JP4869272B2 - Porous multilayer hollow fiber membrane - Google Patents

Porous multilayer hollow fiber membrane Download PDF

Info

Publication number
JP4869272B2
JP4869272B2 JP2008065639A JP2008065639A JP4869272B2 JP 4869272 B2 JP4869272 B2 JP 4869272B2 JP 2008065639 A JP2008065639 A JP 2008065639A JP 2008065639 A JP2008065639 A JP 2008065639A JP 4869272 B2 JP4869272 B2 JP 4869272B2
Authority
JP
Japan
Prior art keywords
hollow fiber
layer
fiber membrane
membrane
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008065639A
Other languages
Japanese (ja)
Other versions
JP2009219979A (en
Inventor
宏和 藤村
昌年 橋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2008065639A priority Critical patent/JP4869272B2/en
Publication of JP2009219979A publication Critical patent/JP2009219979A/en
Application granted granted Critical
Publication of JP4869272B2 publication Critical patent/JP4869272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

本発明は、除濁や膜分離活性汚泥法等の濾過用途に好適な、エアースクラビング等による外表面の擦過が起こりにくくかつ洗浄回復性の高い、熱可塑性樹脂より成る多孔性中空糸膜に関する。   The present invention relates to a porous hollow fiber membrane made of a thermoplastic resin, which is suitable for filtration applications such as turbidity and membrane separation activated sludge process, and is less susceptible to abrasion on the outer surface due to air scrubbing or the like and has high cleaning recovery.

近年、上水における除濁等の分野において、処理水の安全性向上や設備の省スペース化という利点を持つ多孔性中空糸膜による濾過方法が広く普及しつつある。多孔性中空糸膜には、クリプトスポリジウムなどのバクテリアや濁質成分を確実に除去できる高い阻止性能、大量の水を処理するための高い透水性能、薬品洗浄や高い運転圧力を含む幅広い運転条件で長期間使用できる高い強度が要求される。更に、膜の外表面側から内表面側に濾過をおこなう外圧濾過運転においては、外表面に堆積した被濾過物を除去するためにおこなうエアースクラビングによる膜外表面の擦過、すなわち外表面の孔の閉塞が経時的な透水性能の低下を引き起こし、大きな問題となっている。   In recent years, filtration methods using porous hollow fiber membranes that have the advantages of improving the safety of treated water and saving the space of equipment are becoming widespread in fields such as decontamination in clean water. Porous hollow fiber membranes have a wide range of operating conditions including high blocking performance that can reliably remove bacteria such as Cryptosporidium and turbid components, high water permeability for treating large amounts of water, chemical cleaning and high operating pressure. High strength that can be used for a long time is required. Furthermore, in the external pressure filtration operation in which the filtration is performed from the outer surface side to the inner surface side of the membrane, the outer surface of the membrane is rubbed by air scrubbing to remove the filtration object accumulated on the outer surface, that is, the pores on the outer surface. The blockage causes deterioration of water permeability performance with time, which is a big problem.

小孔径の阻止層と大孔径の強度支持層とを貼り合わせることで、高い阻止性能と高い透水性能とを併せ持つ多孔性中空糸膜を得るアイデアは、例えば特許文献1に開示されている。具体的な製法として、特許文献1では、ポリエチレンに溶剤は加えずに溶融押出しをおこない、中空糸の長手方向に高倍率延伸を行うことでラメラ結晶スタックを開裂させて開孔させて多孔膜を作製する方法である延伸開孔法を用い、同心円状に配置された2つの円環状ノズルから別々に相異なるMI値を持つポリエチレンを溶融押出しし、MI値が異なる即ち通常は分子量が異なる樹脂は延伸開孔させると異なる孔径になる性質を利用して、中空糸膜の外層側と内層側とが異なる孔径の層になるように製膜している。   The idea of obtaining a porous hollow fiber membrane having both high blocking performance and high water permeability by bonding a small pore blocking layer and a large pore strength support layer is disclosed in Patent Document 1, for example. As a specific production method, in Patent Document 1, melt extrusion is performed without adding a solvent to polyethylene, and the lamellar crystal stack is cleaved and opened by performing high-magnification stretching in the longitudinal direction of the hollow fiber to form a porous film. Polyethylene having different MI values are melt-extruded separately from two annular nozzles arranged concentrically using the stretched hole method, which is a method of manufacturing, and resins having different MI values, that is, usually having different molecular weights. Utilizing the property of having different pore diameters when stretched and opened, the hollow fiber membrane is formed such that the outer layer side and the inner layer side have different pore diameter layers.

しかしながら、この製法は、(1)溶剤を加えない製法のため溶融体の粘度が高く、高分子量のポリマーは流動性が低く成型しにくい、(2)高倍率延伸を行うと延伸軸方向の強度は強くなるが、濾過を行う上で肝心の延伸軸とは垂直方向の強度である破裂強度および圧縮強度はむしろ低下しやすい、(3)使用しているポリエチレンのMI値からから推定される分子量が、外層が約10〜15万、内層が約4〜8万と低いためか耐擦過性が低い、等の難点があり、耐擦過性が高く高強度の膜を得ることができなかった。
また特許文献2では、粘度が高い、すなわち分子量が高いPVDFを用いることで膜長手方向の機械的強度が強く、かつ孔径分布が狭い、非対称構造の膜が開示されている。しかしながら、この膜は、膜全体が高分子量の熱可塑性樹脂で構成されているため膜の弾性率が高いためか、エアースクラビング時に糸が大きく揺れないため洗浄回復性が低い、という問題があった。
したがって、今まで、エアースクラビング等による外表面の高い耐擦過性と高い洗浄回復性を両立させた多孔性中空糸膜は得られていなかった。
特開昭63−75116号公報 特開平07−173323号公報
However, in this production method, (1) the viscosity of the melt is high due to the production method without adding a solvent, and the high molecular weight polymer has low fluidity and is difficult to be molded. However, the rupture strength and compressive strength, which are strengths perpendicular to the stretching axis, are more likely to decrease when filtration is performed. (3) Molecular weight estimated from the MI value of the polyethylene used However, there are disadvantages such as the low outer layer is about 10 to 150,000 and the inner layer is about 40 to 80,000, or the scratch resistance is low, and it is impossible to obtain a film with high scratch resistance and high strength.
Further, Patent Document 2 discloses a film having an asymmetric structure in which the mechanical strength in the longitudinal direction of the film is strong and the pore size distribution is narrow by using PVDF having a high viscosity, that is, a high molecular weight. However, this film has a problem that the entire film is made of a high molecular weight thermoplastic resin, so that the elastic modulus of the film is high, or the thread does not shake greatly during air scrubbing, so that the cleaning recovery is low. .
Therefore, until now, a porous hollow fiber membrane that has both high scuff resistance on the outer surface by air scrubbing and the like and high cleaning recovery has not been obtained.
JP 63-75116 A Japanese Patent Laid-Open No. 07-173323

本発明は、除濁や膜分離活性汚泥法等の濾過用途に好適な、エアースクラビング等による外表面の擦過が起こりにくく洗浄回復性の高い熱可塑性樹脂より成る多孔性中空糸膜を提供することを目標とする。   The present invention provides a porous hollow fiber membrane made of a thermoplastic resin that is suitable for filtration applications such as turbidity removal and membrane separation activated sludge process, and is less susceptible to abrasion on the outer surface due to air scrubbing or the like, and has high cleaning recovery properties. To the goal.

