JP2006218441A - Porous membrane and its production method - Google Patents

Porous membrane and its production method Download PDF

Info

Publication number
JP2006218441A
JP2006218441A JP2005035876A JP2005035876A JP2006218441A JP 2006218441 A JP2006218441 A JP 2006218441A JP 2005035876 A JP2005035876 A JP 2005035876A JP 2005035876 A JP2005035876 A JP 2005035876A JP 2006218441 A JP2006218441 A JP 2006218441A
Authority
JP
Japan
Prior art keywords
solvent
porous membrane
phase separation
temperature
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005035876A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tomi
康博 富
Shinji Tawara
伸治 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2005035876A priority Critical patent/JP2006218441A/en
Publication of JP2006218441A publication Critical patent/JP2006218441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous membrane with excellent mechanical strength which can be obtained in a practical method by using a mixed solvent having an appropriate solubility formed by mixing a non-solvent to cause a liquid-liquid phase separation, and a production method of the porous membrane. <P>SOLUTION: A production method of a porous membrane comprises cooling a membrane forming solution where a polyvinylidene fluoride resin is at least heated and melted in a solvent at a temperature higher than the phase separation temperature to a temperature not higher than the phase separation temperature to be solidified, wherein the solvent is a mixed solvent formed by mixing a poor solvent defined by the formula (2) and a non-solvent defined by the formula (3) using three-dimensional solubility parameters, and both the solvents satisfy the formula (4) and the mixed solvent satisfies the formula (1). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱誘起相分離法(TIPS法)によって製造され、精密ろ過膜または限外ろ過膜として、水処理に適したポリフッ化ビニリデン系樹脂の多孔質膜、及びその製造方法に関する。   The present invention relates to a porous membrane of polyvinylidene fluoride resin that is produced by a thermally induced phase separation method (TIPS method) and is suitable for water treatment as a microfiltration membrane or an ultrafiltration membrane, and a method for producing the same.

精密ろ過膜や限外ろ過膜などの分離膜は、用水製造、排水処理、河川および湖水の浄水等をはじめとして様々な方面で利用されている。水事情問題を抱える中国や中東地域を中心に、その需要、市場は急増加傾向にある。   Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields including water production, wastewater treatment, river and lake water purification, and the like. The demand and the market are increasing rapidly, especially in China and the Middle East where there are water problems.

従来、透過性能の優れた分離膜として、非溶媒相分離法(NIPS)により製造されるポリスルホン、ポリアクリロニトリル、酢酸セルロース系、ポリフッ化ビニリデン製などのろ過膜が知られている。しかし、透過水の殺菌や膜のバイオファウリング防止の目的で、膜モジュールに薬剤を投入することに対する膜の耐久性を要求される。そのため、近年では耐薬品性に優れる素材として、ポリフッ化ビニリデン(PVDF)系樹脂製の分離膜の開発が注目されている。   Conventionally, filtration membranes such as polysulfone, polyacrylonitrile, cellulose acetate, and polyvinylidene fluoride produced by a non-solvent phase separation method (NIPS) are known as separation membranes with excellent permeation performance. However, for the purpose of sterilizing permeated water and preventing biofouling of the membrane, durability of the membrane against the introduction of a chemical into the membrane module is required. Therefore, in recent years, development of a separation membrane made of polyvinylidene fluoride (PVDF) resin has attracted attention as a material excellent in chemical resistance.

PVDF分離膜の製造方法としては、PVDF系樹脂を良溶媒に溶解して原料溶液を調製し、水などのPVDF系樹脂の非溶媒を含む液体に漬けて、非溶媒相分離法により多孔質膜を形成させる湿式製造法がある。しかし、この方法では、マクロボイドを生成しやすく、機械的強度の点で問題がある。また、製膜工程において製膜条件因子が多く、製膜工程において膜構造や膜性能の制御が難しく、再現性も貧しいといった欠点がある。   As a method for producing a PVDF separation membrane, a PVDF resin is dissolved in a good solvent to prepare a raw material solution, immersed in a liquid containing a non-solvent of PVDF resin such as water, and a porous membrane is obtained by a non-solvent phase separation method. There is a wet manufacturing method for forming. However, this method is liable to generate macrovoids and has a problem in terms of mechanical strength. In addition, there are many film forming condition factors in the film forming process, and it is difficult to control the film structure and film performance in the film forming process, and the reproducibility is poor.

また、ポリフッ化ビニリデン系樹脂に無機微粒子と有機液状体を溶融混練し、ポリフッ化ビニリデン系樹脂の融点以上の温度から冷却固化し、その後、有機液状体と無機微粒子を抽出することにより多孔構造を形成する溶融抽出法(例えば、特許文献1参照)がある。溶融抽出法の場合では、マクロボイドは形成せず比較的均質で高強度の膜が得られるものの、無機微粒子の分散性が悪いとピンホールのような欠陥を生じる可能性がある。さらに、溶融抽出法は、製造コストが極めて高くなるといった欠点を有している製造方法である。   In addition, inorganic fine particles and organic liquid are melt-kneaded into polyvinylidene fluoride resin, solidified by cooling from a temperature above the melting point of polyvinylidene fluoride resin, and then the organic liquid and inorganic fine particles are extracted to form a porous structure. There is a melt extraction method to be formed (for example, see Patent Document 1). In the case of the melt extraction method, a macro-void is not formed and a relatively homogeneous and high-strength film can be obtained. However, if the dispersibility of the inorganic fine particles is poor, defects such as pinholes may occur. Furthermore, the melt extraction method is a production method having a drawback that the production cost is extremely high.

これらの事情から、相分離機構を熱によって引き起こす熱誘起相分離法(TIPS法)が、現在、注目されている。熱誘起相分離法とは、ポリマーとこれに常温で溶けない貧溶媒とを高温で混合させ、均一なポリマー溶液を調製し、この温度を下げていくことで、溶液の温度がバイノーダル(Binodal)線以下、或いは、結晶化ライン以下になると、溶液は濁り初めて相分離が起こる。最終的にポリマーが固まり、ポリマーがマトリクスとなって貧溶媒が抽出され、多孔質構造が形成される。   Under these circumstances, a heat-induced phase separation method (TIPS method) that causes a phase separation mechanism by heat is currently attracting attention. The heat-induced phase separation method is a method in which a polymer and a poor solvent that does not dissolve at room temperature are mixed at a high temperature to prepare a uniform polymer solution, and the temperature of the solution is reduced to Binodal. Below the line, or below the crystallization line, the solution becomes cloudy and phase separation occurs. Eventually the polymer hardens, the polymer becomes a matrix and the poor solvent is extracted to form a porous structure.

TIPS法における構造生成のメカニズムは、固−液相分離と液−液相分離とに大別される。ポリフッ化ビニリデン樹脂は、結晶性が高く、相分離過程において結晶化によって相分離が起き易く、結晶核が成長して、粗大な球状結晶が部分的に繋がった構造となる(例えば、特許文献2参照)。即ち、膜構造の生成メカニズムは、固−液相分離のみであり、つまりTs(構造形成温度)=Tc(結晶化温度)ということである。従って、構造の粗大化を抑制するのは難しく、この手法で製造された膜は機械的な強度に劣っているという問題がある。また、冷却速度といった製膜因子は、生成された膜の性能に大きく影響するため、製造条件が厳しく制限されている。   The structure generation mechanism in the TIPS method is roughly classified into solid-liquid phase separation and liquid-liquid phase separation. Polyvinylidene fluoride resin has high crystallinity, phase separation is likely to occur during crystallization in the phase separation process, crystal nuclei grow, and a structure in which coarse spherical crystals are partially connected (for example, Patent Document 2). reference). That is, the generation mechanism of the film structure is only solid-liquid phase separation, that is, Ts (structure formation temperature) = Tc (crystallization temperature). Therefore, it is difficult to suppress the coarsening of the structure, and there is a problem that the film manufactured by this method is inferior in mechanical strength. In addition, the film forming factor such as the cooling rate greatly affects the performance of the generated film, and thus the manufacturing conditions are severely limited.

また、下記の特許文献3では、重合体/混合成分の混合物を押出し、U字チューブの形状のクエンチチューブ(冷却槽)を通して中空糸を作成する。この発明の特徴として、押出したポリマー溶液の方向に冷却液を流し、ポリマー溶液の押出しの線速度は冷却液の平均線速度より20%以上速いことである。中空糸の製膜には、中空部を作製するために非溶媒を流している。押出されたポリマー溶液にかかるストレスを避けることが、この発明の特徴であり、形成ダイから出てくるポリマー溶液の速度と、形成され冷却された膜の伸張比は1.33の範囲である。   Moreover, in the following patent document 3, a polymer / mixture component mixture is extruded, and a hollow fiber is formed through a quench tube (cooling tank) in the shape of a U-shaped tube. As a feature of the present invention, a cooling liquid is caused to flow in the direction of the extruded polymer solution, and the linear velocity of the polymer solution extrusion is 20% or more higher than the average linear velocity of the cooling liquid. A non-solvent is allowed to flow through the hollow fiber membrane to produce a hollow portion. It is a feature of this invention to avoid stress on the extruded polymer solution, and the rate of the polymer solution exiting the forming die and the stretch ratio of the formed and cooled film is in the range of 1.33.

その他、下記の特許文献4では、ポリマーと混合溶媒からなるポリマー溶液で中空糸を作製する方法において、中空繊維膜形成物は腔形形成流体(中空糸形成芯液)、中空繊維の外表面に被覆液、及び被覆液の周囲に次いでより温度が低い冷却液と同時に押出された製膜法が特徴とする。言い換えれば、エア・ギャップ(ノズルから冷却液までに存在した乾式部の距離)が存在しないことである。被覆液が存在すると溶媒の蒸発を防ぐものの、被覆液をドープ液及び腔液(芯液)と同温度で同時に押出すため、膜が形に成り難く、機械的に弱いと考えられる。製膜プロセスも複雑である。通常、腔液はガス、非溶媒より貧溶媒或いは貧溶媒を含む混合溶媒を用いたほうが、中空糸膜の内表面に孔を形成しやすいが、強度的に若干弱くなる傾向がある。   In addition, in the following Patent Document 4, in a method for producing a hollow fiber with a polymer solution composed of a polymer and a mixed solvent, the hollow fiber membrane formed product is formed into a cavity-forming fluid (hollow fiber-forming core solution), the outer surface of the hollow fiber. It is characterized by a coating solution and a film forming method in which the coating solution is extruded simultaneously with a cooling liquid having a lower temperature around the coating solution. In other words, there is no air gap (the distance of the dry part that existed from the nozzle to the coolant). Although the solvent is prevented from evaporating in the presence of the coating liquid, the coating liquid is simultaneously extruded at the same temperature as the dope liquid and the cavity liquid (core liquid), so the film is difficult to form and is considered to be mechanically weak. The film forming process is also complicated. Usually, the cavity fluid is more likely to form pores on the inner surface of the hollow fiber membrane when using a poor solvent or a mixed solvent containing a poor solvent than a gas or a non-solvent, but tends to be slightly weak in strength.

最近では、下記の特許文献5に、TIPS法において、三次元溶解性パラメータで定義した特定の式を満足する溶媒を用いるポリフッ化ビニリデン多孔質膜の製造方法が開示されている。この発明では、実施例1において、γ−ブチロラクトンとジエチレングリコールの混合溶媒(重量比1:1)を使用しており(この溶媒では左辺が0.18)、これに近い三次元溶解性パラメータ(分散力項、双極子結合力項、水素結合項)を有する溶媒を用いる場合に、ポリマー溶液の冷却時に液−液相分離が生じ、これによって三次元網目状構造で強伸度のものが得られることが開示されている。この発明は、単一溶媒であっても、三次元溶解性パラメータで定義した特定の式を満足する溶媒であれば、使用可能とする発明である。   Recently, Patent Document 5 listed below discloses a method for producing a polyvinylidene fluoride porous membrane using a solvent that satisfies a specific formula defined by a three-dimensional solubility parameter in the TIPS method. In this invention, in Example 1, a mixed solvent of γ-butyrolactone and diethylene glycol (weight ratio 1: 1) is used (in this solvent, the left side is 0.18), and a three-dimensional solubility parameter (dispersion) close to this is used. In the case of using a solvent having a force term, a dipole bond strength term, and a hydrogen bond term), a liquid-liquid phase separation occurs when the polymer solution is cooled, thereby obtaining a three-dimensional network structure having high elongation. It is disclosed. In the present invention, even a single solvent can be used as long as it satisfies the specific formula defined by the three-dimensional solubility parameter.

しかしながら、TIPS法において、貧溶媒を単独で使用した場合、液−液相分離が生じずに固−液相分離が生じ易く、構造の粗大化を抑制するのが難しく、膜の機械的な強度が低下するという問題がある(この公報に記載された製膜方法から見ると、膜の伸度強度は39%以下に留まる)。   However, in the TIPS method, when a poor solvent is used alone, liquid-liquid phase separation does not occur and solid-liquid phase separation easily occurs, and it is difficult to suppress the coarsening of the structure, and the mechanical strength of the membrane (From the viewpoint of the film forming method described in this publication, the elongation strength of the film remains at 39% or less).

また、ポリフッ化ビニリデンに対する溶解性は、γ−ブチロラクトンが非溶媒に近い貧溶媒であり、ジエチレングリコールは非溶媒であるため、両者の混合溶媒は、本発明で定義する非溶媒となる。このため、加熱しても均一なポリマー溶液が調製しにくく、温度制御が困難で実用的な製法とは言い難い。
特許第2899903号公報 国際公開WO03/031038号公報 特公平7−91688号公報 特許第3442384号公報 特開2004−182919号公報
Further, the solubility in polyvinylidene fluoride is that γ-butyrolactone is a poor solvent close to a non-solvent, and diethylene glycol is a non-solvent, so the mixed solvent of both is a non-solvent defined in the present invention. For this reason, it is difficult to prepare a uniform polymer solution even when heated, and it is difficult to control the temperature, which is difficult to say as a practical production method.
Japanese Patent No. 2899903 International Publication WO03 / 031038 Japanese Patent Publication No.7-91688 Japanese Patent No. 3442384 JP 2004-182919 A

そこで、本発明の目的は、非溶媒を混合して適度な溶解性の混合溶媒を用いることで、液−液相分離を生じさせて機械的強度等が良好な多孔質膜を実用的な方法で得ることができる多孔質膜、及びその製造方法を提供することにある。   Therefore, an object of the present invention is to provide a practical method for producing a porous membrane having good mechanical strength and the like by causing liquid-liquid phase separation by mixing a non-solvent and using a moderately soluble mixed solvent. It is providing the porous membrane which can be obtained by this, and its manufacturing method.

本発明者らは、上記目的を達成すべく、ポリフッ化ビニリデン系樹脂の多孔質膜を熱誘起相分離法(TIPS法)で製造する際の混合溶媒について鋭意研究したところ、非溶媒を混合した適度な溶解性の混合溶媒を用いることで、上記目的が達成できることを見出し、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors diligently studied a mixed solvent when producing a porous membrane of polyvinylidene fluoride resin by a thermally induced phase separation method (TIPS method), and mixed a non-solvent. The present inventors have found that the above object can be achieved by using a moderately soluble mixed solvent, and have completed the present invention.

即ち、本発明の多孔質膜の製造方法は、少なくともポリフッ化ビニリデン系樹脂が相分離温度以上で溶媒に加熱溶解した製膜溶液を、相分離温度以下に冷却して凝固させる多孔質膜の製造方法において、前記溶媒は、三次元溶解性パラメータを用いて、下記の式(2)で定義される貧溶媒と下記の式(3)で定義される非溶媒とを混合した混合溶媒であって、両者の溶媒が下記の式(4)を満たすとともに、前記混合溶媒が下記の式(1)を満たすことを特徴とする。ここで、下記の式(1)〜(3)は、各溶媒の三次元溶解性パラメータとポリフッ化ビニリデンの三次元溶解性パラメータとの関係式で、各溶媒の溶解性を定義するものであり、下記の式(4)は、貧溶媒と非溶媒との溶解性パラメータの関係を特定するものである。   That is, the method for producing a porous membrane of the present invention comprises producing a porous membrane in which a membrane-forming solution in which at least a polyvinylidene fluoride-based resin is heated and dissolved in a solvent at a temperature higher than or equal to the phase separation temperature is cooled to a temperature lower than the phase separation temperature and solidified In the method, the solvent is a mixed solvent obtained by mixing a poor solvent defined by the following formula (2) and a non-solvent defined by the following formula (3) using a three-dimensional solubility parameter. The two solvents satisfy the following formula (4), and the mixed solvent satisfies the following formula (1). Here, the following formulas (1) to (3) are relational expressions between the three-dimensional solubility parameter of each solvent and the three-dimensional solubility parameter of polyvinylidene fluoride, and define the solubility of each solvent. The following formula (4) specifies the relationship between the solubility parameters of the poor solvent and the non-solvent.

Figure 2006218441
式(1)の不等号の左辺は、三次元的にHansen溶解性パラメータの溶解範囲を表すもので、三次元溶質の中心点の(δd,p、δp,p、δh,p)から液体三次元パラメータ(δd,ms、δp,ms、δh,ms)までの距離を定量的に表す。Rpは溶質の相互作用半径である。左辺は溶解性の尺度を示すものであり、通常では、Rpより小さいことは溶解する見込みがあると考えられるが、本発明では、熱的に溶かすことを促進するため、Rpより大きく、2Rpより小さい範囲でも、溶かすことができ、かつ、液−液相分離機構も存在することを見出した。熱誘起相分離法では、高温でポリマーと常温で溶けない貧溶媒と混合させ、均一なポリマー溶液を調製し、温度を下げてゆくと、溶液の温度はバイノーダル(Binodal)線以下、或いは、結晶化ラインを超えると、溶液は濁り、相分離が起こる。最終的に固まり、ポリマーはマトリクスで、貧溶媒を抽出され多孔質構造を作る。式(1)の左辺の値は小さければなるほどポリマーと混合溶媒が混合しやすくなり、固−液相分離機構となり、一方、左辺の値は高ければ高いほど溶解しにくくなるということである。
Figure 2006218441
The left-hand side of the inequality sign in equation (1) represents the solubility range of the Hansen solubility parameter in three dimensions. From the center point (δd, p, δp, p, δh, p) of the three-dimensional solute, The distance to the parameters (δd, ms, δp, ms, δh, ms) is expressed quantitatively. Rp is the solute interaction radius. The left side shows a measure of solubility. Normally, it is considered that a value smaller than Rp is likely to be dissolved. However, in the present invention, it is larger than Rp and more than 2Rp in order to promote thermal melting. It was found that even a small range can be dissolved and a liquid-liquid phase separation mechanism exists. In the heat-induced phase separation method, a polymer is mixed with a poor solvent that does not dissolve at room temperature at a high temperature to prepare a uniform polymer solution, and when the temperature is lowered, the temperature of the solution is less than the binodal line or a crystal. Beyond the conversion line, the solution becomes turbid and phase separation occurs. Finally, the polymer is a matrix and the poor solvent is extracted to create a porous structure. The smaller the value on the left side of the formula (1), the easier the polymer and the mixed solvent are mixed, and the solid-liquid phase separation mechanism is obtained. On the other hand, the higher the value on the left side, the harder it is to dissolve.

本発明では、非溶媒を添加することによって、混合溶媒のポリマーに対する溶解性を適度に調整することによって、バイノーダル線を結晶化ラインの上にシフトさせ、高分子希薄液と濃厚相液の2相に分離する液−液相分離を生じさせることが可能となる。これによって、球晶の成長が抑制されるため、球晶の凝集構造を有さずに、気泡が連通したセルラー構造を有する多孔質膜が得られ、引張強度や破断伸び率などの機械的強度が良好な多孔質膜となる。   In the present invention, by adding a non-solvent to moderately adjust the solubility of the mixed solvent in the polymer, the binodal line is shifted onto the crystallization line, and two phases of a polymer dilute liquid and a concentrated phase liquid are obtained. It is possible to cause liquid-liquid phase separation. This suppresses the growth of spherulites, so that a porous film having a cellular structure in which bubbles are connected without having an agglomerate structure is obtained, and mechanical strength such as tensile strength and elongation at break is obtained. Becomes a good porous membrane.

また、式(4)は、貧溶媒と非溶媒との溶解性パラメータの関係を特定するものであるが、溶解性パラメータの双極子結合力項と水素結合項との二乗の和について、非溶媒の方が小さくなると、他の式(1)〜(3)を満たす場合でも、非溶媒の極性が小さくなり、液−液相分離が生じない。また、非溶媒は相分離への寄与が小さく、バイノーダル線は結晶化ラインの下にあるので、結晶化による相分離となるため、液−液相分離が生じない。   Moreover, although Formula (4) specifies the relationship of the solubility parameter of a poor solvent and a non-solvent, about non-solvent about the sum of the square of the dipole binding force term of a solubility parameter, and a hydrogen bond term. If this is smaller, the polarity of the non-solvent becomes smaller and liquid-liquid phase separation does not occur even when other formulas (1) to (3) are satisfied. Further, since the non-solvent has a small contribution to the phase separation and the binodal line is below the crystallization line, the phase separation is caused by crystallization, so that liquid-liquid phase separation does not occur.

従って、本発明では、前記製膜溶液を冷却する際、液−液相分離が生じた後に、ポリフッ化ビニリデン系樹脂の凝固を生じさせることが好ましい。   Therefore, in the present invention, it is preferable to cause solidification of the polyvinylidene fluoride resin after liquid-liquid phase separation occurs when the film-forming solution is cooled.

上記において、製造される多孔質膜が多孔質中空糸膜であることが好ましい。多孔質中空糸膜を製造する場合、多孔質中空糸膜の引取や巻き取り操作において、ある程度以上の機械的強度が必要となり、このため上記の如き作用効果が得られる本発明が特に有効となる。   In the above, it is preferable that the produced porous membrane is a porous hollow fiber membrane. When producing a porous hollow fiber membrane, a mechanical strength of a certain level or more is required in the take-up or winding operation of the porous hollow fiber membrane, and therefore the present invention that provides the above-described effects is particularly effective. .

また、アルキレンオキシド化合物で有機化されたクレイを含有することが好ましい。これによって、親水化された多孔質中空糸膜が得られると共に、クレイが相分離の核となって核化が抑制されるため、より大きな孔を有するセルラー構造を得る事ができる。   Moreover, it is preferable to contain the clay organized with the alkylene oxide compound. This makes it possible to obtain a porous hollow fiber membrane that has been hydrophilized and to suppress the nucleation by using clay as a nucleus for phase separation, so that a cellular structure having larger pores can be obtained.

前記混合溶媒は、水で抽出可能なものであることが好ましい。このような混合溶媒を用いることで、溶媒の抽出操作が工業的に行い易くなる。   The mixed solvent is preferably extractable with water. By using such a mixed solvent, the solvent extraction operation can be easily performed industrially.

一方、本発明の多孔質膜は、上記いずれかに記載の多孔質膜の製造方法で得られる多孔質膜であって、膜の断面構造に、球晶の凝集構造を有さずに、気泡が連通したセルラー構造を有することを特徴とする。このような構造の多孔質膜は、球晶の凝集構造を有さないため、引張強度や破断伸び率などの機械的強度が高くなり、製法上も温度制御などの問題が少ない。   On the other hand, the porous membrane of the present invention is a porous membrane obtained by any one of the above-described porous membrane manufacturing methods, and the cross-sectional structure of the membrane does not have a spherulite aggregate structure, It has the cellular structure which communicated. Since the porous film having such a structure does not have a spherulite aggregate structure, mechanical strength such as tensile strength and elongation at break is increased, and there are few problems such as temperature control in the production method.

以下、本発明の実施の形態について説明する。本発明の多孔質膜の製造方法は、少なくともポリフッ化ビニリデン系樹脂が相分離温度以上で溶媒に加熱溶解した製膜溶液を、相分離温度以下に冷却して凝固させるものである。   Hereinafter, embodiments of the present invention will be described. In the method for producing a porous membrane of the present invention, a membrane-forming solution in which at least a polyvinylidene fluoride-based resin is heated and dissolved in a solvent at a temperature higher than the phase separation temperature is cooled to a temperature lower than the phase separation temperature to be solidified.

本発明では、このような熱誘起相分離法(TIPS法)において、前記溶媒が、三次元溶解性パラメータを用いて、下記の式(2)で定義される貧溶媒と下記の式(3)で定義される非溶媒とを混合した混合溶媒であって、両者の溶媒が下記の式(4)を満たすとともに、前記混合溶媒が下記の式(1)を満たすことを特徴とする。   In the present invention, in such a thermally induced phase separation method (TIPS method), the solvent is a poor solvent defined by the following formula (2) using the three-dimensional solubility parameter and the following formula (3): A mixed solvent obtained by mixing a non-solvent defined by the formula (1), wherein both solvents satisfy the following formula (4), and the mixed solvent satisfies the following formula (1).

Figure 2006218441
好ましくは、式(1)の左辺の値が5.2〜8.0であり、式(2)の左辺の値が4.0〜1.5であり、式(3)の左辺の値が10.0〜20.1であり、式(4)の左辺と右辺の値の差が5を超える場合である。
Figure 2006218441
Preferably, the value of the left side of Formula (1) is 5.2 to 8.0, the value of the left side of Formula (2) is 4.0 to 1.5, and the value of the left side of Formula (3) is 10.0 to 20.1, and the difference between the values of the left side and the right side of Equation (4) is greater than 5.

先ず、本発明において、重要な役割を果たす混合溶媒について述べる。本発明において、混合溶媒は少なくとも一種の貧溶媒と少なくとも一種の非溶媒からなるものである。貧溶媒とは、一般的に、良溶媒或いは通常といった溶媒と異なり、一定の温度範囲内にしか該樹脂を溶かすことができないものを指し示す。一方、非溶媒とは、一般的に、ポリマー分解温度以下であらゆる温度範囲に該樹脂を溶かすことができないものを指す。   First, a mixed solvent that plays an important role in the present invention will be described. In the present invention, the mixed solvent comprises at least one poor solvent and at least one non-solvent. A poor solvent generally indicates a solvent that can dissolve the resin only within a certain temperature range, unlike a good solvent or a normal solvent. On the other hand, a non-solvent generally refers to a solvent that cannot dissolve the resin in any temperature range below the polymer decomposition temperature.

ここで、三次元溶解性パラメータについて詳述する著作を参照する(Allan F.M.barton,”CRC Handbook of solubility parameters and other cohesion parameters” CRCCorp.1991)。ここで用いる溶解性パラメータはhansenのパラメータであるが、hansenのパラメータに記載されていないものについては、Hoyのパラメータを使用することが出来る。両方にも記載されていないものは、Hansenのパラメータ式で推算することができる(上記のCRCHandbook of solubility parametersand other cohesionparametersに参照)。   Reference is now made to a work detailing three-dimensional solubility parameters (Allan FM Barton, “CRC Handbook of solubility parameters and other cohesion parameters” CRCCorp. 1991). The solubility parameter used here is a Hansen parameter, but a Hoy parameter can be used for those not described in the Hansen parameter. What is not described in both can be estimated by Hansen's parameter formula (see above CRCCHbookbook of solubility parameters and other cohesion parameters).

なお、混合溶媒の溶解性パラメータについては、式(6)のように、重量比に基づいて加成法則により計算したパラメータを使用する。式(5)は、1次元の溶解性パラメータを算出する式である。代表的な溶媒およびポリフッ化ビニリデンの3次元溶解性パラメータを表1に示す。   In addition, about the solubility parameter of a mixed solvent, the parameter calculated by the additive law based on weight ratio like Formula (6) is used. Expression (5) is an expression for calculating a one-dimensional solubility parameter. Table 1 shows the three-dimensional solubility parameters of typical solvents and polyvinylidene fluoride.

Figure 2006218441
Figure 2006218441

Figure 2006218441
Figure 2006218441

Figure 2006218441
本発明では、貧溶媒としては、トリアセチンのようなグリセロールエステル、エチレンカーボネート、プロピレンカーボネート、シクロヘキサン、カプロラクタム、リン酸系エステル、マロン酸系エステル、アジピン酸系エステル、安息香酸系エステルなどが挙げられる。
Figure 2006218441
In the present invention, examples of the poor solvent include glycerol esters such as triacetin, ethylene carbonate, propylene carbonate, cyclohexane, caprolactam, phosphoric acid esters, malonic acid esters, adipic acid esters, benzoic acid esters, and the like.

非溶媒としては、極性及び水素結合を示すジエチレングリコール、グリセリン、トリエチレングリコールのような多価アルコールが挙げられる。低分子量のポリエチレングリコールの様なポリオールも非溶媒として用いられるが、ポリマーであることで、極性及び水素結合が低いため、非溶媒としての働きが薄い。ポリエチレングリコール600においては、式(4)を満足せず、膜の構造形成メカニズムは固−液相分離機構のみ存在する。   Non-solvents include polyhydric alcohols such as diethylene glycol, glycerin, and triethylene glycol that exhibit polar and hydrogen bonding. A polyol such as low molecular weight polyethylene glycol is also used as a non-solvent, but since it is a polymer, its function as a non-solvent is low because of its low polarity and hydrogen bonding. In the polyethylene glycol 600, the formula (4) is not satisfied, and only a solid-liquid phase separation mechanism exists as a membrane structure formation mechanism.

一方、ポリエチレングリコール200の場合には、式(4)を満足することで、貧溶媒とある割合(実測値では、貧溶媒/非溶媒=4/3以上)で液−液相分離機構が存在する。   On the other hand, in the case of polyethylene glycol 200, by satisfying the formula (4), there is a liquid-liquid phase separation mechanism at a certain ratio with the poor solvent (in actual measurement, poor solvent / non-solvent = 4/3 or more). To do.

次に、本発明において、ポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよびフッ化ビニリデン共重合体を含有する樹脂のことである。複数種類のフッ化ビニリデン共重合体を含有しても構わない。ポリフッ化ビニリデン系樹脂の重量平均分子量は5万〜100万、更には10万〜58万の範囲内であることが好ましい。異なった重量平均分子量の樹脂を一緒に用いても構わない。   Next, in the present invention, the polyvinylidene fluoride resin is a resin containing a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. The weight average molecular weight of the polyvinylidene fluoride resin is preferably 50,000 to 1,000,000, more preferably 100,000 to 580,000. Resins having different weight average molecular weights may be used together.

また、第4成分の添加することもできる。例えば、親水性化合物で有機化された有機化クレイを用いることで、親水性が改善されたポリフッ化ビニリデン系樹脂の多孔質の中空糸膜が得られる。   A fourth component can also be added. For example, a porous hollow fiber membrane of a polyvinylidene fluoride resin with improved hydrophilicity can be obtained by using an organized clay organized with a hydrophilic compound.

樹脂と混合溶媒を溶解する温度は、高いほど溶解性が高くなるが、溶媒の沸点とポリマーの分解温度に近づくと、溶媒の蒸発とポリマーの劣化する恐れがあるため、溶解温度は溶媒の沸点とポリマー分解温度以下にすることである。   The higher the temperature at which the resin and mixed solvent are dissolved, the higher the solubility. However, the solvent temperature and the polymer decomposition temperature may approach the solvent boiling point and the polymer decomposition temperature, so the solution temperature is the boiling point of the solvent. And lower than the polymer decomposition temperature.

本発明においては、200℃〜170℃温度付近で、十分均一なポリマー溶液が得られる。200℃以上にする必要が全くないということである。本発明において、上述のポリフッ化ビニリデン系樹脂と混合溶媒からなるポリマー樹液は、180℃付近まで加熱して、均一なポリマー溶液を作り、冷却液体或いは冷却コントローラで冷却させ、温度を下げてゆくと、ある温度に達すると、溶液は濁り始め、この温度は構造形成温度Tsである。結晶化温度と構造形成温度が同じであれば、固−液相分離である。一方、構造形成温度が結晶化温度より高いところに存在すれば、液−液相分離である。観察された溶液は濁り始めた温度は、示差走査熱量計(DSC)でその温度で発熱或いは吸熱のピークは存在しなければ、構造形成温度は結晶化温度より高いことから、液‐液相分離であることを証明できる。   In the present invention, a sufficiently uniform polymer solution can be obtained at a temperature around 200 ° C. to 170 ° C. That is, there is no need to make it 200 ° C or higher. In the present invention, when the polymer sap composed of the above-mentioned polyvinylidene fluoride resin and mixed solvent is heated to around 180 ° C. to make a uniform polymer solution and cooled with a cooling liquid or a cooling controller, the temperature is lowered. When a certain temperature is reached, the solution begins to become cloudy, which is the structure formation temperature Ts. If the crystallization temperature and the structure formation temperature are the same, solid-liquid phase separation is achieved. On the other hand, if the structure formation temperature is higher than the crystallization temperature, it is liquid-liquid phase separation. The observed temperature at which the solution began to become turbid is liquid-liquid phase separation because the structure formation temperature is higher than the crystallization temperature unless there is an exothermic or endothermic peak at that temperature with a differential scanning calorimeter (DSC). You can prove that.

本発明では、非溶媒を貧溶媒に添加する量を増すと、ポリマー溶液の構造形成温度Tsと結晶化温度TcはTs=Tcの関係からTs>Tcヘシフトする。形成した膜の構造も球晶構造からセルラー構造を有する構造へ変化する。本発明では、液−液相分離が生じた後に、ポリフッ化ビニリデン系樹脂の凝固を生じさせることが好ましい。   In the present invention, when the amount of the non-solvent added to the poor solvent is increased, the structure formation temperature Ts of the polymer solution and the crystallization temperature Tc shift to Ts> Tc from the relationship of Ts = Tc. The structure of the formed film also changes from a spherulite structure to a structure having a cellular structure. In the present invention, it is preferable to cause the polyvinylidene fluoride resin to coagulate after the liquid-liquid phase separation has occurred.

本発明では、冷却によって構造生成をコントロールする観点から、冷却速度が10000〜100℃/分が好ましい。ここで、10000℃/分の冷却速度は、氷水で冷却する条件にほぼ相当する。   In the present invention, the cooling rate is preferably 10,000 to 100 ° C./min from the viewpoint of controlling the structure generation by cooling. Here, the cooling rate of 10,000 ° C./min substantially corresponds to the condition of cooling with ice water.

冷却・凝固後に、通常、溶媒をアルコール類やアセトンなどによって抽出するが、本発明においては、アルコールなどもできるが、前述した極性のため、混合溶媒を水で除去できるから、環境、人間に優しく、かつ、生産コストの削減が期待できる。   After cooling and solidification, the solvent is usually extracted with alcohols or acetone. In the present invention, alcohol can be used, but because of the polarity described above, the mixed solvent can be removed with water. And reduction of production cost can be expected.

その後、必要に応じて多孔質膜を乾燥させる。乾燥方法には、自然乾燥以外、加熱乾燥、熱風による乾燥、加熱ロールに接触させる等の方法が挙げられる。   Thereafter, the porous membrane is dried as necessary. Examples of the drying method include methods other than natural drying, such as heat drying, drying with hot air, and contact with a heating roll.

冷却槽の組成については、特に限定しなく、水、溶媒、非溶媒或いはこれらからなる混合溶媒でも構わない。通常、水より混合溶媒のほうが水のフラックスが高い傾向が得られる。   The composition of the cooling tank is not particularly limited, and water, a solvent, a non-solvent, or a mixed solvent composed of these may be used. Usually, a mixed solvent tends to have a higher water flux than water.

本発明の製造方法において、高強伸度特性の多孔質膜が得られるので、高透水性能が要求される場合には、必要に応じて0.5倍以上4倍までの範囲で延伸することが出来る。   In the production method of the present invention, a porous film having high strength and elongation characteristics can be obtained. Therefore, when high water permeability is required, the film can be stretched in the range of 0.5 to 4 times as necessary. I can do it.

ポリフッ化ビニリデン系樹脂と混合溶媒から調製したポリマー溶液は、ポリマーは10〜70重量%の範囲内であることが好ましいが、15〜40重量%の範囲内であることがより好ましい。   In the polymer solution prepared from the polyvinylidene fluoride resin and the mixed solvent, the polymer is preferably in the range of 10 to 70% by weight, and more preferably in the range of 15 to 40% by weight.

本発明の製造方法は、多孔質中空糸膜を製造するのに有効である。多孔質中空糸膜をTIPS法で製造する場合、従来公知のTIPS法の条件(溶媒以外の条件)が何れも採用できる。具体的には、例えば、少なくともポリフッ化ビニリデン系樹脂を相分離温度以上で、前記の混合溶媒に加熱溶解して製膜溶液を調製し、この製膜溶液を二重管出□の外側から吐出し、同時に貧溶媒又はその混合溶媒である中空糸形成芯液を二重管出口の内側に流し、所定のエア・ギャップを通過させてから、冷却浴で固化して巻取り、更に得られた中空糸膜から水で混合溶媒を抽出する。   The production method of the present invention is effective for producing a porous hollow fiber membrane. When the porous hollow fiber membrane is produced by the TIPS method, any of the conventionally known TIPS method conditions (conditions other than the solvent) can be employed. Specifically, for example, at least a polyvinylidene fluoride resin is heated and dissolved in the above mixed solvent at a phase separation temperature or higher to prepare a film-forming solution, and this film-forming solution is discharged from the outside of the double tube exit □. At the same time, the hollow fiber-forming core liquid, which is a poor solvent or a mixed solvent thereof, was allowed to flow inside the double tube outlet, passed through a predetermined air gap, and then solidified in a cooling bath and wound up. The mixed solvent is extracted from the hollow fiber membrane with water.

その際、エア・ギャップは、溶媒の蒸発を妨げるという観点から、1mm〜10mmに保持することが好ましい。   In that case, it is preferable to hold | maintain an air gap at 1 mm-10 mm from a viewpoint of preventing evaporation of a solvent.

本発明の多孔質膜は、以上のような製造方法で得られる多孔質膜であって、膜の断面構造に、球晶の凝集構造を有さずに、気泡が連通したセルラー構造を有するものである。好ましくは、マクロボイドの如き不均一構造を有しないものである。   The porous membrane of the present invention is a porous membrane obtained by the production method as described above, and has a cellular structure in which bubbles are communicated in the cross-sectional structure of the membrane without having a spherulite aggregate structure. It is. Preferably, it does not have a non-uniform structure such as a macrovoid.

また、本発明の多孔質膜は、走査型電子顕微鏡(SEM)観察により測定される平均孔径が0.01〜5μm、特に0.02〜2μmであることが好ましい。また、密度から求められる空孔率が40〜90%、特に60〜80%であることが好ましい。膜強度は60kgf/cm以上、破断伸度は120%以上であることが好ましい。 Further, the porous membrane of the present invention preferably has an average pore diameter measured by observation with a scanning electron microscope (SEM) of 0.01 to 5 μm, particularly 0.02 to 2 μm. Moreover, it is preferable that the porosity calculated | required from a density is 40 to 90%, especially 60 to 80%. The film strength is preferably 60 kgf / cm 2 or more and the breaking elongation is preferably 120% or more.

本発明の多孔質膜は、食品工業におけるアルコール飲料や果汁飲料等の除菌・除濁・除蛋白質、半導体製造工業における超純水の製造、医薬品工業における無菌水の製造・各種工業排水、ビル等の建築物排水、下水の除濁、河川水、かん水、海水の逆浸透法による脱塩の前処理などに用いることができ、機械的強度に優れる精密ろ過または限外ろ過用の多孔質中空糸分離膜を提供できる。   The porous membrane of the present invention is used for sterilization, turbidity and protein removal of alcoholic beverages and fruit juice beverages in the food industry, production of ultrapure water in the semiconductor manufacturing industry, production of sterile water in the pharmaceutical industry, various industrial wastewaters, buildings Porous hollow for microfiltration or ultrafiltration with excellent mechanical strength, which can be used for pretreatment of desalination by reverse osmosis of river water, brine, seawater, etc. A yarn separation membrane can be provided.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. In addition, the evaluation item in an Example etc. measured as follows.

(構造形成温度)
冷却速度をコントロールできるホットステージ(LINKAM、LK600)で構造形成温度(相分離温度)を測定した。
(Structure formation temperature)
The structure formation temperature (phase separation temperature) was measured with a hot stage (LINKAM, LK600) capable of controlling the cooling rate.

(結晶化温度)
示差走査熱量計(DSC)(PERKIN ELMER、DSC7)で結晶化温度を測定した。
(Crystallization temperature)
The crystallization temperature was measured with a differential scanning calorimeter (DSC) (PERKIN ELMER, DSC7).

(構造観察)
多孔質膜の断面の走査型電子顕微鏡(SEM)(HITACHI、S−800)写真より測定した。
(Structure observation)
It measured from the scanning electron microscope (SEM) (HITACHI, S-800) photograph of the cross section of a porous membrane.

(中空糸膜の引張強度・伸び率)
島津製作所製オートグラフ(SHIMADZU、AGS‐J)を用いて、湿潤状態の50mm長の膜を引張強度100mm/分の条件にて延伸し、破断した時の強度と伸びを測定した。
(Tensile strength / elongation rate of hollow fiber membrane)
Using a Shimadzu autograph (SHIMADZU, AGS-J), a 50 mm long film in a wet state was stretched under conditions of a tensile strength of 100 mm / min, and the strength and elongation when it was broken were measured.

(実施例1)
ポリマーとしてポリフッ化ビニリデン(ソルベイ社製、SOLEF6020)、ポリマー溶液用の貧溶媒としてトリアセチン、非溶媒としてはジエチレングリコールを用いた。ポリフッ化ビニリデン系樹脂を30重量%に一定にして、トリアセチン重量部/ジエチレングリコール重量部は70/0、60/10、50/20、40/30、35/35にした。これらの混合系を混練機にいれ、180℃の温度で混練し、均一のポリマーサンプル(製膜溶液)が得られた。得られたサンプルを適度な量を取り、薄いガラスで挟み、ホットステージ上に載せ、180℃まで加温し、5分間保持してから、10℃/分の冷却温度でサンプルを冷却し、濁り始めた温度を構造形成温度Tsとして記録した。同じ混練機で得たサンプルを用いてDSCで結晶化温度Tcを測定した。構造形成温度及び結晶化温度に及ぼす非溶媒添加の影響を図1−1に示す。トリアセチン重量部/ジエチレングリコールが40/30(A)と50/20(B)である膜の断面構造を図1−2に示す。
Example 1
Polyvinylidene fluoride (Solvey 6020, Solef 6020) was used as the polymer, triacetin was used as the poor solvent for the polymer solution, and diethylene glycol was used as the non-solvent. The polyvinylidene fluoride resin was kept constant at 30% by weight, and the triacetin parts by weight / diethylene glycol parts by weight were 70/0, 60/10, 50/20, 40/30, and 35/35. These mixed systems were put into a kneader and kneaded at a temperature of 180 ° C. to obtain a uniform polymer sample (film forming solution). Take an appropriate amount of the sample obtained, put it between thin glasses, place it on a hot stage, heat it to 180 ° C, hold it for 5 minutes, then cool the sample at a cooling temperature of 10 ° C / min and make it cloudy The starting temperature was recorded as the structure formation temperature Ts. The crystallization temperature Tc was measured by DSC using the sample obtained with the same kneader. The influence of non-solvent addition on structure formation temperature and crystallization temperature is shown in FIG. 1-1. FIG. 1-2 shows a cross-sectional structure of a film in which triacetin parts by weight / diethylene glycol is 40/30 (A) and 50/20 (B).

(実施例2)
ポリマーとしてポリフッ化ビニリデン(ソルベイ社製、SOLEF6020)、ポリマー溶液用の貧溶媒としてトリアセチン、非溶媒としてはグリセリンを用いた。ポリフッ化ビニリデン系樹脂を30重量%に一定にして、トリアセチン重量部/グリセリン重量部は69/1、67/3、65/5、60/10にした。製膜および評価の仕方は実施例1に用いた手法と同じであった。トリアセチン/グリセリン混合系における構造形成を温度及び結晶化温度に及ぼす非溶媒添加の影響を図2に示す。
(Example 2)
Polyvinylidene fluoride (Solvay, Solef 6020) was used as the polymer, triacetin was used as the poor solvent for the polymer solution, and glycerin was used as the non-solvent. The polyvinylidene fluoride resin was kept constant at 30% by weight, and the triacetin parts by weight / glycerin parts by weight were 69/1, 67/3, 65/5, and 60/10. The method of film formation and evaluation was the same as that used in Example 1. The effect of non-solvent addition on the temperature and crystallization temperature of structure formation in a triacetin / glycerin mixed system is shown in FIG.

図1−1及び図2に示したように非溶媒の添加量を増すと、構造形成温度Tsと結晶化温度TcはTs=Tcの関係からTs>Tcへシフトする傾向があった。実施例1及び実施例2に用いた混合溶媒のパラメータは表1に示した溶解度パラメータを用い、式(6)で算出され、式(1)に代入して求めた。この混合溶媒は、式(1)を満たす。これらの値を表2に示す。貧溶媒及び非溶媒の溶解度パラメータを式(2)、式(3)に代入し,各式の左辺の値を計算し、また式(4)についても両辺の値を計算した。これらの貧溶媒及び非溶媒は式(2)〜(4)を満たす。これらの値を表3に示す。   As shown in FIGS. 1-1 and 2, when the addition amount of the non-solvent was increased, the structure formation temperature Ts and the crystallization temperature Tc tended to shift from Ts = Tc to Ts> Tc. The parameters of the mixed solvent used in Example 1 and Example 2 were calculated by Equation (6) using the solubility parameter shown in Table 1, and were obtained by substituting into Equation (1). This mixed solvent satisfies the formula (1). These values are shown in Table 2. The solubility parameters of the poor solvent and the non-solvent were substituted into formulas (2) and (3), the values on the left side of each formula were calculated, and the values on both sides were also calculated for formula (4). These poor solvents and non-solvents satisfy the formulas (2) to (4). These values are shown in Table 3.

Figure 2006218441
Figure 2006218441

Figure 2006218441
(比較例1)
ポリマーとしてポリフッ化ビニリデン(ソルベイ社製、SOLEF6020)、ポリマー溶液用の貧溶媒としてトリアセチン、非溶媒としてはポリエチレングリコール600を用いた。ポリフッ化ビニリデン系樹脂を30重量%に一定にして、トリアセチン重量部/ポリエチレングリコール600重量部は60/10、50/20、40/30、35/35にした。製膜および評価の仕方は実施例1に用いた手法と同じであった。トリアセチン/ポリエチレングリコール600混合系における構造形成温度及び結晶化温度に及ぼす非溶媒添加の影響を図3に示す。非溶媒ポリエチレングリコール600は式(3)を満たすものの、式(4)を満たさなかったため、Ts>Tcの関係は存在しない(即ち、液−液相分離が生じない)。
Figure 2006218441
(Comparative Example 1)
Polyvinylidene fluoride (SOLEF 6020, manufactured by Solvay) was used as the polymer, triacetin was used as the poor solvent for the polymer solution, and polyethylene glycol 600 was used as the non-solvent. The polyvinylidene fluoride resin was kept constant at 30% by weight, and triacetin parts by weight / polyethylene glycol 600 parts by weight were adjusted to 60/10, 50/20, 40/30, and 35/35. The method of film formation and evaluation was the same as that used in Example 1. FIG. 3 shows the influence of non-solvent addition on the structure formation temperature and the crystallization temperature in the triacetin / polyethylene glycol 600 mixed system. Although the non-solvent polyethylene glycol 600 satisfies the formula (3) but does not satisfy the formula (4), there is no relationship of Ts> Tc (that is, no liquid-liquid phase separation occurs).

(実施例3)
前記のポリフッ化ビニリデンを30重量部で、貧溶媒としてトリアセチンを60重量部で、非溶媒としてグリセリンを10重量部となるように混合溶液を調製し、180℃で溶解した。このポリマー溶液を二重管出□の外側から吐出し、同時に貧溶媒(トリアセチン)である中空糸形成芯液を二重管出口の内側に流した。5mmのエア・ギャップを通過させて5℃水よりなる冷却浴で固化して巻取りした。得られた中空糸膜を水で混合溶媒を抽出した。得られた中空糸膜の物性は、引っ張り強度は67Kgf/cmで、伸び率は125%であった。
(Example 3)
A mixed solution was prepared such that the polyvinylidene fluoride was 30 parts by weight, triacetin was 60 parts by weight as a poor solvent, and glycerin was 10 parts by weight as a non-solvent, and dissolved at 180 ° C. This polymer solution was discharged from the outside of the double tube □, and at the same time, a hollow fiber-forming core solution, which was a poor solvent (triacetin), was allowed to flow inside the double tube outlet. It passed through a 5 mm air gap, solidified in a cooling bath made of 5 ° C. water and wound up. The mixed solvent was extracted from the obtained hollow fiber membrane with water. Regarding the physical properties of the obtained hollow fiber membrane, the tensile strength was 67 kgf / cm 2 and the elongation was 125%.

(実施例4)
ポリフッ化ビニリデンを30重量部で、貧溶媒としてトリアセチンを40重量部で、非溶媒としてジエチレングリコールとグリセリンの混合溶液(混合重量比=28/2)を30重量部となるように製膜条件を設定し、5mmのエア・ギャップを通過させて50℃水よりなる冷却浴で固化して巻取りした以外は、実施例3と同様な方法で中空糸膜を得た。得られた中空糸膜の物性は、引っ張り強度は112Kgf/cmで、伸び率は235%で、透水量は50L/m/hr/atmであった。
Example 4
Film forming conditions were set so that 30 parts by weight of polyvinylidene fluoride, 40 parts by weight of triacetin as a poor solvent, and 30 parts by weight of a mixed solution of diethylene glycol and glycerin (mixing weight ratio = 28/2) as a non-solvent. A hollow fiber membrane was obtained in the same manner as in Example 3 except that it was passed through a 5 mm air gap, solidified in a cooling bath made of 50 ° C. water and wound up. Regarding the physical properties of the obtained hollow fiber membrane, the tensile strength was 112 Kgf / cm 2 , the elongation was 235%, and the water permeability was 50 L / m 2 / hr / atm.

(実施例5)
添加剤として無機層状珪酸塩をアルキレンオキシド化合物で有機化した有機化クレイ(コープケミカル社製SEN)を添加し(ポリフッ化ビニリデン系樹脂100重量部に対して親水性化合物で有機化されたクレイ5重量部)、5mmのエア・ギャップを通過させて25℃水よりなる冷却浴で固化して巻取りした以外は、実施例4と同様な方法で中空糸膜が得られた。得られた中空糸膜の物性は、引っ張り強度は110Kgf/cm、伸び率は223%である。多孔質膜の断面構造を図5に示す。クレイを添加することによって、より大きいな孔を有するセルラー構造が存在することが判った。
(Example 5)
As an additive, an organic clay (SEN manufactured by Co-op Chemical Co., Ltd.) obtained by organizing an inorganic layered silicate with an alkylene oxide compound is added (100% by weight of a polyvinylidene fluoride resin, and clay 5 is organicized with a hydrophilic compound) Part by weight) A hollow fiber membrane was obtained in the same manner as in Example 4 except that it was passed through a 5 mm air gap and solidified in a cooling bath made of 25 ° C. water and wound. The resulting hollow fiber membrane has a tensile strength of 110 kgf / cm 2 and an elongation of 223%. The cross-sectional structure of the porous membrane is shown in FIG. It was found that by adding clay, there was a cellular structure with larger pores.

(比較例2)
非溶媒の無添加系で、前記のポリフッ化ビニリデンと貧溶媒トリアセチンからなるポリマー溶液をポリマー/貧溶媒の重量比30/70とし、エア・ギャップを5mm通過させて40℃水よりなる冷却浴で固化して巻取りした以外は、実施例4と同様な方法で中空糸膜が得られた。得られた中空糸膜の物性は、引っ張り強度は31Kgf/cm、伸び率は65%、透水量188L/m/hr/atmであった。
(Comparative Example 2)
In a non-solvent-free system, the polymer solution composed of polyvinylidene fluoride and the poor solvent triacetin was made into a polymer / poor solvent weight ratio of 30/70, and the air gap was passed through 5 mm in a cooling bath made of 40 ° C. water. A hollow fiber membrane was obtained in the same manner as in Example 4 except that it was solidified and wound. Regarding the physical properties of the obtained hollow fiber membrane, the tensile strength was 31 kgf / cm 2 , the elongation was 65%, and the water permeability was 188 L / m 2 / hr / atm.

ここで、貧溶媒トリアセチンは、式(1)の関係を満たすが左辺が3.2と小さくなり、非溶媒を添加していないため、固−液相分離が生じて、球晶の凝集構造が生成し、機械的強度が低下した。   Here, the poor solvent triacetin satisfies the relationship of the formula (1), but the left side is as small as 3.2, and no non-solvent is added. Therefore, solid-liquid phase separation occurs, and the aggregate structure of spherulites is reduced. Produced and the mechanical strength decreased.

トリアセチン/ジエチレングリコール混合系における構造形成温度及び結晶化温度に及ぼす非溶媒添加の影響を示すグラフGraph showing the effect of non-solvent addition on structure formation temperature and crystallization temperature in triacetin / diethylene glycol mixed system 実施例1で得られた多孔質膜の断面の走査型電子顕微鏡(SEM)写真Scanning electron microscope (SEM) photograph of the cross section of the porous membrane obtained in Example 1 トリアセチン/グリセリン混合系における構造形成温度及び結晶化温度に及ぼす非溶媒添加の影響を示すグラフGraph showing the effect of non-solvent addition on structure formation temperature and crystallization temperature in triacetin / glycerin mixed system トリアセチン/ポリエチレングリコール600混合系における構造形成温度及び結晶化温度に及ぼす非溶媒添加の影響を示すグラフGraph showing the effect of non-solvent addition on structure formation temperature and crystallization temperature in triacetin / polyethylene glycol 600 mixed system 実施例4で得られた多孔質中空糸膜の断面の走査型電子顕微鏡(SEM)写真Scanning electron microscope (SEM) photograph of the cross section of the porous hollow fiber membrane obtained in Example 4 実施例5で得られた多孔質中空糸膜の断面の走査型電子顕微鏡(SEM)写Scanning electron microscope (SEM) copy of the cross section of the porous hollow fiber membrane obtained in Example 5

Claims (6)

少なくともポリフッ化ビニリデン系樹脂が相分離温度以上で溶媒に加熱溶解した製膜溶液を、相分離温度以下に冷却して凝固させる多孔質膜の製造方法において、
前記溶媒は、三次元溶解性パラメータを用いて、下記の式(2)で定義される貧溶媒と下記の式(3)で定義される非溶媒とを混合した混合溶媒であって、両者の溶媒が下記の式(4)を満たすとともに、前記混合溶媒が下記の式(1)を満たすことを特徴とする多孔質膜の製造方法。
Figure 2006218441
In a method for producing a porous membrane in which at least a polyvinylidene fluoride resin is heated and dissolved in a solvent at a phase separation temperature or higher, and solidified by cooling to a phase separation temperature or lower,
The solvent is a mixed solvent in which a poor solvent defined by the following formula (2) and a non-solvent defined by the following formula (3) are mixed using a three-dimensional solubility parameter, A method for producing a porous membrane, wherein the solvent satisfies the following formula (4) and the mixed solvent satisfies the following formula (1).
Figure 2006218441
前記製膜溶液を冷却する際、液−液相分離が生じた後に、ポリフッ化ビニリデン系樹脂の凝固を生じさせる請求項1記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 1, wherein, when the membrane-forming solution is cooled, the polyvinylidene fluoride resin is solidified after liquid-liquid phase separation occurs. 前記多孔質膜が多孔質中空糸膜である請求項1又は2に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 1 or 2, wherein the porous membrane is a porous hollow fiber membrane. アルキレンオキシド化合物で有機化されたクレイを含有する請求項1〜3いずれかに記載の多孔質膜の製造方法。   The manufacturing method of the porous membrane in any one of Claims 1-3 containing the clay organized by the alkylene oxide compound. 前記混合溶媒は、水で抽出可能なものである請求項1〜4いずれかに記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 1, wherein the mixed solvent is extractable with water. 請求項1〜5いずれかに記載の多孔質膜の製造方法で得られる多孔質膜であって、膜の断面構造に、球晶の凝集構造を有さずに、気泡が連通したセルラー構造を有する多孔質膜。
A porous film obtained by the method for producing a porous film according to any one of claims 1 to 5, wherein the cross-sectional structure of the film has a cellular structure in which bubbles are communicated without having an agglomerated structure of spherulites. A porous membrane having.
JP2005035876A 2005-02-14 2005-02-14 Porous membrane and its production method Pending JP2006218441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035876A JP2006218441A (en) 2005-02-14 2005-02-14 Porous membrane and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035876A JP2006218441A (en) 2005-02-14 2005-02-14 Porous membrane and its production method

Publications (1)

Publication Number Publication Date
JP2006218441A true JP2006218441A (en) 2006-08-24

Family

ID=36981096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035876A Pending JP2006218441A (en) 2005-02-14 2005-02-14 Porous membrane and its production method

Country Status (1)

Country Link
JP (1) JP2006218441A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168741A (en) * 2010-02-22 2011-09-01 Nok Corp Method for producing polyvinylidene fluoride-based porous film
JP2012006988A (en) * 2010-06-22 2012-01-12 Nok Corp Method of manufacturing fiber strengthening polyvinylidene fluoride porous film
JP2012006989A (en) * 2010-06-22 2012-01-12 Nok Corp Method of manufacturing fiber strengthening porous film
CN104474921A (en) * 2014-12-04 2015-04-01 贵州省材料产业技术研究院 Polyolefin porous membrane with perforated honeycomb pore structure and preparation method thereof
JP2015073916A (en) * 2013-10-04 2015-04-20 旭化成ケミカルズ株式会社 Porous hollow fiber membrane, and manufacturing method of the same
CN107221628A (en) * 2017-06-19 2017-09-29 武汉艾特米克超能新材料科技有限公司 A kind of preparation method of lithium battery diaphragm, lithium battery diaphragm and lithium ion battery
CN108977903A (en) * 2018-08-02 2018-12-11 湖北美辰环保科技有限公司 A kind of preparation method of the melt spinning of polyvinylidene fluoride hollow fiber filter membrane
RU2745954C1 (en) * 2019-08-29 2021-04-05 Тойота Дзидося Кабусики Кайся Method for producing porous body from water-insoluble polymer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168741A (en) * 2010-02-22 2011-09-01 Nok Corp Method for producing polyvinylidene fluoride-based porous film
JP2012006988A (en) * 2010-06-22 2012-01-12 Nok Corp Method of manufacturing fiber strengthening polyvinylidene fluoride porous film
JP2012006989A (en) * 2010-06-22 2012-01-12 Nok Corp Method of manufacturing fiber strengthening porous film
JP2015073916A (en) * 2013-10-04 2015-04-20 旭化成ケミカルズ株式会社 Porous hollow fiber membrane, and manufacturing method of the same
CN104474921A (en) * 2014-12-04 2015-04-01 贵州省材料产业技术研究院 Polyolefin porous membrane with perforated honeycomb pore structure and preparation method thereof
CN104474921B (en) * 2014-12-04 2017-06-20 贵州省材料产业技术研究院 Polyolefin porous membrane with insertion honeycomb porous structure and preparation method thereof
CN107221628A (en) * 2017-06-19 2017-09-29 武汉艾特米克超能新材料科技有限公司 A kind of preparation method of lithium battery diaphragm, lithium battery diaphragm and lithium ion battery
CN107221628B (en) * 2017-06-19 2023-10-13 宁波柔创纳米科技有限公司 Preparation method of lithium battery diaphragm, lithium battery diaphragm and lithium ion battery
CN108977903A (en) * 2018-08-02 2018-12-11 湖北美辰环保科技有限公司 A kind of preparation method of the melt spinning of polyvinylidene fluoride hollow fiber filter membrane
CN108977903B (en) * 2018-08-02 2021-04-09 湖北美辰环保股份有限公司 Preparation method of melt spinning of polyvinylidene fluoride hollow fiber filtering membrane
RU2745954C1 (en) * 2019-08-29 2021-04-05 Тойота Дзидося Кабусики Кайся Method for producing porous body from water-insoluble polymer

Similar Documents

Publication Publication Date Title
JP5062798B2 (en) Method for producing hollow fiber membrane
JP5068168B2 (en) Vinylidene fluoride resin hollow fiber porous membrane
JP5339677B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
JP4987471B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
JP4599787B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
KR101462939B1 (en) Hydrophilic Polyvinylidene Fluoride Based Hollow Fiber Membrane and Preparing Method Thereof
JP2006218441A (en) Porous membrane and its production method
JP4835221B2 (en) Hollow fiber membrane and method for producing the same
JPWO2010090183A1 (en) Vinylidene fluoride resin porous membrane and method for producing the same
JP2012525966A (en) Fluorine-based hollow fiber membrane and method for producing the same
JP2008105016A (en) Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method
JP5050499B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP4269576B2 (en) Method for producing microporous membrane
JP4564758B2 (en) Method for producing vinylidene fluoride resin porous membrane
JP3724412B2 (en) Hollow fiber membrane manufacturing method and hollow fiber membrane module
JP4781691B2 (en) Porous membrane and method for producing the same
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
JP2008062227A (en) Raw material solution for preparing membrane, porous membrane, and method for preparing porous membrane
JP2006281202A (en) Hollow fiber membrane, dipped type membrane module using it, separating apparatus, and production method of hollow fiber membrane
KR101308998B1 (en) The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment
JP3760838B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP7516382B2 (en) Porous membranes for high pressure filtration
JP2004041835A (en) Hollow fiber membrane and its manufacturing method
KR101308996B1 (en) The Preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment
KR20130040622A (en) The preparation method of hollow fiber membrane with high permeation using hydrophilized polyvinylidenefluoride for water treatment