JP4380380B2 - Method for producing liquid separation membrane - Google Patents

Method for producing liquid separation membrane Download PDF

Info

Publication number
JP4380380B2
JP4380380B2 JP2004084305A JP2004084305A JP4380380B2 JP 4380380 B2 JP4380380 B2 JP 4380380B2 JP 2004084305 A JP2004084305 A JP 2004084305A JP 2004084305 A JP2004084305 A JP 2004084305A JP 4380380 B2 JP4380380 B2 JP 4380380B2
Authority
JP
Japan
Prior art keywords
membrane
water
resin
vinyl acetate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084305A
Other languages
Japanese (ja)
Other versions
JP2005270708A5 (en
JP2005270708A (en
Inventor
正行 花川
進一 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004084305A priority Critical patent/JP4380380B2/en
Publication of JP2005270708A publication Critical patent/JP2005270708A/en
Publication of JP2005270708A5 publication Critical patent/JP2005270708A5/en
Application granted granted Critical
Publication of JP4380380B2 publication Critical patent/JP4380380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、飲料水製造、浄水処理、排水処理などの水処理、医薬品製造分野、食品工業分野等に好適な液体分離膜を製造する方法に関する。 The present invention relates to a method for producing drinking water production, water treatment, water treatment, such as wastewater treatment, pharmaceutical manufacturing field, a suitable liquid separation membrane in the food industry and the like.

近年、分離膜は、飲料水製造、浄水処理、排水処理などの水処理分野、食品工業分野等様々な方面で利用されている。飲料水製造、浄水処理、排水処理などの水処理分野においては、分離膜が従来の砂濾過、凝集沈殿過程の代替として水中の不純物を除去するために用いられるようになってきている。また、食品工業分野においては、発酵に用いた酵母の分離除去や液体の濃縮を目的として、分離膜が用いられている。   In recent years, separation membranes have been used in various fields such as water treatment fields such as drinking water production, water purification, and wastewater treatment, and food industry. In the water treatment field such as drinking water production, water purification treatment, wastewater treatment, etc., separation membranes have been used to remove impurities in water as an alternative to conventional sand filtration and coagulation sedimentation processes. In the food industry field, separation membranes are used for the purpose of separating and removing yeasts used for fermentation and concentrating liquids.

上述のように多様に用いられる分離膜は、浄水処理や排水処理などの水処理分野においては処理水量が大きいため、透水性能の向上が求められている。透水性能が優れていれば、膜面積を減らすことが可能となり、装置がコンパクトになるため設備費を節約でき、膜交換費や設置面積の点からも有利である。また、浄水処理では透過水の殺菌や膜のバイオファウリング防止の目的で、次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分に添加したり、酸、アルカリ、塩素、界面活性剤などで膜そのものを洗浄するため、分離膜には耐薬品性能も求められる。さらに、水道水製造では、家畜の糞尿などに由来するクリプトスポリジウムなどの塩素に対して耐性のある病原性微生物が浄水場で処理しきれず、処理水に混入する事故が1990年代から顕在化していることから、このような事故を防ぐため、分離膜には、原水が処理水に混入しないよう十分な分離特性と高い物理的強度が要求されている。   As described above, separation membranes that are used in various ways have a large amount of treated water in the field of water treatment such as water purification treatment and wastewater treatment. If the water permeation performance is excellent, the membrane area can be reduced, and the equipment becomes compact, so that the equipment cost can be saved, which is advantageous from the viewpoint of membrane replacement cost and installation area. In addition, in the water purification treatment, a disinfectant such as sodium hypochlorite is added to the membrane module part for the purpose of sterilizing the permeated water and preventing biofouling of the membrane, or the membrane with acid, alkali, chlorine, surfactant, etc. In order to clean itself, the separation membrane is also required to have chemical resistance. Furthermore, in tap water production, pathogenic microorganisms resistant to chlorine such as Cryptosporidium derived from livestock manure cannot be treated at the water purification plant, and accidents that have been mixed into the treated water have become apparent since the 1990s. Therefore, in order to prevent such an accident, the separation membrane is required to have sufficient separation characteristics and high physical strength so that the raw water is not mixed into the treated water.

このように、分離膜には、優れた分離特性、化学的強度(耐薬品性)、物理的強度、耐汚れ性および透過性能が求められる。そこで、化学的強度(耐薬品性)と物理的強度を併せ有するポリフッ化ビニリデン系樹脂を用いた分離膜が使用されるようになってきた。   Thus, the separation membrane is required to have excellent separation characteristics, chemical strength (chemical resistance), physical strength, stain resistance, and permeation performance. Therefore, a separation membrane using a polyvinylidene fluoride resin having both chemical strength (chemical resistance) and physical strength has been used.

しかしながら、ポリフッ化ビニリデン系樹脂膜は、膜面が疎水性相互作用により汚染されやすいという欠点があった。特に、医薬品製造工程においてタンパク質等の生理活性物質の分離・精製等に使用される場合、膜面への吸着・変性は回収率の低下を招くとともに、膜孔の閉塞によるろ過速度の急激な低下を引き起こすため深刻な問題となっていた。   However, the polyvinylidene fluoride resin film has a drawback that the film surface is easily contaminated by hydrophobic interaction. In particular, when used for separation / purification of physiologically active substances such as proteins in the pharmaceutical manufacturing process, adsorption / denaturation on the membrane surface leads to a decrease in the recovery rate, and a rapid decrease in the filtration rate due to the blocking of the membrane pores. Caused a serious problem.

そこで、疎水性樹脂膜を親水化することが考えられるが、例えば特許文献1に記載の技術ではスルホン酸基を、特許文献2に記載の技術では主鎖にポリエチレンイミンポリマー類を、それぞれ導入もしくはグラフトして疎水性樹脂膜を親水化している。また、特許文献3に記載の技術では、親水性ポリマーであるポリビニルピロリドン)を疎水性樹脂膜にブレンドすることで親水性を付与している。しかし、これら文献に記載される親水基、親水性ポリマーは極性が強く、荷電を有する物質、特に両性電解質であるタンパク質や表流水中に存在するフミン酸などを含む溶液に対してむしろ逆効果であった。また、極性が水分子と同程度である親水性に優れたポリビニルアルコール系ポリマーを用いることも考えられる。しかしながら、このような親水性が強いポリマーとポリフッ化ビニリデン系樹脂のような分子凝集性が大きいポリマーとの均一なブレンドは通常困難であった。   Therefore, it is conceivable to hydrophilize the hydrophobic resin film. For example, in the technique described in Patent Document 1, a sulfonic acid group is introduced, and in the technique described in Patent Document 2, polyethyleneimine polymers are introduced into the main chain, respectively. The hydrophobic resin film is hydrophilized by grafting. In the technique described in Patent Document 3, hydrophilicity is imparted by blending polyvinyl pyrrolidone), which is a hydrophilic polymer, with a hydrophobic resin film. However, the hydrophilic groups and hydrophilic polymers described in these documents have a strong polarity, and are rather counterproductive to charged substances, especially solutions containing amphoteric electrolytes such as proteins and humic acids present in surface water. there were. It is also conceivable to use a polyvinyl alcohol polymer having excellent hydrophilicity and a polarity similar to that of water molecules. However, it has been generally difficult to uniformly blend such a highly hydrophilic polymer with a polymer having high molecular cohesion such as a polyvinylidene fluoride resin.

ポリフッ化ビニリデン系樹脂と混和するポリ酢酸ビニルに注目した方法も開示されている。すなわち、特許文献4には、まずポリ酢酸ビニルとポリフッ化ビニリデン系樹脂とをブレンドして膜を作製し、該膜中のポリ酢酸ビニル基をアルカリ条件でけん化してポリビニルアルコールとしている。このようにして得られたポリビニルアルコールとポリフッ化ビニリデン系樹脂とのブレンド膜は、優れた親水性を示し、タンパク質などに対しても優れた耐汚れ性を示す。しかしながら、このようにして得られた膜も、上述したような酸、アルカリ、塩素等による洗浄が行われると、ポリビニルアルコールが薬品に侵されてしまい、性能低下を招く恐れがあった。また、ポリビニルアルコールは親水性が強く、水溶性であるため、水系で使用すると徐々に溶解する。従って、透過水の汚染を嫌う用途、特に飲料水、浄水用途では、上述した優れた耐汚れ性を示すポリビニルアルコールとポリフッ化ビニリデン系樹脂とのブレンド膜の使用は好ましくない。さらに、ポリビニルアルコールの溶解性は水温の上昇とともに大きくなるため、ボイラー冷却水の回収用途等の高温水の処理には適さない。これらに加えて、アルカリ性条件でけん化処理すると、ポリフッ化ビニリデン系樹脂もアルカリで処理されてしまうため、着色や強度の低下を招く恐れがあった。   A method focusing on polyvinyl acetate mixed with a polyvinylidene fluoride resin is also disclosed. That is, in Patent Document 4, a film is first prepared by blending polyvinyl acetate and a polyvinylidene fluoride resin, and the polyvinyl acetate group in the film is saponified under alkaline conditions to obtain polyvinyl alcohol. The thus obtained blend film of polyvinyl alcohol and polyvinylidene fluoride resin exhibits excellent hydrophilicity and excellent stain resistance against proteins and the like. However, when the film thus obtained is washed with acid, alkali, chlorine, or the like as described above, the polyvinyl alcohol is attacked by chemicals, and there is a possibility that the performance is deteriorated. Moreover, since polyvinyl alcohol is strongly hydrophilic and water-soluble, it gradually dissolves when used in an aqueous system. Therefore, the use of the above-mentioned blend film of polyvinyl alcohol and polyvinylidene fluoride resin exhibiting excellent stain resistance is not preferred in applications that dislike contamination of permeated water, particularly in drinking water and purified water applications. Furthermore, since the solubility of polyvinyl alcohol increases as the water temperature rises, it is not suitable for the treatment of high-temperature water such as for boiler cooling water recovery. In addition to these, when the saponification treatment is performed under alkaline conditions, the polyvinylidene fluoride resin is also treated with alkali, which may lead to coloring and a decrease in strength.