本発明者らは、上記課題を解決するために、鋭意検討を重ねた結果、最外表面に重量平均分子量50万以上の高い分子量の熱可塑性樹脂から成る層を、内表面側に重量平均分子量40万未満の低い分子量から成る層を積層することが、外表面における高い耐擦過性とエアースクラビングによる高い洗浄回復性を両立するために、極めて重要であることを見出し、本発明にいたった。
すなわち本発明は、
(1)熱可塑性樹脂から成る、少なくとも2層からなる多孔性中空糸膜であって、中空糸膜の内表面側の1層(A)を構成する熱可塑性樹脂の重量平均分子量が40万未満、最外表面の1層(B)を構成する熱可塑性樹脂の重量平均分子量が50万以上であり、前記1層(A)および1層(B)を構成する熱可塑性樹脂がフッ化ビニリデンホモポリマーであることを特徴とする多孔性多層中空糸膜、および
(2)外表面孔のアスペクト比が1/3以上3以下であることを特徴とする(1)記載の多孔性多層中空糸膜、および
(3)内表面孔のアスペクト比が1/4以上4以下であることを特徴とする(1)または(2)に記載の多孔性多層中空糸膜、である
As a result of intensive studies to solve the above problems, the inventors of the present invention have formed a layer made of a high molecular weight thermoplastic resin having a weight average molecular weight of 500,000 or more on the outermost surface, and a weight average molecular weight on the inner surface side. It was found that laminating a layer having a low molecular weight of less than 400,000 is extremely important in order to achieve both high scratch resistance on the outer surface and high cleaning recovery by air scrubbing, and the present invention has been reached.
That is, the present invention
(1) A porous hollow fiber membrane comprising at least two layers made of a thermoplastic resin, wherein the thermoplastic resin constituting one layer (A) on the inner surface side of the hollow fiber membrane has a weight average molecular weight of less than 400,000 the weight average molecular weight of the thermoplastic resin constituting one layer of the outermost surface (B) is Ri der 500,000, the first layer (a) and the thermoplastic resin is a vinylidene fluoride that constitutes the first layer (B) A porous multilayer hollow fiber membrane characterized in that it is a homopolymer , and (2) the porous multilayer hollow fiber membrane according to (1), wherein the aspect ratio of the outer surface pore is 1/3 or more and 3 or less , and (3) aspect ratio in the surface pores is porous multilayer hollow fiber membrane, according to, characterized in that 1/4 to 4 (1) or (2).

本発明により、除濁等の濾過用途に好適な、エアースクラビング等による外表面の擦過が起こりにくく洗浄性の高い多孔性中空糸膜を得ることができる。   According to the present invention, it is possible to obtain a porous hollow fiber membrane which is suitable for filtration applications such as turbidity and hardly scratches the outer surface due to air scrubbing or the like and has a high detergency.

以下、本発明につき、具体的かつ詳細に説明する。
熱可塑性樹脂(熱可塑性高分子)は、常温では変形しにくく弾性を有し塑性を示さないが、適当な加熱により塑性を現し、成型が可能になり、冷却して温度が下がると再びもとの弾性体に戻る可逆変化を行い、その間に分子構造など化学変化を生じない性質を持つ樹脂である(化学大辞典編集委員会編集、化学大辞典6縮刷版、共立出版、860および867頁、1963年)。
Hereinafter, the present invention will be described specifically and in detail.
Thermoplastic resins (thermoplastic polymers) are not easily deformable at room temperature and are elastic and do not exhibit plasticity, but they exhibit plasticity by appropriate heating and become moldable. It is a resin that undergoes reversible changes back to the elastic body and does not produce chemical changes such as molecular structure during that time (edited by the Chemical Dictionary Dictionary, the 6th edition of the Chemical Dictionary, Kyoritsu Shuppan, pages 860 and 867, 1963).

熱可塑性樹脂の例としては、14705の化学商品(化学工業日報社、2005年)の熱可塑性プラスチックの項(1069〜1125頁)記載の樹脂や、化学便覧応用編改訂3版(日本化学会編、丸善、1980年)の809−810頁記載の樹脂等を挙げることができる。具体例名を挙げると、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、エチレンービニルアルコール共重合体、ポリアミド、ポリエーテルイミド、ポリスチレン、ポリサルホン、ポリビニルアルコール、ポリフェニレンエーテル、ポリフェニレンサルファイド、酢酸セルロース、ポリアクリロニトリルなどである。中でも、結晶性を有する、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、エチレンービニルアルコール共重合体、ポリビニルアルコールなどは強度発現の面から好適に用いることができる。さらにそれら結晶性熱可塑性樹脂の中でも、疎水性ゆえ耐水性が高く、通常の水系液体の濾過において耐久性が期待できる、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリフッ化ビニリデン等の疎水性結晶性熱可塑性樹脂がさらに好適に用いることができる。さらにこれら疎水性結晶性熱可塑性樹脂の中でも、耐薬品性等の化学的耐久性に優れるポリフッ化ビニリデンが、特に好適に用いることができる。ポリフッ化ビニリデンとしては、フッ化ビニリデンホモポリマーや、フッ化ビニリデン比率50モル%以上のフッ化ビニリデン共重合体が挙げられる。フッ化ビニリデン共重合体としては、フッ化ビニリデンと、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンまたはエチレンから選ばれた1種以上との共重合体を挙げることができる。ポリフッ化ビニリデンとしては、フッ化ビニリデンホモポリマーがもっとも好ましい。   Examples of thermoplastic resins include resins described in the section of thermoplastics (pages 1069 to 1125) of 14705 chemical products (Chemical Industry Daily, 2005), and Chemical Handbook Application Edition, revised edition 3 (The Chemical Society of Japan) , Maruzen, 1980), pages 809-810. Specific examples include polyethylene, polypropylene, polyvinylidene fluoride, ethylene-vinyl alcohol copolymer, polyamide, polyetherimide, polystyrene, polysulfone, polyvinyl alcohol, polyphenylene ether, polyphenylene sulfide, cellulose acetate, polyacrylonitrile, and the like. . Among these, crystalline polyethylene, polypropylene, polyvinylidene fluoride, ethylene-vinyl alcohol copolymer, polyvinyl alcohol, and the like can be suitably used from the viewpoint of strength development. In addition, among these crystalline thermoplastic resins, hydrophobic crystalline thermoplastic resins such as polyolefins such as polyethylene and polypropylene, polyvinylidene fluoride, etc., which are hydrophobic and have high water resistance, and can be expected to have durability in the filtration of ordinary aqueous liquids. Can be more suitably used. Further, among these hydrophobic crystalline thermoplastic resins, polyvinylidene fluoride, which is excellent in chemical durability such as chemical resistance, can be used particularly suitably. Examples of the polyvinylidene fluoride include a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer having a vinylidene fluoride ratio of 50 mol% or more. Examples of the vinylidene fluoride copolymer include a copolymer of vinylidene fluoride and one or more selected from ethylene tetrafluoride, propylene hexafluoride, ethylene trifluoride chloride, or ethylene. As the polyvinylidene fluoride, a vinylidene fluoride homopolymer is most preferable.

阻止性能、透水性能、および強度が高いレベルでバランスし、さらに外表面における高い耐擦過性とエアースクラビングによる高い洗浄回復性を両立できる、本願発明の多孔性中空糸膜は、内外少なくとも2層を有する多層膜である。
2層のうち、内表面側の1層(A)は、いわゆる支持層であり、多孔性中空糸膜の耐圧性等の高い機械的強度を担保すると共に、透水性をできるだけ低下させない機能を有する。また、この1層(A)は、重量平均分子量が40万未満の熱可塑性樹脂で構成される。重量平均分子量40万未満の熱可塑性樹脂で構成されていることで、中空糸膜が曲がり易く、エアースクラビング時に揺れやすいためか、高い洗浄性を発揮することができる。支持層に40万未満の分子量の熱可塑性樹脂を用いることで擦過を低減させる効果もある。理由は定かではないが、支持層を軟らかくすることで膜同士が接触した際の外表面における押し圧を分散・低下し、擦過を低減させていると推測される。また、1層(A)の重量平均分子量は10万以上であれば高い機械的強度を発現することができ好ましい。より好ましくは20万以上である。
The porous hollow fiber membrane of the present invention, which balances blocking performance, water permeability performance, and strength at a high level, and further achieves high scuff resistance on the outer surface and high cleaning recovery by air scrubbing, is at least two layers inside and outside the present invention. A multilayer film.
Of the two layers, one layer (A) on the inner surface side is a so-called support layer, and has a function to ensure high mechanical strength such as pressure resistance of the porous hollow fiber membrane and to reduce water permeability as much as possible. . Further, this one layer (A) is composed of a thermoplastic resin having a weight average molecular weight of less than 400,000. Since it is made of a thermoplastic resin having a weight average molecular weight of less than 400,000, the hollow fiber membrane is easy to bend and is likely to be shaken during air scrubbing. The use of a thermoplastic resin having a molecular weight of less than 400,000 for the support layer also has an effect of reducing abrasion. The reason is not clear, but it is presumed that the softening of the support layer disperses and lowers the pressing force on the outer surface when the membranes are in contact with each other, thereby reducing abrasion. Moreover, if the weight average molecular weight of one layer (A) is 100,000 or more, it is preferable because high mechanical strength can be expressed. More preferably, it is 200,000 or more.

多孔性中空糸膜の内外少なくとも2層のうち、最外表面の1層(B)は、いわゆる阻止層であり、小さい表面孔径により被処理液中に含まれる異物の膜透過を阻止する機能を発揮する。また、この1層(B)は、重量平均分子量50万以上の熱可塑性樹脂で構成される重量平均分子量50万以上の熱可塑性樹脂で構成されていることで、エアースクラビングによる膜外表面の擦過を抑え、長期間にわたって高い透水性能を発揮することができる。また、1層(B)の重量平均分子量は200万未満であれば膜全体がエアースクラビング時に良く揺れ、高い洗浄回復性を発揮することができるため好ましい。より好ましくは150万未満である。また、本発明の中空糸膜の外表面は、本発明の実施例1に記載されているように、高分子量の熱可塑性樹脂と可塑剤、無機微粉の溶融混練物として押出・成型することで、表面平滑性が高くかつ表面硬度の高い外表面を持った膜を得ることができ、耐擦過性をより高めることができる。 Of the at least two inner and outer layers of the porous hollow fiber membrane, one outermost layer (B) is a so-called blocking layer, and has a function of blocking the permeation of foreign substances contained in the liquid to be treated by a small surface pore diameter. Demonstrate. Further, this one layer (B) is composed of a thermoplastic resin having a weight average molecular weight of 500,000 or more . By being composed of a thermoplastic resin having a weight average molecular weight of 500,000 or more, it is possible to suppress abrasion on the outer surface of the film due to air scrubbing and to exhibit high water permeability over a long period of time. Moreover, if the weight average molecular weight of 1 layer (B) is less than 2 million, since the whole film | membrane shakes well at the time of air scrubbing and high cleaning recoverability can be exhibited, it is preferable. More preferably, it is less than 1.5 million. Further, as described in Example 1 of the present invention, the outer surface of the hollow fiber membrane of the present invention is extruded and molded as a melt-kneaded product of a high molecular weight thermoplastic resin, a plasticizer, and inorganic fine powder. A film having an outer surface with high surface smoothness and high surface hardness can be obtained, and scratch resistance can be further improved.

また、1層(B)の表面、すなわち外表面孔のアスペクト比が1/3以上3以下であることが、好ましい。外表面孔のアスペクト比が1/3以上であれば、エアースクラビング等で中空糸長手方向に応力がかかった際に阻止層である外表面に亀裂が入ることがなく優れた阻止性能を長期間維持でき、3以下であればエアースクラビング等で膜円周方向に揺れた場合に擦過することによる透水性能の低下を抑えられ好ましい。外表面孔のアスペクト比は、より好ましくは1/2以上2以下、さらに好ましくは2/3以上1.5以下、である。ここでいう外表面孔のアスペクト比とは、外表面における(中空糸長手方向の平均孔径)/(中空糸円周方向の平均孔径)をいう。擦過は、エアースクラビング時に中空糸膜が中空糸円周方向に揺れるため、この方向に擦過する影響が大きい。そのため、外表面の孔の円周方向の孔径が小さいと、孔の閉塞による影響がより大きく、透水性能の低下が起こりやすい。この外表面孔のアスペクト比は、以下のようにして測定する。まず走査型電子顕微鏡を用い、外表面を極力多数の孔の形状が明確に確認できる程度の倍率で外表面に垂直な方向から撮影する。次に、その写真上で、中空糸長手方向およびこれに直交する方向、すなわち中空糸円周方向に各5本の線をほぼ均等な間隔で引き、それらの線が写真中の孔を横切る長さを測定する。そして、中空糸長手方向および円周方向それぞれにおいて測定値の算術平均値を求め、それぞれの方向における平均孔径とする。このようにして求めた(中空糸長手方向の平均孔径)/(中空糸円周方向の平均孔径)を外表面孔のアスペクト比とする。孔径測定の精度を上げるために、縦横計10本の線が横切る孔径の数は20個以上とするのが好ましい。孔径が0.1μmから1μm程度であれば、5000倍程度の倍率の電子顕微鏡画像を用いるのが適当である。   The aspect ratio of the surface of one layer (B), that is, the outer surface hole, is preferably 1/3 or more and 3 or less. If the aspect ratio of the outer surface hole is 1/3 or more, the outer surface which is the blocking layer will not crack when stress is applied in the longitudinal direction of the hollow fiber by air scrubbing etc., and excellent blocking performance will be maintained for a long time In addition, if it is 3 or less, it is preferable to suppress a decrease in water permeability due to rubbing when it is shaken in the circumferential direction of the membrane by air scrubbing or the like. The aspect ratio of the outer surface hole is more preferably ½ or more and 2 or less, and further preferably 2/3 or more and 1.5 or less. The aspect ratio of the outer surface hole here means (average hole diameter in the longitudinal direction of the hollow fiber) / (average hole diameter in the circumferential direction of the hollow fiber) on the outer surface. Since the hollow fiber membrane sways in the circumferential direction of the hollow fiber during air scrubbing, the effect of rubbing is great. Therefore, when the hole diameter in the circumferential direction of the hole on the outer surface is small, the influence of the hole blockage is larger, and the water permeation performance is likely to deteriorate. The aspect ratio of the outer surface hole is measured as follows. First, using a scanning electron microscope, the outer surface is photographed from a direction perpendicular to the outer surface at a magnification that allows the shape of as many holes as possible to be clearly confirmed. Next, on the photograph, five lines are drawn at almost equal intervals in the longitudinal direction of the hollow fiber and in the direction perpendicular thereto, that is, in the circumferential direction of the hollow fiber, and the length of the lines crossing the holes in the photograph. Measure the thickness. And the arithmetic mean value of a measured value is calculated | required in each of a hollow fiber longitudinal direction and a circumferential direction, and it is set as the average hole diameter in each direction. The aspect ratio of the outer surface hole is defined as (average hole diameter in the hollow fiber longitudinal direction) / (average hole diameter in the hollow fiber circumferential direction). In order to increase the accuracy of the hole diameter measurement, it is preferable that the number of hole diameters traversed by the 10 lines in the vertical and horizontal directions is 20 or more. If the pore diameter is about 0.1 μm to 1 μm, it is appropriate to use an electron microscope image with a magnification of about 5000 times.

また、内表面側の1層(A)についても、アスペクト比が1/4以上4以下であることが、機械的強度の発現の点から好ましい。内表面孔のアスペクト比が、1/4以上であれば十分な中空糸膜の長手方向における強度、すなわち、引張強度を高くすることができ、4以下であれば中空糸膜の膜厚方向における強度、すなわち、外圧濾過の際に重要な機械的強度となる圧縮強度、破裂強度を高くすることが可能となる。内表面孔のアスペクト比は、より好ましくは1/3以上3以下、さらに好ましくは1/2以上2以下である。内表面孔のアスペクト比は、1層(A)の表面が最内表面層である場合は、外表面孔のアスペクト比と同様にして、内表面の走査型電子顕微鏡の写真から求めることができる。内表面側にさらに層がある場合は、1層(A)部分の膜長手方向の断面および膜円周方向の断面の走査型電子顕微鏡の写真から求めれば良い。   Also, the aspect ratio of one layer (A) on the inner surface side is preferably ¼ or more and four or less from the viewpoint of manifesting mechanical strength. If the aspect ratio of the inner surface hole is 1/4 or more, sufficient strength in the longitudinal direction of the hollow fiber membrane, that is, tensile strength can be increased, and if it is 4 or less, the thickness in the film thickness direction of the hollow fiber membrane. It is possible to increase the strength, that is, the compressive strength and burst strength, which are important mechanical strengths during external pressure filtration. The aspect ratio of the inner surface hole is more preferably 1/3 or more and 3 or less, and further preferably 1/2 or more and 2 or less. When the surface of one layer (A) is the innermost surface layer, the aspect ratio of the inner surface hole can be obtained from a scanning electron microscope photograph of the inner surface in the same manner as the aspect ratio of the outer surface hole. When there is a further layer on the inner surface side, it may be obtained from a photograph of a scanning electron microscope of the cross section in the film longitudinal direction and the cross section in the film circumferential direction of one layer (A).

また、1層(A)は、均質な三次元網目構造を有することが好ましい。ここでいう均質とは、膜厚方向の孔径の変化が小さい構造であることを意味する。このように均質な構造とすることで、マクロボイド等の強度的に弱い部分が生じにくいから、多孔性中空糸膜の透水性を維持しながら、耐圧性等の機械的強度を高くすることが可能になる。また、ここでいう三次元網目構造とは、樹脂が無数の柱状になり、その両端で互いに接合することで三次元構造を形成している構造をいう。三次元網目構造では、樹脂はほぼ全部が柱状物を形成しており、いわゆる球晶構造で無数に見られる樹脂の塊状物がほとんど見られない。三次元網目構造の空隙部は、熱可塑性樹脂の柱状物に囲まれており、空隙部の各部分は互いに連通している。このように、用いられた樹脂のほとんどが、中空糸膜の強度に寄与しうる柱状物を形成しているので、高い強度の支持層を形成することが可能になる。また、耐薬品性も向上する。耐薬品性が向上する理由は明確ではないが、強度に寄与しうる柱状物の数が多いため、柱状物の一部が薬品に侵されても、層全体としての強度には大きな影響が及ばないためではないかと考えられる。一方、球晶構造では、塊状物に樹脂が集まっているため相対的に柱状物の数が少なく強度が低い。そのため、柱状物の一部が薬品に侵されると層全体の強度に影響が及びやすいのではないかと考えられる。このような等方的三次元網目構造の模式図を図1に示す。図1では柱状物aの接合により、空隙部bが形成されていることがわかる。参考のため、球晶構造の模式図を図2に示す。図2では、球晶cが部分的に密集しており、その球晶cの密集部分間の間隙が空隙部dであることがわかる。   Moreover, it is preferable that one layer (A) has a homogeneous three-dimensional network structure. Homogeneous here means that the structure has a small change in the pore diameter in the film thickness direction. By adopting such a homogeneous structure, it is difficult to generate a weak portion such as a macrovoid, so that the mechanical strength such as pressure resistance can be increased while maintaining the water permeability of the porous hollow fiber membrane. It becomes possible. In addition, the three-dimensional network structure here refers to a structure in which a resin is innumerable columnar and is joined to both ends to form a three-dimensional structure. In the three-dimensional network structure, almost all of the resin forms a columnar body, and an infinite number of resin lumps that are seen in a so-called spherulite structure are hardly seen. The void portion of the three-dimensional network structure is surrounded by a columnar body of thermoplastic resin, and each portion of the void portion communicates with each other. As described above, since most of the used resin forms a columnar material that can contribute to the strength of the hollow fiber membrane, a high-strength support layer can be formed. In addition, chemical resistance is improved. The reason why chemical resistance is improved is not clear, but because there are a large number of pillars that can contribute to strength, even if part of the pillars are attacked by chemicals, the overall strength of the layer is not significantly affected. It is thought that. On the other hand, in the spherulite structure, since the resin is collected in the lump, the number of columnar objects is relatively small and the strength is low. Therefore, it is considered that when a part of the columnar material is invaded by the chemical, the strength of the entire layer is likely to be affected. A schematic diagram of such an isotropic three-dimensional network structure is shown in FIG. In FIG. 1, it can be seen that the gap b is formed by joining the columnar objects a. For reference, a schematic diagram of the spherulite structure is shown in FIG. In FIG. 2, it can be seen that the spherulites c are partially dense, and the gaps between the dense parts of the spherulites c are voids d.

また、1層(B)も三次元網目構造であることが好ましい。膜厚方向の孔径変化は個々の孔の径が外表面から膜内部に向けて徐々に大きくなる異方的な構造としても良いし、個々の孔の径が表面からの距離によらずにほぼ均一となる均質な構造としても良いが、表面が擦過により摩耗した場合に阻止性能を維持しやすい均質な構造であることがより好ましい。それぞれの場合の中空糸膜の断面方向の孔径変化の模式図を図3に示す。図3(1)は、1層(B)が等方的な三次元網目構造である場合の膜厚方向の孔径変化を示す図であり、図3(2)は、1層(B)が孔径が厚み方向で変化する異方的な三次元網目構造である場合の孔径変化を示す図である。なお、図3(1)(2)の縦軸は断面中央孔径を基準にした孔径比、横軸は膜厚を1に規格化して表示している。耐擦過性の観点からは、表面の擦過が生じても阻止性能が変化しにくいため、均質な三次元網目構造とするのが好ましい。なお、図3(1)で、1層(A)と1層(B)との境界部分は、膜厚方向に対して個々の孔の径が急激に変化する遷移層であるが、そのような境界層が存在しても良い。   Moreover, it is preferable that one layer (B) also has a three-dimensional network structure. The change in the hole diameter in the film thickness direction may be an anisotropic structure in which the diameter of each hole gradually increases from the outer surface toward the inside of the film, and the diameter of each hole is almost independent of the distance from the surface. A uniform structure that is uniform may be used, but a homogeneous structure that can easily maintain the blocking performance when the surface is worn due to abrasion is more preferable. FIG. 3 shows a schematic diagram of the pore diameter change in the cross-sectional direction of the hollow fiber membrane in each case. FIG. 3 (1) is a diagram showing a change in the hole diameter in the film thickness direction when one layer (B) has an isotropic three-dimensional network structure, and FIG. It is a figure which shows a hole diameter change in case of an anisotropic three-dimensional network structure where a hole diameter changes in the thickness direction. 3 (1) and 3 (2), the vertical axis represents the hole diameter ratio based on the cross-sectional central hole diameter, and the horizontal axis represents the film thickness normalized to 1. From the viewpoint of scratch resistance, it is preferable to have a homogeneous three-dimensional network structure because the blocking performance hardly changes even if the surface is scratched. In FIG. 3A, the boundary between the first layer (A) and the first layer (B) is a transition layer in which the diameter of each hole changes rapidly in the film thickness direction. There may be a boundary layer.

多層を形成する層の数および各層の厚みの比率は、目的により適宜設定することができる。濾過膜を目的とする場合であれば、例えば2層の場合であれば、小孔径かつ薄い外層と大孔径かつ厚い内層の組み合わせが、緻密な細孔と高い透水性能を併せ持つために有効である。
1層(A)の厚みは、膜厚みの10/100以上99/100以下とするのが好ましい。10/100以上であればエアースクラビング等により充分に揺れて高い洗浄回復性を発揮でき、99/100以下であればその外側の阻止層により充分な阻止性能を発現できる。より好ましくは膜厚みの30/100以上97/100以下、さらに好ましくは60/100以上95/100以下である。
The number of layers forming the multilayer and the ratio of the thicknesses of the layers can be appropriately set depending on the purpose. In the case of the purpose of a filtration membrane, for example, in the case of two layers, the combination of a small pore diameter and a thin outer layer and a large pore diameter and a thick inner layer is effective for combining dense pores and high water permeability. .
The thickness of one layer (A) is preferably 10/100 or more and 99/100 or less of the film thickness. If it is 10/100 or more, it can be sufficiently shaken by air scrubbing or the like to exhibit high cleaning recoverability, and if it is 99/100 or less, sufficient blocking performance can be exhibited by the outer blocking layer. More preferably, the film thickness is 30/100 or more and 97/100 or less, and further preferably 60/100 or more and 95/100 or less.

1層(B)の厚みは、膜厚みの1/100以上40/100以下とするのが好ましい。このように阻止層の厚みを比較的厚くすることで、望ましい阻止性能と高い透水性能の良いバランスをとったうえで、外表面が擦過により多少摩耗した場合でも高い阻止性能を維持することができる。より好ましくは膜厚みの3/100以上20/100以下、さらに好ましくは5/100以上15/100以下である。
なお、1層(B)の表面孔径、すなわち外表面孔径は0.01μm以上5μm未満であることが好ましい。0.01μm以上であれば、緻密表面の濾過抵抗が小さく実用上十分な透水性を発現できると共に、擦過した場合、表面孔の閉塞による透水性能の低下が抑えられる。また、5μm以下であれば、濾過膜の重要な要求機能である除濁性能の発現が可能になるとともに、被濾過物質の多くを中空糸外表面で阻止し堆積させることができるためエアースクラビングによる洗浄回復性が高い。より好ましくは0.05μm〜2μm、さらに好ましくは0.05μm〜0.5μmである。表面孔径は、アスペクト比の測定で用いた膜長手方向の平均孔径と膜円周方向の平均孔径の算術平均により求めることができる。
The thickness of one layer (B) is preferably 1/100 or more and 40/100 or less of the film thickness. By making the thickness of the blocking layer relatively thick in this way, it is possible to maintain a high blocking performance even when the outer surface is somewhat worn due to abrasion, while maintaining a good balance between desirable blocking performance and high water permeability. . More preferably, the film thickness is 3/100 or more and 20/100 or less, and further preferably 5/100 or more and 15/100 or less.
In addition, it is preferable that the surface hole diameter of 1 layer (B), ie, an outer surface hole diameter, is 0.01 micrometer or more and less than 5 micrometers. If it is 0.01 μm or more, the filtration resistance of the dense surface is small, and practically sufficient water permeability can be exhibited. In addition, when it is rubbed, a decrease in water permeability due to clogging of the surface holes can be suppressed. Also, if it is 5 μm or less, it is possible to develop turbidity that is an important required function of the filtration membrane, and it is possible to block and deposit most of the material to be filtered on the outer surface of the hollow fiber. High cleaning recovery. More preferably, they are 0.05 micrometer-2 micrometers, More preferably, they are 0.05 micrometer-0.5 micrometer. The surface pore diameter can be obtained by the arithmetic average of the average pore diameter in the membrane longitudinal direction and the average pore diameter in the membrane circumferential direction used in the aspect ratio measurement.

1層(B)の表面における開孔率は、目的により適宜定めれば良く特に限定されないが、懸濁物質等を含む被処理液の濾過安定性の観点からは20%以上であることが好ましく、より好ましくは23%以上、さらに好ましくは25%以上である。なお、表面部分の機械的強度の観点を高める観点からは、開孔率は80%以下であることが好ましい。より好ましくは60%以下であり、さらに好ましくは50%以下である。開孔率は、例えば、国際公開公報PCT/WO 01/53213 A1に記載されているように、電子顕微鏡画像のコピーの上に透明シートを重ね、黒マジックペン等を用いて孔部分を黒く塗り潰し、その後透明シートを白紙にコピーすることにより、孔部分は黒、非孔部分は白と明確に区別し、その後に市販の画像解析ソフトを利用して求めることができる。
本発明の中空糸膜は例えば熱可塑性樹脂と有機液体との混合物を分子量違いで2種類用意し、同心円状の中空糸成形ノズルより適当な量比で溶融共押し出しし、その後、有機液体を抽出除去する事により得ることができる。有機液体と共に更に無機微粉を添加しても良い。
The porosity of the surface of the single layer (B) is not particularly limited as long as it is appropriately determined depending on the purpose, but is preferably 20% or more from the viewpoint of filtration stability of the liquid to be treated containing suspended substances. More preferably, it is 23% or more, and further preferably 25% or more. From the viewpoint of increasing the mechanical strength of the surface portion, the porosity is preferably 80% or less. More preferably, it is 60% or less, More preferably, it is 50% or less. For example, as described in International Publication No. PCT / WO 01/53213 A1, the aperture ratio is obtained by overlaying a transparent sheet on a copy of an electron microscope image, and blacking out the hole using a black magic pen or the like. Then, by copying the transparent sheet onto white paper, the hole portion is clearly distinguished from black and the non-hole portion is clearly distinguished from white, and thereafter, it can be obtained using commercially available image analysis software.
The hollow fiber membrane of the present invention is prepared, for example, by preparing two types of mixtures of thermoplastic resin and organic liquid with different molecular weights, melt and co-extruding from a concentric hollow fiber forming nozzle at an appropriate ratio, and then extracting the organic liquid It can be obtained by removing. An inorganic fine powder may be added together with the organic liquid.

本発明を実施例に基づいてさらに具体的に説明する。以下に諸物性の測定方法について説明する。なお、測定は全て25℃で行った。
(1)糸径(mm)
中空糸膜を膜長手方向に垂直な向きにカミソリ等で薄く切り、顕微鏡を用いて断面の内径の長径と短径、外径の長径と短径を測定し、以下の式により、それぞれ内径と外径を決定した。
The present invention will be described more specifically based on examples. Hereinafter, methods for measuring various physical properties will be described. All measurements were performed at 25 ° C.
(1) Thread diameter (mm)
Cut the hollow fiber membrane thinly with a razor or the like in the direction perpendicular to the longitudinal direction of the membrane, and measure the major axis and minor axis of the inner diameter and the major axis and minor axis of the outer diameter using a microscope. The outer diameter was determined.

Figure 0004869272
Figure 0004869272

Figure 0004869272
Figure 0004869272

(2)純水透水率(l/m/hr/0.1MPa/25℃)
約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内へ注射針を入れ、注射針から0.1MPaの圧力にて純水を中空部内へ注入し、外表面へと透過してくる純水の透過水量を測定し、以下の式により純水透水率を決定した。
ここに膜有効長とは、注射針が挿入されている部分を除いた、正味の膜長を指す。
(2) Pure water permeability (l / m 2 /hr/0.1 MPa / 25 ° C.)
Seal one end of a wet hollow fiber membrane about 10 cm long, put an injection needle into the hollow part at the other end, inject pure water into the hollow part from the injection needle at a pressure of 0.1 MPa, and permeate to the outer surface The amount of permeated water permeated was measured, and the pure water permeability was determined by the following equation.
Here, the effective membrane length refers to the net membrane length excluding the portion where the injection needle is inserted.

Figure 0004869272
Figure 0004869272

(3)外表面孔および内表面孔のアスペクト比
走査型電子顕微鏡により、多孔性中空糸膜の内外両表面を極力多数の孔の形状を明確に確認できる任意の倍率で撮影した写真を用いた。その写真上で、中空糸長手方向および円周方向に各5本の線をほぼ均等な間隔で引き、それらの線が写真中の孔を横切る長さを測定した。そして、中空糸長手方向および円周方向それぞれにおいて測定値の算術平均値を求め、それぞれの方向における平均孔径とし、以下の式により外表面および内表面孔のアスペクト比をそれぞれ算出した。
(3) Aspect ratio of outer surface hole and inner surface hole A photograph taken with an arbitrary magnification capable of clearly confirming the shape of a large number of holes on the inner and outer surfaces of the porous hollow fiber membrane as much as possible by a scanning electron microscope was used. On the photograph, five lines were drawn at approximately equal intervals in the longitudinal direction and the circumferential direction of the hollow fiber, and the length of these lines across the hole in the photograph was measured. And the arithmetic average value of the measured value was calculated | required in each of the hollow fiber longitudinal direction and the circumferential direction, it was set as the average hole diameter in each direction, and the aspect ratio of the outer surface and the inner surface hole was calculated by the following formula | equation, respectively.

Figure 0004869272
Figure 0004869272

Figure 0004869272
Figure 0004869272

(4)耐擦過性(%)
約10cmの湿潤長の多孔性中空糸膜を金属板の上に並べ、微小な砂粒(粒経130μm:FujiBrown FRR#120)を20質量%で水に懸濁させた懸濁水を、膜の上方70cmにセットしたノズルから0.07MPaの圧力で膜外表面に吹き付けた。15分間吹き付けた後、膜を裏返してまた10分間の吹き付けをおこなった。吹き付けの前後で、純水透水率を測定し、以下の式から耐擦過性を求めた。
(4) Scratch resistance (%)
A porous hollow fiber membrane having a wet length of about 10 cm is arranged on a metal plate, and suspended water in which fine sand particles (particle size 130 μm: FujiBrown FRR # 120) are suspended in water at 20% by mass is placed above the membrane. A nozzle set at 70 cm was sprayed onto the outer surface of the membrane at a pressure of 0.07 MPa. After spraying for 15 minutes, the membrane was turned over and sprayed again for 10 minutes. The pure water permeability was measured before and after spraying, and the scratch resistance was determined from the following formula.

Figure 0004869272
Figure 0004869272

(5)洗浄回復率(%)
有効膜長2000mm、膜面積50m2の加圧型中空糸膜モジュールを用い、濁度が約100度、水温が18〜25℃の砂濾過逆洗排水を29分間全量濾過した後エアースクラビングを1分間おこない、エアースクラビング前後のモジュールでの純水透水率を測定し、以下の式から洗浄回復率の測定をおこなった。エアースクラビング時のエアー流量は、4.6NL/分/モジュールとした。
(5) Cleaning recovery rate (%)
Using a pressure-type hollow fiber membrane module with an effective membrane length of 2000 mm and a membrane area of 50 m 2 , the sand filtration backwash waste water with a turbidity of about 100 degrees and a water temperature of 18-25 ° C. is filtered for 29 minutes and then air scrubbed for 1 minute. The pure water permeability in the module before and after air scrubbing was measured, and the cleaning recovery rate was measured from the following equation. The air flow rate during air scrubbing was 4.6 NL / min / module.

Figure 0004869272
Figure 0004869272

(6)重量平均分子量Mw
使用するフッ化ビニリデンホモポリマーの重量平均分子量は、GPC(東ソー製HLC−8220GPC、カラム:Shodex製KF−606M(6.0mmID×15cm)1本+KF−601(6.0mmID×15cm)1本)にて測定した。GPC試料は次のようにして作製した。まず、フッ化ビニリデンホモポリマーに溶離液(DMF)を加え、1.0mg/ml濃度となるように調整した。その後、40℃に加温(30min)し、1晩静置して溶解した。その後、0.45ミクロンフィルター(ジーエルサイエンス社製クロマトディスク25N)で濾過し、濾液をGPC試料とした。また、較正曲線はPMMAを用いて作成した。
(6) Weight average molecular weight Mw
The weight average molecular weight of the vinylidene fluoride homopolymer used is GPC (HLC-8220 GPC manufactured by Tosoh, column: one KF-606M (6.0 mm ID × 15 cm) manufactured by Shodex + one KF-601 (6.0 mm ID × 15 cm)) Measured with A GPC sample was prepared as follows. First, an eluent (DMF) was added to vinylidene fluoride homopolymer to adjust the concentration to 1.0 mg / ml. Thereafter, the mixture was heated to 40 ° C. (30 min) and allowed to stand overnight to dissolve. Thereafter, the mixture was filtered through a 0.45 micron filter (Chromatodisc 25N manufactured by GL Sciences Inc.), and the filtrate was used as a GPC sample. Moreover, the calibration curve was created using PMMA.

[実施例1]
熱可塑性樹脂としてフッ化ビニリデンホモポリマー、有機液体としてフタル酸ビス(2−エチルヘキシル)とフタル酸ジブチルとの混合物、無機微粉として微粉シリカ(日本アエロジル社製、商品名:AEROSIL−R972)を用い、押出し機2台による2層中空糸膜の溶融押出しを行った。外層用の溶融混練物として組成がフッ化ビニリデンホモポリマー(Solvey社製Solef6020、重量平均分子量78万):フタル酸ビス(2−エチルヘキシル):フタル酸ジブチル:微粉シリカ=34.0:33.8:6.8:25.4(質量比)の溶融混練物を、内層用の溶融混練物として組成がフッ化ビニリデンホモポリマー(Solvey社製Solef6008、重量平均分子量23万):フタル酸ビス(2−エチルヘキシル):フタル酸ジブチル:微粉シリカ=36.0:35.3:5.0:23.7(質量比)の溶融混練物を、中空部形成用流体として空気を、それぞれ用い、共に240℃の樹脂温度にて、外径2.00mm、内径0.92mmの中空糸成形用ノズルから、外層:内層の理論上の膜厚比=10:90になるような量比にて押出した。
[Example 1]
Vinylidene fluoride homopolymer as a thermoplastic resin, a mixture of bis (2-ethylhexyl) phthalate and dibutyl phthalate as an organic liquid, finely divided silica (trade name: AEROSIL-R972, manufactured by Nippon Aerosil Co., Ltd.) as an inorganic fine powder, The two-layer hollow fiber membrane was melt-extruded by two extruders. As a melt-kneaded product for the outer layer, the composition is a vinylidene fluoride homopolymer (Solef 6020 manufactured by Solvey, weight average molecular weight 780,000): bis (2-ethylhexyl) phthalate: dibutyl phthalate: fine powder silica = 34.0: 33.8 : 6.8: 25.4 (mass ratio) melt-kneaded product was used as a melt-kneaded product for the inner layer, and the composition was vinylidene fluoride homopolymer (Solef 6008 manufactured by Solvey, weight average molecular weight 230,000): Bisphthalate (2 -Ethylhexyl): dibutyl phthalate: fine silica = 36.0: 35.3: 5.0: 23.7 (mass ratio) of melt-kneaded materials, and air as a fluid for forming a hollow part, respectively. From a hollow fiber molding nozzle having an outer diameter of 2.00 mm and an inner diameter of 0.92 mm at a resin temperature of ° C., the theoretical film thickness ratio of the outer layer: inner layer = 10: 90 Was extruded at becomes such an amount ratio.

押出した中空糸状成型物は、60cmの空中走行を経た後40℃の水浴中に導き入れることで冷却固化させ、40m/分の速度でかせに巻き取った。得られた2層中空糸状押出し物を塩化メチレン中に浸漬させてフタル酸ビス(2−エチルヘキシル)およびフタル酸ジブチルを抽出除去した後、乾燥させた。次いで、50質量%のエタノール水溶液中に30分間浸漬させた後、水中に30分間浸漬し、中空糸膜を湿潤化した。次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、さらに水洗を繰り返して微粉シリカを抽出除去した。
得られた膜の外径、内径、外表面孔のアスペクト比、内表面孔のアスペクト比、純水透水率、耐擦過性、洗浄回復率を表1に示す。いずれの性能も優れた値を示した。
また、得られた中空糸膜の外表面側から全膜厚の5%厚み分を外層部分、内表面側から全膜厚の50%厚み分を内層部分としてそれぞれ重量平均分子量を測定したところ、両層にそれぞれ用いたポリマーの押出し前の重量平均分子量と同じであった。以後の実施例、比較例においてもそれぞれの重量平均分子量を測定したところ、両層にそれぞれ用いたポリマーの押出し前の重量平均分子量と同じであった。
The extruded hollow fiber-shaped molded product was cooled and solidified by being introduced into a water bath at 40 ° C. after running in the air of 60 cm, and wound up skein at a speed of 40 m / min. The obtained two-layer hollow fiber extrudate was immersed in methylene chloride to extract and remove bis (2-ethylhexyl) phthalate and dibutyl phthalate, and then dried. Next, after immersing in a 50% by mass ethanol aqueous solution for 30 minutes, it was immersed in water for 30 minutes to wet the hollow fiber membrane. Subsequently, it was immersed in 20 mass% NaOH aqueous solution at 70 degreeC for 1 hour, and also water washing was repeated, and the fine powder silica was extracted and removed.
Table 1 shows the outer diameter, inner diameter, outer surface hole aspect ratio, inner surface hole aspect ratio, pure water permeability, scratch resistance, and cleaning recovery rate of the obtained membrane. Both performances showed excellent values.
In addition, when the weight average molecular weight was measured with the outer layer portion from the outer surface side of the obtained hollow fiber membrane as the outer layer portion, and the inner layer portion from 50% thickness of the total film thickness from the inner surface side, It was the same as the weight average molecular weight before extrusion of the polymer used for both layers. In the following Examples and Comparative Examples, the respective weight average molecular weights were measured and found to be the same as the weight average molecular weight before extrusion of the polymers used in both layers.

[実施例2]
内層用の溶融混練物にフッ化ビニリデンホモポリマー(Solvey社製Solef6010、重量平均分子量30万)を用いた以外は、実施例1と同様にして多孔性中空糸膜を得た。
得られた膜の外径、内径、外表面孔のアスペクト比、内表面孔のアスペクト比、純水透水率、耐擦過性、洗浄回復率を表1に示す。いずれの性能も優れた値を示した。
[Example 2]
A porous hollow fiber membrane was obtained in the same manner as in Example 1, except that a vinylidene fluoride homopolymer (Solef 6010 manufactured by Solvey Co., Ltd., weight average molecular weight 300,000) was used for the melt-kneaded product for the inner layer.
Table 1 shows the outer diameter, inner diameter, outer surface hole aspect ratio, inner surface hole aspect ratio, pure water permeability, scratch resistance, and cleaning recovery rate of the obtained membrane. Both performances showed excellent values.

[実施例3]
実施例2で得た有機液体および無機微粉抽出除去後の多孔性中空糸膜の糸長200cmを400cmに延伸した後、自然緩和させた。その後、両端を固定せずに140℃で1.5時間熱処理をおこなうことにより糸長が縮み、最終的な糸長は260cm(最終延伸倍率1.3倍)となった。
得られた膜の外径、内径、外表面孔のアスペクト比、内表面孔のアスペクト比、純水透水率、耐擦過性、洗浄回復率を表1に示す。いずれの性能も優れた値を示した。
[Example 3]
The organic hollow liquid obtained in Example 2 and the porous hollow fiber membrane after extraction and removal of the inorganic fine powder were stretched to a length of 200 cm and then naturally relaxed. Thereafter, heat treatment was performed at 140 ° C. for 1.5 hours without fixing both ends, whereby the yarn length was shortened, and the final yarn length was 260 cm (final draw ratio: 1.3 times).
Table 1 shows the outer diameter, inner diameter, outer surface hole aspect ratio, inner surface hole aspect ratio, pure water permeability, scratch resistance, and cleaning recovery rate of the obtained membrane. Both performances showed excellent values.

[実施例4]
2倍に延伸した後、糸長が縮まないように140℃、1.5時間の熱処理を中空糸膜の両端を固定しておこなった以外は、実施例3と同様にして多孔性中空糸膜を得た。最終的な糸長は400cm(最終延伸倍率2.0倍)となった。
得られた膜の外径、内径、外表面孔のアスペクト比、内表面孔のアスペクト比、純水透水率、耐擦過性、洗浄回復率を表1に示す。いずれの性能も優れた値を示した。
[Example 4]
A porous hollow fiber membrane was formed in the same manner as in Example 3 except that after stretching twice and heat treatment at 140 ° C. for 1.5 hours was performed with both ends of the hollow fiber membrane fixed to prevent the yarn length from shrinking. Got. The final yarn length was 400 cm (final draw ratio: 2.0 times).
Table 1 shows the outer diameter, inner diameter, outer surface hole aspect ratio, inner surface hole aspect ratio, pure water permeability, scratch resistance, and cleaning recovery rate of the obtained membrane. Both performances showed excellent values.

[実施例5]
糸長100cmを300cmに延伸し、糸長が縮まないように140℃、1.5時間の熱処理を中空糸膜の両端を固定しておこなった以外は、実施例2と同様にして多孔性中空糸膜を得た。最終的な糸長は300cm(最終延伸倍率3.0倍)となった。
得られた膜の外径、内径、外表面孔のアスペクト比、内表面孔のアスペクト比、純水透水率、耐擦過性、洗浄回復率を表1に示す。いずれの性能も優れた値を示した。
[Example 5]
Porous hollow in the same manner as in Example 2 except that the yarn length was extended from 100 cm to 300 cm and heat treatment at 140 ° C. for 1.5 hours was carried out with both ends of the hollow fiber membrane fixed to prevent the yarn length from shrinking. A yarn membrane was obtained. The final yarn length was 300 cm (final draw ratio: 3.0 times).
Table 1 shows the outer diameter, inner diameter, outer surface hole aspect ratio, inner surface hole aspect ratio, pure water permeability, scratch resistance, and cleaning recovery rate of the obtained membrane. Both performances showed excellent values.

[比較例1]
外層用の溶融混練物に用いるフッ化ビニリデンホモポリマーとして、Solvey社製Solef6010、重量平均分子量30万のフッ化ビニリデンホモポリマーを用いた以外は実施例2と同様にして多孔性中空糸膜を得た。得られた多孔性中空糸膜は実施例膜とは異なり、耐擦過性が低い膜が得られた。
[Comparative Example 1]
A porous hollow fiber membrane was obtained in the same manner as in Example 2 except that Solef 6010 manufactured by Solvey Co., Ltd. and vinylidene fluoride homopolymer having a weight average molecular weight of 300,000 were used as the vinylidene fluoride homopolymer used for the outer layer melt-kneaded product. It was. The obtained porous hollow fiber membrane was different from the Example membrane, and a membrane having low scratch resistance was obtained.

[比較例2]
内層用の溶融混練物に用いるフッ化ビニリデンホモポリマーとして、Solvey社製Solef6020、重量平均分子量78万のフッ化ビニリデンホモポリマーを用いた以外は実施例2と同様にして多孔性中空糸膜を得た。得られた多孔性中空糸膜は実施例膜とは異なり、エアースクラビングによる洗浄回復率が低い膜が得られた。
[Comparative Example 2]
A porous hollow fiber membrane is obtained in the same manner as in Example 2 except that Solef 6020 manufactured by Solvey Co., Ltd. and vinylidene fluoride homopolymer having a weight average molecular weight of 780,000 are used as the vinylidene fluoride homopolymer used for the melt-kneaded product for the inner layer. It was. The obtained porous hollow fiber membrane was different from the Example membrane, and a membrane having a low cleaning recovery rate by air scrubbing was obtained.

Figure 0004869272
Figure 0004869272

本発明により、除濁等の濾過用途に好適な、耐擦過性と洗浄回復性を両立した多孔性多層中空糸膜を供給できる。   According to the present invention, it is possible to supply a porous multilayer hollow fiber membrane that is suitable for filtration applications such as turbidity and has both scratch resistance and washing recoverability.

等方的三次元網目構造の模式図である。It is a schematic diagram of an isotropic three-dimensional network structure. 球晶構造の模式図である。It is a schematic diagram of a spherulite structure. 多孔性中空糸膜の膜厚方向の孔径変化の例を示した模式図である。It is the schematic diagram which showed the example of the hole diameter change of the film thickness direction of a porous hollow fiber membrane.

Claims (3)

熱可塑性樹脂から成る、少なくとも2層からなる多孔性中空糸膜であって、中空糸膜の内表面側の1層(A)を構成する熱可塑性樹脂の重量平均分子量が40万未満、最外表面の1層(B)を構成する熱可塑性樹脂の重量平均分子量が50万以上であり、前記1層(A)および1層(B)を構成する熱可塑性樹脂がフッ化ビニリデンホモポリマーであることを特徴とする多孔性多層中空糸膜。 A porous hollow fiber membrane comprising at least two layers made of a thermoplastic resin, the weight average molecular weight of the thermoplastic resin constituting one layer (A) on the inner surface side of the hollow fiber membrane being less than 400,000, the outermost the weight average molecular weight of the thermoplastic resin constituting one layer of the surface (B) is Ri der 500,000, the first layer (a) and one layer (B) in the thermoplastic resin is a vinylidene fluoride homopolymer which constitutes the porous multilayer hollow fiber membrane, characterized in that. 外表面孔のアスペクト比が1/3以上3以下であることを特徴とする請求項1記載の多孔性多層中空糸膜。   2. The porous multilayer hollow fiber membrane according to claim 1, wherein the aspect ratio of the outer surface hole is 1/3 or more and 3 or less. 内表面孔のアスペクト比が1/4以上4以下であることを特徴とする請求項1または2に記載の多孔性多層中空糸膜。   The porous multilayer hollow fiber membrane according to claim 1 or 2, wherein the aspect ratio of the inner surface pore is ¼ or more and 4 or less.
JP2008065639A 2008-03-14 2008-03-14 Porous multilayer hollow fiber membrane Active JP4869272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008065639A JP4869272B2 (en) 2008-03-14 2008-03-14 Porous multilayer hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008065639A JP4869272B2 (en) 2008-03-14 2008-03-14 Porous multilayer hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2009219979A JP2009219979A (en) 2009-10-01
JP4869272B2 true JP4869272B2 (en) 2012-02-08

Family

ID=41237361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008065639A Active JP4869272B2 (en) 2008-03-14 2008-03-14 Porous multilayer hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP4869272B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045524A (en) * 2010-08-30 2012-03-08 Fujifilm Corp Crystallizable polymer microporous membrane and method for manufacturing the same, and filteration filter
KR101347042B1 (en) 2011-12-28 2014-01-03 웅진케미칼 주식회사 Manufacturing method of asymmetric pvdf membrane and asymmetric pvdf membrane with improved properties manufactured thereby
EP2878363A4 (en) 2012-06-01 2015-09-16 Mitsubishi Rayon Co Hollow porous film
CN104968422B (en) * 2013-03-21 2018-07-13 旭化成株式会社 The manufacturing method of porous hollow fibres film and porous hollow fibres film
KR20160051892A (en) 2013-10-11 2016-05-11 미쯔비시 레이온 가부시끼가이샤 Hollow porous membrane
SG11201605067RA (en) 2014-01-10 2016-07-28 Asahi Chemical Ind Porous hollow fiber membrane, method for producing same, and water purification method
JP6359431B2 (en) * 2014-11-21 2018-07-18 旭化成株式会社 Porous hollow fiber membrane, method for producing porous hollow fiber membrane, and water purification method
EP3938085A4 (en) 2019-03-15 2022-12-07 Entegris, Inc. Composite hollow fiber and related methods and products
WO2022107856A1 (en) * 2020-11-19 2022-05-27 旭化成株式会社 Porous membrane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269706A (en) * 1986-05-16 1987-11-24 Mitsubishi Rayon Co Ltd Composite membrane of porous hollow polyolefin yarn and its production
JP3979751B2 (en) * 1999-08-31 2007-09-19 旭化成ケミカルズ株式会社 Method for filtering oxidant-containing water
JP4626301B2 (en) * 2002-06-14 2011-02-09 東レ株式会社 Composite separation membrane and method for producing the same
CN101288829A (en) * 2003-10-03 2008-10-22 株式会社吴羽 1,1-difluoroethene resin porous hollow filament and production method thereof
US8137800B2 (en) * 2005-10-13 2012-03-20 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same

Also Published As

Publication number Publication date
JP2009219979A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP4869272B2 (en) Porous multilayer hollow fiber membrane
JP5893093B2 (en) Amorphous porous hollow fiber membrane, method for producing a shaped porous hollow fiber membrane, module using the shaped porous hollow fiber membrane, filtration device, and water treatment method
JP4043364B2 (en) Method for producing hollow fiber membrane
JP5622833B2 (en) High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
AU2006300331B2 (en) Porous multilayered hollow-fiber membrane and process for producing the same
JP5626865B2 (en) Composite porous hollow fiber membrane, membrane module, membrane filtration device, water treatment method
KR101930147B1 (en) Hollow fiber membrane, and method for producing hollow fiber membrane
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
JP2009226338A (en) Vinylidene fluoride type resin hollow filament porous membrane and method for manufacruring the same
JP2009082882A (en) Polyvinylidene fluoride based composite hollow fiber membrane, and its manufacturing method
KR20190045361A (en) Porous hollow fiber membranes and methods for producing porous hollow fiber membranes
JP5292890B2 (en) Composite hollow fiber membrane
JP2007313491A (en) Low stain resistance vinylidene fluoride family resin porosity water treatment membrane and its manufacturing method
JP6368324B2 (en) Porous hollow fiber membrane, method for producing the same, and water purification method
JP6226795B2 (en) Method for producing hollow fiber membrane
JP6419917B2 (en) Method for producing hollow fiber membrane
JP4666530B2 (en) Method for producing hollow fiber membrane
JP2002233739A (en) Porous hollow yarn composite membrane
JP2011056437A (en) Filtering method
JP2008253922A (en) Method for filtering suspension water
KR20160079354A (en) Composition of PVDF porous hollow fiber membrane improved with hydrophilicity and PVDF porous hollow fiber membrane having asymmetry sandwich structure using the same
JP4164774B2 (en) Method for producing selective separation membrane
Zhang Fibrous Microfilters by Multiplier Co-extrusion
CN116457077A (en) Porous membrane
TW202005709A (en) Hollow polymer fibres as filtration membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4869272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350