JP2002050336A - Separator for zinc halogen battery - Google Patents

Separator for zinc halogen battery

Info

Publication number
JP2002050336A
JP2002050336A JP2000238084A JP2000238084A JP2002050336A JP 2002050336 A JP2002050336 A JP 2002050336A JP 2000238084 A JP2000238084 A JP 2000238084A JP 2000238084 A JP2000238084 A JP 2000238084A JP 2002050336 A JP2002050336 A JP 2002050336A
Authority
JP
Japan
Prior art keywords
polyethylene
separator
less
molecular weight
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000238084A
Other languages
Japanese (ja)
Other versions
JP4877881B2 (en
JP2002050336A5 (en
Inventor
Yoshifumi Nishimura
佳史 西村
Takashi Ikemoto
貴志 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2000238084A priority Critical patent/JP4877881B2/en
Publication of JP2002050336A publication Critical patent/JP2002050336A/en
Publication of JP2002050336A5 publication Critical patent/JP2002050336A5/ja
Application granted granted Critical
Publication of JP4877881B2 publication Critical patent/JP4877881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a zinc halogen battery with excellent heat resistance and electric characteristics. SOLUTION: The separator consists of polyethylene of viscosity-average molecular weight of 50 thousand or more and less than 350 thousand and fine powder silica, of which, molecular weight distribution (Mw/Mn) of polyethylene is 8 or less and partial rate of polyethylene at a film surface not including the cut surface of the separator is 30% or more and 75% or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、亜鉛ハロゲン電
池、特に亜鉛臭素電池に用いられるセパレータに関する
ものである。
The present invention relates to a zinc halide battery, and more particularly to a separator used for a zinc bromine battery.

【0002】[0002]

【従来の技術】一般に亜鉛ハロゲン電池に使用されるセ
パレータとして要求特性は以下の通りである。 1)イオン電導性を有し、セパレータの抵抗は低く、か
つ両極室において発生する亜鉛、ハロゲンの自己放電を
少なくする機能を有すること。 2)特に陽極で発生するハロゲンの拡散を防ぎ、更に強
酸化性のハロゲンによるセパレータの劣化がない安定し
た膜であること。 3)膜の膨潤、たわみが少なく長時間の寿命を有する膜
であること。 4)セパレータの製造コストが安価で、入手が容易であ
ること。 現状、以上の特性上考えられるセパレータとしては、イ
オン交換膜、フッソ系樹脂性多孔膜、ポリオレフィン多
孔膜が用いられている。これらの中で、安価で耐酸化性
に優れているものとして特公平5−27233号公報に
見られるようなポリエチレンと微粉シリカからなるセパ
レータがある。
2. Description of the Related Art The characteristics required of a separator generally used in a zinc halide battery are as follows. 1) It has ion conductivity, low resistance of the separator, and a function of reducing self-discharge of zinc and halogen generated in the bipolar chamber. 2) A stable film that prevents the diffusion of halogen particularly generated at the anode and does not deteriorate the separator due to the strongly oxidizing halogen. 3) The film must have a long life with little swelling and bending of the film. 4) The manufacturing cost of the separator is low and it is easy to obtain. At present, ion separators, fluorinated resinous porous membranes, and polyolefin porous membranes are used as separators that can be considered in terms of the above characteristics. Among them, a separator made of polyethylene and finely divided silica as disclosed in JP-B 5-27233 is one which is inexpensive and has excellent oxidation resistance.

【0003】しかしながら、特公平5−27233号公
報に記載されているセパレータは特開昭62−1794
5号公報に記載されているように、セパレータに電極枠
を射出成形により取り付けたり、熱板や超音波でのシー
ル工程で、加熱によりセパレータにひび割れが発生する
という問題があった。この欠点を解決するためには特開
平9−231957号公報に記載されているように超高
分子量ポリエチレンをブレンドする技術が開示されてい
る。しかしながら、耐熱性、耐ストレスクラック性が上
昇するものの、膜表面にポリエチレンの膜が形成し、電
解液の表面濡れ性が悪化したりして電気特性が劣った
り、枠への融着時間が長いためセパレータが変形すると
いう問題点があった。
However, the separator described in Japanese Patent Publication No. 5-27233 is disclosed in Japanese Patent Application Laid-Open No. Sho 62-1794.
As described in Japanese Patent Publication No. 5, there is a problem that an electrode frame is attached to a separator by injection molding or the separator is cracked by heating in a sealing process using a hot plate or an ultrasonic wave. In order to solve this drawback, a technique of blending ultra-high molecular weight polyethylene as disclosed in JP-A-9-231957 is disclosed. However, although heat resistance and stress crack resistance are increased, a polyethylene film is formed on the film surface, and the electric property is poor due to the deterioration of the surface wettability of the electrolytic solution or the fusion time to the frame is long. Therefore, there was a problem that the separator was deformed.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、耐熱
性、電気特性に優れた亜鉛ハロゲン電池用セパレータを
提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a zinc halide battery separator having excellent heat resistance and electrical properties.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題を
解決したものである。すなわち、この発明は、粘度平均
分子量5万以上35万未満であるポリエチレンと微粉シ
リカからなるセパレータであって、ポリエチレンの分子
量分布(Mw/Mn)が8以下、該セパレータの切断面
を含まない膜表面のポリエチレン部分率が30%以上7
5%以下であることを特徴とする亜鉛ハロゲン電池用セ
パレータに関する。
Means for Solving the Problems The present inventor has solved the above problems. That is, the present invention is a separator comprising polyethylene having a viscosity average molecular weight of 50,000 or more and less than 350,000 and finely divided silica, wherein the polyethylene has a molecular weight distribution (Mw / Mn) of 8 or less and does not include a cut surface of the separator. The percentage of polyethylene on the surface is 30% or more 7
The present invention relates to a zinc-halogen battery separator characterized in that the content is 5% or less.