そして、疎水性樹脂膜を親水化する方法には、膜表面を親水性に優れたポリマーでコーティングする方法もある。特許文献5には、耐汚染性、耐熱性に優れ、水不溶性のポリエチレンビニルアルコールでポリフッ化ビニリデン系樹脂膜表面をコーティングする方法が開示されている。しかしながら、この方法ではコーティング部が剥離すると親水性が失われてしまう問題点があった。また、コーティング厚みを巧みに制御しないと、透水量が著しく低下するという問題もあった。
特開昭59−196322号公報 特開昭57−174104号公報 特開昭62−125802号公報 特許第3200095号公報 特開2002−233739号公報
As a method of hydrophilizing the hydrophobic resin film, there is a method of coating the film surface with a polymer having excellent hydrophilicity. Patent Document 5 discloses a method of coating a polyvinylidene fluoride resin film surface with polyethylene vinyl alcohol which is excellent in stain resistance and heat resistance and is insoluble in water. However, this method has a problem that the hydrophilicity is lost when the coating part is peeled off. In addition, if the coating thickness is not controlled skillfully, there is also a problem that the amount of water permeability is remarkably reduced.
JP 59-196322 A JP-A-57-174104 Japanese Patent Laid-Open No. 62-125802 Japanese Patent No. 3200095 Japanese Patent Application Laid-Open No. 2002-233739

本発明は、従来の技術の上述した問題点に鑑み、分離特性、透水性能、化学的強度(耐薬品性)、物理的強度とともに耐汚れ性に優れた液体分離膜を製造する方法を提供することを目的とする。 The present invention provides a method for producing a liquid separation membrane having excellent dirt resistance as well as separation characteristics, water permeability, chemical strength (chemical resistance) and physical strength in view of the above-mentioned problems of the prior art. For the purpose.

上記課題を解決するための本発明は、下記(1)〜(5)の構成によって達成される。
(1)ポリフッ化ビニリデン系樹脂と、酢酸ビニルを60〜95モル%の範囲内で含有するポリエチレン酢酸ビニル系樹脂とを混和溶解したポリマ溶液から製膜した後、膜中のポリエチレン酢酸ビニル系樹脂を加水分解することを特徴とする液体分離膜の製造方法。
(2)製膜に供するポリマ溶液が、さらに界面活性剤を含有することを特徴とする上記(1)記載の液体分離膜の製造方法。
(3)酸性条件下でポリエチレン酢酸ビニル系樹脂を加水分解することを特徴とする、上記(1)又は(2)に記載の液体分離膜の製造方法。
(4)製膜された膜中のポリエチレン酢酸ビニル系樹脂に含まれるアセチル基の10〜100モル%を加水分解することを特徴とする、上記(1)〜(3)のいずれかに記載の液体分離膜の製造方法。
(5)前記ポリマ溶液中における前記ポリフッ化ビニリデン系樹脂の濃度が10〜50重量%であり、かつ、ポリエチレン酢酸ビニル系樹脂の濃度が0.5〜15重量%であることを特徴とする上記(1)〜(4)のいずれかに記載の液体分離膜の製造方法。
The present invention for solving the above problems is achieved by the following configurations (1) to (5) .
(1 ) After forming a film from a polymer solution obtained by mixing and dissolving a polyvinylidene fluoride resin and a polyethylene vinyl acetate resin containing vinyl acetate in the range of 60 to 95 mol%, the polyethylene vinyl acetate resin in the film A method for producing a liquid separation membrane, which comprises hydrolyzing water.
(2) The method for producing a liquid separation membrane according to (1), wherein the polymer solution used for membrane formation further contains a surfactant.
(3) The method for producing a liquid separation membrane according to (1) or (2), wherein the polyethylene vinyl acetate resin is hydrolyzed under acidic conditions.
(4) Hydrolysis of 10 to 100 mol% of acetyl groups contained in the polyethylene vinyl acetate resin in the formed film is as described in any one of (1) to (3) above A method for producing a liquid separation membrane.
(5) concentration before Symbol polyvinylidene fluoride resin in the polymer solution is 10 to 50 wt%, and the concentration of polyethylene vinyl acetate-based resin, characterized in that 0.5 to 15 wt% The manufacturing method of the liquid separation membrane in any one of said (1)- (4) .

本発明によれば、ポリエチレンビニルアルコールをポリフッ化ビニリデン系樹脂中に分散させることで、分離特性、透水性能、化学的強度(耐薬品性)、物理的強度とともに耐汚れ性に優れた液体分離膜とすることができる。これによって、膜の洗浄間隔が長くなり、ろ過寿命も長くなるため、造水コストの低減が可能になる。
According to the present invention, by separating polyethylene vinyl alcohol in a polyvinylidene fluoride resin, a liquid separation membrane having excellent separation resistance, water permeability, chemical strength (chemical resistance), physical strength, and soil resistance. It can be. As a result, the cleaning interval of the membrane becomes longer and the filtration life becomes longer, so that the water production cost can be reduced.

本発明法は、ポリフッ化ビニリデン系樹脂と、酢酸ビニルを60〜95モル%の範囲内で含有するポリエチレン酢酸ビニル系樹脂とを混和溶解したポリマ溶液から製膜した後、膜中のポリエチレン酢酸ビニル系樹脂を加水分解処理してポリビニルアルコールとするものであり、ポリエチレンビニルアルコールが熱可塑性樹脂中に分散した構造の液体分離膜が形成される。
The method of the present invention comprises forming a film from a polymer solution in which a polyvinylidene fluoride resin and a polyethylene vinyl acetate resin containing vinyl acetate in the range of 60 to 95 mol% are mixed and dissolved, and then polyethylene polyethylene acetate in the film A liquid separation membrane having a structure in which polyethylene vinyl alcohol is dispersed in a thermoplastic resin is formed by hydrolyzing the resin to form polyvinyl alcohol.

ポリエチレン酢酸ビニル系樹脂とポリフッ化ビニリデン系樹脂に代表される分子凝集性の大きな熱可塑性樹脂とのブレンドは通常困難であるが、本発明では、高酢酸ビニル含有量タイプのポリエチレン酢酸ビニル系樹脂を用い、界面活性剤を添加して分子の分散性を向上させることにより均一なポリマー溶液を得ることができ、上述の膜を形成することができる。   It is usually difficult to blend a polyethylene vinyl acetate resin and a thermoplastic resin having a large molecular cohesion represented by a polyvinylidene fluoride resin, but in the present invention, a high vinyl acetate content type polyethylene vinyl acetate resin is used. A uniform polymer solution can be obtained by adding a surfactant and improving the dispersibility of the molecules, and the above-described film can be formed.

本発明におけるポリフッ化ビニリデン系樹脂とは、ポリフッ化ビニリデンホモポリマーおよび/またはポリフッ化ビニリデン共重合体を含有する樹脂のことである。複数の種類のポリフッ化ビニリデン共重合体を含有しても構わない。ポリフッ化ビニリデン共重合体としては、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。また、ポリフッ化ビニリデン系樹脂の重量平均分子量は、要求される分離膜の強度と透水性能によって適宜選択すれば良いが、重量平均分子量が低いと強度が低く、重量平均分子量が高いと透水性が低くなり易いので、高強度と高透水性能を併せ有する分離膜を得るためには5万以上100万以下が好ましい。そして、分離膜への加工性を考慮した場合は10万以上70万以下が好ましく、さらに15万以上60万以下が好ましい。   The polyvinylidene fluoride resin in the present invention is a resin containing a polyvinylidene fluoride homopolymer and / or a polyvinylidene fluoride copolymer. A plurality of types of polyvinylidene fluoride copolymers may be contained. Examples of the polyvinylidene fluoride copolymer include a copolymer of vinylidene fluoride and one or more selected from tetrafluoroethylene, propylene hexafluoride, and ethylene trifluoride chloride. Further, the weight average molecular weight of the polyvinylidene fluoride resin may be appropriately selected depending on the required strength and water permeability of the separation membrane, but the strength is low when the weight average molecular weight is low, and the water permeability is high when the weight average molecular weight is high. Since it tends to be low, in order to obtain a separation membrane having both high strength and high water permeability, 50,000 to 1,000,000 is preferable. And when the workability to a separation membrane is considered, 100,000 or more and 700,000 or less are preferable, and 150,000 or more and 600,000 or less are more preferable.

また、ポリフッ化ビニリデン系樹脂には、最大で50重量%の混和可能な樹脂を含んでいてもよい。例えば、アクリル樹脂やセルロースエステル樹脂を最大で50重量%含んだ状態である。アクリル樹脂とは、主としてアクリル酸、メタクリル酸およびこれらの誘導体、例えばアクリルアミド、アクリロニトリルなどの重合体を包含する高分子化合物をいうが、特にアクリル酸エステル樹脂やメタクリル酸エステル樹脂が、ポリフッ化ビニリデン系樹脂との混和性が高いことから、好ましく用いられる。また、セルロースエステル樹脂とは、セルロースアセテート、セルロースプロピオネート、セルロースブチレートなどのセルロースのエステル化体を含有する高分子化合物をいうが、セルロースエステル樹脂のエステル化度はポリフッ化ビニリデン樹脂とともに溶媒に溶解する程度であれば特に限定されない。   Further, the polyvinylidene fluoride resin may contain up to 50% by weight of a miscible resin. For example, it is in a state containing a maximum of 50% by weight of an acrylic resin or a cellulose ester resin. The acrylic resin refers to a polymer compound mainly including a polymer such as acrylic acid, methacrylic acid and derivatives thereof such as acrylamide and acrylonitrile. In particular, an acrylic ester resin or a methacrylic ester resin is a polyvinylidene fluoride type. It is preferably used because of its high miscibility with the resin. The cellulose ester resin refers to a polymer compound containing an esterified cellulose such as cellulose acetate, cellulose propionate, and cellulose butyrate. The degree of esterification of the cellulose ester resin is a solvent together with the polyvinylidene fluoride resin. If it is a grade melt | dissolved in this, it will not specifically limit.

本発明におけるポリエチレン酢酸ビニル系樹脂とは、ポリエチレン酢酸ビニル共重合体を含有する樹脂のことである。複数の種類のポリエチレン酢酸ビニル共重合体を含有しても構わない。ポリエチレン酢酸ビニル共重合体としては、エチレンと酢酸ビニルとを共重合させたものであるが、塩素化エチレン、塩化ビニル、フッ化ビニリデン等が共重合されていても良い。ポリエチレン酢酸ビニル系樹脂の酢酸ビニル含有量が低くなると、有機溶媒に対する溶解性が低下し、取り扱い難くなる。逆に、ポリエチレン酢酸ビニル系樹脂のエチレン含有量が低くなると、化学的耐久性や耐熱性が低下し、水に膨潤しやすくなる。従って、優れた耐熱性と水不溶性を維持しつつ均一なポリマー溶液を調製するためには、ポリエチレン酢酸ビニル系樹脂として、60〜95モル%の範囲内で酢酸ビニルを含有する樹脂を用いる。さらには、ポリエチレン酢酸ビニル系樹脂が65〜90モル%の範囲内で酢酸ビニルを含有することが好ましい。なお、ポリエチレン酢酸ビニル系樹脂の酢酸ビニル部はアセチル基を有するが、前述したポリマー溶液を調製できる範囲でアセチル基の一部が加水分解して水酸基となっていてもかまわない。 The polyethylene vinyl acetate resin in the present invention is a resin containing a polyethylene vinyl acetate copolymer. A plurality of types of polyethylene vinyl acetate copolymers may be contained. The polyethylene vinyl acetate copolymer is a copolymer of ethylene and vinyl acetate, but chlorinated ethylene, vinyl chloride, vinylidene fluoride, etc. may be copolymerized. When the vinyl acetate content of the polyethylene vinyl acetate resin is lowered, the solubility in an organic solvent is lowered and handling becomes difficult. On the other hand, when the ethylene content of the polyethylene vinyl acetate resin is lowered, the chemical durability and the heat resistance are lowered and the resin is easily swollen in water. Therefore, in order to prepare a uniform polymer solution while maintaining excellent heat resistance and water insolubility, a resin containing vinyl acetate in the range of 60 to 95 mol% is used as the polyethylene vinyl acetate resin. Furthermore, it is preferable that the polyethylene vinyl acetate resin contains vinyl acetate within a range of 65 to 90 mol%. In addition, although the vinyl acetate part of the polyethylene vinyl acetate resin has an acetyl group, a part of the acetyl group may be hydrolyzed into a hydroxyl group within a range where the polymer solution described above can be prepared.

また、本発明において製膜原液に用いる溶媒としては、上述のポリフッ化ビニリデン系樹脂及びポリ酢酸ビニル系樹脂の融点以下の温度でポリフッ化ビニリデン系樹脂及びポリ酢酸ビニル系樹脂を5〜60重量%、好ましくは10〜50重量%の範囲内で溶解できるものであれば特に限定されない。このような溶媒としては、シクロヘキサノン、イソホロン、γ−ブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテート等の中鎖長のアルキルケトン、エステル、グリコールエステルおよび有機カーボネート、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等が好ましく用いられる。これらの溶媒は1種類で用いても2種類以上の混合物として用いても良い。
As the solvent used in the film-forming solution in the present invention, the polyvinylidene fluoride resin及 beauty polyvinyl acetate-based resin at a temperature below the melting point of the above-mentioned polyvinylidene fluoride resin及 beauty polyvinyl acetate-based resin 5 to 60 It is not particularly limited as long as it can be dissolved within the range of wt%, preferably 10 to 50 wt%. Such solvents include cyclohexanone, isophorone, γ-butyrolactone, methyl isoamyl ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, diacetone alcohol, glycerol triacetate, and other medium chain length alkyl ketones, esters, glycol esters. Organic carbonates, N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethylurea, lower alkyl ketones such as trimethyl phosphate, esters, amides, and the like are preferably used. These solvents may be used alone or as a mixture of two or more.

これら製膜原液におけるポリフッ化ビニリデン系樹脂の濃度組成は、製膜性や膜強度を考慮すると10〜50重量%の範囲内が良い。高透水性の膜を作製する場合は、ポリフッ化ビニリデン系樹脂の濃度は低い方が良く、好ましくは10〜25重量%の範囲内が良い。酢酸ビニル系樹脂の濃度組成は、加水分解処理後に十分な親水性が得られる範囲であれば良く、共重合組成比や加水分解処理の程度により親水性を任意に設定できるが、膜強度の観点から0.5〜15重量%の範囲内が好ましい。
Concentration composition put that polyvinylidene fluoride resin to these film-forming stock solution, considering the film forming property and film strength may in the range of 10 to 50 wt%. When producing a highly water-permeable film, the concentration of the polyvinylidene fluoride resin should be low, and preferably in the range of 10 to 25% by weight. The concentration composition of the vinyl acetate resin may be in a range where sufficient hydrophilicity can be obtained after the hydrolysis treatment, and the hydrophilicity can be arbitrarily set depending on the copolymer composition ratio and the degree of the hydrolysis treatment. In the range of 0.5 to 15% by weight.

本発明の製膜原液には、上述した熱可塑性樹脂、酢酸ビニル系樹脂、溶媒以外に、必要に応じて開孔剤や非溶媒等の物質を含有させても良い。   In addition to the above-described thermoplastic resin, vinyl acetate resin, and solvent, the film-forming stock solution of the present invention may contain a substance such as a pore-opening agent or a non-solvent as necessary.

開孔剤とは、該製膜原液を用いて製造される膜の多孔化を促すものであれば特に限定されず、例えばポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルピロリドン、グリセリンなどの多価アルコール類、塩化リチウム、塩化マグネシウム、塩化カルシウム等の無機塩、ソルビタン脂肪酸エステル等の多価アルコールのエステル体、ソルビタン脂肪酸エステルのエチレンオキサイド低モル付加物、ノニルフェノールのエチレンオキサイド低モル付加物、プルロニック型エチレンオキサイド低モル付加物等のエチレンオキサイド低モル付加物、ポリオキシエチレンアルキルエステル、アルキルアミン塩、ポリアクリル酸ソーダ等の界面活性剤が好ましく用いられる。この中で、界面活性剤は、開孔剤として働くだけでなく、ポリマーなどの溶質の溶媒中への溶解を促進し、溶質を分散させる効果もあるため特に好ましく用いられる。   The pore-opening agent is not particularly limited as long as it promotes the porosity of the membrane produced using the membrane-forming stock solution. For example, polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, glycerin, etc. Polyhydric alcohols, inorganic salts such as lithium chloride, magnesium chloride, calcium chloride, ester bodies of polyhydric alcohols such as sorbitan fatty acid esters, ethylene oxide low mol adducts of sorbitan fatty acid esters, ethylene oxide low mol adducts of nonylphenol In addition, surfactants such as ethylene oxide low-mole adducts such as pluronic ethylene oxide low-mole adducts, polyoxyethylene alkyl esters, alkylamine salts, and polyacrylic acid soda are preferably used. Of these, surfactants are particularly preferably used because they not only act as pore-opening agents but also promote the dissolution of solutes such as polymers in solvents and disperse the solutes.

また、非溶媒とは、上述のポリフッ化ビニリデン系樹脂及びポリ酢酸ビニル系樹脂を溶解しない溶媒であって、かつ、ポリフッ化ビニリデン系樹脂を溶解する溶媒と混和する溶媒であれば特に限定されない。非溶媒の添加によって相分離を制御することは一般によく行われるが、多量に非溶媒を添加するとゲル化が生じたり、成形が困難になるため、ポリフッ化ビニリデン系樹脂や使用する溶媒の組成に応じて適宜添加量を調節する必要がある。非溶媒としては、水が安価なため特に好ましく用いられる。
Also, the non-solvent, a solvent not dissolving the above-mentioned polyvinylidene fluoride resin及 beauty polyvinyl acetate-based resin, and is not particularly limited as long as it is a solvent which is miscible with the solvent for dissolving the polyvinylidene fluoride resin . Control of phase separation by adding a non-solvent is generally performed. However, if a large amount of non-solvent is added, gelation occurs or molding becomes difficult. Therefore, the composition of the polyvinylidene fluoride resin and the solvent to be used is reduced. It is necessary to adjust the addition amount accordingly. As the non-solvent, water is particularly preferred because it is inexpensive.

本発明において、加水分解処理とは、アルカリ性条件または酸性条件でポリエチレン酢酸ビニル系樹脂のアセチル基を加水分解する処理である。アセチル基を加水分解して水酸基とすることにより、膜の親水性が増大し、疎水性相互作用による汚れが低減され、膜の耐汚れ性が向上する。この加水分解処理の程度は、ポリエチレン酢酸ビニル系樹脂とポリフッ化ビニリデン系樹脂膜との組成比やポリエチレン酢酸ビニル系樹脂中の酢酸ビニル含有率によって、適宜選択され得るが、膜の耐汚れ性を向上させるためには、アセチル基の10モル%以上100モル%以下を加水分解することが好ましい。 In the present invention, the hydrolysis treatment is a treatment for hydrolyzing the acetyl group of the polyethylene vinyl acetate resin under alkaline conditions or acidic conditions. Hydrolysis of the acetyl group to form a hydroxyl group increases the hydrophilicity of the membrane, reduces contamination due to hydrophobic interactions, and improves the stain resistance of the membrane. The degree of the hydrolysis treatment can be appropriately selected depending on the composition ratio of the polyethylene vinyl acetate resin and the polyvinylidene fluoride resin film and the vinyl acetate content in the polyethylene vinyl acetate resin. to improve the not preferable to hydrolyze to 100 mol% 10 mol% or more acetyl groups.

アルカリ性条件で加水分解(ケン化)する場合、pH11以上の中〜強アルカリ性条件下で処理すると、ポリフッ化ビニリデン系樹脂も同時にアルカリで処理されて、着色、強度の低下が起こる。pH8〜11の弱〜中アルカリ性条件下で処理すると、この問題はpHが下がるにつれて抑えられるが、ポリエチレン酢酸ビニル系樹脂の加水分解処理速度が遅くなる。従って、アルカリ性条件下でポリフッ化ビニリデン系樹脂の着色や強度の低下を抑制しつつ、実用的な加水分解速度を達成するためには、pH10〜11程度で処理するのが好ましい。   When hydrolyzing (saponifying) under alkaline conditions, if the treatment is carried out under medium to strong alkaline conditions of pH 11 or higher, the polyvinylidene fluoride resin is also treated with alkali at the same time, and coloring and strength decrease occur. When the treatment is carried out under weak to medium alkaline conditions of pH 8 to 11, this problem is suppressed as the pH is lowered, but the hydrolysis rate of the polyethylene vinyl acetate resin is slowed down. Therefore, in order to achieve a practical hydrolysis rate while suppressing coloring and strength reduction of the polyvinylidene fluoride resin under alkaline conditions, it is preferable to perform the treatment at about pH 10-11.

一方、酸性条件で加水分解する場合、中〜強酸性条件下で処理してもポリフッ化ビニリデン系樹脂は安定である。従って、ポリエチレン酢酸ビニル系樹脂の加水分解処理は、pH1〜5の中〜強酸性条件下で実施することが好ましいが、処理効率を考慮すると、pH1〜4で実施するのが特に好ましい。   On the other hand, when hydrolyzing under acidic conditions, the polyvinylidene fluoride resin is stable even if treated under medium to strong acidic conditions. Accordingly, the hydrolysis treatment of the polyethylene vinyl acetate resin is preferably carried out under a medium to strongly acidic condition at pH 1 to 5, but is particularly preferably carried out at pH 1 to 4 in consideration of the treatment efficiency.

本発明では、加水分解処理とともに架橋処理を施すことによってポリエチレンビニルアルコールの耐薬品性をさらに向上させることができる。この際、加水分解処理及び架橋処理は加水分解処理を先に実施した後に架橋処理を実施しても良いし、両処理を同時に実施しても良い。ここで、コスト面や取り扱いの容易さを考慮に入れると、加水分解処理と架橋処理とを同時に実施することが好ましい。   In the present invention, chemical resistance of polyethylene vinyl alcohol can be further improved by performing a crosslinking treatment together with a hydrolysis treatment. At this time, the hydrolysis treatment and the crosslinking treatment may be performed after the hydrolysis treatment is performed first, or both treatments may be performed simultaneously. Here, in consideration of cost and ease of handling, it is preferable to simultaneously perform the hydrolysis treatment and the crosslinking treatment.

本発明における架橋処理とは、ポリエチレンビニルアルコールが有する水酸基を利用してポリエチレンビニルアルコールポリマー鎖間を架橋させる処理であれば良く、以下に例を挙げてその方法を述べる。   The cross-linking treatment in the present invention may be any treatment that cross-links between polyethylene vinyl alcohol polymer chains using a hydroxyl group possessed by polyethylene vinyl alcohol, and the method will be described below with examples.

すなわち、酸性条件下では、ポリエチレンビニルアルコールを多官能アルデヒドと反応させアセタール結合を形成することがよい。この方法は簡便で、反応進行が速やかであるため本発明に特に好適に用いることができる。アルデヒドとしては、グリオキサル、グルタルアルデヒドが比較的広いpH範囲(pH1〜5)で架橋反応し得るので、特に好ましく用いられる。また、多官能アルデヒドによる架橋処理は、上述した加水分解処理に引き続いて実施しても良いし、加水分解処理と同時に実施しても良い。   That is, under acidic conditions, polyethylene vinyl alcohol is preferably reacted with a polyfunctional aldehyde to form an acetal bond. Since this method is simple and the reaction proceeds rapidly, it can be used particularly preferably in the present invention. As the aldehyde, glyoxal and glutaraldehyde are particularly preferably used because they can undergo a crosslinking reaction in a relatively wide pH range (pH 1 to 5). Moreover, the crosslinking treatment with the polyfunctional aldehyde may be performed subsequent to the hydrolysis treatment described above or may be performed simultaneously with the hydrolysis treatment.

一方、pH10〜11のアルカリ条件下では、たとえば、ポリエチレンビニルアルコールをエピクロロヒドリンと反応させ、グリシジルエーテルを生じさせればよく、pH10〜11で加水分解処理した後にエピクロロヒドリンで架橋処理を実施したり、pH10〜11で加水分解処理と架橋処理とを同時に実施すればよい。   On the other hand, under alkaline conditions of pH 10-11, for example, polyethylene vinyl alcohol may be reacted with epichlorohydrin to produce glycidyl ether. After hydrolysis at pH 10-11, crosslinking treatment with epichlorohydrin is performed. The hydrolysis treatment and the crosslinking treatment may be carried out simultaneously at pH 10-11.

このように製造される本発明の液体分離膜は、中空糸膜でも平膜でも良く、その用途によって選択される。本発明の製膜原液には、ポリフッ化ビニリデン系樹脂、ポリ酢酸ビニル系樹脂、溶媒、開孔剤等を含有するが、これらの濃度や組み合わせによって製膜原液の粘度が大きく変化する。製膜原液の粘度は、低すぎると膜が形成されずに欠点が生じたり膜の強度が低下し、高すぎると厚みムラが生じたり膜の透水性が低くなり経済的でない。そこで、中空糸膜の場合、製膜原液の粘度は1Pa・s〜300Pa・sの範囲内とし、平膜の場合、製膜原液の粘度は0.1Pa・s〜10Pa・sの範囲内とすることが好ましい。より好ましくは中空糸膜の場合、10Pa・s〜200Pa・sの範囲内であり、平膜の場合、0.3Pa・s〜1Pa・sの範囲内である。このような粘度の製膜原液を用いることで、後述する寸法の膜で、透水性能、強度の高い膜を容易に得ることができる。また、後述する支持材の上にポリマーをコーティングする場合、支持材が強度を補うため、膜には強度よりも透水性に重点を置いた設計が成される。この場合、製膜原液の粘度は、平膜の場合でも中空糸膜の場合でも高透水性を発現させるためには、0.01Pa・s〜5Pa・sの範囲内とすることが好ましく、より好ましくは0.05Pa・s〜3Pa・sの範囲内とすることが好ましい。
The liquid separation membrane of the present invention produced as described above may be a hollow fiber membrane or a flat membrane, and is selected according to its use. The film-forming stock solution of the present invention contains a polyvinylidene fluoride-based resin, a polyvinyl acetate-based resin, a solvent, a pore-opening agent, etc., and the viscosity of the film-forming stock solution varies greatly depending on the concentration and combination thereof. If the viscosity of the film-forming stock solution is too low, a film is not formed and a defect is caused or the strength of the film is lowered. If the viscosity is too high, thickness unevenness occurs or the water permeability of the film is lowered, which is not economical. Therefore, in the case of a hollow fiber membrane, the viscosity of the membrane forming stock solution is in the range of 1 Pa · s to 300 Pa · s, and in the case of a flat membrane, the viscosity of the membrane forming stock solution is in the range of 0.1 Pa · s to 10 Pa · s. It is preferable to do. More preferably, in the case of a hollow fiber membrane, it is in the range of 10 Pa · s to 200 Pa · s, and in the case of a flat membrane, it is in the range of 0.3 Pa · s to 1 Pa · s. By using a film-forming stock solution having such a viscosity, a film having high water permeability and strength can be easily obtained with a film having dimensions as described later. Further, when a polymer is coated on a support material to be described later, the support material supplements the strength, and thus the membrane is designed with emphasis on water permeability rather than strength. In this case, the viscosity of the membrane forming stock solution is preferably within the range of 0.01 Pa · s to 5 Pa · s in order to develop high water permeability in both the case of a flat membrane and the case of a hollow fiber membrane. Preferably, it is in the range of 0.05 Pa · s to 3 Pa · s.

中空糸膜を地下水等の清澄な原水のろ過に用いる場合、小さい内径では圧損が高く非効率的であるので、その中空糸膜の内径は500μm〜2000μmの範囲内とすることが好ましい。さらに好ましくは、600μm〜1500μmの範囲内である。膜厚は、ろ過運転中に糸つぶれや糸切れが起こらないように内径をもとに設計されるが、膜厚が厚くなると水透過性が低下する。外圧式ろ過では、内圧式ろ過に比べて膜厚を厚くする必要があり、150μm〜750μmの範囲内が好ましく、より好ましくは250μm〜600μmの範囲内である。内圧式ろ過では、外圧式ろ過に比べて膜厚は薄くても良く、膜厚100μm〜500μmの範囲内が好ましく用いられる。外径は、内径及び膜厚が決まると自動的に決まるものであり、外径800μm〜3500μmの範囲内が好ましく、より好ましくは1000μm〜2500μmの範囲内である。中空糸膜の内外表面の細孔径は、分離対象物質によって自由に選択できるが、小さすぎると水透過性が低下する。例えば、直径約4μmのクリプトスポリジウムを除去する場合には、細孔径0.01μm〜2.0μmの範囲内が良く、水透過性と安全性を考慮に入れると、0.05μm〜1.0μmの範囲内がさらに良い。一方、表流水等の濁質の多い原水のろ過の場合は、膜表面への濁質の堆積が著しく、濁質量の地域差、季節差が大きい。一般的に、内径、膜厚及び外径は清澄な原水のろ過時のものに準じて設計されるが、細孔径には特に注意が払われる。これは、細孔径が濁質よりも大きいと濁質が膜中に入り込んで、膜を汚染し、膜性能を低下させてしまうからである。高い水透過性と濁質成分に対する高い耐汚染性のためには、細孔径0.01μm〜0.5μmの範囲内が好ましく、より好ましくは、0.05〜0.3μmの範囲内である。   When the hollow fiber membrane is used for filtering clear raw water such as groundwater, the inner diameter of the hollow fiber membrane is preferably in the range of 500 μm to 2000 μm because the pressure loss is high and inefficient at a small inner diameter. More preferably, it exists in the range of 600 micrometers-1500 micrometers. The film thickness is designed based on the inner diameter so as not to cause thread crushing or thread breakage during the filtration operation, but water permeability decreases as the film thickness increases. In the external pressure filtration, it is necessary to increase the film thickness as compared with the internal pressure filtration, and it is preferably in the range of 150 μm to 750 μm, more preferably in the range of 250 μm to 600 μm. In the internal pressure type filtration, the film thickness may be thinner than in the external pressure type filtration, and the film thickness in the range of 100 μm to 500 μm is preferably used. The outer diameter is automatically determined when the inner diameter and the film thickness are determined, and the outer diameter is preferably in the range of 800 μm to 3500 μm, more preferably in the range of 1000 μm to 2500 μm. The pore diameter of the inner and outer surfaces of the hollow fiber membrane can be freely selected depending on the substance to be separated, but if it is too small, the water permeability is lowered. For example, when removing Cryptosporidium having a diameter of about 4 μm, the pore diameter is preferably in the range of 0.01 μm to 2.0 μm, and considering water permeability and safety, it is 0.05 μm to 1.0 μm. Within the range is even better. On the other hand, in the case of filtering raw water with high turbidity such as surface water, turbidity deposits on the membrane surface are significant, and there are large regional and seasonal differences in turbid mass. In general, the inner diameter, the film thickness, and the outer diameter are designed according to the filtration of clear raw water, but particular attention is paid to the pore diameter. This is because if the pore size is larger than the turbidity, the turbidity enters the film, contaminates the film, and deteriorates the film performance. For high water permeability and high contamination resistance against turbid components, the pore diameter is preferably in the range of 0.01 μm to 0.5 μm, more preferably in the range of 0.05 to 0.3 μm.

また、中空糸膜の内部構造は任意であり、いわゆるマクロボイドが存在していても、膜厚方向に同じような大きさの孔を有する均質構造であっても良い。さらに、ポリエステル、ナイロン、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデンなどの中空糸繊維、ガラス繊維、金属繊維などを筒状に編んだものを支持材としてその上に本発明に係る液体分離膜を被覆したり、支持材の一部に本発明に係る液体分離膜を複合化しても良い。   Further, the internal structure of the hollow fiber membrane is arbitrary, and a so-called macrovoid may exist or a homogeneous structure having pores of the same size in the film thickness direction may be used. In addition, hollow fiber fibers such as polyester, nylon, polysulfone, polyacrylonitrile, polyvinylidene fluoride, glass fibers, metal fibers, and the like are knitted into a cylindrical shape, and the liquid separation membrane according to the present invention is coated thereon. Alternatively, the liquid separation membrane according to the present invention may be combined with a part of the support material.

一方、平膜の場合には、膜厚はろ過運転中に破れが起こらないように設計されるが、膜厚が厚くなると水透過性が低下する。このため、膜厚10μm〜1mmの範囲内、さらには30μm〜500μmの範囲内であることが好ましい。平膜の場合も、織物、編み物、不織布などの面状の支持材に本発明に係る液体分離膜を被覆したり、その支持材の一部と本発明に係る液体分離膜とを複合化しても良い。これらの場合、この面状支持材を含む厚みが上述の範囲内にあることが好ましい。また、表面の細孔径は、分離対象によって自由に選択できるが、小さすぎると水透過性が低下する。例えば、清澄な原水のろ過に用いる場合であって、直径約4μmのクリプトスポリジウムが除去対象物質である場合には、細孔径0.01μm〜2.0μmの範囲内が良く、水透過性と安全性を考慮に入れると、0.05μm〜1.0μmの範囲内がより好ましい。また、表流水等の濁質の多い原水のろ過であれば、細孔径0.01μm〜1.0μmの範囲内が好ましく、より好ましくは、0.05〜0.5μmの範囲内である。   On the other hand, in the case of a flat membrane, the film thickness is designed so as not to be broken during the filtration operation. However, when the film thickness increases, the water permeability decreases. For this reason, it is preferable that it exists in the range of 10 micrometers-1 mm of film thickness, and also in the range of 30 micrometers-500 micrometers. In the case of a flat membrane, the liquid separation membrane according to the present invention is coated on a sheet-like support material such as woven fabric, knitted fabric, or non-woven fabric, or a part of the support material is combined with the liquid separation membrane according to the present invention. Also good. In these cases, it is preferable that the thickness including the planar support material be within the above-described range. Further, the surface pore diameter can be freely selected depending on the separation target, but if it is too small, the water permeability is lowered. For example, when used for the filtration of clear raw water, and when Cryptosporidium having a diameter of about 4 μm is a substance to be removed, the pore diameter is preferably within a range of 0.01 μm to 2.0 μm, and water permeability and safety In consideration of the property, the range of 0.05 μm to 1.0 μm is more preferable. Moreover, if raw water with much turbidity such as surface water is filtered, the pore diameter is preferably in the range of 0.01 μm to 1.0 μm, more preferably in the range of 0.05 to 0.5 μm.

平膜の内部構造は任意であり、いわゆるマクロボイドが存在していても、膜厚方向に同じような大きさの孔のあいた均質構造であっても良い。   The internal structure of the flat film is arbitrary, and so-called macro voids may be present or a homogeneous structure having holes of the same size in the film thickness direction may be used.

そして、本発明の液体分離膜の製造方法をさらに詳細に説明すると、まず、ポリフッ化ビニリデン系樹脂、ポリ酢酸ビニル系樹脂、溶媒、開孔剤等を室温溶解または加熱溶解して製膜原液とする。次に、製膜溶液を、該樹脂の融点よりかなり低い温度で口金から押出したり、中空糸や筒状あるいは面状支持体にコーティングしたり、ガラス板上にキャストしたりして成形した後、該樹脂の非溶媒を含む液体に接触させて非溶媒誘起相分離により分離膜を製造する。また、室温ではポリフッ化ビニリデン系樹脂を溶解しにくい溶媒を、該樹脂を溶解する溶媒として用いた場合は、ポリフッ化ビニリデン系樹脂、ポリ酢酸ビニル系樹脂、溶媒、開孔剤等を高温溶解して製膜溶液を製造し、製膜溶液を口金から吐出した後、冷却して相分離及び固化せしめる熱誘起相分離法により分離膜を製造する。その後、酸またはアルカリを添加して酸性またはアルカリ性にした水ーアルコール混合溶液中に液体分離膜を浸漬するなどして、ポリエチレン酢酸ビニル系樹脂を加水分解処理し、ポリエチレンビニルアルコールとする。
The method for producing a liquid separation membrane of the present invention will be described in more detail. First , a polyvinylidene fluoride resin, a polyvinyl acetate resin, a solvent, a pore-opening agent, etc. are dissolved or heated and dissolved at room temperature, To do. Next, after the film forming solution is extruded from the die at a temperature considerably lower than the melting point of the resin, coated on a hollow fiber or cylindrical or planar support, or cast on a glass plate, A separation membrane is produced by contact with a liquid containing a non-solvent of the resin by non-solvent-induced phase separation. In addition, when a solvent that does not dissolve polyvinylidene fluoride resin at room temperature is used as a solvent for dissolving the resin , polyvinylidene fluoride resin, polyvinyl acetate resin, solvent, pore-opening agent, etc. are dissolved at high temperature. A membrane-forming solution is manufactured, and after the membrane-forming solution is discharged from the die, a separation membrane is manufactured by a heat-induced phase separation method in which the membrane is cooled and phase-separated and solidified. Thereafter, the polyethylene vinyl acetate resin is hydrolyzed to obtain polyethylene vinyl alcohol by immersing the liquid separation membrane in a water-alcohol mixed solution made acidic or alkaline by adding acid or alkali.

加水分解処理を経て、親水化された本発明の液体分離膜は、原液流入口や透過液流出口などを備えたケーシングに収容され膜モジュールとして使用される。膜モジュールは、膜が中空糸膜である場合には、中空糸膜を複数本束ねて円筒状の容器に納め、両端または片端をポリウレタンやエポキシ樹脂等で固定し、透過液を回収できるようにしたり、平板状に中空糸膜の両端を固定して透過液を回収できるようにする。液体分離膜が平膜である場合には、平膜を集液管の周りに封筒状に折り畳みながらスパイラル状に巻き取り、円筒状の容器に納め、透過液をできるようにしたり、集液板の両面に平膜の配置して周囲を水密に固定し、透過液を回収できるようにする。   The liquid separation membrane of the present invention that has been hydrophilized through the hydrolysis treatment is housed in a casing having a raw solution inlet, a permeate outlet, and the like and used as a membrane module. When the membrane module is a hollow fiber membrane, bundle a plurality of hollow fiber membranes and store them in a cylindrical container, and fix both ends or one end with polyurethane or epoxy resin so that the permeate can be collected. Alternatively, both ends of the hollow fiber membrane are fixed in a flat plate shape so that the permeate can be collected. When the liquid separation membrane is a flat membrane, the flat membrane is wound in an envelope shape around the liquid collection tube, wound in a spiral shape, and stored in a cylindrical container to allow permeate to flow, or a liquid collection plate Flat membranes are arranged on both sides of the plate to fix the periphery in a watertight manner so that the permeate can be collected.

そして、膜モジュールは、少なくとも原液側に加圧手段もしくは透過液側に吸引手段を設け、造水を行う液体分離装置として用いられる。加圧手段としてはポンプを用いてもよいし、また水位差による圧力を利用してもよい。また、吸引手段としては、ポンプやサイフォンを利用すればよい。   The membrane module is used as a liquid separation device for forming water by providing at least a pressurizing means on the stock solution side or a suction means on the permeate side. A pump may be used as the pressurizing means, or a pressure due to a water level difference may be used. Moreover, what is necessary is just to utilize a pump and a siphon as a suction means.

実施例、比較例における膜の透水性能は、次のように測定した。   The water permeability of the membranes in the examples and comparative examples were measured as follows.

膜が中空糸膜の場合には、中空糸膜4本からなる長さ200mmのミニチュアモジュールを作製し、温度25℃、ろ過差圧16kPaの条件下に、純水の透水量を測定し圧力(50kPa)換算する(Q0、単位=m3/m2・h)。次に、20ppmのフミン酸(試薬、和光純薬工業株式会社製)水溶液をろ過差圧16kPa、温度25℃の条件下に外圧全ろ過で2m3/m2になるようにろ過する。さらに150kPaの逆洗圧力で透過水を1分間供給し、その直後の純水透水量を測定する(Q1)。その後、中空糸膜を次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、20ppmのフミン酸水溶液をろ過差圧16kPa、温度25℃の条件下に外圧全ろ過で2m3/m2になるようにろ過する。最後に、150kPaの逆洗圧力で透過水を1分間供給し、その直後の純水透水量を測定する(Q2)。次亜塩素酸ナトリウムは、中空糸膜の洗浄に一般的に使用される薬品であり、膜の耐薬品性を見る指標に用いる。また、長期間使用後の性能を見るために、高温で加速試験を実施している。 When the membrane is a hollow fiber membrane, a miniature module having a length of 200 mm consisting of four hollow fiber membranes is prepared, and the water permeation rate of pure water is measured under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa. 50 kPa) (Q0, unit = m 3 / m 2 · h). Next, a 20 ppm aqueous solution of humic acid (reagent, manufactured by Wako Pure Chemical Industries, Ltd.) is filtered to 2 m 3 / m 2 by total external pressure filtration under conditions of a filtration differential pressure of 16 kPa and a temperature of 25 ° C. Further, permeated water is supplied for 1 minute at a backwash pressure of 150 kPa, and the pure water permeation amount immediately after that is measured (Q1). Thereafter, the hollow fiber membrane was immersed in 5000 ppm of sodium hypochlorite aqueous solution at 80 ° C. for 24 hours, and then 20 ppm of humic acid aqueous solution was filtered at a pressure differential of 16 kPa and a temperature of 25 ° C. by external pressure total filtration at 2 m 3 / m. Filter to 2 Finally, permeate is supplied for 1 minute at a backwash pressure of 150 kPa, and the pure water permeation amount immediately after that is measured (Q2). Sodium hypochlorite is a chemical that is generally used for cleaning hollow fiber membranes, and is used as an index for checking the chemical resistance of the membrane. In order to see the performance after long-term use, an accelerated test is conducted at high temperatures.

耐汚れ性の指標としてA=Q1/Q0を用いる。Aの値が大きい膜ほど、優れた耐汚れ性を有する膜である。一方、耐薬品性及び高温耐水性の指標としてB=Q2/Q1を用いる。Bの値が大きい膜ほど、優れた耐薬品性、高温耐水性を有する膜である。   A = Q1 / Q0 is used as an index of stain resistance. A film having a larger value of A is a film having superior stain resistance. On the other hand, B = Q2 / Q1 is used as an index of chemical resistance and high temperature water resistance. A film having a larger value of B is a film having excellent chemical resistance and high temperature water resistance.

膜が平膜の場合には、直径50mmの円形に切り出し、円筒型のろ過ホルダーにセットし、その他は中空糸膜と同様の操作をする。   When the membrane is a flat membrane, it is cut into a circle with a diameter of 50 mm, set in a cylindrical filtration holder, and the other operations are the same as those for the hollow fiber membrane.

また、分離膜の表面細孔数は、走査電子顕微鏡を用いて写真を撮り、観察される細孔を数えて求める。走査型電子顕微鏡の写真の倍率は5万倍で撮影する。分離膜の表面細孔径は、同じ走査型電子顕微鏡の写真から、20個の任意の細孔の直径を測定し、平均を求める。細孔が楕円形状の場合、短径aと長径bを測定し、(a×b)0.5を等価円直径とする。この場合、表面細孔径は、20個の任意の細孔の等価円直径の平均とする。
<実施例1>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーを25重量%、ポリエチレン酢酸ビニル共重合体(エチレン30%、酢酸ビニル70%)を3重量%、ジメチルホルムアミドを64重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を5重量%および水を3重量%の割合で95℃の温度で混合溶解して製膜原液を調製した。この製膜原液をジメチルホルムアミド50重量%水溶液を中空部形成液体として随伴させながら口金から吐出し、温度20℃のジメチルホルムアミド50重量%水溶液からなる凝固浴中で凝固して中空糸膜を作製した。この中空糸膜100gを0.5モル/L硫酸水−エタノール溶液(水:エタノール=1:1)2000ml中に40℃で5時間浸漬して、加水分解処理を施し、ポリエチレン酢酸ビニル共重合体をポリエチレンビニルアルコールに変換した。
The number of surface pores of the separation membrane is obtained by taking a photograph using a scanning electron microscope and counting the number of observed pores. The photo of the scanning electron microscope is taken at a magnification of 50,000 times. The surface pore diameter of the separation membrane is determined by measuring the diameters of 20 arbitrary pores from the same scanning electron microscope photograph and calculating the average. When the pore is elliptical, the minor axis a and the major axis b are measured, and (a × b) 0.5 is taken as the equivalent circular diameter. In this case, the surface pore diameter is the average of the equivalent circular diameters of 20 arbitrary pores.
<Example 1>
25% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 3% by weight of polyethylene vinyl acetate copolymer (ethylene 30%, vinyl acetate 70%), 64% by weight of dimethylformamide, polyoxyethylene palm An oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name: IONET T-20C) was mixed and dissolved at a temperature of 95 ° C. at a rate of 5 wt% and water at 3 wt% to prepare a film forming stock solution. The membrane-forming stock solution was discharged from the die while accompanying a 50% by weight aqueous solution of dimethylformamide as a hollow portion forming liquid, and solidified in a coagulation bath comprising a 50% by weight aqueous solution of dimethylformamide at a temperature of 20 ° C. to produce a hollow fiber membrane. . 100 g of this hollow fiber membrane was immersed in 2000 ml of 0.5 mol / L sulfuric acid water-ethanol solution (water: ethanol = 1: 1) at 40 ° C. for 5 hours, subjected to hydrolysis treatment, and a polyethylene vinyl acetate copolymer Was converted to polyethylene vinyl alcohol.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は2.45m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.02 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 2.45 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、2.30m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. It was 2.30 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、2.30m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 2.30 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。
<実施例2>
加水分解処理を0.5モル/L硫酸水−エタノール溶液の代わりに1モル/L水酸化ナトリウム水−エタノール溶液(水:エタノール=1:1)にかえた以外は実施例1と同様にして中空糸膜を作製した。
The evaluation results are summarized in Table 1.
<Example 2>
Except that the hydrolysis treatment was changed to a 1 mol / L sodium hydroxide water-ethanol solution (water: ethanol = 1: 1) instead of the 0.5 mol / L sulfuric acid-ethanol solution, the same procedure as in Example 1 was performed. A hollow fiber membrane was prepared.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は2.55m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.02 μm. The pure water permeability at 50 kPa and 25 ° C. was 2.55 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、2.40m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was measured to be 2.40 m 3 / m 2 · h (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、2.35m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 2.35 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。
<比較例1>
ポリエチレン酢酸ビニル共重合体を製膜原液に加えず、その重量%分をジメチルホルムアミドとした以外は実施例1と同様にして中空糸膜を作製した。また、実施例1と同様の加水分解処理を施した。
The evaluation results are summarized in Table 1.
<Comparative Example 1>
A hollow fiber membrane was prepared in the same manner as in Example 1 except that the polyethylene vinyl acetate copolymer was not added to the membrane forming stock solution, and the weight percent thereof was changed to dimethylformamide. Further, the same hydrolysis treatment as in Example 1 was performed.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は2.50m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.02 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 2.50 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、1.95m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeation amount was 1.95 m 3 / m 2 · h (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、1.95m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . The pure water permeation amount was 1.95 m 3 / m 2 · h (Q2).

なお、評価結果を表1にまとめた。
<比較例2>
実施例1と同様にして中空糸膜を作製した。ただし、この膜には加水分解処理を施さなかった。
The evaluation results are summarized in Table 1.
<Comparative example 2>
A hollow fiber membrane was produced in the same manner as in Example 1. However, this membrane was not hydrolyzed.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は1.98m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.02 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 1.98 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、1.60m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. It was 1.60 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、1.58m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 1.58 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。
<比較例3>
ポリエチレン酢酸ビニル共重合体のかわりにポリ酢酸ビニルを用いた以外は実施例2と同様にして中空糸膜を作製した。1モル/L水酸化ナトリウム水−エタノール溶液(水:エタノール=1:1)に浸漬して加水分解処理を施し、ポリ酢酸ビニルをポリビニルアルコールへと変換した。
The evaluation results are summarized in Table 1.
<Comparative Example 3>
A hollow fiber membrane was prepared in the same manner as in Example 2 except that polyvinyl acetate was used instead of the polyethylene vinyl acetate copolymer. It was immersed in a 1 mol / L sodium hydroxide water-ethanol solution (water: ethanol = 1: 1) for hydrolysis treatment to convert polyvinyl acetate into polyvinyl alcohol.

得られた中空糸膜は、茶褐色を呈しており、外径1.4mm、内径0.8mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は2.65m3/m2・hであった(Q0)。 The obtained hollow fiber membrane was brown and had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.02 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 2.65 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、2.55m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. It was 2.55 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、2.35m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 2.35 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。   The evaluation results are summarized in Table 1.

ポリ酢酸ビニルを用いた場合、ポリエチレン酢酸ビニル共重合体を用いたときよりも、耐薬品性および高温耐水性が悪かった。
<実施例3>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーを12重量%、ポリエチレン酢酸ビニル共重合体(エチレン30%、酢酸ビニル70%)を1重量%、ジメチルアセトアミドを79重量%、T−20Cを5重量%、水を3重量%の割合で95℃の温度で混合溶解して製膜原液を調製した。
When polyvinyl acetate was used, chemical resistance and high temperature water resistance were worse than when polyethylene vinyl acetate copolymer was used.
<Example 3>
12% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of polyethylene vinyl acetate copolymer (ethylene 30%, vinyl acetate 70%), 79% by weight of dimethylacetamide, and T-20C A film forming stock solution was prepared by mixing and dissolving 5% by weight and 3% by weight of water at a temperature of 95 ° C.

次に、製膜原液を25℃に冷却した後、外径1730μm、内径900μmのポリエステル製筒状支持体に塗布し、塗布後、直ちに25℃の純水中に5分間浸漬し、さらに80℃の熱水に3回浸漬して洗浄し、ポリエステル製筒状支持体表面に多孔質膜を形成させた中空糸膜を作製した。この中空糸膜100gを0.5モル/L硫酸水−エタノール溶液(水:エタノール=1:1)2000ml中に40℃で5時間浸漬して、加水分解処理を施した。   Next, after the film-forming stock solution is cooled to 25 ° C., it is applied to a polyester cylindrical support having an outer diameter of 1730 μm and an inner diameter of 900 μm. Immediately after application, the film-forming stock solution is immersed in pure water at 25 ° C. for 5 minutes, and further 80 ° C. A hollow fiber membrane in which a porous membrane was formed on the surface of a polyester cylindrical support was prepared by immersing it in hot water three times and washing it. 100 g of this hollow fiber membrane was immersed in 2000 ml of 0.5 mol / L sulfuric acid water-ethanol solution (water: ethanol = 1: 1) at 40 ° C. for 5 hours to perform a hydrolysis treatment.

得られた中空糸膜は、外径1.8mm、内径0.9mm、平均細孔径0.05μmであった。50kPa、25℃における純水透水量は1.12m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.8 mm, an inner diameter of 0.9 mm, and an average pore diameter of 0.05 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 1.12 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、1.05m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. It was 1.05 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、1.05m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 1.05 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。
<実施例4>
実施例3と同様にして中空糸膜を作製後、この中空糸膜100gを0.5モル/L硫酸水−エタノール溶液(水:エタノール=1:1)2000ml中に40℃で5時間浸漬して、加水分解処理を施した。この際、加水分解処理だけでなく架橋処理も施すため、グルタルアルデヒドを1重量%になるよう硫酸水−エタノール溶液に添加した。
The evaluation results are summarized in Table 1.
<Example 4>
After producing a hollow fiber membrane in the same manner as in Example 3, 100 g of this hollow fiber membrane was immersed in 2000 ml of 0.5 mol / L sulfuric acid-ethanol solution (water: ethanol = 1: 1) at 40 ° C. for 5 hours. Then, the hydrolysis treatment was performed. At this time, in order to perform not only hydrolysis treatment but also crosslinking treatment, glutaraldehyde was added to a sulfuric acid water-ethanol solution so as to be 1% by weight.

得られた中空糸膜は、外径1.8mm、内径0.9mm、平均細孔径0.05μmであった。50kPa、25℃における純水透水量は1.05m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.8 mm, an inner diameter of 0.9 mm, and an average pore diameter of 0.05 μm. The pure water permeability at 50 kPa and 25 ° C. was 1.05 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、0.98m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was measured to be 0.98 m 3 / m 2 · h (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、0.97m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 0.97 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。
<比較例4>
ポリエチレン酢酸ビニル共重合体を製膜原液に加えず、その重量%分をジメチルアセトアミドとした以外は実施例3と同様にして中空糸膜を作製した。また、実施例3と同様にして加水分解処理を施した。
The evaluation results are summarized in Table 1.
<Comparative example 4>
A hollow fiber membrane was prepared in the same manner as in Example 3 except that the polyethylene vinyl acetate copolymer was not added to the membrane forming stock solution, and dimethylacetamide was used in the weight percent. Further, the hydrolysis treatment was performed in the same manner as in Example 3.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は1.25m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.02 μm. The pure water permeability at 50 kPa and 25 ° C. was 1.25 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、1.06m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. It was 1.06 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、1.05m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 1.05 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。
<比較例5>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーを25重量%、ポリエチレン酢酸ビニル共重合体(エチレン50%、酢酸ビニル50%)を3重量%、ジメチルホルムアミドを64重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を5重量%および水を3重量%の割合で95℃の温度で混合溶解したが、ポリエチレン酢酸ビニル共重合体(エチレン50%、酢酸ビニル50%)が完全に溶解せず、均一な製膜原液を得ることはできず、製膜できなかった。
<実施例5>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ−ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この樹脂溶液をγ−ブチロラクトンを中空部形成液体として随伴させながら口金から吐出し、温度20℃のγ−ブチロラクトン80重量%水溶液からなる冷却浴中で固化してベース中空糸を作製した。
The evaluation results are summarized in Table 1.
<Comparative Example 5>
25% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 3% by weight of polyethylene vinyl acetate copolymer (ethylene 50%, vinyl acetate 50%), 64% by weight of dimethylformamide, polyoxyethylene palm Oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name Ionette T-20C) was mixed and dissolved at a temperature of 95 ° C. at a ratio of 5 wt% and water 3 wt%, but a polyethylene vinyl acetate copolymer (ethylene 50%, Vinyl acetate 50%) was not completely dissolved, and a uniform film-forming stock solution could not be obtained, so that film formation was not possible.
<Example 5>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. This resin solution was discharged from the die while accompanying γ-butyrolactone as a hollow portion forming liquid, and solidified in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to prepare a base hollow fiber.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを13重量%、ポリエチレン酢酸ビニル共重合体(エチレン30%、酢酸ビニル70%)を3重量%、N−メチル−2−ピロリドンを76重量%、T−20Cを5重量%、水を3重量%の割合で95℃の温度で混合溶解して製膜原液を調製した。この製膜原液をベース中空糸表面に均一に塗布し、すぐに水浴中で凝固させてベース中空糸表面に多孔質膜を形成させた中空糸膜を作製した。この中空糸膜100gを0.5モル/L硫酸水−エタノール溶液(水:エタノール=1:1)2000ml中に40℃で5時間浸漬して、加水分解処理を施した。   Next, 13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 3% by weight of polyethylene vinyl acetate copolymer (ethylene 30%, vinyl acetate 70%), and 76% of N-methyl-2-pyrrolidone. A film-forming stock solution was prepared by mixing and dissolving at a temperature of 95 ° C. in a proportion of 5% by weight, 5% by weight of T-20C, and 3% by weight of water. This membrane-forming stock solution was uniformly applied to the surface of the base hollow fiber and immediately solidified in a water bath to produce a hollow fiber membrane in which a porous membrane was formed on the surface of the base hollow fiber. 100 g of this hollow fiber membrane was immersed in 2000 ml of 0.5 mol / L sulfuric acid water-ethanol solution (water: ethanol = 1: 1) at 40 ° C. for 5 hours to perform a hydrolysis treatment.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.05μmであった。50kPa、25℃における純水透水量は1.05m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.05 μm. The pure water permeability at 50 kPa and 25 ° C. was 1.05 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、1.00m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. It was 1.00 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、1.00m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 1.00 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。
<比較例6>
ポリエチレン酢酸ビニル共重合体を製膜原液に加えず、その重量%分をN−メチル−2−ピロリドンとした以外は実施例5と同様にして中空糸膜を作製した。
The evaluation results are summarized in Table 1.
<Comparative Example 6>
A hollow fiber membrane was produced in the same manner as in Example 5 except that the polyethylene vinyl acetate copolymer was not added to the membrane-forming stock solution, and its weight% was changed to N-methyl-2-pyrrolidone.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は1.33m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.02 μm. The pure water permeation rate at 50 kPa and 25 ° C. was 1.33 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、1.10m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. It was 1.10 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、1.08m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 1.08 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。
<実施例6>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーを13重量%、ポリエチレン酢酸ビニル共重合体(エチレン30%、酢酸ビニル70%)を3重量%、ジメチルアセトアミドを76重量%、T−20Cを5重量%、水を3重量%の割合で95℃の温度で混合溶解して製膜原液を調製した。
The evaluation results are summarized in Table 1.
<Example 6>
13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 3% by weight of polyethylene vinyl acetate copolymer (ethylene 30%, vinyl acetate 70%), 76% by weight of dimethylacetamide, and T-20C A film forming stock solution was prepared by mixing and dissolving 5% by weight and 3% by weight of water at a temperature of 95 ° C.

次に、製膜原液を25℃に冷却した後、密度が0.48g/cm3、厚みが220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに25℃の純水中に5分間浸漬し、さらに80℃の熱水に3回浸漬して洗浄し、平膜を得た。この平膜100gを0.5モル/L硫酸水−エタノール溶液(水:エタノール=1:1)2000ml中に40℃で5時間浸漬して、加水分解処理を施した。 Next, after the film-forming stock solution is cooled to 25 ° C., it is applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm. Immediately after application, it is immersed in pure water at 25 ° C. for 5 minutes. Further, it was washed by immersing it in hot water at 80 ° C. three times to obtain a flat film. 100 g of this flat membrane was immersed in 2000 ml of a 0.5 mol / L sulfuric acid aqueous solution-ethanol (water: ethanol = 1: 1) at 40 ° C. for 5 hours for hydrolysis treatment.

得られた平膜の表面細孔径は、0.05μm〜0.1μmであった。50kPa、25℃における純水透水量は6.48m3/m2・hであった(Q0)。 The surface pore diameter of the obtained flat membrane was 0.05 μm to 0.1 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 6.48 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、6.32m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. It was 6.32m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、6.30m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 6.30 m < 3 > / m < 2 > / h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。
<比較例7>
ポリエチレン酢酸ビニル共重合体を製膜原液に加えず、その重量%分をN−メチル−2−ピロリドンとした以外は実施例6と同様にして平膜を作製した。
The evaluation results are summarized in Table 1.
<Comparative Example 7>
A flat membrane was produced in the same manner as in Example 6 except that the polyethylene vinyl acetate copolymer was not added to the membrane-forming stock solution, and its weight% was changed to N-methyl-2-pyrrolidone.

得られた平膜の表面細孔径は、0.05μm〜0.1μmであった。50kPa、25℃における純水透水量は6.66m3/m2・hであった(Q0)。 The surface pore diameter of the obtained flat membrane was 0.05 μm to 0.1 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 6.66 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量を測定すると、6.10m3/m2・hであった(Q1)。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. It was 6.10 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q1).

5000ppmの次亜塩素酸ナトリウム水溶液5000ppm中に80℃で24時間浸漬した後に、フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に2m3/m2になるようろ過し、逆洗した。純水透水量を測定すると、6.10m3/m2・hであった(Q2)。 After immersing in 5000 ppm sodium hypochlorite aqueous solution 5000 ppm for 24 hours at 80 ° C., the humic acid aqueous solution was filtered to 2 m 3 / m 2 at a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. . It was 6.10 m < 3 > / m < 2 > * h when the pure water permeation amount was measured (Q2).

なお、評価結果を表1にまとめた。   The evaluation results are summarized in Table 1.

Figure 0004380380
Figure 0004380380

本発明法によって製造される液体分離膜は、水処理分野であれば浄水処理、上水処理、排水処理、工業用水製造などで利用でき、河川水、湖沼水、地下水、海水、下水、排水などを被処理水とする水処理に利用することができる。 Liquid separation membrane thus be produced in the present invention method, water treatment if the field of water treatment, drinking water treatment, waste water treatment, available in such industrial water production, river water, lake water, ground water, seawater, sewage, drainage It can utilize for the water treatment which uses as a treated water.

Claims (5)

ポリフッ化ビニリデン系樹脂と、酢酸ビニルを60〜95モル%の範囲内で含有するポリエチレン酢酸ビニル系樹脂とを混和溶解したポリマ溶液から製膜した後、膜中のポリエチレン酢酸ビニル系樹脂を加水分解することを特徴とする液体分離膜の製造方法。 After forming a film from a polymer solution in which a polyvinylidene fluoride resin and a polyethylene vinyl acetate resin containing vinyl acetate in the range of 60 to 95 mol% are mixed and dissolved, the polyethylene vinyl acetate resin in the film is hydrolyzed. A method for producing a liquid separation membrane. 製膜に供するポリマ溶液が、さらに界面活性剤を含有することを特徴とする請求項1記載の液体分離膜の製造方法。 The method for producing a liquid separation membrane according to claim 1, wherein the polymer solution used for membrane formation further contains a surfactant. 酸性条件下でポリエチレン酢酸ビニル系樹脂を加水分解することを特徴とする、請求項1又は2に記載の液体分離膜の製造方法。 The method for producing a liquid separation membrane according to claim 1, wherein the polyethylene vinyl acetate resin is hydrolyzed under acidic conditions. 製膜された膜中のポリエチレン酢酸ビニル系樹脂に含まれるアセチル基の10〜100モル%を加水分解することを特徴とする、請求項1〜3のいずれかに記載の液体分離膜の製造方法。 The method for producing a liquid separation membrane according to any one of claims 1 to 3, wherein 10 to 100 mol% of acetyl groups contained in the polyethylene vinyl acetate resin in the membrane is hydrolyzed. . 前記ポリマ溶液中における前記ポリフッ化ビニリデン系樹脂の濃度が10〜50重量%であり、かつ、ポリエチレン酢酸ビニル系樹脂の濃度が0.5〜15重量%であることを特徴とする請求項1〜4のいずれかに記載の液体分離膜の製造方法。 Claim 1 in which the concentration of pre-Symbol polyvinylidene fluoride resin in the polymer solution is 10 to 50 wt%, and the concentration of polyethylene vinyl acetate-based resin, characterized in that 0.5 to 15 wt% The manufacturing method of the liquid separation membrane in any one of -4 .
JP2004084305A 2004-03-23 2004-03-23 Method for producing liquid separation membrane Expired - Fee Related JP4380380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084305A JP4380380B2 (en) 2004-03-23 2004-03-23 Method for producing liquid separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084305A JP4380380B2 (en) 2004-03-23 2004-03-23 Method for producing liquid separation membrane

Publications (3)

Publication Number Publication Date
JP2005270708A JP2005270708A (en) 2005-10-06
JP2005270708A5 JP2005270708A5 (en) 2007-05-10
JP4380380B2 true JP4380380B2 (en) 2009-12-09

Family

ID=35170931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084305A Expired - Fee Related JP4380380B2 (en) 2004-03-23 2004-03-23 Method for producing liquid separation membrane

Country Status (1)

Country Link
JP (1) JP4380380B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337729C (en) * 2005-10-22 2007-09-19 燕山大学 Chemical modification technique for microfiltering separation film of polyvinylidene fluoride
KR101199427B1 (en) * 2010-06-03 2012-11-09 명지대학교 산학협력단 Dredging discussion processing system using the PVDF
JP5637176B2 (en) * 2012-05-25 2014-12-10 三菱レイヨン株式会社 Method for producing support for hollow porous membrane, hollow porous membrane and method for producing the same
CN110975642A (en) * 2019-12-31 2020-04-10 江苏美能膜材料科技有限公司 High-strength hollow fiber membrane for filtering beverage and wine, membrane component and preparation process of membrane

Also Published As

Publication number Publication date
JP2005270708A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
TW567089B (en) Porous hollow fiber membranes and method of making the same
JP5622833B2 (en) High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
US9259690B2 (en) Polymer separation membrane and process for producing the same
JP5066810B2 (en) Polymer separation membrane and production method thereof
KR101539608B1 (en) Polyvinylidene fluoride Hollow Fiber Membranes and Preparation Thereof
JP2004230280A (en) Production method for hydrophilic polyvinylidene fluoride-based resin porous membrane
JP6303910B2 (en) Hollow fiber membrane for ultrafiltration
JP5318385B2 (en) Porous membrane made of vinylidene fluoride resin and method for producing the same
JP4380380B2 (en) Method for producing liquid separation membrane
JP3386904B2 (en) Cellulose acetate hollow fiber separation membrane and method for producing the same
JP2006231274A (en) Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method
JP4572531B2 (en) Membrane stock solution for separation membrane and separation membrane
JP2015110212A (en) Hollow fiber membrane for microfiltration
JP2008036559A (en) Method of oxidization processing fluororesin-based polymer separation membrane
KR101068437B1 (en) Porous pvdf membranes with improved water permeability and chemical resistance and manufacturing method thereof
JP6390326B2 (en) Method for producing porous filtration membrane for water treatment
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
JP4985271B2 (en) Porous membrane and method for producing the same
CN111065723B (en) Method for producing brewed wine using porous membrane
WO2022249839A1 (en) Separation membrane and method for producing same
JP2012106235A (en) Porous membrane, resin solution and method for manufacturing porous membrane
JP2010110693A (en) Method of manufacturing composite porous separation membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4380380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees