JP2010075851A - Porous film and method for manufacturing the same - Google Patents

Porous film and method for manufacturing the same Download PDF

Info

Publication number
JP2010075851A
JP2010075851A JP2008247560A JP2008247560A JP2010075851A JP 2010075851 A JP2010075851 A JP 2010075851A JP 2008247560 A JP2008247560 A JP 2008247560A JP 2008247560 A JP2008247560 A JP 2008247560A JP 2010075851 A JP2010075851 A JP 2010075851A
Authority
JP
Japan
Prior art keywords
porous
membrane
polyvinylidene fluoride
resin
fluoride resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008247560A
Other languages
Japanese (ja)
Inventor
Shuji Furuno
修治 古野
Shinichi Minegishi
進一 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008247560A priority Critical patent/JP2010075851A/en
Publication of JP2010075851A publication Critical patent/JP2010075851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous film suitable for liquid separation which has high physical durability against a liquid to be treated and high permeability even when it is used in an activated sludge vessel for solid-liquid separation. <P>SOLUTION: The porous film is characterized in that the porous film has a single layer of a porous resin layer on the surface of a porous substrate, that the porous resin layer includes a spherical member of an average diameter of 0.5 to 10 μm, that at least one of the pores of an average pore diameter of 0.05 to 5 μm inclusive is formed on the surface of the spherical member and that the average diameter of at least one side of the porous film is 0.05 to 5 μm inclusive. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は飲料水製造、浄水処理、排水処理などの水処理や、食品工業分野での固液分離処理に良好な多孔質膜に関する。特に排水処理において活性汚泥槽内に浸漬し固液分離に好適に用いられる多孔質膜に関する。   The present invention relates to a porous membrane suitable for water treatment such as drinking water production, water purification treatment, wastewater treatment, and solid-liquid separation treatment in the food industry. In particular, the present invention relates to a porous membrane which is immersed in an activated sludge tank and suitably used for solid-liquid separation in wastewater treatment.

近年、下水や廃水の浄化に使われるようになってきている平膜状や中空糸膜状の多孔質膜は、膜を配設した膜分離エレメントや、該エレメントの複数を配置した膜分離モジュールの装置として水浄化処理に使用されている。   In recent years, porous membranes in the form of flat membranes and hollow fiber membranes that have come to be used for purification of sewage and wastewater include membrane separation elements in which membranes are arranged, and membrane separation modules in which a plurality of such elements are arranged It is used for water purification treatment as a device.

そのような膜分離エレメントに配設される膜として、いろいろな種類、形態のものがあるが、界面活性剤を含むポリフッ化ビニリデン樹脂溶液を、織布や不織布のような基材の表面に塗布したり、基材に含浸させたりした後、ポリフッ化ビニリデン樹脂を凝固させ、基材層の表面に多孔質ポリフッ化ビニリデン樹脂層を形成してなる、いわゆる精密ろ過膜と称される平板状の複合分離膜が知られている(特許文献1)。   There are various types and forms of membranes to be disposed in such membrane separation elements, but a polyvinylidene fluoride resin solution containing a surfactant is applied to the surface of a substrate such as a woven or non-woven fabric. Or after impregnating the base material, the polyvinylidene fluoride resin is solidified, and a porous polyvinylidene fluoride resin layer is formed on the surface of the base material layer. A composite separation membrane is known (Patent Document 1).

この複合分離膜において、多孔質ポリフッ化ビニリデン樹脂層は分離機能層として作用するが、そのような平膜においては、他の形態の分離膜、たとえば中空糸膜にくらべて単位体積あたりの有効膜面積を大きくとることが困難であるため、ろ過対象に応じた細孔径を保ちつつ透水量を多くすることが要求されている。しかるに、透水量を大きくしようとして空隙率を高くすると、細孔径が大きくなりすぎたり、表面に亀裂が入ったりして阻止率が低下する。一方、阻止率を上げようとして細孔を小さくすると、今度は透水性が低下してしまう。すなわち、阻止率の向上と透水性の向上とは相反する関係にあり、両者のバランスを整えることは難しい。   In this composite separation membrane, the porous polyvinylidene fluoride resin layer acts as a separation functional layer, but in such a flat membrane, an effective membrane per unit volume compared to other forms of separation membrane, for example, a hollow fiber membrane. Since it is difficult to increase the area, it is required to increase the water permeation amount while maintaining the pore diameter according to the filtration target. However, if the porosity is increased to increase the water permeation amount, the pore size becomes too large or the surface cracks and the blocking rate decreases. On the other hand, if the pores are made small in order to increase the blocking rate, the water permeability will be lowered this time. That is, the improvement in the rejection rate and the improvement in water permeability are in a contradictory relationship, and it is difficult to balance the two.

加えて、下廃水用分離膜においては、膜ろ過運転中に、被処理水に含まれる砂のような無機物や汚泥、その他の固形物が膜面に激しく衝突したり、活性汚泥への酸素の供給や目詰まり防止のために行うエアレーション操作による気泡が激しく膜面に衝突したりすることによって、著しい衝撃や振動が膜面に加わると膜の破損、液のリークが生じ易くなるので、それにも十分に耐える膜強度を備えていることが要求される。   In addition, in the separation membrane for sewage wastewater, during the membrane filtration operation, inorganic substances such as sand, sludge, and other solids in the treated water violently collide with the membrane surface, or oxygen to the activated sludge If bubbles or air bubbles are violently colliding with the membrane surface due to aeration operations to prevent supply or clogging, membrane damage and liquid leakage are likely to occur if significant impact or vibration is applied to the membrane surface. It is required to have a sufficiently strong film strength.

例えば、特許文献2にはポリフッ化ビニリデン系樹脂を良溶媒に溶解したポリマー溶媒を、ポリフッ化ビニリデン系樹脂の融点よりかなり低い温度で、口金から押し出したり、ガラス板上にキャストしたりして成形した後、ポリフッ化ビニリデン系樹脂の非溶媒を含む液体に接触させて非溶媒誘起相分離により非対称多孔構造を形成させる湿式溶液法が開示されている。しかしながら、ポリフッ化ビニリデン系樹脂の非溶媒を含む液体に接触させて非溶媒誘起相分離により非対称多孔構造を形成させる湿式溶液法では、膜厚方向に均一に相分離を起こさせることが困難であり、マクロボイドを含む非対称膜となるため物理的強度が十分でないという問題点がある。   For example, in Patent Document 2, a polymer solvent obtained by dissolving a polyvinylidene fluoride resin in a good solvent is extruded from a die at a temperature considerably lower than the melting point of the polyvinylidene fluoride resin or cast on a glass plate. Then, a wet solution method is disclosed in which an asymmetric porous structure is formed by contact with a liquid containing a non-solvent of polyvinylidene fluoride resin by non-solvent induced phase separation. However, in the wet solution method in which an asymmetric porous structure is formed by non-solvent-induced phase separation by contacting a liquid containing a non-solvent of polyvinylidene fluoride resin, it is difficult to cause phase separation uniformly in the film thickness direction. , There is a problem that the physical strength is not sufficient because of the asymmetric film containing macrovoids.

また、特許文献3には、多孔質膜が三次元網目状構造と球状構造との両方を有する多孔質膜が開示されている。この多孔質膜では、三次元網目構造部が非溶媒誘起相分離により形成された非対称多孔構造を有する分離機能層であり、球状構造部は熱誘起相分離法により形成された対称多孔構造を有する分離機能層を支える支持部構造であるが、三次元網目構造部は非対称多孔構造であるため、物理的強度が十分でないという問題点がある。   Patent Document 3 discloses a porous film in which the porous film has both a three-dimensional network structure and a spherical structure. In this porous membrane, the three-dimensional network structure part is a separation functional layer having an asymmetric porous structure formed by non-solvent induced phase separation, and the spherical structure part has a symmetric porous structure formed by a thermally induced phase separation method. Although it is a support part structure that supports the separation functional layer, the three-dimensional network structure part has an asymmetric porous structure, so that there is a problem that the physical strength is not sufficient.

また、特許文献4で開示されているように、ポリフッ化ビニリデン系樹脂に無機微粒子と有機液状体を混練し、ポリフッ化ビニリデン系樹脂を融点以上の温度で口金から押し出したり、プレス機でプレスしたりして成形した後、冷却固化し、その後有機液状体と無機微粒子を抽出する事により多孔構造を形成する溶融抽出法が開示されている。溶融抽出法の場合、空孔性の制御が容易で、マクロボイドは成形せず比較的均質で高強度の膜が得られるものの、無機微粒子の分散性が悪いとピンホールのような欠陥を生じる可能性がある。さらに溶融抽出法は、製造コストが極めて高くなるという欠点を有している。   Further, as disclosed in Patent Document 4, inorganic fine particles and an organic liquid are kneaded with polyvinylidene fluoride resin, and the polyvinylidene fluoride resin is extruded from a die at a temperature equal to or higher than the melting point or pressed with a press. For example, a melt extraction method is disclosed in which a porous structure is formed by cooling and solidifying after molding, and then extracting an organic liquid and inorganic fine particles. In the case of the melt extraction method, it is easy to control the porosity, and macrovoids are not formed, and a relatively homogeneous and high strength film can be obtained. However, if the dispersibility of the inorganic fine particles is poor, defects such as pinholes are generated. there is a possibility. Furthermore, the melt extraction method has the disadvantage that the production cost is extremely high.

特許文献5では多孔質膜の上にさらに限外ろ過膜を載せた複合膜について開示されている。この複合膜は、基材となる多孔質膜への限外ろ過膜への結合性を良くするために、グリセリンのアルコール溶液などで処理後、乾燥してポリマー溶液を塗布し、非溶媒で凝固して限外ろ過膜を形成させるものであるため、工程が複雑で製造コストが極めて高くなるという欠点を有している。
特開2003−135939号公報 欧州特許第0037836号明細書 国際公開第03/106545号パンフレット 米国特許第5022990号明細書 欧州特許出願公開第0245863号明細書
Patent Document 5 discloses a composite membrane in which an ultrafiltration membrane is further placed on a porous membrane. This composite membrane is treated with a glycerin alcohol solution, etc., dried, coated with a polymer solution, and coagulated with a non-solvent to improve its ability to bind to a porous membrane as a base material. Thus, since the ultrafiltration membrane is formed, the process is complicated and the manufacturing cost is extremely high.
JP 2003-135939 A European Patent No. 0037836 International Publication No. 03/106545 Pamphlet US Pat. No. 5,022,990 European Patent Application No. 0245863

本発明は、活性汚泥槽内で固液分離する用途で使用しても活性汚泥などの被処理液に対する物理的耐久性が高く、かつ高透水性を実現することができる液体分離用に好適な多孔質膜を提供することを主たる目的とする。   The present invention is suitable for liquid separation that has high physical durability against a liquid to be treated such as activated sludge and can achieve high water permeability even when used for solid-liquid separation in an activated sludge tank. The main purpose is to provide a porous membrane.

上記目的を達成するための本発明は、次の(1)〜(7)に述べる構成からなる。
(1)多孔質基材の表面に単層の多孔質樹脂層を有してなる多孔質膜であって、該多孔質樹脂層が平均直径0.5μm以上10μm以下である球状体からなり、該球状体の表面に平均孔径が0.05μm以上5μm以下の細孔が少なくとも1つ以上形成されており、かつ、該多孔質膜の少なくとも片側の表面の平均孔径が0.05μm以上5μm以下であることを特徴とする多孔質膜。
(2)前記多孔質樹脂層が熱可塑性樹脂からなる(1)に記載の多孔質膜。
(3)前記熱可塑性樹脂がポリフッ化ビニリデン系樹脂である(2)に記載の多孔質膜。
(4)落砂式摩耗試験の前後における平均粒径0.09μmのラテックス微粒子の阻止率(%)を、落砂式摩耗試験前の阻止率をA(%)、落砂式摩耗試験後の阻止率をB(%)としたとき、次の不等式
A−B≦50(%)
の関係を満足することを特徴とする(1)〜(3)のいずれかに記載の多孔質膜。
(5)平膜である(1)〜(4)のいずれかに記載の多孔質膜。
(6)20〜60重量%のポリフッ化ビニリデン系樹脂、1〜30重量%の親水性多孔化剤および該ポリフッ化ビニリデン系樹脂の貧溶媒を含有し、温度が80〜175℃の範囲であるポリフッ化ビニリデン系樹脂溶液を多孔質基材の表面に接触させた後、凝固浴の中に浸漬させることで得られることを特徴とする(1)〜(5)のいずれかに記載の多孔質膜の製造方法。
(7)前記凝固浴の中の液体が、温度が0〜50℃の範囲内であり、前記ポリフッ化ビニリデン系樹脂の貧溶媒を60〜100重量%含有することを特徴とする(6)に記載の多孔質膜の製造方法。
In order to achieve the above object, the present invention comprises the configurations described in the following (1) to (7).
(1) A porous film having a single porous resin layer on the surface of a porous substrate, the porous resin layer comprising a spherical body having an average diameter of 0.5 μm to 10 μm, At least one pore having an average pore diameter of 0.05 μm or more and 5 μm or less is formed on the surface of the spherical body, and the average pore diameter of the surface of at least one side of the porous membrane is 0.05 μm or more and 5 μm or less. A porous membrane characterized by being.
(2) The porous membrane according to (1), wherein the porous resin layer is made of a thermoplastic resin.
(3) The porous film according to (2), wherein the thermoplastic resin is a polyvinylidene fluoride resin.
(4) The rejection rate (%) of latex fine particles having an average particle size of 0.09 μm before and after the sandfall wear test was A (%) before the sandfall wear test, and after the sandfall wear test. When the rejection rate is B (%), the following inequality A−B ≦ 50 (%)
The porous film according to any one of (1) to (3), which satisfies the following relationship:
(5) The porous membrane according to any one of (1) to (4), which is a flat membrane.
(6) 20 to 60% by weight of a polyvinylidene fluoride resin, 1 to 30% by weight of a hydrophilic porogen and a poor solvent for the polyvinylidene fluoride resin, and the temperature is in the range of 80 to 175 ° C. The porous material according to any one of (1) to (5), which is obtained by bringing a polyvinylidene fluoride resin solution into contact with the surface of a porous substrate and then immersing it in a coagulation bath. A method for producing a membrane.
(7) The liquid in the coagulation bath has a temperature in the range of 0 to 50 ° C., and contains 60 to 100% by weight of a poor solvent for the polyvinylidene fluoride resin. The manufacturing method of the porous membrane of description.