【0006】以下、本発明の詳細について記述する。本
発明の亜鉛ハロゲン電池用セパレータを構成するポリエ
チレンは、粘度平均分子量は5万以上35万未満であ
り、好ましくは10万〜35万未満である。粘度平均分
子量が5万未満になると機械的強度の劣ったものとな
り、耐ストレスクラック性に劣るセパレータとなる。粘
度平均分子量が35万を越えると融着性に劣るものとな
る。
Hereinafter, the present invention will be described in detail. The polyethylene constituting the separator for a zinc halide battery of the present invention has a viscosity average molecular weight of 50,000 or more and less than 350,000, and preferably 100,000 to less than 350,000. When the viscosity average molecular weight is less than 50,000, the mechanical strength becomes poor, and the separator becomes poor in stress crack resistance. If the viscosity average molecular weight exceeds 350,000, the adhesiveness becomes poor.

【0007】本発明の亜鉛ハロゲン電池用セパレータを
構成するポリエチレンの分子量分布Mw/Mnは8以下
であることが必要で、好ましくは7以下、さらに好まし
くは6以下である。分子量分布が8を越えると耐熱性に
劣るものとなる。このようなポリエチレンとしては、メ
タロセン触媒を用いて重合されたポリオレフィンが挙げ
られる。近年、メタロセン触媒技術等を使用して分子量
分布の狭いポリオレフィンを重合する技術が開発されて
いる(例えば、‘メタロセンポリマーの技術と製品展
開’、大阪ケミカルマーケティングセンター版)。ま
た、最近ではメタロセン触媒を用いた高密度ポリエチレ
ンを重合する技術も開発されている(例えば、岸本ら、
成形加工‘99,B308、講演要旨集、プラスチック
成形加工学会編、頁305−306)。このような樹脂
等を本発明を構成するポリエチレンとして用いることが
できる。
The molecular weight distribution Mw / Mn of the polyethylene constituting the separator for a zinc-halogen battery of the present invention must be 8 or less, preferably 7 or less, more preferably 6 or less. If the molecular weight distribution exceeds 8, the heat resistance will be poor. Examples of such polyethylene include polyolefin polymerized using a metallocene catalyst. In recent years, a technique for polymerizing a polyolefin having a narrow molecular weight distribution using a metallocene catalyst technique or the like has been developed (for example, “Metallocene Polymer Technology and Product Development”, Osaka Chemical Marketing Center version). Recently, a technique for polymerizing high-density polyethylene using a metallocene catalyst has been developed (for example, Kishimoto et al.,
Molding '99, B308, Abstracts of Lectures, edited by Japan Society of Plastics Processing, pages 305-306). Such a resin or the like can be used as polyethylene constituting the present invention.

【0008】また、本発明を構成するポリエチレンとし
ては、高密度ポリエチレン、低密度ポリエチレン、線状
低密度ポリエチレン等の周知のホモポリマー、コポリマ
ーを挙げることができる。特に密度0.9g/cm3
0.99g/cm3、さらに好ましくは、0.93g/
cm3〜0.98g/cm3の高密度ポリエチレン樹脂か
らなるポリエチレン樹脂からなるセパレータは耐熱性が
良好で好ましい。また、このようなポリエチレン樹脂は
上記のポリエチレンの混合物でも良く、ポリプロピレン
等の他のポリオレフィン樹脂を混合しても良い。また、
必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、アン
チブロッキング剤、着色剤、難燃化剤等の添加物が本発
明の目的を損なわない範囲で添加されていてもよい。
The polyethylene constituting the present invention includes well-known homopolymers and copolymers such as high-density polyethylene, low-density polyethylene, and linear low-density polyethylene. In particular, a density of 0.9 g / cm 3 or more
0.99 g / cm 3 , more preferably 0.93 g / cm 3
A separator made of a polyethylene resin made of a high-density polyethylene resin having a density of cm 3 to 0.98 g / cm 3 is preferable because of good heat resistance. Further, such a polyethylene resin may be a mixture of the above-mentioned polyethylenes, or may be mixed with another polyolefin resin such as polypropylene. Also,
If necessary, additives such as an antioxidant, an ultraviolet absorber, a lubricant, an antiblocking agent, a coloring agent, and a flame retardant may be added as long as the object of the present invention is not impaired.

【0009】本発明においては、該セパレータの切断面
を含まない表面のポリエチレン部分率が30%以上75
%以下であることが必要である。75%を越えると電気
特性の劣るものとなり、30%未満になると機械的強度
の劣るものとなる。本発明のセパレータの気孔率は30
〜80%の範囲であることが好ましい。気孔率が30%
未満になると電気特性に劣るものとなり、80%より大
きくなると機械的強度に劣るものとなる。
In the present invention, the polyethylene portion of the surface of the separator not including the cut surface is not less than 30% and not more than 75%.
% Or less. If it exceeds 75%, the electrical properties will be poor, and if it is less than 30%, the mechanical strength will be poor. The separator of the present invention has a porosity of 30.
It is preferably in the range of 80%. 30% porosity
If it is less than 80%, the electrical properties will be poor, and if it is more than 80%, the mechanical strength will be poor.

【0010】本発明のセパレータの膜厚は0.2mm〜
1.4mmであることが好ましく、さらに好ましくは
0.4mm〜0.8mmである。膜厚が1.4mmより
大きくなると電気特性に劣るものとなり、0.2mmよ
り小さくなると機械的強度に劣るものとなる傾向があ
る。本発明の亜鉛ハロゲン電池用セパレータは、例え
ば、粘度平均分子量5万〜35万、ポリエチレンの分子
量分布(Mw/Mn)が8以下のポリエチレン樹脂を用
い、ポリエチレン/微粉シリカの重量比を0.5以上2
以下、有機液状体/微粉シリカの重量比を1.5以上
3.5以下の組成にて押出成形した後に、有機液状体を
抽出、乾燥して得ることができる。このような組成と後
述する加工条件を取ることにより、セパレータの切断面
を含まない膜表面のポリエチレン部分率を30%以上7
5%以下にすることができる。
The thickness of the separator of the present invention is 0.2 mm to
It is preferably 1.4 mm, more preferably 0.4 mm to 0.8 mm. When the film thickness is larger than 1.4 mm, the electrical properties tend to be poor, and when the film thickness is smaller than 0.2 mm, the mechanical strength tends to be poor. The zinc-halogen battery separator of the present invention uses, for example, a polyethylene resin having a viscosity average molecular weight of 50,000 to 350,000, a polyethylene molecular weight distribution (Mw / Mn) of 8 or less, and a polyethylene / fine silica powder weight ratio of 0.5. Above 2
Hereinafter, it can be obtained by extrusion-molding an organic liquid material / fine-powder silica at a weight ratio of 1.5 to 3.5, and then extracting and drying the organic liquid material. By adopting such a composition and the processing conditions described later, the polyethylene ratio of the film surface not including the cut surface of the separator is 30% or more and 7% or more.
It can be 5% or less.

【0011】まず、粘度平均分子量5万〜35万、ポリ
エチレンの分子量分布(Mw/Mn)が8以下のポリエ
チレン樹脂と、ポリエチレン/微粉シリカの重量比を
0.5以上2以下、有機液状体/微粉シリカの重量比を
1.5以上3以下の組成になるようにポリエチレン、有
機液状体及び微粉シリカを混合する。ポリエチレン/微
粉シリカの重量比が2を越えると電気特性の劣るものと
なり、0.5未満になると機械強度の劣るものとなり、
耐ストレスクラック性に劣るものとなる。また、有機液
状体/微粉シリカの重量比が1.5未満になると成形性
が不良となり、3.5を越えると押出性が不良となる傾
向にある。
First, a polyethylene resin having a viscosity average molecular weight of 50,000 to 350,000 and a polyethylene molecular weight distribution (Mw / Mn) of 8 or less, and a weight ratio of polyethylene / fine silica powder of 0.5 to 2 and an organic liquid Polyethylene, an organic liquid and fine silica are mixed so that the weight ratio of the fine silica is 1.5 or more and 3 or less. If the weight ratio of polyethylene / fine silica exceeds 2, the electrical properties will be poor, and if it is less than 0.5, the mechanical strength will be poor,
It is inferior in stress crack resistance. If the weight ratio of the organic liquid / micronized silica is less than 1.5, the moldability tends to be poor, and if it exceeds 3.5, the extrudability tends to be poor.

【0012】このような混合物の有機液状体として用い
られるものは、溶融成形時に液体であり、かつ、不活性
であることが必要である。例としては、フタル酸ジエチ
ル(DEP)、フタル酸ジブチル(DBP)、フタル酸
ジオクチル(DnOP)、フタル酸ビス(2ーエチルヘ
キシル)(DOP)等のフタル酸エステルやリン酸エス
テル等や、流動パラフィン等の有機物が挙げられる。こ
れらのうち、特にDBP、DnOP、DOP及びこれら
の混合物が好ましい。また、微粉シリカとしては、親水
性の湿式シリカ、乾式シリカやこれらの微粉シリカを表
面処理した疎水性のシリカなどが挙げられるが、親水性
の微粉シリカを用いるのが、電気特性が良好で好まし
い。
The mixture used as the organic liquid must be liquid at the time of melt molding and inert. Examples include phthalic acid esters and phosphates such as diethyl phthalate (DEP), dibutyl phthalate (DBP), dioctyl phthalate (DnOP), bis (2-ethylhexyl) phthalate (DOP), and liquid paraffin. And the like. Of these, DBP, DnOP, DOP and mixtures thereof are particularly preferred. Examples of the finely divided silica include hydrophilic wet silica, dry silica, and hydrophobic silica obtained by surface-treating these finely divided silicas. It is preferable to use hydrophilic finely divided silica because of its excellent electrical characteristics. .

【0013】これらポリエチレン、微粉シリカ、有機液
状体の三成分の混合には、ヘンシェルミキサー、V−ブ
レンダー、プロシェアミキサー、リボンブレンダー等の
配合機を用いた通常の混合法で充分である。三成分の混
合順序としては、三成分を同時に混合するよりも、まず
微粉シリカと有機液状体を混合して、微粉シリカに有機
液状体を充分に吸着させ、次いでポリエチレン樹脂を配
合して混合するのが、溶融成形性の向上、得られる多孔
物の空孔度及び均一度の向上に有効である。この混合物
は、押出機、ニーダー等の溶融混練装置により混練され
る。得られる混練物は、Tダイスを用いた溶融成形によ
りシート状に成形される。この場合、ギアーポンプを介
して成形するのが、寸法安定性の面で好ましく、特にギ
アーポンプ前圧力を一定に制御して成形するのが、寸法
安定性の面で好ましい。
For mixing these three components, polyethylene, finely divided silica, and an organic liquid, an ordinary mixing method using a blending machine such as a Henschel mixer, a V-blender, a pro-share mixer, a ribbon blender is sufficient. As for the mixing order of the three components, rather than mixing the three components at the same time, first, the fine silica and the organic liquid are mixed, the organic liquid is sufficiently adsorbed on the fine silica, and then the polyethylene resin is blended and mixed. This is effective in improving the melt moldability and the porosity and uniformity of the obtained porous material. This mixture is kneaded by a melt kneading device such as an extruder or a kneader. The resulting kneaded material is formed into a sheet by melt molding using a T die. In this case, molding via a gear pump is preferable from the viewpoint of dimensional stability, and it is particularly preferable to perform molding by controlling the pressure before the gear pump at a constant level from the viewpoint of dimensional stability.

【0014】更に、本発明では、この混練物を溶融押出
しする際の冷却方法としては、エアーにて冷却する方
法、Tダイス吐出樹脂温度より20〜120℃低い温調
したロールにて接触させて冷却する方法、 Tダイス吐
出樹脂温度より20〜120℃低いカレンダーロールに
て圧延成形してシート状に成形しながら冷却する方法を
とることができるが、 Tダイス吐出樹脂温度より20
〜120℃低いカレンダーロールにて圧延成形してシー
ト状に成形しながら冷却する方法をとるのが膜厚み均一
性の面で好ましく、ロールを使用する際、Tダイスとロ
ールのシートとの接点の距離は100〜500mmの範
囲にて成形するのが好ましい。このような条件にて成形
することにより、セパレータの切断面を含まない表面の
ポリエチレン部分率を30%以上75%以下にすること
ができる。ダイス吐出温度は通常の熱電対温度計にて端
子をダイスに触れないようにし、吐出樹脂に接触させる
ことにより測定することができる。
Further, in the present invention, as a cooling method at the time of melt-extruding the kneaded material, a method of cooling with air, a method of contacting with a roll whose temperature is lower by 20 to 120 ° C. than the temperature of the resin discharged from the T-die, is employed. A method of cooling can be adopted, in which a roll is formed by calendering with a calender roll that is 20 to 120 ° C. lower than the temperature of the T-die discharge resin and is cooled while being formed into a sheet.
It is preferable to adopt a method of cooling while rolling into a sheet by calendering with a calender roll lower by ~ 120 ° C in terms of film thickness uniformity. When a roll is used, the contact between the T die and the roll sheet is preferably used. The molding is preferably performed at a distance in the range of 100 to 500 mm. By molding under such conditions, the percentage of polyethylene on the surface not including the cut surface of the separator can be 30% or more and 75% or less. The die discharge temperature can be measured by using a usual thermocouple thermometer so that the terminal does not touch the die and is brought into contact with the discharged resin.

【0015】次に、これらの方法により得られた膜中の
有機液状体を溶剤によって抽出を行う。有機液状体の抽
出に用いられる溶剤としては、メタノール、エタノー
ル、メチルエチルケトン、アセトン等の有機溶剤、塩化
メチレン等のハロゲン系炭化水素溶剤を使用することが
できる。以上のようにして本発明の亜鉛ハロゲン二次電
池用セパレータを作製することができる。
Next, the organic liquid in the film obtained by these methods is extracted with a solvent. As a solvent used for extracting the organic liquid, an organic solvent such as methanol, ethanol, methyl ethyl ketone and acetone, and a halogenated hydrocarbon solvent such as methylene chloride can be used. As described above, the separator for a zinc-halogen secondary battery of the present invention can be manufactured.

【0016】[0016]

【発明の実施の形態】次に実施例を示す。本例に示され
る諸物性は、次の測定方法によった。 (1)ポリエチレン粘度平均分子量(Mv) 溶剤(デカリン)に後述のポリエチレン単体膜作製法に
よりシリカを抽出したセパレータを溶解させ、測定温度
135℃における極限粘度[η]を測定し、次式より算
出した。 [η]=(6.2×10-4)×Mv0.7(Chiang
の式) (2)ポリエチレンメルトインデックス(MI) ポリエチレン単体膜作製法によりシリカを抽出したセパ
レータを粉砕し、特に断りが無い場合は、ASTM−D
−1238に準拠して測定した。
Embodiments of the present invention will be described below. Various physical properties shown in this example were measured by the following measurement methods. (1) Polyethylene viscosity average molecular weight (Mv) Dissolve a separator from which silica is extracted by a method for producing a polyethylene single film described below in a solvent (decalin), measure the intrinsic viscosity [η] at a measurement temperature of 135 ° C., and calculate from the following equation. did. [Η] = (6.2 × 10 −4 ) × Mv 0.7 (Chiang
(2) Polyethylene melt index (MI) A separator from which silica was extracted by a method for producing a single polyethylene film was pulverized. Unless otherwise specified, ASTM-D was used.
It measured according to -1238.

【0017】 (3)ポリエチレン分子量分布(Mw/Mn) ポリエチレン単体膜作製法によりシリカを抽出したセパ
レータを溶解し、GPCにて測定した。 GPC測定装置:WATERS 150−GPC 温度:140℃ 溶媒:1、2、4−トリクロロベンゼン 濃度:0.05%(インジェクション量:500マイク
ロリットル) カラム:Shodex GPC AT−807/S 1
本、Tosoh TSK−GEL GMH6−HT 2
本 溶解条件:160℃、2.5時間 キャリブレーションカーブ:ポリスチレンの標準試料を
測定し、ポリエチレン換算定数(0.43)を使用し、
3次曲線でキャリブレーションカーブを計算した。 (4)ポリエチレン密度(g/cm3) 冷間プレスにてポリエチレン単体膜作製法にて得た膜を
透明にし、エアーが膜内に含まれない状態にした後、密
度勾配管を用いて測定した。
(3) Polyethylene Molecular Weight Distribution (Mw / Mn) A separator from which silica was extracted by a method for producing a single polyethylene film was dissolved and measured by GPC. GPC measuring device: WATERS 150-GPC Temperature: 140 ° C Solvent: 1,2,4-trichlorobenzene Concentration: 0.05% (injection amount: 500 microliter) Column: Shodex GPC AT-807 / S1
Book, Tosoh TSK-GEL GMH6-HT 2
This dissolution condition: 160 ° C., 2.5 hours Calibration curve: Measure a standard sample of polystyrene, and use a polyethylene conversion constant (0.43).
A calibration curve was calculated using a cubic curve. (4) Polyethylene density (g / cm 3 ) The membrane obtained by the polyethylene simple membrane fabrication method was made transparent by cold pressing, air was not included in the membrane, and the density was measured using a density gradient tube. did.

【0018】(5)膜厚(mm) マイクロメータにより測定した。 (6)気孔率(%):下記の式より算出した 気孔率=(1−(0.1×X/(Y×Z)))×100 X:膜の重量(g/dm2) Y:膜の比重(g/cm3)ポリエチレンの密度、微粉
シリカの比重1.9を用いて後述のポリエチレン/シリ
カ組成解析法から求めた組成比を用いて計算した。 Z:膜厚(mm) (7)表面ポリエチレン部分率 SEM写真より画像解析装置にて測定した。 SEM:S−4100(FE−SEM)日立製作所製 加速電圧:3kV 前処理:Pt−Pd蒸着 0.1Torr、0.5m
A、15秒×4回W.D:15mm
(5) Film thickness (mm) Measured with a micrometer. (6) Porosity (%): Porosity calculated from the following equation = (1- (0.1 × X / (Y × Z))) × 100 X: Weight of film (g / dm 2 ) Y: The specific gravity (g / cm 3 ) of the membrane was calculated using the density of polyethylene and the specific gravity of fine silica of 1.9 and the composition ratio obtained from the polyethylene / silica composition analysis method described later. Z: film thickness (mm) (7) Surface polyethylene partial ratio It was measured from an SEM photograph by an image analyzer. SEM: S-4100 (FE-SEM) Hitachi, Ltd. Acceleration voltage: 3 kV Pretreatment: Pt-Pd deposition 0.1 Torr, 0.5 m
A, 15 seconds × 4 times D: 15mm

【0019】上記条件にて倍率5000倍にて膜表面を
撮影する。この写真を絞りつまみを0.96〜0.98
に調整し、照度調整を行った後、CCDカメラを用いて
コンピュータに取り込み、Leica社製の画像解析ソ
フトQuantimet500(商品名)を用いて「自
動」にて写真中の白色部分の面積を計算した。解析範囲
は縦5cm×横8cmとした。これを一つのサンプルに
対して3回行い、その平均を表面シリカ率(%)とし、
100%から表面シリカ率を引くことにより表面ポリエ
チレン部分率とした。 (8)電気特性 JIS C−2313に準拠し、電気抵抗にて評価し
た。 (9)ポリエチレン単体膜作製法 セパレータをアルコールに浸漬し、空気をおおよそ抜き
出した後苛性ソーダ20%水溶液80℃に1昼夜漬け、
60℃の温水にて洗浄した後、1昼夜流水にて洗浄し
た。その膜を40℃設定の乾燥機にて1昼夜乾燥した。
作製した膜の一部を後述の残存シリカ測定方法により測
定し、残存シリカ量が1wt%以下であることを確認す
る。
The film surface is photographed at a magnification of 5000 under the above conditions. The aperture knob of this photo is 0.96-0.98
After adjusting the illuminance, the image was taken into a computer using a CCD camera, and the area of the white portion in the photograph was calculated “automatically” using the image analysis software Quantimet 500 (trade name) manufactured by Leica. . The analysis range was 5 cm long × 8 cm wide. This is performed three times for one sample, and the average is defined as the surface silica ratio (%).
Subtracting the surface silica ratio from 100% gave the surface polyethylene partial ratio. (8) Electric properties Evaluation was made based on electric resistance according to JIS C-2313. (9) Polyethylene single membrane production method The separator was immersed in alcohol, air was roughly extracted, and then immersed in a 20% aqueous solution of caustic soda at 80 ° C for one day.
After washing with warm water of 60 ° C., washing was carried out with running water all day and night. The film was dried all day and night with a dryer set at 40 ° C.
A part of the prepared film is measured by a residual silica measuring method described later, and it is confirmed that the residual silica amount is 1 wt% or less.

【0020】(10)ポリエチレン/シリカ組成解析方
法 セイコー電子工業株式会社製、熱重量分析計 TG/D
TA220 を用い、試料約10mgを空気流下で初期
の重量と550℃にて60分放置した後の重量から組成
を算出した。 (11)残存シリカ解析方法 予め恒量にしたルツボに重量を測定したセパレータを投
入し、900℃にて3時間放置し、ルツボ中のポリエチ
レン分を完全に焼却した後の重量を測定し、残存物重量
/セパレータ重量にて残存シリカwt%を評価した。 (12)耐熱性 セパレータをポリエチレン製枠に超音波ウェルディング
により溶着する作業を20回行った際に、膜に変形を起
こした率。
(10) Method of analyzing composition of polyethylene / silica Thermogravimetric analyzer TG / D manufactured by Seiko Denshi Kogyo KK
Using TA220, the composition was calculated from the initial weight of about 10 mg of the sample in an air stream and the weight after being left at 550 ° C. for 60 minutes. (11) Residual silica analysis method A weighted separator was put into a crucible having a constant weight in advance, left at 900 ° C. for 3 hours, and the weight of the polyethylene in the crucible after being completely incinerated was measured. Residual silica wt% was evaluated by weight / separator weight. (12) Heat resistance The rate at which the film was deformed when the operation of welding the separator to the polyethylene frame by ultrasonic welding was performed 20 times.

【0021】[0021]

【実施例1】メタロセン触媒を用いて以下の特性を持つ
ポリエチレンを重合した。 MI=0.01g/10min、Mw/Mn=4.1 このポリエチレン23wt%と微粉シリカ20wt%と
フタル酸ビス(2ーエチルヘキシル)(DOP)57w
t%をスーパーミキサーで混合した。この混合物を30
mmφ二軸押出機に450mm幅のTダイスを取り付
け、Tダイス吐出樹脂温度220℃にて成形押出した。
この際、寸法安定性を持たせるため、ギヤーポンプを介
してギヤーポンプ前圧力を一定にして溶融押出した。T
ダイスから押し出した樹脂を140℃に温調されたカレ
ンダーロールにて圧延成形して膜厚0.65mmのシー
ト状に成形した。
Example 1 Polyethylene having the following properties was polymerized using a metallocene catalyst. MI = 0.01 g / 10 min, Mw / Mn = 4.1 23 wt% of this polyethylene, 20 wt% of finely divided silica, and bis (2-ethylhexyl) phthalate (DOP) 57 w
t% was mixed with a super mixer. 30
A T-die having a width of 450 mm was attached to a mmφ twin-screw extruder, and the T-die was extruded at a resin temperature of 220 ° C.
At this time, in order to provide dimensional stability, melt extrusion was performed with a constant pressure before the gear pump via a gear pump. T
The resin extruded from the die was roll-formed with a calender roll controlled at 140 ° C. to form a sheet having a thickness of 0.65 mm.

【0022】成形されたシートを塩化メチレン中に1時
間浸漬して、フタル酸ビス(2ーエチルヘキシル)(D
OP)を抽出した後、乾燥させた。こうして得られたセ
パレータの特性を表1に示す。
The formed sheet is immersed in methylene chloride for 1 hour to prepare bis (2-ethylhexyl) phthalate (D
OP) was extracted and dried. Table 1 shows the characteristics of the separator thus obtained.

【0023】[0023]

【実施例2】メタロセン触媒を用いて以下の特性を持つ
ポリエチレンを重合した。 MI=0.09g/10min、Mw/Mn=5.4 上記のポリエチレンを用いた以外は実施例1と同様にし
てセパレータを得た。得られたセパレータの特性を表1
に示す。
Example 2 Polyethylene having the following properties was polymerized using a metallocene catalyst. MI = 0.09 g / 10 min, Mw / Mn = 5.4 A separator was obtained in the same manner as in Example 1 except that the above polyethylene was used. Table 1 shows the characteristics of the obtained separator.
Shown in

【0024】[0024]

【比較例1】チグラーナッタ触媒を用いて以下の特性を
持つポリエチレンを重合した。 MI=0.23g/10min(5kg)、Mw/Mn
=9 上記のポリエチレンを用いた以外は実施例1と同様にし
てセパレータを得た。得られたセパレータの特性を表1
に示す。
Comparative Example 1 Polyethylene having the following characteristics was polymerized using a Ziglana catalyst. MI = 0.23 g / 10 min (5 kg), Mw / Mn
= 9 A separator was obtained in the same manner as in Example 1 except that the above polyethylene was used. Table 1 shows the characteristics of the obtained separator.
Shown in

【0025】[0025]

【比較例2】実施例1のポリエチレン28wt%とフタ
ル酸ビス(2ーエチルヘキシル)(DOP)52wt
%、微粉シリカ20wt%をスーパーミキサーで混合し
た。この混合物を30mmφ二軸押出機に450mm幅
のTダイスを取り付け、Tダイス吐出樹脂温度220℃
にて成形押出した。この後は実施例1と同様にしてセパ
レータを得た。得られたセパレータの特性を表1に示
す。
Comparative Example 2 28% by weight of polyethylene of Example 1 and 52% by weight of bis (2-ethylhexyl) phthalate (DOP)
% And 20 wt% of finely divided silica were mixed with a super mixer. This mixture was attached to a 30 mmφ twin screw extruder with a T die having a width of 450 mm, and the resin temperature of the T die discharged was 220 ° C.
And extruded. Thereafter, a separator was obtained in the same manner as in Example 1. Table 1 shows the properties of the obtained separator.

【0026】[0026]

【比較例3】微粉シリカ23wt%とフタル酸ビス(2
ーエチルヘキシル)(DOP)54wt%をスーパーミ
キサーで混合し、これに粘度平均分子量3000000
の超高分子量ポリエチレン9wt%、粘度平均分子量3
00000の高分子量ポリエチレン14wt%を添加、
再度スーパーミキサーで混合した。該混合物を用いた以
外は実施例1と同様にしてセパレータを得た。得られた
セパレータの特性を表1に示す。
[Comparative Example 3] 23 wt% of finely divided silica and bis (2
-Ethylhexyl) (DOP) 54 wt% was mixed with a super mixer, and the viscosity average molecular weight was 3,000,000.
9 wt% ultra high molecular weight polyethylene, viscosity average molecular weight 3
00000 high molecular weight polyethylene 14wt%,
The mixture was mixed again with a super mixer. A separator was obtained in the same manner as in Example 1 except that this mixture was used. Table 1 shows the properties of the obtained separator.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明によれば、耐熱性、電気特性に優
れた亜鉛ハロゲン電池用セパレータが得られる。
According to the present invention, a zinc-halogen battery separator excellent in heat resistance and electrical properties can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粘度平均分子量5万以上35万未満であ
るポリエチレンと微粉シリカからなるセパレータであっ
て、ポリエチレンの分子量分布(Mw/Mn)が8以
下、該セパレータの切断面を含まない膜表面のポリエチ
レン部分率が30%以上75%以下であることを特徴と
する亜鉛ハロゲン電池用セパレータ。
1. A separator comprising polyethylene having a viscosity average molecular weight of 50,000 or more and less than 350,000 and finely divided silica, wherein the polyethylene has a molecular weight distribution (Mw / Mn) of 8 or less and does not include a cut surface of the separator. Wherein the percentage of polyethylene is 30% or more and 75% or less.
JP2000238084A 2000-08-07 2000-08-07 Zinc halogen battery separator Expired - Fee Related JP4877881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000238084A JP4877881B2 (en) 2000-08-07 2000-08-07 Zinc halogen battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000238084A JP4877881B2 (en) 2000-08-07 2000-08-07 Zinc halogen battery separator

Publications (3)

Publication Number Publication Date
JP2002050336A true JP2002050336A (en) 2002-02-15
JP2002050336A5 JP2002050336A5 (en) 2007-09-20
JP4877881B2 JP4877881B2 (en) 2012-02-15

Family

ID=18729841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000238084A Expired - Fee Related JP4877881B2 (en) 2000-08-07 2000-08-07 Zinc halogen battery separator

Country Status (1)

Country Link
JP (1) JP4877881B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210686A (en) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery and its manufacturing method
JP4837224B2 (en) * 2000-05-22 2011-12-14 旭化成イーマテリアルズ株式会社 Zinc bromine secondary battery separator and method for producing the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270988A (en) * 1975-06-18 1977-06-13 Asahi Chem Ind Co Ltd Porous membrane
JPS5832171B2 (en) * 1976-06-24 1983-07-11 旭化成株式会社 Method for manufacturing porous membrane
JPS5937292B2 (en) * 1977-10-03 1984-09-08 旭化成株式会社 Polyolefin resin porous membrane, alkaline storage battery separator, and microfilter
JPH01157071A (en) * 1987-12-11 1989-06-20 Toyota Motor Corp Separator for zinc-bromine battery
JPH03149748A (en) * 1989-11-02 1991-06-26 Nippon Muki Kk Manufacture of ribbed separator and manufacturing device thereof
JPH05331306A (en) * 1992-03-30 1993-12-14 Nitto Denko Corp Porous film, production thereof, and use thereof
JPH07195487A (en) * 1993-12-28 1995-08-01 Johoku Seikosho:Kk Resin film molder
JPH0834873A (en) * 1994-05-18 1996-02-06 Mitsui Petrochem Ind Ltd Biaxially oriented microporous polyethylene film, production and use thereof
JPH09231957A (en) * 1996-02-21 1997-09-05 Asahi Chem Ind Co Ltd Separator for zinc bromine secondary battery
JPH09245761A (en) * 1996-03-06 1997-09-19 Sumitomo Electric Ind Ltd Battery separator and manufacture thereof
JPH10296839A (en) * 1997-04-23 1998-11-10 Tonen Chem Corp Manufacture of polyolefin porous film
JPH11302436A (en) * 1998-04-20 1999-11-02 Mitsui Chem Inc Porous film and separator film for battery
WO2001091207A1 (en) * 2000-05-22 2001-11-29 Asahi Kasei Kabushiki Kaisha Separator for zinc bromine secondary cell and method for its preparation

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270988A (en) * 1975-06-18 1977-06-13 Asahi Chem Ind Co Ltd Porous membrane
JPS5832171B2 (en) * 1976-06-24 1983-07-11 旭化成株式会社 Method for manufacturing porous membrane
JPS5937292B2 (en) * 1977-10-03 1984-09-08 旭化成株式会社 Polyolefin resin porous membrane, alkaline storage battery separator, and microfilter
JPH01157071A (en) * 1987-12-11 1989-06-20 Toyota Motor Corp Separator for zinc-bromine battery
JPH03149748A (en) * 1989-11-02 1991-06-26 Nippon Muki Kk Manufacture of ribbed separator and manufacturing device thereof
JPH05331306A (en) * 1992-03-30 1993-12-14 Nitto Denko Corp Porous film, production thereof, and use thereof
JPH07195487A (en) * 1993-12-28 1995-08-01 Johoku Seikosho:Kk Resin film molder
JPH0834873A (en) * 1994-05-18 1996-02-06 Mitsui Petrochem Ind Ltd Biaxially oriented microporous polyethylene film, production and use thereof
JPH09231957A (en) * 1996-02-21 1997-09-05 Asahi Chem Ind Co Ltd Separator for zinc bromine secondary battery
JPH09245761A (en) * 1996-03-06 1997-09-19 Sumitomo Electric Ind Ltd Battery separator and manufacture thereof
JPH10296839A (en) * 1997-04-23 1998-11-10 Tonen Chem Corp Manufacture of polyolefin porous film
JPH11302436A (en) * 1998-04-20 1999-11-02 Mitsui Chem Inc Porous film and separator film for battery
WO2001091207A1 (en) * 2000-05-22 2001-11-29 Asahi Kasei Kabushiki Kaisha Separator for zinc bromine secondary cell and method for its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837224B2 (en) * 2000-05-22 2011-12-14 旭化成イーマテリアルズ株式会社 Zinc bromine secondary battery separator and method for producing the same
JP2008210686A (en) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JP4877881B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US5198162A (en) Microporous films
JP5140896B2 (en) Porous film and battery separator using the same
TWI393285B (en) Polyolefin microporous membrane and preparation method thereof, and battery separator and battery
US8003732B2 (en) Gradient reinforced proton exchange membrane
US8030405B2 (en) Blended PEM's with elastomers for improved mechanical durability
MXPA06002795A (en) Microporous pvdf films and method of manufacturing.
JPH05234578A (en) Separator for battery using organic electrolyte and its manufacture
KR20160102187A (en) ION-EXCHANGE MEMBRANE MADE OF A BIAXIALLY STRETCHED β-POROUS FILM
CN102187507A (en) Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and solid polymer fuel cell comprising same
JP4837224B2 (en) Zinc bromine secondary battery separator and method for producing the same
JPWO2002062896A1 (en) Proton conductive polymer membrane and method for producing the same
KR20080029428A (en) Method of manufacturing polyolefin microporous films
JP4979252B2 (en) Polyolefin microporous membrane
JP2002105235A (en) Polyolefin microporous film and its manufacturing method
JP2002050336A (en) Separator for zinc halogen battery
JP2004204141A (en) Porous film
AU2001260638B2 (en) Separator for metal halogen cell
JP2003183432A (en) Polyolefin microporous membrane
US7129004B2 (en) Separator for zinc/bromine secondary batteries and production process thereof
WO2018164055A1 (en) Polyolefin microporous membrane
JPH04506224A (en) microporous membrane
JPH09231957A (en) Separator for zinc bromine secondary battery
JPS58128652A (en) Manufacture of separator for alkaline battery
JP2003192822A (en) Polyolefin microporous membrane
CN101659776A (en) Polyelectrolyte film of blend including pfsa and sulfonated pfcb polymers

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

R150 Certificate of patent or registration of utility model

Ref document number: 4877881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees