JPH09231957A - Separator for zinc bromine secondary battery - Google Patents

Separator for zinc bromine secondary battery

Info

Publication number
JPH09231957A
JPH09231957A JP8033259A JP3325996A JPH09231957A JP H09231957 A JPH09231957 A JP H09231957A JP 8033259 A JP8033259 A JP 8033259A JP 3325996 A JP3325996 A JP 3325996A JP H09231957 A JPH09231957 A JP H09231957A
Authority
JP
Japan
Prior art keywords
molecular weight
weight
separator
polyethylene
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8033259A
Other languages
Japanese (ja)
Other versions
JP3948762B2 (en
Inventor
Hiroshi Sogo
博 十河
Katsuhiko Hamanaka
克彦 濱中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP03325996A priority Critical patent/JP3948762B2/en
Publication of JPH09231957A publication Critical patent/JPH09231957A/en
Application granted granted Critical
Publication of JP3948762B2 publication Critical patent/JP3948762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve a heat resistant characteristic and stress crack resistance by a method wherein composing material and a tensile breakage strength are restricted. SOLUTION: Material quality of this separator contains super-high molecular weight polyethylene of 5wt.% or more with a viscosity mean molecular weight of 500000 or more, polyethylene with an entire viscosity mean molecular weight of 350000 or more and some fine powder silica. Organic liquid is added to it and they are uniformly heated and kneaded, thereafter a sheet-like film is made by an infection molding process, and the organic liquid state is extracted to attain a separator. This separator has a tensile breakage strength in its longitudinal direction of 30kg/cm<2> or more and a value in which a strength in a longitudinal direction is divided by a strength in a lateral direction is more than 0.4 and less than 3. Then, since it has a superior chemical resistant characteristic, a high permeability performance and a uniform three-dimensional porous structure having many fine holes, it has a superior stress crack resistant characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力貯蔵システ
ム、電気自動車用などの用途として開発が進められてい
る亜鉛臭素2次電池で使用するセパレーターにおいて、
優れた機械的特性をもち、厚さの薄い、耐熱性、耐スト
レスクラック性にすぐれ、かつ優れた耐薬品性、優れた
透過性能を備え、かつ微細な孔からなる均質な三次元の
多孔構造を有する、亜鉛臭素2次電池用セパレーターに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator used in a zinc bromine secondary battery, which is being developed for use in electric power storage systems, electric vehicles, etc.
Homogeneous three-dimensional porous structure with excellent mechanical properties, thin thickness, excellent heat resistance and stress crack resistance, excellent chemical resistance, excellent permeation performance, and fine pores. And a separator for a zinc-bromine secondary battery having

【0002】[0002]

【従来の技術】亜鉛臭素2次電池用セパレーターには、
クーロン効率のよいイオン交換膜、耐薬品性に優れる四
フッ化エチレン多孔膜、ポリオレフィン多孔膜が用いら
れているが、これらの中で安価で耐薬品性にすぐれるも
のとして特公平5―27233号公報に見られる様なポ
リエチレンと微粉シリカからなるセパレーターがある。
しかし、特公平5―27233号公報に記載されている
セパレーターは、特開昭62―17945号公報に記載
されているように亜鉛臭素2次電池を作る際、セパレー
ターに電極枠を射出成形により取り付ける工程がある。
この時、加熱によりセパレーターにひび割れが発生する
という耐熱性に問題があった。またこのセパレーターは
亜鉛臭素2次電池で長期間使用すると、膜にひび割れが
発生してしまうという耐ストレスクラック性に問題点が
あった。
2. Description of the Related Art Zinc-bromine secondary battery separators include
Ion-exchange membranes with good Coulomb efficiency, porous tetrafluoroethylene membranes and polyolefin porous membranes with excellent chemical resistance are used, but among these, it is cheap and has excellent chemical resistance. There is a separator made of polyethylene and finely divided silica as seen in the publication.
However, the separator described in Japanese Patent Publication No. 27233/1993 is attached to the separator by injection molding when a zinc bromine secondary battery is manufactured as described in Japanese Patent Laid-Open No. 62-17945. There is a process.
At this time, there is a problem in heat resistance that the separator is cracked by heating. Further, this separator has a problem in stress crack resistance that cracks occur in the film after long-term use in a zinc bromine secondary battery.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、上記
のような問題点を解決し、優れた耐薬品性、優れた透過
性能を備え、かつ、微細な孔からなる均質な三次元の多
孔構造を有し、耐熱性、耐ストレスクラック性にすぐれ
た亜鉛臭素2電池次用セパレーターを提供することであ
る。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems, to provide excellent chemical resistance, excellent permeation performance, and to obtain a uniform three-dimensional structure composed of fine pores. It is intended to provide a zinc bromine secondary battery secondary separator having a porous structure and excellent in heat resistance and stress crack resistance.

【0004】[0004]

【課題を解決するための手段】本発明者らは、これらの
課題を解決するために鋭意研究した結果、粘度平均分子
量500000以上の超高分子量ポリエチレンを5重量
%以上含み且つ全体の粘度平均分子量が350000以
上のポリエチレンと、微粉シリカを使用する事により、
耐熱性、耐ストレスクラック性にも優れた、亜鉛臭素2
次電池用セパレーターが得られることを見出した。
Means for Solving the Problems As a result of intensive studies to solve these problems, the present inventors have found that the total viscosity average molecular weight is 5% by weight or more of ultra high molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more. By using polyethylene of 350,000 or more and fine powder silica,
Zinc bromine 2 with excellent heat resistance and stress crack resistance
It has been found that a secondary battery separator can be obtained.

【0005】より具体的に述べれば、粘度平均分子量5
00000以上の超高分子量ポリエチレンを5重量%以
上含み且つ全体の粘度平均分子量が350000以上の
ポリエチレンと、微粉シリカ、有機液状体を均一加熱混
練後、押出成形しシート状の膜をつくり有機液状体を抽
出することにより、気孔率が30〜70%、最大孔径が
0.05μm〜1μm、厚さが0.1〜2mmである亜
鉛臭素2次電池用セパレーターが得られ、このセパレー
ターは、縦方向の引っ張り破断強さが30kg/cm2
以上で、縦方向の引っ張り破断強さを横方向の引っ張り
破断強さで除した値が0.4以上、3以下であり、機械
的特性に優れ、耐熱性、耐ストレスクラック性に優れた
ものである。
More specifically, the viscosity average molecular weight is 5
Polyethylene containing 5,000,000 or more by weight of ultra high molecular weight polyethylene of 00000 or more and having a total viscosity average molecular weight of 350,000 or more, finely divided silica and an organic liquid are uniformly heated and kneaded, and then extrusion molded to form a sheet-like film. To obtain a zinc-bromine secondary battery separator having a porosity of 30 to 70%, a maximum pore diameter of 0.05 μm to 1 μm, and a thickness of 0.1 to 2 mm. Tensile rupture strength of 30kg / cm 2
As described above, the value obtained by dividing the tensile breaking strength in the longitudinal direction by the tensile breaking strength in the lateral direction is 0.4 or more and 3 or less, which is excellent in mechanical properties, heat resistance, and stress crack resistance. Is.

【0006】即ち、本発明は、粘度平均分子量5000
00以上の超高分子量ポリエチレンを5重量%以上含み
且つ全体の粘度平均分子量が350000以上のポリエ
チレンと微粉シリカからなり、縦方向の引っ張り破断強
さが30kg/cm2 以上で、縦方向の引っ張り破断強
さを横方向の引っ張り破断強さで除した値が0.4以
上、3以下であることを特徴とする亜鉛臭素2次電池用
セパレーターに関するものである。
That is, the present invention has a viscosity average molecular weight of 5,000.
It is composed of 5 wt% or more of ultra high molecular weight polyethylene of 00 or more and a total viscosity average molecular weight of 350,000 or more and finely divided silica, and has a longitudinal tensile breaking strength of 30 kg / cm 2 or more and a longitudinal tensile breaking. The present invention relates to a separator for a zinc bromine secondary battery, wherein a value obtained by dividing the strength by the tensile strength at break in the lateral direction is 0.4 or more and 3 or less.

【0007】本発明に用いられるポリエチレンは、粘度
平均分子量500000以上の超高分子量ポリエチレン
を5重量%以上含み、且つ全体の粘度平均分子量が35
0000以上のポリエチレンからなるものである。ポリ
エチレンとしては、二種類以上のポリエチレンを組み合
わせて用いることが出来るが、全体としての粘度平均分
子量が350000以上であることが必要である。超高
分子量ポリエチレンの割合が5重量%未満では、全体の
粘度平均分子量が350000以上であっても好ましく
ない。また、粘度平均分子量350000未満では、耐
熱性が悪くひび割れが発生する。また機械的特性が弱い
ため耐ストレスクラック性が悪く、亜鉛臭素2次電池用
セパレーターとして使用中にひび割れが発生する。粘度
平均分子量350000以上であっても縦方向の引っ張
り破断強さが30kg/cm2 未満では、機械的特性が
弱いため耐ストレスクラック性が悪く、亜鉛臭素2次電
池用セパレーターとして使用中にひび割れが発生する。
好ましくは40kg/cm 2 以上である。
The polyethylene used in the present invention has a viscosity
Ultra high molecular weight polyethylene with an average molecular weight of 500000 or more
5% by weight or more, and the total viscosity average molecular weight is 35
It is made of polyethylene of 0000 or more. Poly
As ethylene, combine two or more types of polyethylene.
Can be used together, but the average viscosity as a whole
It is necessary that the offspring amount is 350,000 or more. Super high
If the proportion of molecular weight polyethylene is less than 5% by weight,
It is preferable that the viscosity average molecular weight is 350,000 or more.
Absent. If the viscosity average molecular weight is less than 350,000,
The heat resistance is poor and cracks occur. In addition, mechanical properties are weak
Therefore, it has poor resistance to stress cracking and is for zinc-bromine secondary batteries.
Cracks occur during use as a separator. viscosity
Longitudinal tension even if the average molecular weight is 350,000 or more
Breaking strength is 30 kg / cmTwoBelow the mechanical properties
Since it is weak, stress crack resistance is poor, and zinc bromine secondary
Cracks occur during use as a pond separator.
Preferably 40 kg / cm TwoThat is all.

【0008】縦方向の引っ張り破断強さを横方向の引っ
張り破断強さで除した値が0.4未満の場合、あるいは
3を越えると、亜鉛臭素2次電池用セパレーターとして
使用時の収縮が大きくひび割れが発生してしまう。好ま
しくは0.5以上、2.5以下である。膜の厚さは0.
1〜2mmが好ましい。0.1mm未満の膜は薄いため
ひび割れが発生し易くなり、2mmを越えると厚いため
抵抗が大きくなり、亜鉛臭素2次電池用セパレーターと
して不十分となる傾向がある。
If the value obtained by dividing the tensile rupture strength in the longitudinal direction by the tensile rupture strength in the lateral direction is less than 0.4 or exceeds 3, the shrinkage during use as a separator for a zinc bromine secondary battery is large. It will crack. It is preferably 0.5 or more and 2.5 or less. The film thickness is 0.
1-2 mm is preferable. Since a film of less than 0.1 mm is thin, cracking is likely to occur, and when it exceeds 2 mm, it is thick and its resistance increases, which tends to be insufficient as a separator for a zinc-bromine secondary battery.

【0009】微粉シリカとしては、親水性の湿式シリ
カ、乾式シリカやこれらの微粉シリカを表面処理をした
親油性シリカなどが挙げられる。親水性の微粉シリカを
使用した方が、電解液との濡れが良く、亜鉛臭素2次電
池用セパレーターとして好ましい。本発明のセパレータ
ーの製造方法を詳しく説明すると、粘度平均分子量50
0000以上の超高分子量ポリエチレンを5重量%以上
含み且つ全体の度平均分子量350000以上のポリエ
チレン、微粉シリカ、有機液状体の合計重量に対して、
ポリエチレンの重量を微粉シリカの重量で除した比が
0.5〜4になるように、ポリエチレン8〜60重量
%、好ましくは10〜50重量%、微粉シリカ8〜50
重量%、好ましくは、10〜35重量%、有機液状体3
0〜75重量%、好ましくは40〜65重量%の3成分
を混合する。
Examples of the finely divided silica include hydrophilic wet silica, dry silica, and lipophilic silica obtained by surface-treating these finely divided silica. It is preferable to use hydrophilic fine silica powder as a separator for a zinc bromine secondary battery because the wettability with an electrolytic solution is better. The method for producing the separator of the present invention will be described in detail.
Based on the total weight of polyethylene, fine silica powder, and organic liquid containing 5% by weight or more of ultrahigh-molecular-weight polyethylene of 0000 or more and having a degree-average molecular weight of 350,000 or more,
Polyethylene 8-60% by weight, preferably 10-50% by weight, finely divided silica 8-50 so that the ratio of the weight of polyethylene divided by the weight of finely divided silica is 0.5-4.
% By weight, preferably 10-35% by weight, organic liquid 3
The three components of 0 to 75% by weight, preferably 40 to 65% by weight, are mixed.

【0010】この時、ポリエチレンの重量を微粉シリカ
の重量で除した比が0.5未満では、ポリエチレンの割
合が少ないため機械的特性が弱い膜となり、また、ポリ
エチレンの重量を微粉シリカの重量で除した比が4を越
えると、微粉シリカが少ないため亜鉛臭素2次電池用セ
パレーターとして用いた時の電解液の濡れ性が不十分と
なる傾向がある。また、ポリエチレンが8重量%未満で
は、ポリエチレンが少ないため機械的特性が弱く、成形
性も低下し、また、60重量%を越えると、気孔率が低
く透過性能が不十分となる傾向がある。微粉シリカの量
が8重量%未満では、微粉シリカが少なく電気抵抗の高
い膜となり、また、50重量%を越えると、押出成形時
の流動性が低下し、かつ、得られる成形品は脆くなる傾
向がある。
At this time, if the ratio of the weight of polyethylene divided by the weight of finely divided silica is less than 0.5, the proportion of polyethylene is small, resulting in a film having poor mechanical properties. Further, the weight of polyethylene is equal to the weight of finely divided silica. If the removed ratio exceeds 4, since the amount of finely divided silica is small, the wettability of the electrolytic solution tends to be insufficient when used as a separator for a zinc bromine secondary battery. On the other hand, if the polyethylene content is less than 8% by weight, the mechanical properties are poor due to the small amount of polyethylene and the moldability is lowered, and if it exceeds 60% by weight, the porosity tends to be low and the permeation performance tends to be insufficient. If the amount of finely divided silica is less than 8% by weight, the amount of finely divided silica is small and the film has a high electric resistance, and if it exceeds 50% by weight, the fluidity during extrusion molding is reduced and the obtained molded product becomes brittle. Tend.

【0011】有機液状体としては、例えば、フタル酸ジ
エチル、フタル酸ジブチル、フタル酸ジオクチルなどの
フタル酸エステル、セバシン酸ジオクチルなどのセバシ
ン酸エステル、アジピン酸ジオクチルなどのアジピン酸
エステル、トリメリット酸トリオクチルなどのトリメリ
ット酸エステル、リン酸トリブチル、リン酸オクチルジ
フェニールなどのリン酸エステル、流動パラフィン等や
これらの有機液状体の混合物が挙げられる。有機液状体
の量は、30重量%未満では、気孔形成に対する寄与率
が低下し、高い気孔率、高い透過性能を持つセパレータ
ー(微多孔膜)が得られない。また、75重量%を越え
ると、成形が難しく、機械的特性も弱い物となる。
Examples of the organic liquid include phthalates such as diethyl phthalate, dibutyl phthalate and dioctyl phthalate, sebacates such as dioctyl sebacate, adipates such as dioctyl adipate, and trioctyl trimellitate. Examples thereof include trimellitate ester, tributyl phosphate, phosphate ester such as octyl diphenyl phosphate, liquid paraffin, and a mixture of these organic liquids. When the amount of the organic liquid is less than 30% by weight, the contribution to the formation of pores is reduced, and a separator (microporous membrane) having high porosity and high permeability cannot be obtained. On the other hand, if it exceeds 75% by weight, molding becomes difficult and mechanical properties become weak.

【0012】本発明における構成は主に、粘度平均分子
量500000以上の超高分子量ポリエチレンを5重量
%以上以上含み且つ全体の粘度平均分子量350000
以上のポリエチレン、微粉シリカ、有機液状体の3成分
より構成される。しかし、他に本発明の効果を大きく阻
害しない範囲で、滑剤、酸化防止剤、紫外線吸収剤、可
塑剤、成形助剤などを必要に応じて添加することは何ら
差し支えない。
The constitution of the present invention mainly comprises 5% by weight or more of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more and the entire viscosity average molecular weight of 350,000.
It is composed of the above three components of polyethylene, finely divided silica, and an organic liquid material. However, in addition to the above, a lubricant, an antioxidant, an ultraviolet absorber, a plasticizer, a molding aid and the like may be added as necessary within a range that does not significantly impair the effects of the present invention.

【0013】これら3成分の混合には、スーパーミキサ
ー、リボンブレンダー、V−ブレンダーなどの混合機を
用いた通常の方法で充分である。この混合物は、押出
機、バンバリーミキサー、二本ロール、ニーダーなどの
溶融混練機により混練される。本発明に用いられる溶融
成形方法としては、Tダイ法を用いた押出成形、また混
合物を直接押出機、ニーダールーダーなどの混練・押出
機能を有する装置で成形することも可能である。
For mixing these three components, a usual method using a mixer such as a super mixer, ribbon blender, V-blender, etc. is sufficient. This mixture is kneaded by a melt kneader such as an extruder, Banbury mixer, two rolls, kneader. As the melt-molding method used in the present invention, extrusion molding using the T-die method, or the mixture can be molded by a device having a kneading / extruding function such as a direct extruder or a kneader-ruder.

【0014】次いで、これらの方法により得られた膜中
の有機液状体を溶剤によって抽出を行う。抽出に用いる
溶剤としては、有機液状体を溶解し得るものであり、ポ
リエチレンを実質的に溶解するものであってはならな
い。抽出は、回分法、向流多段法などの膜状物の一般的
な抽出法により容易に行われる。抽出に用いられる溶剤
としては、メタノール、アセトン、メチルエチルケトン
などが挙げられるが、特に塩化メチレン等のハロゲン系
炭化水素が好ましい。
Next, the organic liquid material in the film obtained by these methods is extracted with a solvent. The solvent used for the extraction should be one that can dissolve the organic liquid, and should not substantially dissolve polyethylene. The extraction is easily performed by a general extraction method of the film-like material such as a batch method and a countercurrent multi-stage method. Examples of the solvent used for extraction include methanol, acetone, methyl ethyl ketone, and the like, with halogen hydrocarbons such as methylene chloride being particularly preferable.

【0015】有機液状体が抽出されることにより、本発
明の亜鉛臭素2次電池用セパレーターが得られる。な
お、本発明のセパレーター(微多孔膜)中には、有機液
状体が膜の性能を損なわない範囲で残存することが許さ
れ、その残存量は3重量%以下、好ましくは2重量%以
下である。
By extracting the organic liquid, the zinc bromine secondary battery separator of the present invention is obtained. In the separator (microporous membrane) of the present invention, the organic liquid is allowed to remain within a range not impairing the performance of the membrane, and the residual amount is 3% by weight or less, preferably 2% by weight or less. is there.

【0016】[0016]

【発明の実施の形態】以下、実施例、比較例により本発
明を更に詳しく説明するが、本発明はこれらの実施例に
限定されるものではない。なお,実施例における試験方
法は次の通りである。 1)膜厚さ:マイクロメータにて読み取る。 2)最大孔径:ASTM F316−86に準拠。エタ
ノール中でのバブルポイントより算出。 3)気孔率:下記の式より算出。 気孔率={1−〔0.1×X/(Y×Z)〕}×100 X:膜の重さ(g/dm2 ) Y:膜の比重(ポリエチレンの比重0.95、微粉シリ
カの比重1.9)を用いて組成比から計算。 Z:膜の厚さ(mm) 4)機械的特性:引っ張り破断強さ(JISK7113
による) 5)超高分子量ポリエチレン、ポリエチレンの粘度平均
分子量(MV ):溶剤(デカリン)を用い、測定温度1
35℃で極限粘度(η)を測定し、下記の式より算出。 (η)=6.2×10-4V 0.7 (Chiangの式) 6)耐熱性:セパレーターに射出成形により枠を取り付
けた際、膜にひび割れをおこしたセパレーター枚数の割
合。 7)耐ストレスクラック性:亜鉛臭素2次電池セパレー
ターとして使用して取り出した後、膜にひび割れが発生
していたセパレーター枚数の割合。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The test method in the examples is as follows. 1) Film thickness: Read with a micrometer. 2) Maximum pore size: According to ASTM F316-86. Calculated from the bubble point in ethanol. 3) Porosity: Calculated from the following formula. Porosity = {1- [0.1 × X / (Y × Z)]} × 100 X: membrane weight (g / dm 2 ) Y: membrane specific gravity (polyethylene specific gravity 0.95, fine silica powder) Calculated from composition ratio using specific gravity 1.9). Z: Film thickness (mm) 4) Mechanical properties: Tensile rupture strength (JISK7113)
According to) 5) ultra high molecular weight polyethylene, the viscosity-average molecular weight of the polyethylene (M V): with a solvent (decalin), the measured temperature 1
Intrinsic viscosity (η) was measured at 35 ° C and calculated from the following formula. (Η) = 6.2 × 10 -4 M V 0.7 (Chiang formula) 6) Heat resistance: when fitted with a frame by injection molding to the separator, the ratio of the separator sheets which caused the cracks to the membrane. 7) Stress crack resistance: Percentage of the number of separators in which a film was cracked after being taken out as a zinc bromine secondary battery separator and taken out.

【0017】[0017]

【実施例1】微粉シリカ20重量%とジオクチルフタレ
ート50重量%をスーパーミキサーで混合し、これに粘
度平均分子量3000000の超高分子量ポリエチレン
2重量%、粘度平均分子量300000の高分子量ポリ
エチレン28重量%を添加、再度スーパーミキサーで混
合した。該混合物を30m/m二軸押出機に450mm
幅のTダイを取り付けたフィルム製造機で膜厚さ1.0
mmの膜状に成形した。成形された膜は,塩化メチレン
中で20分間浸漬しジオクチルフタレートを抽出した後
乾燥した。得られた膜の特性を表1に示す。
Example 1 20% by weight of finely divided silica and 50% by weight of dioctyl phthalate were mixed with a supermixer, and 2% by weight of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 3,000,000 and 28% by weight of high molecular weight polyethylene having a viscosity average molecular weight of 300,000 were mixed therein. Add and mix again with a super mixer. 450 mm of the mixture into a 30 m / m twin-screw extruder
Film thickness is 1.0 with a film manufacturing machine equipped with a width T-die
It was formed into a film having a size of mm. The formed film was immersed in methylene chloride for 20 minutes to extract dioctyl phthalate, and then dried. Table 1 shows the properties of the obtained film.

【0018】[0018]

【実施例2】微粉シリカ23重量%とジオクチルフタレ
ート54重量%をスーパーミキサーで混合し、これに粘
度平均分子量3000000の超高分子量ポリエチレン
9重量%、粘度平均分子量300000の高分子量ポリ
エチレン14重量%を用いた以外は、実施例1と同様に
行い厚さ1.2mmの膜状に成形した。成形された膜
を、塩化メチレン中で20分間浸漬しジオクチルフタレ
ートを抽出した後乾燥した。得られた膜の特性を表1に
示す。
Example 2 23% by weight of finely divided silica and 54% by weight of dioctyl phthalate were mixed in a supermixer, and 9% by weight of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 3,000,000 and 14% by weight of high molecular weight polyethylene having a viscosity average molecular weight of 300,000 were mixed therein. Except that it was used, the same procedure as in Example 1 was carried out to form a film having a thickness of 1.2 mm. The formed film was immersed in methylene chloride for 20 minutes to extract dioctyl phthalate, and then dried. Table 1 shows the properties of the obtained film.

【0019】[0019]

【実施例3】微粉シリカ23重量%とジオクチルフタレ
ート54重量%をスーパーミキサーで混合し、これに粘
度平均分子量3000000の超高分子量ポリエチレン
9重量%、粘度平均分子量100000のポリエチレン
14重量%を用いた以外は、実施例1と同様に行い厚さ
1.2mmの膜状に成形した。成形された膜を、塩化メ
チレン中で20分間浸漬しジオクチルフタレートを抽出
した後乾燥した。得られた膜の特性を表1に示す。
Example 3 23% by weight of finely divided silica and 54% by weight of dioctyl phthalate were mixed in a supermixer, and 9% by weight of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 3,000,000 and 14% by weight of polyethylene having a viscosity average molecular weight of 100,000 were used. Except for the above, the same procedure as in Example 1 was performed to form a film having a thickness of 1.2 mm. The formed film was immersed in methylene chloride for 20 minutes to extract dioctyl phthalate, and then dried. Table 1 shows the properties of the obtained film.

【0020】[0020]

【実施例4】微粉シリカ23重量%とジオクチルフタレ
ート54重量%をスーパーミキサーで混合し、これに粘
度平均分子量600000の超高分子量ポリエチレン9
重量%、粘度平均分子量300000のポリエチレン1
4重量%を用いた以外は、実施例1と同様に行い厚さ
1.5mmの膜状に成形した。成形された膜を、塩化メ
チレン中で20分間浸漬しジオクチルフタレートを抽出
した後乾燥した。得られた膜の特性を表1に示す。
Example 4 23% by weight of finely divided silica and 54% by weight of dioctyl phthalate were mixed in a supermixer, and an ultrahigh molecular weight polyethylene 9 having a viscosity average molecular weight of 600,000 was mixed therein.
Polyethylene 1 with weight% and viscosity average molecular weight of 300,000
A film having a thickness of 1.5 mm was formed in the same manner as in Example 1 except that 4% by weight was used. The formed film was immersed in methylene chloride for 20 minutes to extract dioctyl phthalate, and then dried. Table 1 shows the properties of the obtained film.

【0021】[0021]

【比較例1】微粉シリカ23重量%とジオクチルフタレ
ート54重量%をスーパーミキサーで混合し、これにポ
リエチレンとして、粘度平均分子量400000のポリ
エチレン23重量%のみを用いた以外は、実施例1と同
様に行い厚さ1.0mmの膜状に成形した。成形された
膜を、塩化メチレン中で20分間浸漬しジオクチルフタ
レートを抽出した後乾燥した。得られた膜の特性を表2
に示す。
Comparative Example 1 23% by weight of finely divided silica and 54% by weight of dioctyl phthalate were mixed with a supermixer, and as the polyethylene, only 23% by weight of polyethylene having a viscosity average molecular weight of 400000 was used, and the same procedure as in Example 1 was performed. It was formed into a film having a thickness of 1.0 mm. The formed film was immersed in methylene chloride for 20 minutes to extract dioctyl phthalate, and then dried. The characteristics of the obtained film are shown in Table 2.
Shown in

【0022】[0022]

【比較例2】微粉シリカ23重量%とジオクチルフタレ
ート54重量%をスーパーミキサーで混合し、これに粘
度平均分子量3000000の超高分子量ポリエチレン
9重量%、粘度平均分子量50000のポリエチレン1
4重量%を用いた以外は、実施例1と同様に行い厚さ
1.2mmの膜状に成形した。成形された膜を、塩化メ
チレン中で20分間浸漬しジオクチルフタレートを抽出
した後乾燥した。得られた膜の特性を表2に示す。
Comparative Example 2 23% by weight of finely divided silica and 54% by weight of dioctyl phthalate were mixed with a supermixer, and 9% by weight of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 3,000,000 and polyethylene 1 having a viscosity average molecular weight of 50,000 were mixed in the mixture.
A film having a thickness of 1.2 mm was formed in the same manner as in Example 1 except that 4% by weight was used. The formed film was immersed in methylene chloride for 20 minutes to extract dioctyl phthalate, and then dried. The characteristics of the obtained film are shown in Table 2.

【0023】[0023]

【比較例3】微粉シリカ23重量%とジオクチルフタレ
ート54重量%をスーパーミキサーで混合し、これに粘
度平均分子量3000000の超高分子量ポリエチレン
1重量%、粘度平均分子量300000のポリエチレン
22重量%を用いた以外は、実施例1と同様に行い厚さ
1.2mmの膜状に成形した。成形された膜を、塩化メ
チレン中で20分間浸漬しジオクチルフタレートを抽出
した後乾燥した。得られた膜の特性を表2に示す。
Comparative Example 3 23% by weight of finely divided silica and 54% by weight of dioctyl phthalate were mixed in a supermixer, and 1% by weight of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 3,000,000 and 22% by weight of polyethylene having a viscosity average molecular weight of 300,000 were used. Except for the above, the same procedure as in Example 1 was performed to form a film having a thickness of 1.2 mm. The formed film was immersed in methylene chloride for 20 minutes to extract dioctyl phthalate, and then dried. The characteristics of the obtained film are shown in Table 2.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明により、耐熱性、耐ストレスクラ
ック性にすぐれ、かつ優れた耐薬品性、優れた透過性能
を備え、かつ微細な孔からなる均質な三次元の多孔構造
を有する亜鉛臭素2次電池用セパレーターが得られる。
According to the present invention, zinc bromine having excellent heat resistance and stress crack resistance, excellent chemical resistance, excellent permeation performance, and a homogeneous three-dimensional porous structure composed of fine pores. A secondary battery separator is obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粘度平均分子量500000以上の超高
分子量ポリエチレンを5重量%以上含み且つ全体の粘度
平均分子量が350000以上のポリエチレンと微粉シ
リカからなり、縦方向の引っ張り破断強さが30kg/
cm2 以上で、縦方向の引っ張り破断強さを横方向の引
っ張り破断強さで除した値が0.4以上、3以下である
ことを特徴とする亜鉛臭素2次電池用セパレーター。
1. A polyethylene comprising 5% by weight or more of ultra-high molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more and having an overall viscosity average molecular weight of 350,000 or more and finely divided silica, and having a longitudinal tensile breaking strength of 30 kg /
A separator for a zinc bromine secondary battery, wherein the value obtained by dividing the tensile breaking strength in the longitudinal direction by the cm 2 or more and the tensile breaking strength in the lateral direction is 0.4 or more and 3 or less.
【請求項2】 微粉シリカが親水性シリカである請求項
1記載の亜鉛臭素2次電池用セパレーター。
2. The separator for a zinc bromine secondary battery according to claim 1, wherein the finely divided silica is hydrophilic silica.
JP03325996A 1996-02-21 1996-02-21 Zinc bromine secondary battery separator Expired - Lifetime JP3948762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03325996A JP3948762B2 (en) 1996-02-21 1996-02-21 Zinc bromine secondary battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03325996A JP3948762B2 (en) 1996-02-21 1996-02-21 Zinc bromine secondary battery separator

Publications (2)

Publication Number Publication Date
JPH09231957A true JPH09231957A (en) 1997-09-05
JP3948762B2 JP3948762B2 (en) 2007-07-25

Family

ID=12381525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03325996A Expired - Lifetime JP3948762B2 (en) 1996-02-21 1996-02-21 Zinc bromine secondary battery separator

Country Status (1)

Country Link
JP (1) JP3948762B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091207A1 (en) * 2000-05-22 2001-11-29 Asahi Kasei Kabushiki Kaisha Separator for zinc bromine secondary cell and method for its preparation
WO2001093351A1 (en) * 2000-05-30 2001-12-06 Asahi Kasei Kabushiki Kaisha Separator for metal halogen cell
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
JP2002025532A (en) * 2000-07-10 2002-01-25 Asahi Kasei Corp Separator for metal halogen battery
JP2002050336A (en) * 2000-08-07 2002-02-15 Asahi Kasei Corp Separator for zinc halogen battery
US6849702B2 (en) 1999-02-26 2005-02-01 Robert W. Callahan Polymer matrix material
US7129004B2 (en) 2000-05-22 2006-10-31 Asahi Kasei Kabushiki Kaisha Separator for zinc/bromine secondary batteries and production process thereof
KR20160063887A (en) * 2014-11-27 2016-06-07 롯데케미칼 주식회사 Resin composition for preparing of porous membrane of zinc-bromine redox flow battery, preparation method for porous membrane of redox flow battery, and porous membrane of zinc-bromine redox flow battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525305A (en) * 1991-07-19 1993-02-02 Tonen Corp Polyethylene porous membrane, its production and battery separator made of the same membrane
JPH0527233B2 (en) * 1984-05-23 1993-04-20 Meidensha Electric Mfg Co Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527233B2 (en) * 1984-05-23 1993-04-20 Meidensha Electric Mfg Co Ltd
JPH0525305A (en) * 1991-07-19 1993-02-02 Tonen Corp Polyethylene porous membrane, its production and battery separator made of the same membrane

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
US6849702B2 (en) 1999-02-26 2005-02-01 Robert W. Callahan Polymer matrix material
WO2001091207A1 (en) * 2000-05-22 2001-11-29 Asahi Kasei Kabushiki Kaisha Separator for zinc bromine secondary cell and method for its preparation
US7129004B2 (en) 2000-05-22 2006-10-31 Asahi Kasei Kabushiki Kaisha Separator for zinc/bromine secondary batteries and production process thereof
JP4837224B2 (en) * 2000-05-22 2011-12-14 旭化成イーマテリアルズ株式会社 Zinc bromine secondary battery separator and method for producing the same
WO2001093351A1 (en) * 2000-05-30 2001-12-06 Asahi Kasei Kabushiki Kaisha Separator for metal halogen cell
US7081321B2 (en) 2000-05-30 2006-07-25 Asahi Kasei Kabushiki Kaisha Separator for metal halogen cell
JP4901050B2 (en) * 2000-05-30 2012-03-21 旭化成イーマテリアルズ株式会社 Metal halide battery separator
JP2002025532A (en) * 2000-07-10 2002-01-25 Asahi Kasei Corp Separator for metal halogen battery
JP2002050336A (en) * 2000-08-07 2002-02-15 Asahi Kasei Corp Separator for zinc halogen battery
KR20160063887A (en) * 2014-11-27 2016-06-07 롯데케미칼 주식회사 Resin composition for preparing of porous membrane of zinc-bromine redox flow battery, preparation method for porous membrane of redox flow battery, and porous membrane of zinc-bromine redox flow battery

Also Published As

Publication number Publication date
JP3948762B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP5984307B2 (en) Method for producing polyolefin microporous stretched film with cellulose nanofibers
KR100943236B1 (en) Microporous polyolefin film with improved meltdown property and preparing method thereof
JP4121846B2 (en) Polyolefin microporous membrane and production method and use thereof
JP4889733B2 (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
JP5586152B2 (en) Polyolefin microporous membrane
KR20170101290A (en) Polyolefin microporous membrane, production method thereof and separator for battery
JP2020031047A (en) Separation membrane and manufacturing method thereof
JPH05234578A (en) Separator for battery using organic electrolyte and its manufacture
JPWO2009136648A1 (en) High power density lithium ion secondary battery separator
JP2004196871A (en) Polyolefin fine porous membrane and method for producing the same and use
JP4234392B2 (en) Microporous membrane, production method and use thereof
US20140335396A1 (en) Microporous Membrane
WO1993001623A1 (en) Separator of battery wherein organic electrolyte is used and production thereof
KR20060121802A (en) Microporous high density polyethylene film and preparing method thereof
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP2000017100A (en) Preparation of polyethylene micro-porous membrane
JP5450944B2 (en) Polyolefin microporous membrane, battery separator and battery
JPH09231957A (en) Separator for zinc bromine secondary battery
JP5592745B2 (en) Polyolefin microporous membrane
WO2022052469A1 (en) Polyolefin micro-porous membrane and preparation method therefor
JPH11269290A (en) Polyoelfin fine porous membrane
JPWO2018173904A1 (en) Polyolefin microporous membrane and battery using the same
JPH0342025A (en) Production of polyolefin porous film
JPH0693130A (en) Production of microporous polyolefin film
JP6122941B2 (en) Method for producing extruded product for use in production of polyolefin microporous stretched film containing cellulose nanofiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

EXPY Cancellation because of completion of term