本発明によれば、活性汚泥液などの被処理液に対しても物理的耐久性が高く、かつ高透水性を実現することができ液体分離用に好適な多孔質膜を得ることができる。従って多孔質膜の耐久性が向上され、長期的運転を行うことが容易となる。   According to the present invention, a porous membrane suitable for liquid separation can be obtained which has high physical durability even for liquids to be treated such as activated sludge liquid and can achieve high water permeability. Accordingly, the durability of the porous membrane is improved, and long-term operation is facilitated.

本発明に係る多孔質膜は、多孔質基材の表面に単層の多孔質樹脂層を有してなる多孔質膜であって、該多孔質樹脂層が平均直径0.5μm以上10μm以下である球状体からなり、該球状体の表面に平均孔径が0.05μm以上5μm以下の細孔が少なくとも1つ以上形成されており、かつ、該多孔質膜の少なくとも片側の表面の平均孔径が0.05μm以上5μm以下であることを特徴とする多孔質膜である。   The porous membrane according to the present invention is a porous membrane having a single porous resin layer on the surface of a porous substrate, and the porous resin layer has an average diameter of 0.5 μm or more and 10 μm or less. The spherical body has at least one pore having an average pore diameter of 0.05 μm or more and 5 μm or less on the surface of the spherical body, and the average pore diameter of the surface of at least one side of the porous membrane is 0. A porous film characterized by having a thickness of not less than 05 μm and not more than 5 μm.

ここで球状体とは多数の球状もしくは略球状の固形分が、直接もしくは筋状の固形分を介して連結している構造からなるものをいう。球状体は、もっぱら球晶からなると推定される。球晶とは、熱可塑性樹脂溶液が相分離して多孔構造を形成する際に、熱可塑性樹脂が球形に析出、固化した結晶のことである。   Here, the spherical body means a structure having a structure in which a large number of spherical or substantially spherical solid components are connected directly or via a streaky solid component. The spherical body is presumed to consist exclusively of spherulites. The spherulite is a crystal in which a thermoplastic resin is precipitated and solidified into a spherical shape when a thermoplastic resin solution is phase-separated to form a porous structure.

球状体の平均直径は、平均直径0.5μm以上10μm以下であることが必要である。球状体の直径は、多孔質膜の表面または断面を球状体が明瞭に確認できる倍率で走査型電子顕微鏡(SEM)等を用いて写真を撮り、10個以上、好ましくは20個以上の任意の球状体の直径を測定し、数平均することで求めることができる。写真の解像処理装置で解析し、等価円直径の平均を平均直径とすることも好ましく採用できる。   The average diameter of the spherical body needs to be not less than 0.5 μm and not more than 10 μm. The diameter of the spherical body is 10 or more, preferably 20 or more, by taking a photograph using a scanning electron microscope (SEM) or the like at a magnification at which the spherical body can clearly confirm the surface or cross section of the porous membrane. It can be obtained by measuring the diameter of the spherical body and averaging the number. It is also possible to preferably employ an average of equivalent circle diameters as an average diameter by analysis with a photo resolution processor.

球状体の表面には、細孔が少なくとも1つ以上形成されている必要がある。また、この細孔の平均孔径は、0.05μm以上5μm以下であることが必要である。ここで、球状体の表面の細孔の平均孔径は、多孔質膜の表面または断面を球状体の表面の細孔が明瞭に確認できる倍率で走査型電子顕微鏡(SEM)等を用いて写真を撮り、10個以上、好ましくは20個以上の任意の細孔の直径を測定し、数平均することで求めることができる。写真の解像処理装置で解析し、等価円孔径の平均を平均孔径とすることも好ましく採用できる。   At least one or more pores need to be formed on the surface of the spherical body. Further, the average pore diameter of the pores needs to be 0.05 μm or more and 5 μm or less. Here, the average pore diameter of the fine pores on the surface of the spherical body is measured with a scanning electron microscope (SEM) or the like at a magnification at which the fine pores on the spherical body surface can be clearly confirmed on the surface or cross section of the porous membrane. The diameter can be obtained by measuring the diameter of 10 or more, preferably 20 or more arbitrary pores and averaging the number. It is also possible to preferably employ an average of equivalent circular hole diameters as an average hole diameter by analyzing with a photographic resolution processing apparatus.

また、多孔質膜は平均粒径約0.09μm以下の微粒子の阻止率が90%以上であることが好ましい。この微粒子阻止率が90%以上である場合には、菌体や汚泥などによる目詰まりやリーク、ろ過差圧の上昇を起こすことなく、長期間の運転を行なうことができる。   The porous membrane preferably has a blocking rate of 90% or more of fine particles having an average particle size of about 0.09 μm or less. When the fine particle rejection rate is 90% or more, long-term operation can be performed without causing clogging or leakage due to bacterial cells or sludge, or an increase in filtration differential pressure.

この微粒子阻止率は、攪拌式セル(アドバンテック(株)製VHP−43K)に多孔質膜をセットし、評価圧力9.8kPa、攪拌速度600rpmにて、逆浸透膜(東レ(株)製SUL−G10)によるろ過水に平均粒径0.09μm以下の微粒子としてポリスチレンラテックス微粒子(セラディン(株)製 公称孔径0.083μm)を25ppmの濃度になるように分散させてなる評価原液をろ過し、評価原液と得られたろ過透過液とについて、波長250nmの紫外線の吸光度を測定し、次式によって微粒子阻止率を求めることができる。
微粒子阻止率=[(原水の吸光度−透過液の吸光度)/原液の吸光度]×100
ここで、吸光度測定には分光光度計(日立製作所製 U−3200)を用いることができる。
This fine particle blocking rate is set by using a porous membrane in a stirring cell (VHP-43K manufactured by Advantech Co., Ltd.), an evaluation pressure of 9.8 kPa, a stirring speed of 600 rpm, and a reverse osmosis membrane (SUL- manufactured by Toray Industries, Inc.). An evaluation stock solution in which polystyrene latex fine particles (nominal pore size 0.083 μm manufactured by Celadin Co., Ltd.) are dispersed as fine particles having an average particle size of 0.09 μm or less in filtered water according to G10) to a concentration of 25 ppm is filtered and evaluated. About the undiluted | stock solution and the obtained filtrate permeation | transmission liquid, the light absorbency of the ultraviolet-ray with a wavelength of 250 nm can be measured, and fine particle blocking rate can be calculated | required by following Formula.
Fine particle blocking rate = [(absorbance of raw water−absorbance of permeate) / absorbance of stock solution] × 100
Here, a spectrophotometer (U-3200 manufactured by Hitachi, Ltd.) can be used for absorbance measurement.

また、本発明の多孔質膜は、落砂式摩耗試験の前後における平均粒径0.09μmのラテックス微粒子の阻止率を測定し、落砂式摩耗試験前の阻止率をA(%),落砂式摩耗試験後の阻止率をB(%)としたとき、次の不等式の関係を満足することが好ましい。
A−B≦50(%)
AとBの差が50%より大きいと菌体や汚泥などがリークしたり、菌体が汚泥などによる膜つまりが起こったり、ろ過差圧の上昇が起こったり、寿命が極端に短くなったりする。通常はA−B≦10の範囲がさらに好ましい。
Further, the porous membrane of the present invention measures the rejection rate of latex fine particles having an average particle size of 0.09 μm before and after the sandfall wear test, and the rejection rate before the sandfall wear test is A (%). When the rejection after the sand type abrasion test is B (%), it is preferable to satisfy the following inequality relationship.
A-B ≦ 50 (%)
If the difference between A and B is greater than 50%, the cells and sludge will leak, the cells will clog with sludge, the filtration differential pressure will increase, and the life will be extremely short . Usually, a range of AB ≦ 10 is more preferable.

ここで、多孔質膜の摩耗試験は、落砂式摩耗試験装置(ASTM D673#80 東洋精機製作所製)により、水平面と45°の角度に保持した受台に多孔質膜サンプルの多孔質樹脂層が上面にでるようにセットして、高さ650mmから400gのSiC(45#)をサンプル上から落下させる摩耗試験によって行うことができる。   Here, the abrasion test of the porous membrane was carried out by using a sand drop type abrasion tester (ASTM D673 # 80, manufactured by Toyo Seiki Seisakusho Co., Ltd.) on the pedestal held at an angle of 45 ° with the horizontal plane. Can be performed by a wear test in which SiC (45 #) having a height of 650 mm to 400 g is dropped from the sample.

また、平均粒径0.09μmのラテックス微粒子の阻止率(%)の値は、前述した手法と同様に測定することで求めることができる。   Moreover, the value of the blocking rate (%) of latex fine particles having an average particle size of 0.09 μm can be determined by measuring in the same manner as described above.

さらに、本発明の多孔質膜は、純水透過係数1×10−9/m/Pa/s以上であることが好ましい。この純水透過係数が1×10−9/m/Pa/sに満たない時は膜の水透過性が劣る事から高い圧力で運転する必要があり、運転コストが大きくなるというデメリットがある。ここで、純水透過係数は、飲料水を透析膜(東レ(株)製フィルトライザー(登録商標) B2−1.5H)でろ過したものを原水とし、温度25℃、ヘッド圧1mの条件下で膜ろ過させることによって測定することができる。なお、純水透過係数は、ポンプ等で加圧や吸引して得た値を換算して求めても良い。水温についても、評価液体の粘性で換算しても良い。 Furthermore, the porous membrane of the present invention preferably has a pure water permeability coefficient of 1 × 10 −9 m 3 / m 2 / Pa / s or more. When this pure water permeability coefficient is less than 1 × 10 −9 m 3 / m 2 / Pa / s, it is necessary to operate at a high pressure because the water permeability of the membrane is inferior. There is. Here, the pure water permeability coefficient is obtained by filtering drinking water with a dialysis membrane (Filtriser (registered trademark) B2-1.5H, manufactured by Toray Industries, Inc.) as raw water, at a temperature of 25 ° C. and a head pressure of 1 m. It can be measured by membrane filtration under. The pure water permeability coefficient may be obtained by converting a value obtained by applying pressure or suction with a pump or the like. The water temperature may also be converted by the viscosity of the evaluation liquid.

本発明に係る多孔質樹脂層に用いられる樹脂は、特に限定されないが、球状体を作りやすいことから、熱可塑性樹脂であることが好ましい。   The resin used for the porous resin layer according to the present invention is not particularly limited, but is preferably a thermoplastic resin because a spherical body can be easily formed.

ここで、熱可塑性樹脂とは、鎖状高分子からなり、加熱すると外力によって変形・流動する性質が表れる樹脂のことをいう。熱可塑性樹脂の例としては、ポリエチレン、ポリプロピレン、アクリル樹脂、ポリアクリルニトリル、アクリロニトリル−ブタジエン−スチレン(ABS樹脂)、ポリスチレン、アクリロニトリル−スチレン(AS樹脂)、塩化ビニル樹脂、ポリエチレンテレフタレート、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリフッ化ビニリデン、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホンおよびこれらの混合物や共重合体が挙げられる。これらと混和可能などの樹脂を混和しても良い。   Here, the thermoplastic resin refers to a resin that is made of a chain polymer and that exhibits a property of being deformed / flowed by an external force when heated. Examples of thermoplastic resins include polyethylene, polypropylene, acrylic resin, polyacrylonitrile, acrylonitrile-butadiene-styrene (ABS resin), polystyrene, acrylonitrile-styrene (AS resin), vinyl chloride resin, polyethylene terephthalate, polyamide, polyacetal, Examples include polycarbonate, modified polyphenylene ether, polyphenylene sulfide, polyvinylidene fluoride, polyamideimide, polyetherimide, polysulfone, polyethersulfone, and mixtures and copolymers thereof. Any resin miscible with these may be mixed.

本発明に係る多孔質樹脂層に用いる熱可塑性樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂およびポリフッ化ビニリデン系樹脂から選ばれたものが、耐薬品性が高いため、特に好ましい。   As the thermoplastic resin used for the porous resin layer according to the present invention, one selected from polyethylene resin, polypropylene resin and polyvinylidene fluoride resin is particularly preferable because of its high chemical resistance.

その中でもポリフッ化ビニリデン系樹脂またはそれを主成分とするものが最も好ましい。ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂のことである。複数の種類のフッ化ビニリデン共重合体を含有しても構わない。フッ化ビニリデン共重合体としては、フッ化ビニリデン残基構造を有するポリマーならば特に限定されず、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーとの共重合体であり、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上のフッ素系モノマーとフッ化ビニリデンとの共重合体が挙げられる。場合によっては、フッ素系モノマー以外の例えばエチレン等のモノマーが含まれていても良い。   Of these, polyvinylidene fluoride resins and those containing them as the main component are most preferred. The polyvinylidene fluoride resin is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. The vinylidene fluoride copolymer is not particularly limited as long as it is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers, for example, Examples thereof include a copolymer of at least one fluorine-based monomer selected from vinyl fluoride, tetrafluoroethylene, propylene hexafluoride, and ethylene trifluoride chloride and vinylidene fluoride. In some cases, a monomer such as ethylene other than the fluorine-based monomer may be included.

またポリフッ化ビニリデン系樹脂の重量平均分子量は、要求される多孔質膜の強度と透水性能によって適宜選択すれば良いが5万〜100万の範囲が好ましい。多孔質膜として、特に平膜への製膜性を考慮した場合は10万〜60万の範囲が好ましく、さらに25万〜45万の範囲が好ましい。重量平均分子量がこの範囲よりも大きくなると、樹脂溶液の粘度が高くなりすぎ、またこの範囲よりも小さくなると、樹脂溶液の粘度が低くなりすぎ、いずれも多孔質膜を成形することが困難になる。   The weight average molecular weight of the polyvinylidene fluoride resin may be appropriately selected depending on the required strength and water permeability of the porous membrane, but is preferably in the range of 50,000 to 1,000,000. As the porous membrane, when considering the film-forming property to a flat membrane, the range of 100,000 to 600,000 is preferable, and the range of 250,000 to 450,000 is more preferable. When the weight average molecular weight is larger than this range, the viscosity of the resin solution becomes too high. When the weight average molecular weight is smaller than this range, the viscosity of the resin solution becomes too low, and it becomes difficult to form a porous film in any case. .

本発明において、ポリフッ化ビニリデン系樹脂の貧溶媒とは、ポリフッ化ビニリデン系樹脂を60℃未満の低温では5重量%以上溶解させることができないが、60℃以上かつポリフッ化ビニリデン系樹脂の融点(例えばポリフッ化ビニリデン系樹脂が、フッ化ビニリデンホモポリマー単独で構成される場合は178℃程度)以下の高温領域で5重量%以上溶解させることができる溶媒のことである。貧溶媒に対し、60℃未満の低温でもポリフッ化ビニリデン系樹脂を5重量%以上溶解させることが可能な溶媒を良溶媒、ポリフッ化ビニリデン系樹脂の融点または液体の沸点まで、ポリフッ化ビニリデン系樹脂を溶解も膨潤もさせない溶媒を非溶媒と定義する。   In the present invention, the poor solvent for the polyvinylidene fluoride resin means that the polyvinylidene fluoride resin cannot be dissolved at 5% by weight or more at a low temperature of less than 60 ° C., but the melting point of the polyvinylidene fluoride resin at 60 ° C. or more and For example, when the polyvinylidene fluoride resin is composed of a vinylidene fluoride homopolymer alone, it is a solvent that can be dissolved by 5% by weight or more in a high temperature region of about 178 ° C. or less. A solvent capable of dissolving 5% by weight or more of a polyvinylidene fluoride resin at a low temperature of less than 60 ° C. with respect to a poor solvent is a good solvent, the polyvinylidene fluoride resin up to the melting point of the polyvinylidene fluoride resin or the boiling point of the liquid A solvent that does not dissolve or swell is defined as a non-solvent.

ここで貧溶媒としては、シクロヘキサノン、イソホロン、γ−ブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテート等の中鎖長のアルキルケトン、エステル、グリコールエステル及び有機カーボネート等が挙げられる。また良溶媒としては、N−メチル−2−ピロリドン、ジメチルスルホキシド、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等が挙げられる。さらに非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o−ジクロルベンゼン、トリクロルエチレン、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、塩素化炭化水素、またはその他の塩素化有機液体等が挙げられる。   Examples of the poor solvent include cyclohexanone, isophorone, γ-butyrolactone, methyl isoamyl ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, diacetone alcohol, glycerol triacetate, etc., medium chain length alkyl ketone, ester, glycol ester And organic carbonates. Examples of good solvents include N-methyl-2-pyrrolidone, dimethyl sulfoxide, N, N-dimethylacetamide, N, N-dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethylurea, lower alkyl ketones such as trimethyl phosphate, Examples include esters and amides. Non-solvents include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, low molecular weight polyethylene glycol and other aliphatic hydrocarbons, aromatic hydrocarbons, Examples include chlorinated hydrocarbons and other chlorinated organic liquids.

本発明に係る親水性多孔化剤とは、親水性を有していて当該多孔質樹脂層の多孔化を促す性質を有するものならば、なんら限定されるものではなく、好ましくは、親水性有機物の高分子乃至は低分子物質である。具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルピロリドン、ポリアクリル酸などの水溶性ポリマー、ソルビタン脂肪酸エステル(モノ、トリエステル体等)等の多価アルコールのエステル体、ソルビタン脂肪酸エステルのエチレンオキサイド低モル付加物、ノニルフェノールのエチレンオキサイド低モル付加物、プルロニック型エチレンオキサイド低モル付加物等のエチレンオキサイド低モル付加物、ポリオキシエチレンアルキルエステル、アルキルアミン塩、ポリアクリル酸ソーダ等の界面活性剤、グリセリンなどの多価アルコール類、テトラエチレングリコール、トリエチレングリコールなどのグリコール類である。これらは1種類で用いても2種類以上の混合物で用いても良い。これらの親水性多孔化剤は重量平均分子量50,000以下のものが好ましく、より好ましくは30,000以下である。これよりも分子量の大きなものは、凝固浴中の液体への抽出性が悪く、ポリフッ化ビニリデン系樹脂溶液へも均一溶解しにくいために好ましくない場合がある。この親水性多孔剤は、凝固浴の液体中で溶媒抽出され構造凝集が起こる時に溶媒に比べ比較的長時間多孔質樹脂中に残留すると考えられる。   The hydrophilic porosifying agent according to the present invention is not limited at all as long as it has hydrophilicity and has the property of promoting the porous formation of the porous resin layer, preferably a hydrophilic organic substance. These are high molecular weight or low molecular weight substances. Specifically, water-soluble polymers such as polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, polyacrylic acid, ester bodies of polyhydric alcohols such as sorbitan fatty acid esters (mono, triesters, etc.) Ethylene oxide low mole adduct of sorbitan fatty acid ester, ethylene oxide low mole adduct of nonylphenol, pluronic type ethylene oxide low mole adduct, etc., polyoxyethylene alkyl ester, alkylamine salt, polyacrylic acid Surfactants such as soda, polyhydric alcohols such as glycerin, and glycols such as tetraethylene glycol and triethylene glycol. These may be used alone or in a mixture of two or more. These hydrophilic porosifiers preferably have a weight average molecular weight of 50,000 or less, more preferably 30,000 or less. Those having a higher molecular weight than this are not preferable because they are poorly extractable into the liquid in the coagulation bath and are difficult to uniformly dissolve in the polyvinylidene fluoride resin solution. This hydrophilic porous agent is considered to remain in the porous resin for a relatively long time compared to the solvent when the solvent is extracted in the liquid of the coagulation bath and structural aggregation occurs.

溶媒抽出に伴う構造凝集が緩やかになってから、親水性多孔剤が抽出されるので、得られた多孔質樹脂層は空孔性が高いものになる。得られる構造は、親水性多孔化剤の種類、分子量、添加量等に依存するが、本発明においては、平均直径0.5μm以上10μm以下である球状体からなる多孔質樹脂層が得られる。ここで、球状体が連結された構造を有する、もしくは球状体と球状体の境界や隙間に細孔が分布する、あるいは球状体間の隙間自体が大きくなる、または球状体自体に5μm以下の細孔が多数分布する、あるいはこれらの要因が複合することによって、本発明の多孔質膜は空孔性が高く透水性の高いものになる。   Since the hydrophilic porous agent is extracted after the structure aggregation accompanying the solvent extraction becomes gentle, the obtained porous resin layer has high porosity. The structure obtained depends on the type, molecular weight, added amount, etc. of the hydrophilic porogen, but in the present invention, a porous resin layer composed of spherical bodies having an average diameter of 0.5 μm or more and 10 μm or less is obtained. Here, it has a structure in which spherical bodies are connected, or pores are distributed at the boundaries and gaps between the spherical bodies, or the gaps between the spherical bodies themselves become large, or the spherical bodies themselves have a fineness of 5 μm or less. A large number of pores are distributed or a combination of these factors makes the porous membrane of the present invention highly porous and highly permeable.

このような構造を有する多孔質膜は、従来の湿式溶液法で得られる網目構造を有する多孔質膜と比べて、物理的強度を高くすることができる。   A porous film having such a structure can have higher physical strength than a porous film having a network structure obtained by a conventional wet solution method.

本発明の製造方法では、まずポリフッ化ビニリデン系樹脂(以下、単にポリマーとも表記する)を20〜60重量%、好ましくは30〜50重量%の濃度範囲で、親水性多孔化剤を1〜30重量%、好ましくは1〜20重量%、さらに好ましくは1〜10重量%の濃度範囲で、該ポリフッ化ビニリデン系樹脂の貧溶媒を含有し、温度が80〜175℃、好ましくは100〜150℃の温度範囲で溶解した該ポリフッ化ビニリデン系樹脂溶液を使用する。   In the production method of the present invention, first, a polyvinylidene fluoride resin (hereinafter also simply referred to as a polymer) is contained in a concentration range of 20 to 60% by weight, preferably 30 to 50% by weight. It contains a poor solvent for the polyvinylidene fluoride resin in a concentration range of 1 wt%, preferably 1-20 wt%, more preferably 1-10 wt%, and the temperature is 80-175 ° C, preferably 100-150 ° C. The polyvinylidene fluoride resin solution dissolved in the following temperature range is used.

前記ポリフッ化ビニリデン系樹脂のポリマー濃度が高くなれば高い強度が特性を有する多孔質膜が得られるが、高すぎると製造した多孔質膜の空孔率が小さくなり、透水性能が低下する。また、調製したポリマー溶液の粘度が適正範囲に無ければ、平膜状に成型することが困難である。なお、前記ポリマー溶液の調製において、複数の貧溶媒を用いても良い。また、ポリマーの溶解性に支障が生じない範囲内で、前記貧溶媒に良溶媒や非溶媒が混在していても良い。本発明では、ポリマー濃度を前記の通り20〜60重量%と高濃度にすることで、高い強度特性を発現している。   If the polymer concentration of the polyvinylidene fluoride resin is increased, a porous film having high strength can be obtained. However, if the polymer concentration is too high, the porosity of the produced porous film is decreased, and the water permeability is deteriorated. Moreover, if the viscosity of the prepared polymer solution is not within an appropriate range, it is difficult to form a flat film. In the preparation of the polymer solution, a plurality of poor solvents may be used. In addition, a good solvent or a non-solvent may be mixed in the poor solvent as long as the solubility of the polymer is not hindered. In the present invention, high strength characteristics are expressed by increasing the polymer concentration to 20 to 60% by weight as described above.

また、本発明において、球状体の表面の平均孔径の制御は、ポリフッ化ビニリデン系樹脂溶液に親水性多孔剤を入れることにより、球状が結晶を形成する際に、親水性多孔剤の液滴が球状体内部に取り残され、凝固浴の液体中で溶媒抽出され構造凝集が起こる時に溶媒に比べ比較的長時間多孔質樹脂中に残留することで、球状体の表面に細孔が形成され、親水性多孔剤の種類、分子量、添加量等により平均孔径が依存すると考えられることから種類、分子量、添加量等で平均孔径を制御する。   In the present invention, the average pore size on the surface of the spherical body can be controlled by adding a hydrophilic porous agent to the polyvinylidene fluoride resin solution so that when the spherical particles form crystals, the droplets of the hydrophilic porous agent are formed. When it is left inside the sphere and is extracted in the liquid of the coagulation bath and structural aggregation occurs, it remains in the porous resin for a relatively long time compared to the solvent, thereby forming pores on the surface of the sphere and making it hydrophilic. Since the average pore size is considered to depend on the type, molecular weight, added amount, etc. of the porous porous agent, the average pore size is controlled by the type, molecular weight, added amount, etc.

