becomes wet instantly.
Can be used as an instant microfilter or battery separator. On the other hand, when a membrane treated with a surfactant is re-dried after use, the surfactant is eluted and water wettability is lost, but the porous membrane of the present invention permanently retains water wettability. There is. In addition, the porous membrane of the present invention has a high porosity, a narrow pore size distribution, and has a network structure.
Equipped with high water permeability of 50000ml/Hr・m 2・mmHg,
With micropores of 0.05 to 1μ, it has excellent performance in blocking the permeation of substances such as blood cells, bacteria, and fine particles, making it suitable for various filter applications. In particular, ethylene-vinyl alcohol copolymer porous membranes have good biocompatibility, anti-hemolytic properties, and anti-thrombotic properties, as well as good overperformance. It is particularly effective as a medical microfilter such as a membrane or a bacteria removal membrane.

また本発明の多孔膜は、苛性カリ水溶液(比重
1.30、20℃)中での電気抵抗は0.00005〜
0.0010Ωdm2/0.1mm厚と極めて低い。また微細な
網状構造により、有害物質の透過阻止や、デンド
ライトの成長阻止の効果を備える。この両特性お
よび水濡れ性、耐アルカリ性を備えた本発明の多
孔膜は、電池セパレーターとして特に有効であ
る。
In addition, the porous membrane of the present invention has a caustic potash aqueous solution (specific gravity
1.30, electrical resistance at 20℃) is 0.00005~
Extremely low at 0.0010Ωdm 2 /0.1mm thickness. Furthermore, the fine network structure has the effect of blocking the permeation of harmful substances and inhibiting the growth of dendrites. The porous membrane of the present invention having both of these properties, water wettability, and alkali resistance is particularly effective as a battery separator.

以上のように本発明の多孔膜は、各種用途に有
効であるが、その他通気性包装材、散気管、印刷
ロール、殺虫剤等薬品を含浸するための保持材等
の用途が存在する。
As described above, the porous membrane of the present invention is effective for various uses, but it also has other uses such as breathable packaging materials, aeration tubes, printing rolls, and holding materials for impregnating chemicals such as insecticides.

次に、本発明の効果を明らかにするために実施
例を示すが、本発明は、これらの実施例によつて
限定されるものではない。
Next, Examples will be shown to clarify the effects of the present invention, but the present invention is not limited to these Examples.

なお、本発明の実施例に示されている諸物性
は、次の測定方法によつた。
The physical properties shown in the Examples of the present invention were measured using the following measurement method.

組成比(容量%) 各組成の添加重量を真比重にて除した値から算
出。
Composition ratio (volume %) Calculated from the value obtained by dividing the added weight of each composition by the true specific gravity.

気孔率(%) 気孔率=空孔容積/多孔膜容積×100 空孔容積=含水重量−絶乾重量 平均孔径(μ) 多孔膜表面の走査型電子顕微鏡写真で観察され
る開孔部200ケの長径と短径の平均を加重平均し
て算出。
Porosity (%) Porosity = pore volume / porous membrane volume × 100 pore volume = water content − bone dry weight average pore diameter (μ) 200 open pores observed in a scanning electron micrograph of the porous membrane surface Calculated by weighted average of the major and minor axes.

最大孔径(μ)(バブルポイント法) ASTM 8316−70およびE128−62により測定 破断強さ(Kg/m2)、破断伸び(%) インストロン型引張試験機によりASTM D−
882に準じて測定。(歪速度2.0mm/mm・mm) SLMI: ASTM−D−1238−65T条件Eにより測定 溶解パラメーター(sp値) Polymer Handbook Table of Solubility
Parameterによる。
Maximum pore diameter (μ) (bubble point method) Measured according to ASTM 8316-70 and E128-62 Breaking strength (Kg/m 2 ), elongation at break (%) ASTM D- measured by Instron type tensile tester
Measured according to 882. (Strain rate 2.0mm/mm・mm) SLMI: Solubility parameter (sp value) measured according to ASTM-D-1238-65T condition E Polymer Handbook Table of Solubility
Depends on the parameter.

透気度(秒/100ml枚・秒/100ml・0.1mm) ASTM D−726 Method Aにより測定 電気抵抗(Ωdm2/枚・Ωdm2/0.1m/m) JIS−C−2313に準じて測定 極板は純ニツケル板 電解液は比重1.30苛性ソーダ水溶液 透水量(ml/Hr・m2・mmHg) 25℃ 差圧700mmHgにて測定 実施例 1 微粉珪酸〔ニツプシールVN−3(商品名)、比
表面積280m2/g、平均一次粒子径16mμ〕15.5
容量%、グリセリン59.0容量%をヘンシエルミキ
サーで混合し、これにエチレン−ビニルアルコー
ル共重合体(エチレン含量33モル%、ケン化度99
モル%以上)25.5容量%を添加し、再度ヘンシエ
ルミキサーで混合した。
Air permeability (seconds/100ml sheets/seconds/100ml・0.1mm) Measured according to ASTM D-726 Method A Electrical resistance (Ωdm 2 /sheet・Ωdm 2 /0.1m/m) Measured according to JIS-C-2313 The plate is a pure nickel plate. The electrolyte has a specific gravity of 1.30. Water permeability of aqueous caustic soda solution (ml/Hr・m 2・mmHg). Measurement at 25°C and differential pressure of 700 mmHg. Example 1: Fine powder silicic acid [Nipseal VN-3 (trade name), specific surface area 280 m 2 /g, average primary particle diameter 16 mμ〕15.5
Volume%, glycerin 59.0% by volume were mixed in a Henschel mixer, and ethylene-vinyl alcohol copolymer (ethylene content 33 mol%, degree of saponification 99
25.5% by volume (more than mol%) was added and mixed again using a Henschel mixer.

当該混合物を30m/mφ二軸押出機で混練しペ
レツトにした。このペレツトを30m/mφ二軸押
出機に420m/m巾Tダイを取付けたフイルム製
造装置にて膜状に成形した。成形された膜は80℃
の温水に20分間浸漬し、グリセリンを抽出した
後、これを90℃の乾燥ロールにて乾燥した。次い
で、50℃、40%苛性ソーダ水溶液中に10分間浸漬
して微粉珪酸を抽出した後、水洗し、90℃の乾燥
ロールで乾燥した。得られたエチレン−ビニルア
ルコール共重合体多孔膜中のグリセリンおよび微
粉珪酸の量は、それぞれ0.5%容量%以下であつ
た。
The mixture was kneaded into pellets using a 30 m/mφ twin-screw extruder. The pellets were formed into a film using a film manufacturing apparatus comprising a 30 m/mφ twin-screw extruder equipped with a 420 m/m wide T-die. The molded membrane is heated to 80℃
After immersing it in hot water for 20 minutes to extract glycerin, it was dried with a drying roll at 90°C. Next, it was immersed in a 40% caustic soda aqueous solution at 50°C for 10 minutes to extract the finely divided silicic acid, washed with water, and dried with a drying roll at 90°C. The amounts of glycerin and finely divided silicic acid in the obtained ethylene-vinyl alcohol copolymer porous membrane were each 0.5% by volume or less.

得られたエチレン−ビニルアルコール共重合体
多孔膜の厚みは150μ、気孔率は80%であつた。
電顕観察によると平均開孔径0.15μの孔が4×108
個/cm2存在していた。バブルポスント法による最
大孔径は0.3μであり、平均孔径の2倍と極めて狭
い孔径分布を示していた。膜の乾燥時の引張破断
強さは54Kg/cm2、引張破断伸びは68%、水湿潤時
はそれぞれ27Kg/cm2、110%であり、乾燥、水湿
潤時ともに優れた機械的物性を示した。
The resulting porous ethylene-vinyl alcohol copolymer membrane had a thickness of 150 μm and a porosity of 80%.
According to electron microscopy, there are 4×10 8 pores with an average pore diameter of 0.15μ.
There were 2 pieces/cm2. The maximum pore size determined by the bubble post method was 0.3μ, which was twice the average pore size, indicating an extremely narrow pore size distribution. The tensile strength at break of the membrane when dry is 54Kg/cm 2 and the tensile elongation at break is 68%, and when wet with water it is 27Kg/cm 2 and 110%, respectively, showing excellent mechanical properties in both dry and wet conditions. Ta.

この膜を水に浸すと瞬時に濡れ、透水性および
電気抵抗測定の際、何の前処理も必要とせず、直
ちに測定可能であつた。また、この膜の透水量は
2600ml/m2・Hr・mmHg透気度は120秒/100c.c.・
枚と極めて優れた透過性能を示した。また苛性カ
リ水溶液(比重1.30)中での電気抵抗は
0.00016Ωdm2/枚であり、セパレーターとして極
めて低いものであつた。
When this membrane was immersed in water, it became wet instantly, and water permeability and electrical resistance could be measured immediately without any pretreatment. Also, the water permeability of this membrane is
2600ml/ m2・Hr・mmHg Air permeability is 120 seconds/100c.c.・
It showed extremely excellent transmission performance. In addition, the electrical resistance in a caustic potassium aqueous solution (specific gravity 1.30) is
The resistance was 0.00016Ωdm 2 /sheet, which was extremely low as a separator.

実施例 2 実施例1で得られたエチレン−ビニルアルコー
ル共重合体多孔膜を、TM Long二軸延伸試験装
置を用いて、130℃にて縦2.5倍、横2.5倍に二軸
延伸を行なつた。
Example 2 The ethylene-vinyl alcohol copolymer porous membrane obtained in Example 1 was biaxially stretched 2.5 times in length and 2.5 times in width at 130°C using a TM Long biaxial stretching test device. Ta.

得られたエチレン−ビニルアルコール二軸延伸
多孔膜の厚みは50μ、気孔率は85%であつた。平
均開孔径は0.5μ、最大孔径は1.3μであつた。
The resulting ethylene-vinyl alcohol biaxially stretched porous membrane had a thickness of 50 μm and a porosity of 85%. The average pore diameter was 0.5μ, and the maximum pore diameter was 1.3μ.

膜の乾燥時の引張破断強さは110Kg/cm2引張破
断伸びは32%、水湿潤時はそれぞれ48Kg/cm2、63
%と優れた性能を示した。この膜の透水量は
18000ml/m2・Hr・mmHg、透気度は3秒/100
c.c.・枚と極めて優れた透過性能を示した。また電
気抵抗は0.00005Ωdm2/枚と極めて低かつた。
The tensile strength at break of the membrane when dry is 110Kg/ cm2 , and the tensile elongation at break is 32%, and when wet with water, it is 48Kg/ cm2 and 63, respectively.
% and showed excellent performance. The water permeability of this membrane is
18000ml/ m2・Hr・mmHg, air permeability is 3 seconds/100
It showed an extremely excellent transmission performance of cc. Furthermore, the electrical resistance was extremely low at 0.00005Ωdm 2 /sheet.

実施例 3 微粉珪酸10.5容量%、グリセリン40容量%、エ
チレン−ビニルアルコール共重合体49.5容量%を
用た以外、実施例1にしたがい多孔膜を製造し
た。
Example 3 A porous membrane was produced according to Example 1, except that 10.5% by volume of finely divided silicic acid, 40% by volume of glycerin, and 49.5% by volume of ethylene-vinyl alcohol copolymer were used.

得られたエチレン−ビニルアルコール共重合体
多孔膜の厚みは80μ、平均孔径0.08μ、最大孔径
0.2μであつた。気孔率は41%であつた。
The resulting ethylene-vinyl alcohol copolymer porous membrane had a thickness of 80μ, an average pore diameter of 0.08μ, and a maximum pore diameter.
It was 0.2μ. The porosity was 41%.

この膜の乾燥時の引張破断強さは140Kg/cm2
引張破断伸びは170%、水湿潤時はそれぞれ78
Kg/cm2、230%と機械的物性に優れたものであつ
た。また、この膜の電気抵抗は0.00065Ωdm2/枚
であつた。透水量は570ml/Hr・m2・mmHgと優
れたものであつた。
The tensile breaking strength of this membrane when dry is 140Kg/cm 2 ,
Tensile elongation at break is 170% and 78 when wet with water, respectively.
Kg/cm 2 , 230%, and had excellent mechanical properties. Further, the electrical resistance of this film was 0.00065Ωdm 2 /sheet. The water permeability was excellent at 570ml/Hr・m 2・mmHg.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明多孔膜の表面構造を示す走査型
電子顕微鏡写真、第2図は同じく断面構造を示す
走査型電子顕微鏡写真、第3図は第1図および第
2図の走査型電子顕微鏡写真の擦影個所を説明す
るための模式図である。
Fig. 1 is a scanning electron micrograph showing the surface structure of the porous membrane of the present invention, Fig. 2 is a scanning electron micrograph showing the cross-sectional structure, and Fig. 3 is a scanning electron micrograph of Fig. 1 and Fig. 2. FIG. 3 is a schematic diagram illustrating a shaded area in a photograph.

Claims (1)

【特許請求の範囲】 1 実質的にエチレン含量20〜60モル%、ケン化
度80モル%以上のエチレン−ビニルアルコール共
重合体からなり、気孔率30〜85%、表面の平均孔
径0.05〜1μの連通孔からなる網状構造を形成し、
透水量が500〜50000ml/Hr・m2・mmHgであるこ
とを特徴とするエチレン−ビニルアルコール共重
合体多孔膜。 2 エチレン含量20〜60モル%、ケン化度80モル
%以上のエチレン−ビニルアルコール共重合体10
〜60容量%、比表面積50〜500m2/gかつ平均−
次粒子径0.005〜0.5μの無機微粉体7〜42容量%、
エチレン−ビニルアルコール共重合体に実質的に
不活性であり、沸点が190℃以上の耐熱性有機液
状体30〜75容量%を混合した後、溶融成形し、次
いで、該成形物よりエチレン−ビニルアルコール
共重合体を実質的に溶解しない有機液状体の溶
剤、無機微粉体の溶剤を用いて、有機液状体およ
び無機微粉体を順次または同時に抽出することを
特徴とするエチレン−ビニルアルコール共重合体
多孔膜の製造方法。
[Scope of Claims] 1. Consisting essentially of an ethylene-vinyl alcohol copolymer with an ethylene content of 20 to 60 mol% and a saponification degree of 80 mol% or more, a porosity of 30 to 85%, and an average surface pore diameter of 0.05 to 1 μm. Forms a network structure consisting of communicating pores,
An ethylene-vinyl alcohol copolymer porous membrane characterized by a water permeability of 500 to 50,000 ml/Hr·m 2 ·mmHg. 2 Ethylene-vinyl alcohol copolymer 10 with an ethylene content of 20 to 60 mol% and a degree of saponification of 80 mol% or more
~60% by volume, specific surface area 50~500m 2 /g and average -
7-42% by volume of inorganic fine powder with a secondary particle size of 0.005-0.5μ,
After mixing 30 to 75% by volume of a heat-resistant organic liquid that is substantially inert and has a boiling point of 190°C or higher with the ethylene-vinyl alcohol copolymer, it is melt-molded, and then the ethylene-vinyl alcohol copolymer is melt-molded. An ethylene-vinyl alcohol copolymer characterized in that an organic liquid and an inorganic fine powder are extracted sequentially or simultaneously using an organic liquid solvent and an inorganic fine powder solvent that do not substantially dissolve the alcohol copolymer. Method for manufacturing porous membrane.
JP12321079A 1979-09-27 1979-09-27 Ethyleneevinyl alcohol copolymer porous film and its manufacture Granted JPS5649157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12321079A JPS5649157A (en) 1979-09-27 1979-09-27 Ethyleneevinyl alcohol copolymer porous film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12321079A JPS5649157A (en) 1979-09-27 1979-09-27 Ethyleneevinyl alcohol copolymer porous film and its manufacture

Publications (2)

Publication Number Publication Date
JPS5649157A JPS5649157A (en) 1981-05-02
JPH0138505B2 true JPH0138505B2 (en) 1989-08-15

Family

ID=14854914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12321079A Granted JPS5649157A (en) 1979-09-27 1979-09-27 Ethyleneevinyl alcohol copolymer porous film and its manufacture

Country Status (1)

Country Link
JP (1) JPS5649157A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596062A (en) * 1982-07-01 1984-01-13 株式会社クラレ Artificial kidney excellent in polypeptide permeability
ES2041668T3 (en) * 1986-10-29 1993-12-01 Asahi Medical Co., Ltd. UNIT OF COLLECTION OF COMPONENTS OF THE BLOOD.
JP2002136851A (en) * 2000-10-31 2002-05-14 Asahi Kasei Corp Ethylene-vinyl alcohol copolymer porous hollow fiber membrane and manufacturing method thereof
JP2021082375A (en) * 2018-03-13 2021-05-27 株式会社クラレ Separator for nonaqueous electrolyte battery and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945881A (en) * 1972-09-08 1974-05-01
JPS52152877A (en) * 1976-06-15 1977-12-19 Kuraray Co Ltd Membrane of ethylene-vinyl alcohol copolymer having excellent permeability and its production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945881A (en) * 1972-09-08 1974-05-01
JPS52152877A (en) * 1976-06-15 1977-12-19 Kuraray Co Ltd Membrane of ethylene-vinyl alcohol copolymer having excellent permeability and its production method

Also Published As

Publication number Publication date
JPS5649157A (en) 1981-05-02

Similar Documents

Publication Publication Date Title
JPS5937292B2 (en) Polyolefin resin porous membrane, alkaline storage battery separator, and microfilter
JP2899903B2 (en) Polyvinylidene fluoride porous membrane and method for producing the same
AU738323B2 (en) Microporous membrane
JPS60242035A (en) Microporous polyethylene film and production thereof
JPH05234578A (en) Separator for battery using organic electrolyte and its manufacture
WO1993001623A1 (en) Separator of battery wherein organic electrolyte is used and production thereof
JP2000017100A (en) Preparation of polyethylene micro-porous membrane
CA1073822A (en) Ethylene-vinyl alcohol copolymer membranes with improved permeability characteristics and a method for producing the same
JPS6023130B2 (en) Method for producing polyolefin porous material
JPH11319522A (en) Finely porous membrane and manufacture thereof
JP2005343958A (en) Method for producing polyethylene fine porous film, fine porous film and use of the same
JPS5832171B2 (en) Method for manufacturing porous membrane
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JPH0138505B2 (en)
JPH0342025A (en) Production of polyolefin porous film
JPS5859072A (en) Porous film of thermoplastic resin and production thereof
JP3948762B2 (en) Zinc bromine secondary battery separator
JPH0521050A (en) Uniform micro porous film made of polyethylene and its manufacture
JPH10296839A (en) Manufacture of polyolefin porous film
JPS637575B2 (en)
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof
JP4272144B2 (en) Method for producing porous body
JPH11106532A (en) Porous polyethylene resin film and its production
JP3965833B2 (en) Porous film and method for producing the same
WO1998039379A1 (en) Microporous membrane and process for preparing the same