ポリフッ化ビニリデン系樹脂溶液中に、親水性多孔化剤が含まれないもしくは1重量%未満であると得られた多孔質膜が十分な空孔性をもたず、透水性が得にくい。また、30重量%を超えて親水性多孔化剤を含むとポリフッ化ビニリデン系樹脂溶液に均一に溶解できず、平膜状に成型できない。また、多孔質膜に筋やピンホール状の欠陥を与え、分離特性が低下し、強度も弱くなる。本発明では前記ポリフッ化ビニリデン系樹脂溶液中の親水性多孔化剤濃度を前記の通り1〜30重量%とすることで球状体の表面に細孔を形成させている。   If the polyvinylidene fluoride resin solution does not contain a hydrophilic porogen or is less than 1% by weight, the resulting porous membrane does not have sufficient porosity, making it difficult to obtain water permeability. On the other hand, if it contains more than 30% by weight of the hydrophilic porogen, it cannot be uniformly dissolved in the polyvinylidene fluoride resin solution and cannot be formed into a flat film. Further, streaks and pinhole-like defects are given to the porous membrane, the separation characteristics are lowered, and the strength is also weakened. In the present invention, pores are formed on the surface of the spherical body by setting the hydrophilic porogen concentration in the polyvinylidene fluoride resin solution to 1 to 30% by weight as described above.

また本発明の製造方法においては、貧溶媒を用いることで、湿式溶液法で得られる網目構造よりも、球状の結晶からなると推定される球状体の膜構造が優先して形成するが、貧溶媒を用いない場合、あるいは、貧溶媒に貧溶媒以外の溶媒を加えすぎて、溶媒系が貧溶媒としての溶解特性から逸脱した場合、以下の通りの問題が発生する。即ち、溶媒もしくは溶媒系が、良溶媒であるもしくは良溶媒的特性を有する場合、ポリフッ化ビニリデン系樹脂溶液のポリマーに対する溶解能が低温においても高くなるため、製膜時に低温にクエンチしても降温により熱相分離した球状体が凝固析出しにくく、球状体の球がより大きく成長する。これにより得られる膜は少ない点で球状体同士がむすびついており、多孔質膜が強度的に弱いものとなる。一方、溶媒もしくは溶媒系が、非溶媒であるもしくは非溶媒的特性を有する場合、ポリマーが溶媒もしくは溶媒系に均一に溶解しにくく製膜安定性上不都合である。   Further, in the production method of the present invention, by using a poor solvent, a spherical film structure presumed to be composed of spherical crystals is preferentially formed over a network structure obtained by a wet solution method. When the solvent system is not used, or when a solvent other than the poor solvent is added too much to the poor solvent and the solvent system deviates from the solubility characteristics as the poor solvent, the following problems occur. That is, when the solvent or solvent system is a good solvent or has good solvent characteristics, the ability of the polyvinylidene fluoride resin solution to dissolve in the polymer is increased even at low temperatures. Thus, the spherical body separated by the thermal phase is difficult to solidify and precipitate, and the spherical sphere grows larger. As a result, there are few films, and the spherical bodies are closely connected to each other, and the porous film is weak in strength. On the other hand, when the solvent or the solvent system is a non-solvent or has non-solvent characteristics, the polymer is difficult to be uniformly dissolved in the solvent or the solvent system, which is disadvantageous in terms of film formation stability.

この際に用いられるポリフッ化ビニリデン系樹脂の貧溶媒の含有率は、好ましくは80〜100重量%、より好ましくは90〜100重量%の範囲である。   The content of the poor solvent of the polyvinylidene fluoride resin used in this case is preferably in the range of 80 to 100% by weight, more preferably 90 to 100% by weight.

さらにポリフッ化ビニリデン系樹脂溶液を作製する際には、多孔質膜の表面に形成されている機能層と球状体の細孔を制御するために、ポリフッ化ビニリデン系樹脂溶液に上記以外の無機物質等を添加してもよい。例えば無機物質としては塩化リチウム、塩化カルシウム、シリカ微粒子、酸化チタン微粒子、活性炭微粒子等が挙げられる。   Furthermore, when preparing a polyvinylidene fluoride resin solution, an inorganic substance other than the above is added to the polyvinylidene fluoride resin solution in order to control the functional layer formed on the surface of the porous film and the pores of the spherical body. Etc. may be added. For example, examples of the inorganic substance include lithium chloride, calcium chloride, silica fine particles, titanium oxide fine particles, and activated carbon fine particles.

本発明の多孔質膜の製造方法においては、ポリフッ化ビニリデン系樹脂溶液を調製した後、該ポリフッ化ビニリデン系樹脂溶液を多孔質基材の表面に接触させて、凝固浴の中に浸漬させることで所望の形状に成形するものである。   In the method for producing a porous membrane of the present invention, after preparing a polyvinylidene fluoride resin solution, the polyvinylidene fluoride resin solution is brought into contact with the surface of the porous substrate and immersed in a coagulation bath. To form the desired shape.

例えば、ポリフッ化ビニリデン系樹脂溶液を平膜用の口金から吐出して多孔質基材の上に塗布し、必要に応じて所定の長さの乾式部を通過させた後、凝固浴に導いて凝固させる。口金を用いる場合、口金から吐出する前に、ポリフッ化ビニリデン系樹脂溶液を、5〜100μmのステンレス製フィルター等で濾過することが好ましい。使用する前記口金の寸法は、製造する平膜の寸法と膜構造により適宜選択すればよいが、おおよそスリット幅は0.1mm〜10mmの範囲であることが好ましい。   For example, a polyvinylidene fluoride resin solution is discharged from a base for a flat membrane and applied onto a porous substrate, and after passing through a dry part of a predetermined length as necessary, is guided to a coagulation bath. Solidify. When using a die, it is preferable to filter the polyvinylidene fluoride resin solution with a 5-100 μm stainless steel filter or the like before discharging from the die. The size of the die to be used may be appropriately selected depending on the size of the flat membrane to be produced and the membrane structure, but the slit width is preferably in the range of 0.1 mm to 10 mm.

また、口金の温度すなわち製膜温度は、溶解温度と同様、80〜175℃、好ましくは100〜170℃の範囲にあれば良く、口金温度と溶解温度が異なっても構わない。溶解温度については、溶解を短時間に均一に行うという点から、口金温度より高い温度に設定することも好ましく採用できる。   Further, the temperature of the die, that is, the film forming temperature may be in the range of 80 to 175 ° C., preferably 100 to 170 ° C., similarly to the melting temperature, and the die temperature and the melting temperature may be different. Regarding the melting temperature, it is also possible to preferably employ a temperature higher than the die temperature from the viewpoint that the melting is performed uniformly in a short time.

多孔質膜の厚みは10μm〜1mm、さらには30μm〜500μmの範囲内であることが好ましい。多孔質膜は多孔質基材の表面に単層の多孔質樹脂層が設けられてなるが、多孔質基材と多孔質樹脂層が重なりあう層が存在しても良い。多孔質基材としては、ポリエステル繊維、ナイロン繊維、ポリウレタン繊維、アクリル繊維、レーヨン繊維、綿、絹などの有機繊維からなる織物、編物、不織布等の多孔質基材や、ガラス繊維、金属繊維などの無機繊維からなる織物、編物等の多孔質基材を用いる事ができる。この中で伸縮性、コストの点から特に有機繊維からなる多孔質基材が好ましい。   The thickness of the porous membrane is preferably 10 μm to 1 mm, more preferably 30 μm to 500 μm. The porous film is formed by providing a single porous resin layer on the surface of the porous substrate, but a layer in which the porous substrate and the porous resin layer overlap may be present. Examples of porous substrates include polyester, nylon fibers, polyurethane fibers, acrylic fibers, rayon fibers, woven fabrics made of organic fibers such as cotton and silk, knitted fabrics and nonwoven fabrics, glass fibers, metal fibers, etc. Porous substrates such as woven fabrics and knitted fabrics made of these inorganic fibers can be used. Among these, a porous substrate made of organic fibers is particularly preferable from the viewpoint of stretchability and cost.

前記の通り、多孔質基材上に塗布されたポリフッ化ビニリデン系樹脂溶液は、凝固浴の中に入り、凝固して多孔質樹脂層を形成する。   As described above, the polyvinylidene fluoride resin solution applied on the porous substrate enters the coagulation bath and coagulates to form a porous resin layer.

また、膜表面の機能層は、凝固浴の中の液体に水等の非溶媒を含有することにより、非溶媒誘起分離が発生し膜表面に機能層が形成される。   Further, the functional layer on the membrane surface contains a non-solvent such as water in the liquid in the coagulation bath, so that non-solvent induced separation occurs and the functional layer is formed on the membrane surface.

この際用いられる凝固浴の中の液体は、温度が好ましくは0〜50℃、より好ましくは5〜30℃であり、ポリフッ化ビニリデン系樹脂の貧溶媒の濃度が好ましくは60〜100重量%、より好ましくは70〜90重量%の範囲で、ポリフッ化ビニリデン系樹脂の非溶媒の濃度が好ましくは1〜35重量%、より好ましくは5〜30重量%の範囲である。凝固浴がこの温度範囲にあることにより、凝固工程において、球状が発達しやすい冷却凝固が支配的となる。貧溶媒は、複数のものを混合して用いても良い。また、前記の濃度範囲を外れない限りにおいて、貧溶媒に、貧溶媒以外の溶媒が混合されてもよい。好ましくは非溶媒が混合されるが、場合によっては良溶媒を混合しても良いし、親水化多孔化剤を混合してもよい。   The liquid in the coagulation bath used here has a temperature of preferably 0 to 50 ° C., more preferably 5 to 30 ° C., and a concentration of the poor solvent of the polyvinylidene fluoride resin is preferably 60 to 100% by weight, More preferably, it is in the range of 70 to 90% by weight, and the concentration of the non-solvent of the polyvinylidene fluoride resin is preferably 1 to 35% by weight, more preferably 5 to 30% by weight. When the coagulation bath is in this temperature range, the cooling coagulation that tends to develop a spherical shape becomes dominant in the coagulation process. A plurality of poor solvents may be used as a mixture. In addition, a solvent other than the poor solvent may be mixed with the poor solvent as long as the concentration range is not deviated. Preferably, a non-solvent is mixed, but depending on the case, a good solvent may be mixed or a hydrophilizing porous agent may be mixed.

凝固浴においてポリフッ化ビニリデン系樹脂溶液の溶解温度から大きい温度差を与えて急冷することで、球状体が微小になると同時に、適度に球状体間にポリマー分子の凝集体が存在し、透水性と高い強度特性を有する膜構造を発現する。   By giving a large temperature difference from the dissolution temperature of the polyvinylidene fluoride resin solution in the coagulation bath and rapidly cooling, the spheres become minute, and at the same time, there are moderately aggregates of polymer molecules between the spheres. A film structure having high strength characteristics is expressed.

また、凝固浴の中の液体に、ある程度高い濃度の非溶媒を含有させることで、非溶媒誘起相分離により膜表面に機能層を形成することが可能となる。   Further, by incorporating a non-solvent having a high concentration to some extent in the liquid in the coagulation bath, a functional layer can be formed on the membrane surface by non-solvent induced phase separation.

凝固浴の中の液体に水等の非溶媒を高い濃度で含有させると、膜表面に非常に緻密な機能層を形成してしまい、透水性能は発現しない。   When a non-solvent such as water is contained at a high concentration in the liquid in the coagulation bath, a very dense functional layer is formed on the membrane surface, and the water permeation performance is not exhibited.

なお、前記凝固浴の形態としては、凝固浴の中の液体と多孔質基材に塗布されたポリフッ化ビニリデン系樹脂とが十分に接触して冷却および凝固等が可能であるならば、特に限定されるものではなく、文字通り冷却および凝固液体が貯留された液槽形態であっても良いし、さらに必要により前記液槽は、温度や組成が調整された液体が循環もしくは更新されても良い。前記液槽形態が最も好適ではあるが、場合によっては、液体が管内を流動している形態であっても良いし、空中に走向等しているポリフッ化ビニリデン系樹脂に冷却液体が噴射される形態であっても良い。   The form of the coagulation bath is not particularly limited as long as the liquid in the coagulation bath and the polyvinylidene fluoride resin applied to the porous substrate are sufficiently in contact and can be cooled and coagulated. However, it may literally be in the form of a liquid tank in which the cooling and solidification liquid is stored, and the liquid tank may be circulated or updated with a liquid whose temperature and composition are adjusted as necessary. The liquid tank form is the most suitable, but depending on the case, the liquid may flow in the pipe, or the cooling liquid is sprayed onto the polyvinylidene fluoride resin running in the air. Form may be sufficient.

また、これらとは別の高透水性発現のアプローチとして、ポリフッ化ビニリデン系樹脂を、凝固浴の中の液体として温度が0〜50℃、好ましくは3〜30℃であり、濃度が1〜100重量%、好ましくは1〜50重量%の範囲で親水性多孔化剤を含有する液体を用いて、凝固させる方法も好ましく採用される。親水性多孔化剤は、ポリフッ化ビニリデン系樹脂溶液に含まれるものと同種の1種又は複数種のものを用いることが望ましいが、それ以外の親水性多孔化剤を用いてもよい。また、前記の濃度範囲を外れない限りにおいて、親水性多孔化剤に、親水性多孔化剤以外の溶媒が混合されてもよい。好ましくは非溶媒または貧溶媒が混合されるが、場合によっては良溶媒を混合しても良い。冷却浴に親水性多孔化剤を含有することにより、吐出した多孔質膜が冷却浴および凝固浴中で溶媒抽出され凝固析出するときにポリフッ化ビニリデン系樹脂溶液の溶媒抽出速度に比べて、濃度勾配により親水性多孔化剤の抽出速度が低下する。その結果溶媒抽出に伴う構造収縮時もより長期間構造中に親水性多孔化剤が構造中に留まり、空孔性が高く透水性が高い膜が発現する。   In addition, as another approach of high water permeability expression, polyvinylidene fluoride resin as a liquid in a coagulation bath has a temperature of 0 to 50 ° C, preferably 3 to 30 ° C, and a concentration of 1 to 100. A method of coagulating using a liquid containing a hydrophilic porosifying agent in the range of wt%, preferably 1 to 50 wt% is also preferably employed. As the hydrophilic porogen, it is desirable to use one or more of the same types as those contained in the polyvinylidene fluoride resin solution, but other hydrophilic porogens may be used. Moreover, as long as it does not deviate from the above-mentioned concentration range, a solvent other than the hydrophilic porous agent may be mixed with the hydrophilic porous agent. A non-solvent or a poor solvent is preferably mixed, but a good solvent may be mixed in some cases. By containing a hydrophilic porosifying agent in the cooling bath, the concentration of the porous membrane discharged compared to the solvent extraction rate of the polyvinylidene fluoride resin solution when the solvent is extracted and solidified and precipitated in the cooling bath and the coagulation bath. The gradient reduces the extraction rate of the hydrophilic porogen. As a result, the hydrophilic porosifying agent remains in the structure for a longer period of time even when the structure contracts due to solvent extraction, and a highly porous film with high porosity is developed.

さらに、多孔質樹脂層が多孔質基材の上に形成された多孔質膜において、多孔質樹脂層を構成するポリフッ化ビニリデン系樹脂の一部が多孔質基材中に入り込み、多孔質樹脂層を構成する樹脂と基材とが混在する層が、多孔質樹脂層と多孔質基材との間に介在することが好ましい。基材表面側の内部にポリフッ化ビニリデン系樹脂が入り込むことで、いわゆるアンカー効果によって多孔質樹脂層が多孔質基材に堅固に定着され、多孔質樹脂層が多孔質基材から剥がれるのを防止できるようになる。多孔質樹脂層は、多孔質基材に対して、片面に偏って存在しても構わないし、また、両面に存在しても構わない。多孔質樹脂層は、多孔質基材に対して、対称構造であっても、非対称構造であっても構わない。また、多孔質樹脂層が多孔質基材に対して両面に存在している場合には、両側の多孔質樹脂層が、多孔質基材を介して連続的であっても構わないし、不連続であっても構わない。   Furthermore, in the porous film in which the porous resin layer is formed on the porous substrate, a part of the polyvinylidene fluoride resin constituting the porous resin layer enters the porous substrate, and the porous resin layer It is preferable that a layer in which the resin and the base material constituting the material are mixed is interposed between the porous resin layer and the porous base material. By inserting the polyvinylidene fluoride resin inside the substrate surface side, the porous resin layer is firmly fixed to the porous substrate by the so-called anchor effect, and the porous resin layer is prevented from peeling off from the porous substrate. become able to. The porous resin layer may exist on one side with respect to the porous base material, or may exist on both sides. The porous resin layer may have a symmetric structure or an asymmetric structure with respect to the porous substrate. Further, when the porous resin layer is present on both sides with respect to the porous substrate, the porous resin layers on both sides may be continuous through the porous substrate, or discontinuous It does not matter.

次に、本発明において用いる多孔質膜を製造する方法について説明する。この多孔質膜は、たとえば、ポリフッ化ビニリデン系樹脂及び親水性多孔化剤などを含むポリフッ化ビニリデン系樹脂溶液を、多孔質基材の片表面若しくは両表面に接触させ、貧溶媒および非溶媒を含む凝固浴の液体中で凝固させ多孔質樹脂層を形成することにより製造することができる。このとき、多孔質基材の表面にポリフッ化ビニリデン系樹脂溶液を接触させる手段は、ポリフッ化ビニリデン系樹脂溶液の塗布でもよく、また、多孔質基材をポリフッ化ビニリデン系樹脂溶液に浸漬させる方法でもよい。多孔質基材にポリフッ化ビニリデン系樹脂溶液を塗布する場合には、多孔質基材の片面に塗布しても構わないし、両面に塗布しても構わない。多孔質基材とは別に多孔質樹脂層のみを形成した後に両層を接合する方法でもよい。   Next, a method for producing a porous membrane used in the present invention will be described. This porous membrane is obtained by, for example, bringing a polyvinylidene fluoride resin solution containing a polyvinylidene fluoride resin and a hydrophilic porosizing agent into contact with one surface or both surfaces of a porous substrate, and removing a poor solvent and a non-solvent. It can be produced by coagulating in a coagulating bath liquid to form a porous resin layer. At this time, the means for bringing the polyvinylidene fluoride resin solution into contact with the surface of the porous substrate may be application of a polyvinylidene fluoride resin solution, or a method of immersing the porous substrate in the polyvinylidene fluoride resin solution But you can. When the polyvinylidene fluoride resin solution is applied to the porous substrate, it may be applied to one side or both sides of the porous substrate. A method of joining both layers after forming only the porous resin layer separately from the porous substrate may be used.

そして、ポリフッ化ビニリデン系樹脂溶液を凝固させるにあたっては、多孔質基材上のポリフッ化ビニリデン系樹脂溶液被膜のみを凝固液に接触させる方法でもよいし、また、ポリフッ化ビニリデン系樹脂溶液被膜を基材ごと凝固液に浸漬する方法でもよい。ポリフッ化ビニリデン系樹脂溶液被膜のみを凝固液に接触させるためには、例えば、基材上に形成されたポリフッ化ビニリデン系樹脂溶液被膜が下側に来るようにして凝固浴表面と接触させる方法や、ガラス板、金属板などの平滑な板の上に多孔質基材を接触させて、凝固浴が多孔質基材側に回り込まないように貼り付け、ポリフッ化ビニリデン系樹脂溶液被膜を有する多孔質基材を板ごと凝固浴に浸漬する方法などがある。後者の方法では、多孔質基材を板に貼り付けてからポリフッ化ビニリデン系樹脂溶液の被膜を形成しても構わないし、基材にポリフッ化ビニリデン系樹脂溶液の被膜を形成してから板に貼り付けても構わない。   In coagulating the polyvinylidene fluoride resin solution, a method may be used in which only the polyvinylidene fluoride resin solution film on the porous substrate is brought into contact with the coagulation liquid, or based on the polyvinylidene fluoride resin solution film. A method of immersing the whole material in a coagulating liquid may be used. In order to bring only the polyvinylidene fluoride resin solution film into contact with the coagulation liquid, for example, a method of bringing the polyvinylidene fluoride resin solution film formed on the substrate into contact with the surface of the coagulation bath such that A porous substrate having a polyvinylidene fluoride resin solution coating by contacting a porous substrate on a smooth plate such as a glass plate or a metal plate so that the coagulation bath does not enter the porous substrate side. There is a method of immersing the substrate together with the plate in a coagulation bath. In the latter method, the film of the polyvinylidene fluoride resin solution may be formed after the porous substrate is attached to the plate, or after the film of the polyvinylidene fluoride resin solution is formed on the substrate, You can paste it.

そして、ポリフッ化ビニリデン系樹脂溶液には、前記したポリフッ化ビニリデン系樹脂などの他に、必要に応じて開孔剤やそれらを溶解する溶媒等を添加してもよい。   In addition to the above-mentioned polyvinylidene fluoride resin, etc., a pore opening agent or a solvent for dissolving them may be added to the polyvinylidene fluoride resin solution, if necessary.

上述のようにして製造される本発明の多孔質膜は、たとえば、プレートアンドフレーム型の膜モジュールの分離膜として使用される。固液分離装置は、活性汚泥槽などの活性汚泥などの被処理液が収容されている処理槽中に浸漬配置され、ポンプにより処理原液側に加圧手段をもしくは透過液側に吸引手段を設け、膜ろ過が行われる。もちろん、ポンプを設けず水位差による膜ろ過を行ってもよい。固液分離装置は、膜の洗浄効果を得るために、膜の下方に曝気装置を配置する等、膜面に対して被処理液が並行に流れるようにする手段を備えていてもよい。   The porous membrane of the present invention produced as described above is used, for example, as a separation membrane for a plate-and-frame type membrane module. The solid-liquid separator is immersed in a treatment tank containing a liquid to be treated such as activated sludge, such as an activated sludge tank, and is provided with pressure means on the processing stock solution side or suction means on the permeate side by a pump. Membrane filtration is performed. Of course, you may perform membrane filtration by a water level difference without providing a pump. In order to obtain the membrane cleaning effect, the solid-liquid separation device may include means for allowing the liquid to be processed to flow in parallel to the membrane surface, such as disposing an aeration device below the membrane.

以下に具体的実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、得られた多孔質膜の膜性能評価は以下の方法で行った。
(1)球状体の平均直径
多孔質膜の表面または断面を球状体が明瞭に確認できる倍率で走査型電子顕微鏡(SEM)を用いて写真を撮り、20個の任意の球状体の直径を測定し、数平均して求めた。
(2)球状体の表面の細孔の平均孔径
多孔質膜の表面または断面を球状体の表面の細孔が明瞭に確認できる倍率で走査型電子顕微鏡(SEM)を用いて写真を撮り、20個任意の細孔の直径を測定し、数平均することで求めた。
(3)ポリスチレンラテックス微粒子阻止率
攪拌式セル(アドバンテック(株)製VHP−43K)に多孔質膜をセットし、評価圧力9.8kPa、攪拌速度600rpmにて、逆浸透膜(東レ(株)製SUL−G10)によるろ過水に平均粒径0.09μm以下の微粒子としてポリスチレンラテックス微粒子(セラディン(株)製 公称孔径0.083μm)を25ppmの濃度になるように分散させてなる評価原液をろ過し、評価原液と得られたろ過透過液とについて、波長250nmの紫外線の吸光度を測定し、次式によって微粒子阻止率を求めた。
微粒子阻止率=[(原水の吸光度−透過液の吸光度)/原液の吸光度]×100
ここで、吸光度測定には分光光度計(日立製作所製 U−3200)を用いた。
(4)落差式摩耗試験
落砂式摩耗試験装置(ASTM D673#80 東洋精機製作所製)により、水平面と45°の角度に保持した受台に多孔質膜サンプルの多孔質樹脂層が上面にでるようにセットして、高さ650mmから400gのSiC(45#)をサンプル上から落下させて行い、落砂式摩耗試験前の阻止率A(%)から落砂式摩耗試験後の阻止率B(%)を差し引いて求めた。
(5)純水透過係数
飲料水を透析膜(東レ(株)製 フィルトライザー(登録商標)B2−1.5H)でろ過したものを原水とし、温度25℃、ヘッド圧1mの条件下で膜ろ過させることによって測定した。なお、純水透過係数は、ポンプ等で加圧や吸引して得た値を換算して求めた。
(実施例1)
製膜原液用の樹脂成分としてポリフッ化ビニリデン(PVDF/呉羽化学工業株式会社製、KF#1300)を用いた。また、親水性多孔化剤としてポリエチレングリコール(平均分子量20,000)、貧溶媒としてγ−ブチロラクトンをそれぞれ用いた。これらを160℃の温度下で十分に攪拌し、次の組成を有するポリフッ化ビニリデン系樹脂溶液を作製した。
The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples. In addition, the film performance evaluation of the obtained porous film was performed by the following method.
(1) Average diameter of spheres Photographed with a scanning electron microscope (SEM) at a magnification at which the spheres can be clearly confirmed on the surface or cross section of the porous membrane, and measured the diameter of 20 arbitrary spheres Then, the number average was obtained.
(2) Average pore diameter of the pores on the surface of the spherical body Take a photograph with a scanning electron microscope (SEM) at a magnification that allows the pores on the surface of the spherical body to be clearly confirmed on the surface or cross section of the porous membrane. The diameter of each of the individual pores was measured and obtained by number averaging.
(3) Polystyrene latex fine particle rejection rate A porous membrane was set in a stirring type cell (VHP-43K manufactured by Advantech Co., Ltd.), and a reverse osmosis membrane (manufactured by Toray Industries, Inc.) at an evaluation pressure of 9.8 kPa and a stirring speed of 600 rpm. An evaluation stock solution in which polystyrene latex fine particles (Nominal pore size 0.083 μm manufactured by Celadin Co., Ltd.) are dispersed as fine particles having an average particle size of 0.09 μm or less in filtered water by SUL-G10) to a concentration of 25 ppm is filtered. The absorbance of ultraviolet rays having a wavelength of 250 nm was measured for the evaluation stock solution and the obtained filtrate permeate, and the fine particle blocking rate was determined by the following formula.
Fine particle blocking rate = [(absorbance of raw water−absorbance of permeate) / absorbance of stock solution] × 100
Here, a spectrophotometer (U-3200, manufactured by Hitachi, Ltd.) was used for the absorbance measurement.
(4) Drop type wear test The porous resin layer of the porous membrane sample appears on the upper surface of the pedestal held at a 45 ° angle with the horizontal surface by the sand fall type wear test device (ASTM D673 # 80 manufactured by Toyo Seiki Seisakusho). In this manner, SiC (45 #) having a height of 650 mm to 400 g is dropped from the sample, and the rejection rate B after the sandfall wear test is calculated from the rejection rate A (%) before the sandfall wear test. (%) Was subtracted.
(5) Pure water permeability coefficient The raw water is obtained by filtering drinking water with a dialysis membrane (Filtrizer (registered trademark) B2-1.5H, manufactured by Toray Industries, Inc.) under conditions of a temperature of 25 ° C. and a head pressure of 1 m. Measured by membrane filtration. The pure water permeability coefficient was obtained by converting a value obtained by applying pressure or suction with a pump or the like.
Example 1
Polyvinylidene fluoride (PVDF / Kureha Chemical Co., Ltd., KF # 1300) was used as a resin component for the film-forming stock solution. Further, polyethylene glycol (average molecular weight 20,000) was used as the hydrophilic porogen, and γ-butyrolactone was used as the poor solvent. These were sufficiently stirred at a temperature of 160 ° C. to prepare a polyvinylidene fluoride resin solution having the following composition.

ポリフッ化ビニリデン(PVDF) :30.0重量%
γ−ブチロラクトン :65.0重量%
ポリエチレングリコール : 5.0重量%
次に上記ポリフッ化ビニリデン系樹脂溶液を50μmのステンレス製フィルター等で濾過した後、160℃に調整したスリット幅1mmの平膜用口金から、厚み100μmになるように、密度0.42g/cm、厚み160μmのポリエステル繊維不織布の上に塗布し、直ちに、貧溶媒のγ−ブチロラクトン80重量%と非溶媒の水20重量%を含む15℃の凝固液中に5分間浸漬して、多孔質樹脂層が形成された多孔質膜を製造した。
Polyvinylidene fluoride (PVDF): 30.0% by weight
γ-butyrolactone: 65.0% by weight
Polyethylene glycol: 5.0% by weight
Next, after filtering the polyvinylidene fluoride resin solution with a 50 μm stainless steel filter or the like, the density is 0.42 g / cm 3 so that the thickness becomes 100 μm from the flat film die having a slit width of 1 mm adjusted to 160 ° C. And coated on a non-woven polyester fiber having a thickness of 160 μm, and immediately immersed in a coagulating solution at 15 ° C. containing 80% by weight of a poor solvent γ-butyrolactone and 20% by weight of a non-solvent water for 5 minutes. A porous membrane having a layer formed thereon was produced.

ポリフッ化ビニリデン系樹脂溶液を多孔質基材に塗布した多孔質樹脂層を95℃の熱水に2分間浸漬してγ−ブチロラクトン及びポリエチレングリコールを洗い流し、多孔質膜とした。   A porous resin layer in which a polyvinylidene fluoride resin solution was applied to a porous substrate was immersed in hot water at 95 ° C. for 2 minutes to wash away γ-butyrolactone and polyethylene glycol to obtain a porous film.

得られた多孔質膜について膜性能評価を行った結果、多孔質膜の表面の機能層の平均孔径は0.4μm、球状体の平均直径は5μm、球状体の表面の平均孔径0.45μmであった。多孔質膜の厚みは102μmで、機能層の界面から他端部まで連通孔構造であり、純水透過係数は38×10−9/m/s/Paと高い水準であった。 As a result of evaluating the membrane performance of the obtained porous membrane, the average pore diameter of the functional layer on the surface of the porous membrane was 0.4 μm, the average diameter of the spherical body was 5 μm, and the average pore diameter of the spherical body surface was 0.45 μm. there were. The thickness of the porous membrane was 102 μm, and it was a communication hole structure from the interface of the functional layer to the other end, and the pure water permeability coefficient was as high as 38 × 10 −9 m 3 / m 2 / s / Pa.

上記多孔質膜について初期値(摩耗試験前)の平均粒径0.09μmのポリスチレンラテックス微粒子の阻止率が98%であった。また、摩耗試験後のポリスチレンラテックス阻止率は95%であった。このように、ポリスチレンラテックス微粒子の阻止率性能の摩耗試験による低下幅(A−B)は、3.0%と極めて小さく、摩耗試験による多孔質膜の性能低下は認められず、摩耗試験後でも90以上の良好な水準を維持することができた。   With respect to the porous film, the initial value (before wear test) of polystyrene latex fine particles having an average particle diameter of 0.09 μm was 98%. The polystyrene latex rejection after the wear test was 95%. Thus, the decrease rate (AB) of the rejection rate performance of the polystyrene latex fine particles by the abrasion test is as extremely small as 3.0%, and the performance degradation of the porous film by the abrasion test is not recognized, and even after the abrasion test. A good level of 90 or more could be maintained.

さらに、図1(多孔質膜の表面)及び図2(多孔質膜の断面)に得られた多孔質膜の構造写真を示し、表1に膜性能の評価結果を示す。
(実施例2)
製膜原液用の樹脂成分としてポリフッ化ビニリデン(PVDF/呉羽化学工業株式会社製、KF#1300)を用いた。また、親水性多孔化剤としてポリエチレングリコール(平均分子量20,000)、貧溶媒としてγ−ブチロラクトンをそれぞれ用いた。これらを160℃の温度下で十分に攪拌し、次の組成を有するポリフッ化ビニリデン系樹脂溶液を作製した。
Further, FIG. 1 (surface of the porous membrane) and FIG. 2 (cross section of the porous membrane) show structural photographs of the obtained porous membrane, and Table 1 shows the evaluation results of the membrane performance.
(Example 2)
Polyvinylidene fluoride (PVDF / Kureha Chemical Co., Ltd., KF # 1300) was used as a resin component for the film-forming stock solution. Further, polyethylene glycol (average molecular weight 20,000) was used as the hydrophilic porogen, and γ-butyrolactone was used as the poor solvent. These were sufficiently stirred at a temperature of 160 ° C. to prepare a polyvinylidene fluoride resin solution having the following composition.

ポリフッ化ビニリデン(PVDF) :30.0重量%
γ−ブチロラクトン :60.0重量%
ポリエチレングリコール :10.0重量%
次に上記ポリフッ化ビニリデン系樹脂溶液を50μmのステンレス製フィルター等で濾過した後、160℃に調整したスリット幅1mmの平膜用口金から、厚み100μmになるように、密度0.42g/cm、厚み160μmのポリエステル繊維不織布の上に塗布し、直ちに、貧溶媒のγ−ブチロラクトン80重量%と非溶媒の水20重量%を含む15℃の凝固液中に5分間浸漬して、多孔質樹脂層が形成された多孔質膜を製造した。
Polyvinylidene fluoride (PVDF): 30.0% by weight
γ-butyrolactone: 60.0% by weight
Polyethylene glycol: 10.0% by weight
Next, after filtering the polyvinylidene fluoride resin solution with a 50 μm stainless steel filter or the like, the density is 0.42 g / cm 3 so that the thickness becomes 100 μm from the flat film die having a slit width of 1 mm adjusted to 160 ° C. And coated on a non-woven polyester fiber having a thickness of 160 μm, and immediately immersed in a coagulating solution at 15 ° C. containing 80% by weight of a poor solvent γ-butyrolactone and 20% by weight of a non-solvent water for 5 minutes. A porous membrane having a layer formed thereon was produced.

ポリフッ化ビニリデン系樹脂溶液を多孔質基材に塗布した多孔質樹脂層を95℃の熱水に2分間浸漬してγ−ブチロラクトン及びポリエチレングリコールを洗い流し、多孔質膜とした。   A porous resin layer in which a polyvinylidene fluoride resin solution was applied to a porous substrate was immersed in hot water at 95 ° C. for 2 minutes to wash away γ-butyrolactone and polyethylene glycol to obtain a porous film.

得られた多孔質膜について膜性能評価を行った結果、多孔質膜の表面の機能層の平均孔径は0.60μm、球状体の平均直径は7μm、球状体の表面の平均孔径0.60μmであった。多孔質膜の厚みは104μmで、機能層の界面から他端部まで連通孔構造であり、純水透過係数は33×10−9/m/s/Paと高い水準であった。 As a result of evaluating the membrane performance of the obtained porous membrane, the average pore diameter of the functional layer on the surface of the porous membrane was 0.60 μm, the average diameter of the spherical body was 7 μm, and the average pore diameter of the spherical body surface was 0.60 μm. there were. The thickness of the porous membrane was 104 μm, and it was a communicating hole structure from the interface of the functional layer to the other end, and the pure water permeability coefficient was a high level of 33 × 10 −9 m 3 / m 2 / s / Pa.

上記多孔質膜について初期値(摩耗試験前)の平均粒径0.09μmのポリスチレンラテックス微粒子の阻止率が93%であった。また、摩耗試験後のポリスチレンラテックス阻止率は91%であった。このように、ポリスチレンラテックス微粒子の阻止率性能の摩耗試験による低下幅(A−B)は、2.0%と極めて小さく、摩耗試験による多孔質膜の性能低下は認められず、摩耗試験後でも90以上の良好な水準を維持することができた。   With respect to the porous film, the initial value (before the wear test) of polystyrene latex fine particles having an average particle size of 0.09 μm was 93%. The polystyrene latex rejection after the wear test was 91%. As described above, the decrease width (AB) of the rejection rate performance of the polystyrene latex fine particles by the wear test is as extremely small as 2.0%, and the deterioration of the performance of the porous film by the wear test is not recognized, and even after the wear test. A good level of 90 or more could be maintained.

さらに、図3(多孔質膜の表面)及び図4(多孔質膜の断面)に得られた多孔質膜の構造写真を示し、表1に膜性能の評価結果を示す。
(実施例3)
製膜原液用の樹脂成分としてポリフッ化ビニリデン(PVDF/呉羽化学工業株式会社製、KF#1300)を用いた。また、親水性多孔化剤としてポリエチレングリコール(平均分子量20,000)、貧溶媒としてγ−ブチロラクトンをそれぞれ用いた。これらを160℃の温度下で十分に攪拌し、次の組成を有するポリフッ化ビニリデン系樹脂溶液を作製した。
Further, FIG. 3 (surface of the porous membrane) and FIG. 4 (cross section of the porous membrane) show structural photographs of the obtained porous membrane, and Table 1 shows the evaluation results of the membrane performance.
(Example 3)
Polyvinylidene fluoride (PVDF / Kureha Chemical Co., Ltd., KF # 1300) was used as a resin component for the film-forming stock solution. Further, polyethylene glycol (average molecular weight 20,000) was used as the hydrophilic porogen, and γ-butyrolactone was used as the poor solvent. These were sufficiently stirred at a temperature of 160 ° C. to prepare a polyvinylidene fluoride resin solution having the following composition.

ポリフッ化ビニリデン(PVDF) :35.0重量%
γ−ブチロラクトン :60.0重量%
ポリエチレングリコール :5.0重量%
次に上記ポリフッ化ビニリデン系樹脂溶液を50μmのステンレス製フィルター等で濾過した後、160℃に調整したスリット幅1mmの平膜用口金から、厚み100μmになるように、密度0.42g/cm、厚み160μmのポリエステル繊維不織布の上に塗布し、直ちに、貧溶媒のγ−ブチロラクトン80重量%と非溶媒の水20重量%を含む10℃の凝固液中に5分間浸漬して、多孔質樹脂層が形成された多孔質膜を製造した。
Polyvinylidene fluoride (PVDF): 35.0% by weight
γ-butyrolactone: 60.0% by weight
Polyethylene glycol: 5.0% by weight
Next, after filtering the polyvinylidene fluoride resin solution with a 50 μm stainless steel filter or the like, the density is 0.42 g / cm 3 so that the thickness becomes 100 μm from the flat film die having a slit width of 1 mm adjusted to 160 ° C. , Coated on a polyester fiber nonwoven fabric having a thickness of 160 μm, and immediately immersed in a coagulating solution at 10 ° C. containing 80% by weight of a poor solvent γ-butyrolactone and 20% by weight of non-solvent water for 5 minutes. A porous membrane having a layer formed thereon was produced.

ポリフッ化ビニリデン系樹脂溶液を多孔質基材に塗布した多孔質樹脂層を95℃の熱水に2分間浸漬してγ−ブチロラクトン及びポリエチレングリコールを洗い流し、多孔質膜とした。   A porous resin layer in which a polyvinylidene fluoride resin solution was applied to a porous substrate was immersed in hot water at 95 ° C. for 2 minutes to wash away γ-butyrolactone and polyethylene glycol to obtain a porous film.

得られた多孔質膜について膜性能評価を行った結果、多孔質膜の表面の機能層の平均孔径は0.50μm、球状体の平均直径は4μm、球状体の表面の平均孔径0.55μmであった。多孔質膜の厚みは99μmで、機能層の界面から他端部まで連通孔構造であり、純水透過係数は26×10−9/m/s/Paと高い水準であった。 As a result of evaluating the membrane performance of the obtained porous membrane, the average pore diameter of the functional layer on the surface of the porous membrane was 0.50 μm, the average diameter of the spherical body was 4 μm, and the average pore diameter of the surface of the spherical body was 0.55 μm. there were. The thickness of the porous membrane was 99 μm, and it was a communicating hole structure from the interface of the functional layer to the other end, and the pure water permeability coefficient was as high as 26 × 10 −9 m 3 / m 2 / s / Pa.

上記多孔質膜について初期値(摩耗試験前)の平均粒径0.09μmのポリスチレンラテックス微粒子の阻止率が97%であった。また、摩耗試験後のポリスチレンラテックス阻止率は92%であった。このように、ポリスチレンラテックス微粒子の阻止率性能の摩耗試験による低下幅(A−B)は、6.0%と小さく、摩耗試験による多孔質膜の性能低下は認められず、摩耗試験後でも90以上の良好な水準を維持することができた。
(実施例4)
製膜原液用の樹脂成分としてポリフッ化ビニリデン(PVDF/呉羽化学工業株式会社製、KF#1300)を用いた。また、親水性多孔化剤としてグリセリン、貧溶媒としてγ−ブチロラクトンをそれぞれ用いた。これらを160℃の温度下で十分に攪拌し、次の組成を有するポリフッ化ビニリデン系樹脂溶液を作製した。
With respect to the porous film, the initial value (before the wear test) of polystyrene latex fine particles having an average particle diameter of 0.09 μm was 97%. Further, the polystyrene latex rejection after the abrasion test was 92%. Thus, the decrease rate (AB) of the rejection rate performance of the polystyrene latex fine particles by the wear test is as small as 6.0%, and the performance decrease of the porous film by the wear test is not recognized. The above good level could be maintained.
Example 4
Polyvinylidene fluoride (PVDF / Kureha Chemical Co., Ltd., KF # 1300) was used as a resin component for the film-forming stock solution. In addition, glycerin was used as the hydrophilic porogen and γ-butyrolactone was used as the poor solvent. These were sufficiently stirred at a temperature of 160 ° C. to prepare a polyvinylidene fluoride resin solution having the following composition.

ポリフッ化ビニリデン(PVDF) :30.0重量%
γ−ブチロラクトン :65.0重量%
グリセリン :5.0重量%
次に上記ポリフッ化ビニリデン系樹脂溶液を50μmのステンレス製フィルター等で濾過した後、160℃に調整したスリット幅1mmの平膜用口金から、厚み100μmになるように、密度0.42g/cm、厚み160μmのポリエステル繊維不織布の上に塗布し、直ちに、貧溶媒のγ−ブチロラクトン80重量%と非溶媒の水20重量%を含む15℃の凝固液中に5分間浸漬して、多孔質樹脂層が形成された多孔質膜を製造した。
Polyvinylidene fluoride (PVDF): 30.0% by weight
γ-butyrolactone: 65.0% by weight
Glycerin: 5.0% by weight
Next, after filtering the polyvinylidene fluoride resin solution with a 50 μm stainless steel filter or the like, the density is 0.42 g / cm 3 so that the thickness becomes 100 μm from the flat film die having a slit width of 1 mm adjusted to 160 ° C. And coated on a non-woven polyester fiber having a thickness of 160 μm, and immediately immersed in a coagulating solution at 15 ° C. containing 80% by weight of a poor solvent γ-butyrolactone and 20% by weight of a non-solvent water for 5 minutes. A porous membrane having a layer formed thereon was produced.

ポリフッ化ビニリデン系樹脂溶液を多孔質基材に塗布した多孔質樹脂層を95℃の熱水に2分間浸漬してγ−ブチロラクトン及びグリセリンを洗い流し、多孔質膜とした。   A porous resin layer in which a polyvinylidene fluoride resin solution was applied to a porous substrate was immersed in hot water at 95 ° C. for 2 minutes to wash away γ-butyrolactone and glycerin to obtain a porous film.

得られた多孔質膜について膜性能評価を行った結果、多孔質膜の表面の機能層の平均孔径は0.80μm、球状体の平均直径は6μm、球状体の表面の平均孔径0.85μmであった。多孔質膜の厚みは98μmで、機能層の界面から他端部まで連通孔構造であり、純水透過係数は27×10−9/m/s/Paと高い水準であった。 As a result of evaluating the membrane performance of the obtained porous membrane, the average pore diameter of the functional layer on the surface of the porous membrane was 0.80 μm, the average diameter of the spherical body was 6 μm, and the average pore diameter of the spherical body surface was 0.85 μm. there were. The thickness of the porous membrane was 98 μm, and it had a communicating hole structure from the interface of the functional layer to the other end, and the pure water permeability coefficient was a high level of 27 × 10 −9 m 3 / m 2 / s / Pa.

上記多孔質膜について初期値(摩耗試験前)の平均粒径0.09μmのポリスチレンラテックス微粒子の阻止率が91%であった。また、摩耗試験後のポリスチレンラテックス阻止率は90%であった。このように、ポリスチレンラテックス微粒子の阻止率性能の摩耗試験による低下幅(A−B)は、1.0%と小さく、摩耗試験による多孔質膜の性能低下は認められず、摩耗試験後でも90以上の良好な水準を維持することができた。
(比較例1)
製膜原液用の樹脂成分としてポリフッ化ビニリデン(PVDF/呉羽化学工業株式会社製、KF#1300)を用いた。また、親水性多孔化剤としてポリエチレングリコール(平均分子量20,000)、貧溶媒としてγ−ブチロラクトンをそれぞれ用いた。これらを160℃の温度下で十分に攪拌し、次の組成を有するポリフッ化ビニリデン系樹脂溶液を作製した。
With respect to the porous film, the initial value (before wear test) of polystyrene latex fine particles having an average particle diameter of 0.09 μm was 91%. Further, the polystyrene latex rejection after the abrasion test was 90%. Thus, the decrease rate (AB) of the rejection rate performance of the polystyrene latex fine particles by the abrasion test is as small as 1.0%, and the performance degradation of the porous film by the abrasion test is not recognized, and even after the abrasion test, 90%. The above good level could be maintained.
(Comparative Example 1)
Polyvinylidene fluoride (PVDF / Kureha Chemical Co., Ltd., KF # 1300) was used as a resin component for the film-forming stock solution. Further, polyethylene glycol (average molecular weight 20,000) was used as the hydrophilic porogen, and γ-butyrolactone was used as the poor solvent. These were sufficiently stirred at a temperature of 160 ° C. to prepare a polyvinylidene fluoride resin solution having the following composition.

ポリフッ化ビニリデン(PVDF) :30.0重量%
γ−ブチロラクトン :65.0重量%
ポリエチレングリコール : 5.0重量%
次に上記ポリフッ化ビニリデン系樹脂溶液を50μmのステンレス製フィルター等で濾過した後、160℃に調整したスリット幅1mmの平膜用口金から、厚み100μmになるように、密度0.42g/cm、厚み160μmのポリエステル繊維不織布の上に塗布し、直ちに、非溶媒の水100重量%の15℃の凝固液中に5分間浸漬して、多孔質樹脂層が形成された多孔質膜を製造した。
Polyvinylidene fluoride (PVDF): 30.0% by weight
γ-butyrolactone: 65.0% by weight
Polyethylene glycol: 5.0% by weight
Next, after filtering the polyvinylidene fluoride resin solution with a 50 μm stainless steel filter or the like, the density is 0.42 g / cm 3 so that the thickness becomes 100 μm from the flat film die having a slit width of 1 mm adjusted to 160 ° C. The film was coated on a 160 μm thick polyester fiber nonwoven fabric and immediately immersed in a non-solvent 100 wt% water coagulating solution at 15 ° C. for 5 minutes to produce a porous film on which a porous resin layer was formed. .

ポリフッ化ビニリデン系樹脂溶液を多孔質基材に塗布した多孔質樹脂層を95℃の熱水に2分間浸漬してγ−ブチロラクトン及びポリエチレングリコールを洗い流し、多孔質膜とした。   A porous resin layer in which a polyvinylidene fluoride resin solution was applied to a porous substrate was immersed in hot water at 95 ° C. for 2 minutes to wash away γ-butyrolactone and polyethylene glycol to obtain a porous film.

得られた多孔質膜について膜性能評価を行った結果、多孔質膜の表面の機能層の平均孔径は0.01μm以下、球状体の平均直径は5μm、球状体の表面の平均孔径0.40μmであった。多孔質膜の厚みは101μmで、機能層にはほとんど細孔がみられず、純水透過係数は1×10−9/m/s/Pa以下と低い水準であった。 As a result of evaluating the membrane performance of the obtained porous membrane, the average pore diameter of the functional layer on the surface of the porous membrane was 0.01 μm or less, the average diameter of the spherical body was 5 μm, and the average pore diameter of the surface of the spherical body was 0.40 μm. Met. The thickness of the porous film was 101 μm, and almost no pores were observed in the functional layer, and the pure water permeability coefficient was a low level of 1 × 10 −9 m 3 / m 2 / s / Pa or less.

上記多孔質膜について摩耗試験による摩耗試験前後の平均粒径0.09μmのポリスチレンラテックス微粒子の阻止率測定は純粋透過係数の値が得られなかったことから測定できなかった。   With respect to the porous membrane, measurement of the rejection rate of polystyrene latex fine particles having an average particle size of 0.09 μm before and after the abrasion test by the abrasion test could not be performed because the value of the pure permeability coefficient was not obtained.

さらに、図5(多孔質膜の表面)及び図6(多孔質膜の断面)に得られた多孔質膜の構造写真を示し、表1に膜性能の評価結果を示す。
(比較例2)
製膜原液用の樹脂成分としてポリフッ化ビニリデン(PVDF/呉羽化学工業株式会社製、KF#1300)を用いた。また、親水性多孔化剤としてポリエチレングリコール(平均分子量20,000)、貧溶媒としてγ−ブチロラクトンをそれぞれ用いた。これらを160℃の温度下で十分に攪拌し、次の組成を有するポリフッ化ビニリデン系樹脂溶液を作製した。
Further, FIG. 5 (the surface of the porous membrane) and FIG. 6 (the cross section of the porous membrane) show structural photographs of the obtained porous membrane, and Table 1 shows the evaluation results of the membrane performance.
(Comparative Example 2)
Polyvinylidene fluoride (PVDF / Kureha Chemical Co., Ltd., KF # 1300) was used as a resin component for the film-forming stock solution. Further, polyethylene glycol (average molecular weight 20,000) was used as the hydrophilic porogen, and γ-butyrolactone was used as the poor solvent. These were sufficiently stirred at a temperature of 160 ° C. to prepare a polyvinylidene fluoride resin solution having the following composition.

ポリフッ化ビニリデン(PVDF) :30.0重量%
γ−ブチロラクトン :70.0重量%
次に上記ポリフッ化ビニリデン系樹脂溶液を50μmのステンレス製フィルター等で濾過した後、160℃に調整したスリット幅1mmの平膜用口金から、厚み100μmになるように、密度0.42g/cm、厚み160μmのポリエステル繊維不織布の上に塗布し、直ちに、貧溶媒のγ−ブチロラクトン80重量%と非溶媒の水20重量%を含む15℃の凝固液中に5分間浸漬して、多孔質樹脂層が形成された多孔質膜を製造した。
Polyvinylidene fluoride (PVDF): 30.0% by weight
γ-butyrolactone: 70.0% by weight
Next, after filtering the polyvinylidene fluoride resin solution with a 50 μm stainless steel filter or the like, the density is 0.42 g / cm 3 so that the thickness becomes 100 μm from the flat film die having a slit width of 1 mm adjusted to 160 ° C. And coated on a non-woven polyester fiber having a thickness of 160 μm, and immediately immersed in a coagulating solution at 15 ° C. containing 80% by weight of a poor solvent γ-butyrolactone and 20% by weight of a non-solvent water for 5 minutes. A porous membrane having a layer formed thereon was produced.

ポリフッ化ビニリデン系樹脂溶液を多孔質基材に塗布した多孔質樹脂層を95℃の熱水に2分間浸漬してγ−ブチロラクトンを洗い流し、多孔質膜とした。   A porous resin layer in which a polyvinylidene fluoride resin solution was applied to a porous substrate was immersed in hot water at 95 ° C. for 2 minutes to wash away γ-butyrolactone to obtain a porous film.

得られた多孔質膜について膜性能評価を行った結果、多孔質膜の表面の機能層の平均孔径は2.0μm、球状体の平均直径は6μm、球状体の表面の平均孔径0.01μm以下であった。多孔質膜の厚みは103μmで、機能層の界面から他端部まで連通孔構造であり、純水透過係数は66×10−9/m/s/Paと非常に高い水準であった。 As a result of evaluating the membrane performance of the obtained porous membrane, the average pore diameter of the functional layer on the surface of the porous membrane is 2.0 μm, the average diameter of the spherical body is 6 μm, and the average pore diameter of the spherical body surface is 0.01 μm or less. Met. The thickness of the porous membrane is 103 μm, and it is a communicating hole structure from the interface of the functional layer to the other end, and the pure water permeability coefficient is very high at 66 × 10 −9 m 3 / m 2 / s / Pa. It was.

上記多孔質膜について初期値(摩耗試験前)の平均粒径0.09μmのポリスチレンラテックス微粒子の阻止率が5.0%であった。また、摩耗試験後のポリスチレンラテックス阻止率は4.0%であった。このように、ポリスチレンラテックス微粒子の阻止率性能の摩耗試験による低下幅(A−B)は、1.0%であったが、機能層も膜表面平均孔径が大きく阻止率が10%以下と非常に低い値であった。   With respect to the porous film, the initial rate (before the wear test) of polystyrene latex fine particles having an average particle diameter of 0.09 μm was 5.0%. Further, the polystyrene latex rejection after the abrasion test was 4.0%. Thus, the reduction rate (AB) of the rejection rate performance of the polystyrene latex fine particles by the wear test was 1.0%, but the functional layer also has a large membrane surface average pore diameter and the rejection rate is 10% or less. The value was low.

さらに、図7(多孔質膜の表面)及び図8(多孔質膜の断面)に得られた多孔質膜の構造写真を示し、表1に膜性能の評価結果を示す。
(比較例3)
製膜原液用の樹脂成分としてポリフッ化ビニリデン(PVDF/呉羽化学工業株式会社製、KF#1300)を用いた。また、親水性多孔化剤としてポリエチレングリコール(平均分子量20,000)、貧溶媒としてγ−ブチロラクトンをそれぞれ用いた。これらを160℃の温度下で十分に攪拌し、次の組成を有するポリフッ化ビニリデン系樹脂溶液を作製した。
Further, FIG. 7 (surface of the porous membrane) and FIG. 8 (cross section of the porous membrane) show structural photographs of the obtained porous membrane, and Table 1 shows the evaluation results of the membrane performance.
(Comparative Example 3)
Polyvinylidene fluoride (PVDF / Kureha Chemical Co., Ltd., KF # 1300) was used as a resin component for the film-forming stock solution. Further, polyethylene glycol (average molecular weight 20,000) was used as the hydrophilic porogen, and γ-butyrolactone was used as the poor solvent. These were sufficiently stirred at a temperature of 160 ° C. to prepare a polyvinylidene fluoride resin solution having the following composition.

ポリフッ化ビニリデン(PVDF) :30.0重量%
γ−ブチロラクトン :70.0重量%
次に上記ポリフッ化ビニリデン系樹脂溶液を50μmのステンレス製フィルター等で濾過した後、160℃に調整したスリット幅1mmの平膜用口金から、厚み100μmになるように、密度0.42g/cm、厚み160μmのポリエステル繊維不織布の上に塗布し、直ちに、非溶媒の水100重量%の15℃の凝固液中に5分間浸漬して、多孔質樹脂層が形成された多孔質膜を製造した。
Polyvinylidene fluoride (PVDF): 30.0% by weight
γ-butyrolactone: 70.0% by weight
Next, after filtering the polyvinylidene fluoride resin solution with a 50 μm stainless steel filter or the like, the density is 0.42 g / cm 3 so that the thickness becomes 100 μm from the flat film die having a slit width of 1 mm adjusted to 160 ° C. The film was coated on a 160 μm thick polyester fiber nonwoven fabric and immediately immersed in a non-solvent 100 wt% water coagulating solution at 15 ° C. for 5 minutes to produce a porous film on which a porous resin layer was formed. .

ポリフッ化ビニリデン系樹脂溶液を多孔質基材に塗布した多孔質樹脂層を95℃の熱水に2分間浸漬してγ−ブチロラクトン及びポリエチレングリコールを洗い流し、多孔質膜とした。   A porous resin layer in which a polyvinylidene fluoride resin solution was applied to a porous substrate was immersed in hot water at 95 ° C. for 2 minutes to wash away γ-butyrolactone and polyethylene glycol to obtain a porous film.

得られた多孔質膜について膜性能評価を行った結果、多孔質膜の表面の機能層の平均孔径は0.1μm以下、球状体の平均直径は6.0μm、球状体の表面の平均孔径0.01μm以下であった。多孔質膜の厚みは102μmで、機能層にはほとんど細孔がみられず、純水透過係数は1×10−9/m/s/Pa以下と低い水準であった。 As a result of evaluating the membrane performance of the obtained porous membrane, the average pore diameter of the functional layer on the surface of the porous membrane is 0.1 μm or less, the average diameter of the spherical body is 6.0 μm, and the average pore diameter of the surface of the spherical body is 0. .01 μm or less. The thickness of the porous membrane was 102 μm, and there were almost no pores in the functional layer, and the pure water permeability coefficient was a low level of 1 × 10 −9 m 3 / m 2 / s / Pa or less.

上記多孔質膜について摩耗試験による摩耗試験前後の平均粒径0.09μmのポリスチレンラテックス微粒子の阻止率測定は純粋透過係数の値が得られなかったことから測定できなかった。   With respect to the porous membrane, measurement of the rejection rate of polystyrene latex fine particles having an average particle size of 0.09 μm before and after the abrasion test by the abrasion test could not be performed because the value of the pure permeability coefficient was not obtained.

さらに、図9(多孔質膜の表面)及び図10(多孔質膜の断面)に得られた多孔質膜の構造写真を示し、表1に膜性能の評価結果を示す。   Further, FIG. 9 (surface of the porous membrane) and FIG. 10 (cross section of the porous membrane) show structural photographs of the obtained porous membrane, and Table 1 shows the evaluation results of the membrane performance.

実施例1における多孔質樹脂層の表面を撮影した構造写真である。2 is a structural photograph of the surface of a porous resin layer in Example 1. FIG. 実施例1における多孔質樹脂層の断面を撮影した構造写真である。2 is a structural photograph of a cross section of a porous resin layer in Example 1. FIG. 実施例2における多孔質樹脂層の表面を撮影した構造写真である。3 is a structural photograph of the surface of a porous resin layer in Example 2. 実施例2における多孔質樹脂層の断面を撮影した構造写真である。3 is a structural photograph of a cross section of a porous resin layer in Example 2. FIG. 比較例1における多孔質樹脂層の表面を撮影した構造写真である。2 is a structural photograph of the surface of a porous resin layer in Comparative Example 1. 比較例1における多孔質樹脂層の断面を撮影した構造写真である。2 is a structural photograph of a cross section of a porous resin layer in Comparative Example 1. FIG. 比較例2における多孔質樹脂層の表面を撮影した構造写真である。4 is a structural photograph of the surface of a porous resin layer in Comparative Example 2. 比較例2における多孔質樹脂層の断面を撮影した構造写真である。6 is a structural photograph of a cross section of a porous resin layer in Comparative Example 2. 比較例3における多孔質樹脂層の表面を撮影した構造写真である。5 is a structural photograph of the surface of a porous resin layer in Comparative Example 3. 比較例3における多孔質樹脂層の断面を撮影した構造写真である。6 is a structural photograph of a cross section of a porous resin layer in Comparative Example 3.

Claims (7)

多孔質基材の表面に単層の多孔質樹脂層を有してなる多孔質膜であって、該多孔質樹脂層が平均直径0.5μm以上10μm以下である球状体からなり、該球状体の表面に平均孔径が0.05μm以上5μm以下の細孔が少なくとも1つ以上形成されており、かつ、該多孔質膜の少なくとも片側の表面の平均孔径が0.05μm以上5μm以下であることを特徴とする多孔質膜。   A porous film having a single porous resin layer on the surface of a porous substrate, the porous resin layer comprising a spherical body having an average diameter of 0.5 μm to 10 μm, and the spherical body At least one pore having an average pore diameter of 0.05 μm or more and 5 μm or less is formed on the surface, and the average pore diameter of the surface of at least one side of the porous membrane is 0.05 μm or more and 5 μm or less. A porous membrane characterized. 前記多孔質樹脂層が熱可塑性樹脂からなる請求項1に記載の多孔質膜。   The porous membrane according to claim 1, wherein the porous resin layer is made of a thermoplastic resin. 前記熱可塑性樹脂がポリフッ化ビニリデン系樹脂である請求項2に記載の多孔質膜。   The porous film according to claim 2, wherein the thermoplastic resin is a polyvinylidene fluoride resin. 落砂式摩耗試験の前後における平均粒径0.09μmのラテックス微粒子の阻止率(%)を、落砂式摩耗試験前の阻止率をA(%)、落砂式摩耗試験後の阻止率をB(%)としたとき、次の不等式
A−B≦50(%)
の関係を満足することを特徴とする請求項1〜3のいずれかに記載の多孔質膜。
The rejection rate (%) of latex fine particles with an average particle diameter of 0.09 μm before and after the sandfall wear test is A (%) before the sandfall wear test, and the rejection rate after the sandfall wear test. When B (%), the following inequality A−B ≦ 50 (%)
The porous film according to claim 1, wherein the following relationship is satisfied.
平膜である請求項1〜4のいずれかに記載の多孔質膜。   It is a flat membrane, The porous membrane in any one of Claims 1-4. 20〜60重量%のポリフッ化ビニリデン系樹脂、1〜30重量%の親水性多孔化剤および該ポリフッ化ビニリデン系樹脂の貧溶媒を含有し、温度が80〜175℃の範囲であるポリフッ化ビニリデン系樹脂溶液を多孔質基材の表面に接触させた後、凝固浴の中に浸漬させることで得られることを特徴とする請求項1〜5のいずれかに記載の多孔質膜の製造方法。   Polyvinylidene fluoride containing 20 to 60% by weight of a polyvinylidene fluoride resin, 1 to 30% by weight of a hydrophilic porogen and a poor solvent for the polyvinylidene fluoride resin and having a temperature in the range of 80 to 175 ° C The method for producing a porous membrane according to any one of claims 1 to 5, wherein the porous resin membrane is obtained by bringing the resin solution into contact with the surface of the porous substrate and then immersing the resin solution in a coagulation bath. 前記凝固浴の中の液体が、温度が0〜50℃の範囲内であり、前記ポリフッ化ビニリデン系樹脂の貧溶媒を60〜100重量%含有することを特徴とする請求項6に記載の多孔質膜の製造方法。   7. The porous according to claim 6, wherein the liquid in the coagulation bath has a temperature in a range of 0 to 50 ° C. and contains 60 to 100% by weight of a poor solvent for the polyvinylidene fluoride resin. A method for producing a membrane.
JP2008247560A 2008-09-26 2008-09-26 Porous film and method for manufacturing the same Pending JP2010075851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247560A JP2010075851A (en) 2008-09-26 2008-09-26 Porous film and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247560A JP2010075851A (en) 2008-09-26 2008-09-26 Porous film and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010075851A true JP2010075851A (en) 2010-04-08

Family

ID=42206920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247560A Pending JP2010075851A (en) 2008-09-26 2008-09-26 Porous film and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010075851A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054658A1 (en) 2012-10-02 2014-04-10 Jnc株式会社 Microporous membrane and manufacturing process therefor
JP2015512784A (en) * 2012-03-30 2015-04-30 コーロン インダストリーズ インク Porous membrane and method for producing the same
JP2015160185A (en) * 2014-02-28 2015-09-07 Jnc株式会社 membrane bioreactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512784A (en) * 2012-03-30 2015-04-30 コーロン インダストリーズ インク Porous membrane and method for producing the same
US9314745B2 (en) 2012-03-30 2016-04-19 Kolon Industries, Inc. Porous membrane and method for manufacturing the same
WO2014054658A1 (en) 2012-10-02 2014-04-10 Jnc株式会社 Microporous membrane and manufacturing process therefor
US9987597B2 (en) 2012-10-02 2018-06-05 Jnc Corporation Microporous membrane and manufacturing process therefor
EP3702019A1 (en) 2012-10-02 2020-09-02 JNC Corporation Microporous membrane and manufacturing process therefor
JP2015160185A (en) * 2014-02-28 2015-09-07 Jnc株式会社 membrane bioreactor

Similar Documents

Publication Publication Date Title
JP5127107B2 (en) Manufacturing method of separation membrane
US10406487B2 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
EP1007195A1 (en) Highly asymmetric polyethersulfone filtration membrane
WO2008001426A1 (en) Polymer separation membrane and process for producing the same
JP5716283B2 (en) Porous separation flat membrane and method for producing the same
KR101292485B1 (en) Fluororesin polymer separation membrane and process for producing the same
JP2010094670A (en) Polyvinylidene fluoride-based multiple membrane and method for producing the same
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
US20020162792A1 (en) Polymer membrane meshes
JP2013202461A (en) Method for producing porous film
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
JPWO2019066061A1 (en) Porous hollow fiber membrane and its manufacturing method
JP2010082573A (en) Porous film and method for manufacturing the same
JP2007283287A (en) Poly(vinylidene fluoride) based porous separating membrane
JP2011036848A (en) Separation membrane made of polyvinylidene fluoride resin and method for manufacturing the same
TWI403355B (en) A fluororesin-based polymer separation membrane and a method for producing the same
JP2010075851A (en) Porous film and method for manufacturing the same
JP2012187575A (en) Composite membrane and method for manufacturing the same
JP3255385B2 (en) Polysulfone hollow fiber membrane and method for producing the same
KR20100136809A (en) Microfilter and method for preparing the same
JPH08108053A (en) Cellulose acetate hollow-fiber separation membrane and its production
JP3681219B2 (en) Polysulfone porous separation membrane
WO1998058728A1 (en) Polyacrylonitrile-base hollow-fiber filtration membrane
TW201836699A (en) Microporous film
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus