JP4269576B2 - Method for producing microporous membrane - Google Patents
Method for producing microporous membrane Download PDFInfo
- Publication number
- JP4269576B2 JP4269576B2 JP2002131269A JP2002131269A JP4269576B2 JP 4269576 B2 JP4269576 B2 JP 4269576B2 JP 2002131269 A JP2002131269 A JP 2002131269A JP 2002131269 A JP2002131269 A JP 2002131269A JP 4269576 B2 JP4269576 B2 JP 4269576B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- membrane
- polymer solution
- solution
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ポリフッ化ビニリデン系樹脂微多孔膜の製造方法に関する。さらに詳しくは除濁などに用いられる精密濾過膜、限外濾過膜、ナノ濾過膜用支持基材、逆浸透膜用支持基など水処理用分離膜、各種フィルター、隔膜用途に好適に使用可能な微多孔膜の製造方法に関する。
【0002】
【従来の技術】
微多孔膜は、精密濾過膜、限外濾過膜、ナノ濾過膜用支持基材、逆浸透膜用支持基材、イオン交換膜用担体等の各種フィルター用途に用いられている。なかでも精密濾過膜および限外濾過膜、ナノ濾過膜は浄水処理、海水淡水化前処理、廃水処理、医療用途、食品工業分野、用水製造をはじめさまざまな方面で利用されており、逆浸透膜は海水淡水化、半導体産業、医薬品産業などの超純水プロセスや自動車産業などの電着塗料再利用プロセスなどにおいて広く用いられている。これらの水処理用途において膜に求められる性能は一般に、高透水性能、優れた分離特性、化学的強度および物理的強度である。
【0003】
これらの分野では膜の透水性能が優れていれば膜面積や運転圧力を減らすことが可能となる。その結果、同じ処理水量で膜モジュール、原水供給ポンプを小型化でき、膜濾過装置が小型化できるため装置費用が節約でき、膜交換費や装置設置面積の点からも有利になる。また膜の分離特性が優れていれば、高水質の処理水が得られるだけでなく、プロセス設計においても、前処理、後処理工程を簡略化する事ができる。また、例えば浄水処理では透過水の殺菌や膜のバイオファウリング防止の目的で次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分に添加したり、膜の薬液洗浄として、酸、アルカリ、塩素、界面活性剤などで膜を洗浄することがある。そのため分離膜には耐薬品性が要求される。また、浄水処理分野では家畜の糞尿などに由来するクリプトスポリジウムなどの塩素に対して耐性のある病原性微生物が浄水場で処理しきれず処理水に混入する問題が顕在化しており、分離膜には十分な分離特性と膜が破れて原水が混入しないような高い強度が要求されている。これらの要求をうけ、近年では耐薬品性が高く機械的強度を備え持つポリフッ化ビニリデン系樹脂を用いた分離膜が開発され、使われている。
【0004】
ポリフッ化ビニリデン系樹脂を素材にする分離膜の製造法には、相分離を利用して多孔質を発現する方法が広く用いられている。相分離方法にはポリマー溶液をポリマーに対する非溶媒に接触させ、非溶媒中への溶媒抽出を通じて相分離させる非溶媒誘起相分離法(特公平1−22003号公報など)が用いられている。しかし本方法で得られた膜は、マクロボイドを含む非対称膜となるため機械的強度が十分でないという問題がある。また、膜構造や膜性能に与える製膜条件因子が多く、製膜工程の制御が難しく、再現性も乏しいといった欠点がある。
【0005】
また、マクロボイドを含まない対称構造膜を得る方法として溶融抽出法(特許第2899903号)が近年用いられている。本方法はポリフッ化ビニリデン系樹脂に無機微粒子と有機液状体を溶融混練し、ポリフッ化ビニリデン系樹脂の融点以上の温度で口金から押出したり、プレス機でプレスして成型した後、冷却固化し、その後有機液状体と無機微粒子を抽出する事により多孔構造を形成する。溶融抽出法の場合、空孔性の制御が容易で、マクロボイドは形成せず比較的均質で高強度の膜が得られ、分離性能と透水性が制御しやすいものの、無機微粒子の分散性が悪いとピンホールのような欠陥を生じる可能性がある。さらに、溶融抽出法は、製造コストが極めて高くなるといった欠点を有している製造方法である。
【0006】
【発明が解決しようとする課題】
本発明は、十分な機械的強度、流体の透過特性、耐薬品性を併せもち、かつ優れた分離性能をもつ微多孔膜の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の目的は、ポリフッ化ビニリデンホモポリマーおよびγ−ブチロラクトンまたはプロピレンカーボネートのみからなる組成物を120℃以上170℃以下で溶解したポリマー溶液を温度Tsである吐出口から吐出し、冷却して微多孔膜を製造する方法であって、該ポリマー溶液の結晶化温度Tcが40℃以上105℃以下であり、冷却する際のポリマー溶液のTc通過時の平均降温速度が2×103℃/min以上106℃/min以下であり、かつTsがTc<Ts≦Tc+90の関係を満たす微多孔膜の製造方法によって達成される。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0011】
本発明において溶媒とはポリフッ化ビニリデンホモポリマーを溶媒の沸点以下で30重量%以上溶解させることができる溶媒のことであり、γ−ブチロラクトン、プロピレンカーボネートが該当する。
【0012】
本発明に使用される製膜原液は、主にポリフッ化ビニリデンホモポリマーおよび溶媒のみにより構成されるポリマー溶液である。しかしながら他に本発明の効果を大きく阻害しない範囲で、非溶媒、造核剤、酸化防止剤、可塑剤、成型助剤、滑剤等を必要に応じて添加することができる。これら配合物を加熱撹拌溶解することにより、製膜原液を得る。
【0013】
多孔質膜を熱誘起相分離法により製造する場合、主に2種類の熱誘起相分離機構が利用される。一つは高温時に均一に溶解したポリマー溶液が、降温時に溶液の溶解能力低下が原因でポリマー濃厚相と希薄相に分離する液―液相分離法、もう一つが高温時に均一に溶解したポリマー溶液が、降温時にポリマーの結晶化が起こりポリマー固体相とポリマー希薄溶液相に相分離する固−液相分離法である(Journal of Membrane Science 117(1996)1-31)。前者であるか後者であるかは、ポリマーと溶液の相図により決定される。
【0014】
図1に典型的な液−液型相分離を示す場合の相図を示す。製膜原液の融点Tm(℃)、結晶化温度Tc(℃)は後述する手法により求めることができる。Tm、Tc共、特に記述がない場合、本発明においては示差走査熱量測定(DSC測定)においてDSC昇降温速度10℃/minにて測定した値を採用する。バイノーダル曲線は曇点測定より得られる曇点をプロットすることにより求める。この場合、結晶化曲線よりもバイノーダル曲線が高温側にあり、ポリマー溶液を降温すると、溶液をTmから徐々に降温していくと、余熱により均一に溶解しているものがバイノーダル曲線に到達した時点でバイノーダル分解がおこり、ポリマー濃厚相と希薄相に相分離し、結晶化温度に到達するまで分離がおこる。最終的に溶媒を除去した多孔質構造は、ポリマー溶液組成や降温速度にも依存するが、海島構造である。
【0015】
図2に典型的な固−液型相分離を示す場合の相図を示す。この場合、バイノーダル曲線より結晶化曲線が高温側にある。この場合、ポリマー溶液を降温すると、結晶化温度に到達した時点でポリマーの結晶化がおこる。さらに降温すると結晶の成長がおこる。最終的に溶媒を除去した多孔質構造は、ポリマー溶液組成や降温速度にも依存するが、球晶構造が多くみられる。
【0016】
例えばポリフッ化ビニリデンホモポリマー/溶媒系の相図はどれも結晶化温度曲線に隠れてバイノーダル曲線が観察されない固−液型である。バイノーダル曲線の相対位置はポリマーに対して親和性が低い溶媒ほど高温シフトするが、液−液型を発現する溶媒は未だ報告されていない。
【0017】
本発明においてTcは以下のように定義する。ポリフッ化ビニリデンホモポリマーと溶媒のみからなる製膜原液組成と同組成の混合物を密封式DSC容器に密封し、DSC装置を用いて、昇温速度10℃/minで溶解温度まで昇温し、5分保持して均一に溶解した後に、降温速度10℃/minで降温する過程で観察される結晶化ピークの立ち上がり温度をTcとする(図3)。
【0018】
我々は鋭意検討を重ねた結果、このポリマー溶液の結晶化温度と、熱誘起相分離により得られる膜構造との間には、密接な関係がある事を見いだした。本発明は結晶化温度Tc(℃)が40℃以上105℃以下であるポリマー溶液を用いる事を特徴とする。すなわち、製膜因子を結晶化温度が高くなるように制御する事で、膜構造、すなわち球晶粒径を微小化できる。膜構造が微小であるということは、すなわち分離性能に優れた膜を得ることができることを意味する。
製膜原液の結晶化温度に影響を及ぼす製膜因子としては、例えばポリマー溶液中のポリマー濃度、ポリマーグレード(分子量、分岐形状、共重合体の種類)、溶媒の種類、結晶形成に影響を与える添加剤などがある。例えばポリマー濃度については、ポリマー濃度が高くなる程、Tcは高くなり、球晶粒径が小さくなる。Tcそのものと球晶粒径にも相関があり、Tcが高温シフトするほど球晶粒径が小さくなるという関係を見いだした。また、ポリマーの分子量の影響については分子量の高いもの程、球晶粒径が小さくなるという関係を見いだした。分子量とTcには相関は少なく、それよりもホモポリマーであるかコポリマーであるか、あるいは分岐形状の違いがTcに影響を及ぼしている。分子量の近い場合、分岐や共重合体の違いでTcが高いポリマーグレードを用いると球晶粒径が小さくなる傾向がある。
【0019】
ポリマー溶液のポリマー濃度を上げたり、ポリマー溶液のTcが高くなるようにポリマーグレードを選択することは本発明にとって好ましい。
【0020】
球晶構造形成過程は、X線回折の結果などから結晶生成過程であることがわかる。結晶生成過程は発熱過程である。一般にポリフッ化ビニリデンホモポリマーなどの結晶性高分子が結晶化する際に初めに生成する結晶を一次核という。この一次核が成長し、1つの球晶になる。この一次核生成速度が遅いと、初めに生成した一次核の結晶成長に伴う発熱のため、その周辺の新たな一次核生成が抑制され、初めに発生した結晶が大きな結晶に成長する。球晶の成長は球晶同士が衝突するまで続き、衝突により成長が停止するので、最終的な球晶粒径は最初に生成する一次核の数に依存する。すなわち小さな微小球晶構造を得るには多数の一次核を生成する必要がある。Tcが高いポリマー溶液は、結晶化が起こりやすい原液であり、一次核生成時に瞬時に多数の場所で一次核の生成がおこり、微小な球晶構造が得られると考えられる。逆にTcが低いポリマー溶液は結晶化が起こりにくい原液であり、一次核生成時に最初に生成した一次核成長に伴う発熱で周囲の一次核生成が抑制され、結果的に球晶数が少なく大きな球晶構造が得られると考えられる。
【0021】
本発明に用いるポリマー溶液のTcは40℃以上105℃以下である。より好ましくは45℃以上105℃以下、さらに好ましくは48℃以上95℃以下である。Tcが40℃よりも低いと微小構造膜を得ることができない。Tcが105℃よりも高いとポリマー溶液の結晶化が容易に起こりやすく、溶解槽、製膜原液配管、降温条件など製膜条件を高温で制御する必要があり、エネルギー的ロスが多い。また、ポリマー濃度を高くする必要があり、空孔率の高い膜を得にくい。
【0022】
本発明に用いるポリマー溶液中のポリフッ化ビニリデンホモポリマー濃度は30重量%以上60重量%以下であることが好ましい。より好ましくは33重量%以上55重量%以下、さらに好ましくは35重量%以上50重量%以下である。樹脂濃度が30重量%に満たないと、ポリマー溶液のTcが低くなり、微小構造が得られにくい。またポリマー溶液粘度が低くなるので、中空糸状に成型する場合、口金吐出後の中空糸の強度が弱くなり、巻取り時の構造潰れなどが起こりやすく製膜安定性に問題がおこるおそれがある。樹脂濃度が60重量%よりも大きいと、得られた膜の空孔率が低くなり、透過性が悪くなる。ポリフッ化ビニリデンホモポリマー濃度を30重量%以上60重量%以下に制御することにより透過性が高く、微小構造をもつ膜が得られ、かつ製膜安定性も良好になる。
【0023】
ここで製膜原液中のポリフッ化ビニリデンホモポリマーの重量平均分子量は2×105以上であることが好ましい。分子量が2×105未満では溶液粘度が低くなり、製膜安定性が悪く、得られる膜強度も弱くなる傾向がある。またポリマーが高分子量の場合は、ポリマー溶液の溶液粘度が高くなるので高分子鎖の運動が抑制され結晶成長速度が遅くなり、多数の球晶核が生成するので微小構造をもつ膜が得られ易い。本発明におけるポリフッ化ビニリデンホモポリマーの重量平均分子量は、好ましくは3×105〜3×106である。
【0024】
本発明では、製膜原液であるポリマー溶液を吐出口から吐出する。吐出口は適宜選ぶことができ、Tダイや二重管状吐出口等を用いることができる。吐出口から吐出された溶液は、冷却されてゲル状成形体となる。
【0025】
本発明において吐出口温度Ts(℃)は、製膜原液であるポリマー溶液を吐出する口金の吐出口における温度である。本発明においては、Tc<Ts≦Tc+90の関係を満たすようにTsを制御する。好ましくはTc+10≦Ts≦Tc+85、さらに好ましくはTc+20≦Ts≦Tc+80である。Tsはできるだけ低温である方が冷却効果の点から有利であるが、低温すぎると製膜安定性に問題がある。TsがTcより低いと吐出口で結晶化に伴うゲル化が起こり、吐出安定性が低下し、ひいては吐出口の詰まりにつながる。TsがTc+90より大きいと、冷却過程において、膜自体の余熱により十分な冷却効果が得られず、微小構造が得られない。吐出口温度と溶解温度は異なっても構わない。溶解温度については、溶解を短時間に均一に行うという点から、吐出口温度より高い温度に設定することも好ましく採用できる。
【0026】
冷却法としては空気による冷却、ロールによる冷却、または液状の冷却浴に直接浸漬する方法を用いることができる。Tダイなどで押出し、平膜状の膜を得る場合には空気による冷却、ロールによる冷却、冷却浴による冷却のどれもが好適に使用できる。平膜の場合、成型法として不織布などの基材上にコートする方法も好適に使用される。中空糸状の膜を得る場合には、中空糸の断面形状を安定させるために中空状の吐出口から吐出した後、乾湿式紡糸と同様に液状の冷却浴に浸漬する方法がもっとも好ましい。この場合、乾式部は中空形状安定化と、吐出口に冷却液が浸入するのを防止する役割があるが、冷却浴としての効果を期待する場合、乾式長は10cm以内であることが好ましい。空気冷却も可能である。ただしロール冷却では中空糸膜の場合、冷却速度にムラがでるため不向きである。
【0027】
冷却浴には、前述の溶媒を濃度が65重量%以上99重量%以下、より好ましくは75重量%以上95重量%以下の範囲で含有する液体を用いることが好ましい。溶媒は、複数のものを混合して用いても良い。製膜原液に用いられているものと同じ溶媒を用いるのが、廃液回収の点から好ましい。また、前記の濃度範囲を外れない限りにおいて、非溶媒が混合されてもよい。非溶媒としては、多くの場合、水が用いられる。冷却浴温度は製膜原液のTc以下であることが好ましい。冷却浴がこの温度範囲にあることにより、ゲル化工程において、温度により誘起される固液相分離が支配的になる。吐出温度から大きい温度差を与えて急冷することで、相分離構造が微小になり、分離性能に優れ、高い強伸度を有する膜構造を発現する。また、冷却液体に上記の濃度範囲の溶媒を含有させることで、非溶媒誘起相分離を抑制し、膜表面に緻密層を形成することなく、成型することが可能となる。冷却液体中の溶媒濃度が低く、水等の非溶媒を高い濃度で含有すると、膜表面に緻密層を形成してしまい、たとえ延伸しても透水性能が低くなる。なお、前記冷却浴の形態としては、冷却液体と膜状に成形されたポリマー溶液とが十分に接触して冷却等が可能であるならば、特に限定されるものではなく、文字通り冷却液体が貯留された液槽形態であっても良いし、さらに必要により前記液槽は、温度や組成が調製された液体が循環乃至は更新されても良い。前記液槽形態が最も好適ではあるが、場合によっては、冷却液体が管内を流動している形態であっても良いし、空中に走向等している膜に冷却液体が噴射される形態であっても良い。
【0028】
本発明では、ポリマー溶液の冷却に際して、ポリマー溶液が結晶化温度Tcを通過する時に2×103℃/min以上106℃/min以下の平均降温速度Vtで冷却することが特徴である。平均降温速度Vtは、好ましくは5×103℃/min以上6×105℃/min以下、さらに好ましくは104℃/min以上3×105℃/min以下である。この範囲の平均降温速度Vtで冷却相分離させることにより、さらに微小構造をもつ微多孔膜を製造することが可能となる。
【0029】
本発明における製膜時の平均降温速度Vtは以下のa、bいずれかの方法により求められる。
a.結晶化温度Tc到達時にポリマー溶液が空気中にあるとき
Vt=(Ts−Tc)/t(sc)
Ts:吐出口温度(℃)、Tc:結晶化温度(℃)、
t(sc):製膜原液吐出後Tc到達までの経過時間(min)
t(sc)の測定において、気中の膜温度がどの時点でTcに達しているかはサーモグラフィー等により測定することができる。吐出口からTc到達点までの距離と、製膜速度とからt(sc)を計算することができる。
b.結晶化温度Tc到達時にポリマー溶液が冷却浴中にあるとき
Vt=(Ts−Ta)/t(sa)
Ts:吐出口温度(℃)、Ta:冷却浴温度(℃)、
t(sa):製膜原液吐出後冷却浴到達までの経過時間(min)
t(sa)の測定において、ポリマー溶液の温度は冷却浴中に浸漬された時点で、瞬時に冷却浴の温度に等しくなるとみなす。したがって、吐出口から冷却浴の液面までの距離と、製膜速度とからt(sa)を計算することができる。
【0030】
平均降温速度が2×103℃/min未満であると多孔構造が肥大化し分離性能の良い膜が得られない。一方、平均降温速度を106℃/minよりも大きくするためには、非常に早い速度で冷却する必要がある。例えば、冷却浴で冷却する方式を用いた場合には、非常に早い吐出速度で吐出して、冷却浴に浸漬する必要があり、吐出ムラ、冷却ムラの問題があり、安定した性能の膜を得られない。
【0031】
結晶化温度Tc通過時の冷却速度を大きくすると微小構造が得られる理由は、結晶成長の原因である降温による一次核生成時の発熱が急激な冷却により除去されるので、同時に多数の一次核が生成し微小構造が得られることによると考えられる。
【0032】
上記のような製造方法で得られた本発明の微多孔膜は、微小な球晶構造が連結され、その間隙に空隙を有する構造からなることにより、従来の微多孔膜に比べて、強度を高くでき、透水性能も高くでき、かつ分離性能も高くできる。
【0033】
中空糸状の微多孔膜を得る場合には、ポリマー溶液を二重管状吐出口の外側の管から吐出し、注入液または注入気体を中空部に注入することが好ましい。この場合注入液または注入気体は成型性の点から製膜工程でポリマー溶液を溶解または軟化させないものが好ましい。注入気体は窒素、空気などの不活性ガスが好ましく、ポリマーの凝集を制御する為に、溶媒蒸気や水蒸気を含有していても良い。しかし中空糸膜に製膜するために選択しうるポリマー溶液組成の自由度の高さと効率的な冷却効果を得る為に、注入液を用いて中空部を形成する方法がより好ましく採用される。注入液を用いる場合には、前述のポリフッ化ビニリデンホモポリマーに対して溶解性を有する溶媒を、濃度が70重量%以上、より好ましくは80重量%以上の範囲で含有する液体を用いることが好ましい。溶媒は複数のものを混合して用いても良い。製膜原液であるポリマー溶液に用いられているものと同じ溶媒を用いるのが、廃液回収の点から好ましい。また、前記の濃度範囲を外れない限りにおいて、非溶媒が混合されてもよい。非溶媒としては、多くの場合、水が用いられる。中空部形成用注入液組成がこの濃度範囲にあることにより、非溶媒誘起相分離が抑制され、膜内表面に緻密層形成を形成することなく、透過性に優れた膜を製膜することが可能である。中空部形成用気体または中空部形成用液体の温度は製膜工程でポリマー溶液を溶解または軟化させない為にTs以下であることが好ましい。
【0034】
冷却され、ゲル化した膜は、次に抽出溶媒に浸漬されることにより、あるいは膜乾燥により溶媒の抽出を行い、多孔質膜が得られる。以上までの製造工程に加えて、球晶同士の接触部の引き伸ばしまたは引き裂きによる空孔性向上および細孔径向上、延伸配向による膜強度強化を目的として一軸あるいは二軸延伸を行い膜透過性を高めることも好ましく採用できる。延伸はゲル化して膜が相分離した後であれば溶媒抽出過程およびその前後いつ行なってもよい。延伸温度は50℃以上140℃以下の温度範囲が好ましく、延伸倍率は1倍以上5.0倍以下の範囲が好ましく、より好ましくは1.1倍以上3.0倍以下の範囲である。ここでいう延伸倍率とは、1軸延伸の場合、延伸前の試料長に対する延伸後の試料長の比で、2軸延伸の場合、延伸前の膜面積に対する、延伸後の膜面積の比である。50℃未満の低温雰囲気で延伸した場合、安定して均質に延伸することが困難であり、構造的に弱い部分のみが破断するおそれがある。140℃を超える温度で延伸した場合、ポリフッ化ビニリデンホモポリマーの融点に近くなるため、多孔構造が融解してしまい、あまり細孔が形成されずに延伸されるため、透水性能が高くならない。延伸は液体中で行う方が温度制御が容易であり好ましいが、スチームなどの気体中で行っても構わない。または圧延法のように圧延部で温度制御を行なっても構わない。延伸浴用液体としてはポリフッ化ビニリデンホモポリマーを実質的に溶解しないものが用いられる。水が簡便で好ましいが、90℃程度以上で延伸する場合には、低分子量のポリエチレングリコールなどを用いることも好ましい。また水とポリエチレングリコールの混合物もまた好ましい。
【0035】
本発明の製造方法で製造された多孔質膜を用いた膜モジュール、該膜モジュールを用いた膜濾過装置および該膜濾過装置を用いて原水から透過水を得る透過水の製造方法は、排水処理、浄水処理、工業用水製造などの水処理技術の進歩に貢献できる。ここで、モジュールとは、中空糸膜を複数本束ねて円筒状の容器に納め、両端または方端をポリウレタンやエポキシ樹脂等で固定し、透過水を集水できるようにしたものや、平膜を固定したり平板状に中空糸膜の両端を固定して透過水を集水できるようにしたもののことである。図4、図5に例を示す。膜濾過装置は膜モジュールの原水側にポンプや水位差などの加圧手段または透過水側にポンプまたはサイフォン等による吸引手段を設けて原水の膜ろ過を行う装置で、図6に例を示す。原水とは、河川水、湖沼水、地下水、海水、下水、排水およびこれらの処理水等である。
【0036】
【実施例】
以下に具体的実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0037】
ここで本発明に関連するパラメーターを以下の方法で測定した。
(1)融解温度Tm(℃)、結晶化温度Tc(℃)
フッ化ビニリデンホモポリマーと溶媒のみからなる製膜原液組成と同組成の混合物を密封式DSC容器に密封し、セイコー電子製DSC−6200を用いて、昇温速度10℃/minで昇温し溶解するときに、昇温過程で観察される融解ピークの開始温度を均一融解温度Tmとした。さらに、5分保持して溶解した後に、降温速度10℃/minで降温する過程で観察される結晶化ピークの立ち上がり温度を結晶化温度Tcとした(図3)。
(2)曇点(℃)
フッ化ビニリデンホモポリマーと溶媒のみからなる製膜原液組成と同組成の混合物をプレパラートとカバーグラス、グリースを用いて封止し、顕微鏡用冷却・加熱装置(ジャパンハイテック製LK−600)で溶解温度まで昇温し、5分保持して溶解した後に、降温速度10℃/minで降温する過程で観察される曇り点を曇点温度とした。
(3)平均降温速度Vt
特に記載しない限り、前記、b.の方法を用い、下式によって計算した。
【0038】
Vt=(Ts−Ta)/(乾式長/ポリマー溶液の押出速度)
Ts:吐出口温度(℃)、Ta:冷却浴温度(℃)、
(4)透過特性
25℃の逆浸透膜処理水を1.5mの水位差を駆動力に中空糸膜小型モジュール(長さ約20cm、中空糸膜の本数1〜10本程度)に送液し、一定時間の透過水量を測定して得た値を、100kPa当たりに換算して算出した。
(5)ポリスチレンラテックス阻止性能
粒径0.309μmのSeradyn社製ユニフォームラテックス粒子を逆浸透膜処理水に分散した原液を供給水にし、供給圧力3kPa、平均20cm/sの膜面線速度を与えクロスフロー濾過により透過水を得た。供給水と透過水のポリスチレンラテックス濃度を紫外可視分光光度計より求め、阻止率は次式より求めた。透過水濃度は濾過開始30分後の液をサンプリングして求めた。
【0039】
Rej.=(1−Cb/Ca)×100
Rej.:阻止率(%)、Ca:供給水濃度(ppm)、Cb:透過水濃度(ppm)
(5)中空糸膜の破断強度および伸度
引張試験機を用いて、湿潤状態の試験長50mmの膜をフルスケール2000gの加重でクロスヘッドスピード50mm/分にて測定し、求めた。
実施例1
重量平均分子量(Mw)が4.17×105のフッ化ビニリデンホモポリマー40重量%とγ−ブチロラクトン60重量%を150℃で溶解させて均一溶液を得た。本溶液のTcは57℃であった。これより吐出温度Tsは57℃<Ts≦147℃である。このポリマー溶液を110℃で静置、脱泡し、Ts=100℃の中空糸成型用二重管状口金の外側の管から吐出した。二重管状口金の内側の管から、中空部に100重量%のγ−ブチロラクトン注入液を注入した。乾式長4cmで、液温5℃のγ−ブチロラクトン80重量%および水20重量%からなる冷却浴に、押出速度6.0m/min、製膜平均降温速度14250℃/minで吐出し、冷却浴中でゲル化させ、80℃の熱水浴中で1.5倍延伸し、中空糸膜を得た。
【0040】
この中空糸膜の性能を表2に示す。機械的強度、透過特性および分離性能の全てが高かった。膜構造は粒径1.8μmの球晶が積層し、球晶の隙間に空孔が連結した構造をとっていた。
実施例2
重量平均分子量(Mw)が4.17×105のフッ化ビニリデンホモポリマー33重量%とγ−ブチロラクトン67重量%を120℃で溶解させて均一溶液を得た。本溶液のTcは41℃であった。これより吐出温度Tsは41℃<Ts≦131℃である。このポリマー溶液を用いて、製膜条件を表1に示すように変更した以外は、実施例1と同様にして中空糸膜を得た。中空部への注入液は、γ−ブチロラクトン90重量%および水10重量%からなる注入液を用いた。この中空糸膜の性能を表2に示す。透過特性、分離性能とも高かった。膜構造は粒径3.2μmの球晶が積層し、球晶の隙間に空孔が連結した構造をとっていた。
実施例3
重量平均分子量(Mw)が3.58×105のフッ化ビニリデンホモポリマー55重量%とプロピレンカーボネート45重量%を170℃で溶解させて均一溶液を得た。本溶液のTcは78℃であった。これより吐出温度Tsは78℃<Ts≦168℃である。このポリマー溶液を用いて、製膜条件を表1に示すように変更した以外は、実施例1と同様にして中空糸膜を得た。注入液、冷却浴の溶媒にもプロピレンカーボネートを用いた。この中空糸膜の性能を表2に示す。機械的強度、透過特性および分離性能の全てが高かった。膜構造は粒径1.9μmの球晶が積層し、球晶の隙間に空孔が連結した構造をとっていた。
実施例4
重量平均分子量(Mw)が4.17×105のフッ化ビニリデンホモポリマー55重量%とプロピレンカーボネート45重量%を170℃で溶解させて均一溶液を得た。本溶液のTcは79℃であった。これより吐出温度Tsは79℃<Ts≦169℃である。このポリマー溶液を用いて、製膜条件を表1に示すように変更した以外は、実施例3と同様にして中空糸膜を得た。サーモグラフィーによる観察では口金下3cmで中空糸は79℃以下に降温しており、製膜平均降温速度Vtは、前記a.の方法を用いて、3500℃/minと計算した。
【0041】
この中空糸膜の性能を表2に示す。透過特性、分離性能とも高かった。膜構造は粒径2.2μmの球晶が積層し、球晶の隙間に空孔が連結した構造をとっていた。
実施例5
重量平均分子量(Mw)が3.58×105のフッ化ビニリデンホモポリマー50重量%とプロピレンカーボネート50重量%を170℃で溶解させて均一溶液を得た。本溶液のTcは73℃であった。これより吐出温度Tsは73℃<Ts≦163℃である。このポリマー溶液を乾式長7cmで120℃のTダイから液温5℃のプロピレンカーボネート85重量%および水15重量%からなる冷却浴中の巻取り速度10.0m/minの巻取りロールに、製膜平均降温速度16429℃/minでキャストし、冷却浴中でゲル化させ、平膜を得た。この膜の性能を表2に示す。機械的強度、透過特性および分離性能の全てが高かった。膜構造は粒径3.2μmの球晶が積層し、球晶の隙間に空孔が連結した構造をとっていた。
比較例1
重量平均分子量(Mw)が4.44×105のフッ化ビニリデンホモポリマー35重量%とγ−ブチロラクトン65重量%を130℃で溶解させて均一溶液を得た。本溶液のTcは47℃であった。これより吐出温度Tsは47℃<Ts≦137℃である。このポリマー溶液を用いて、製膜条件を表1に示すように変更した以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の性能を表2に示す。粒径0.309μmのポリスチレンユニフォームラテックス粒子の阻止性能は33%と低かった。膜構造は粒径4.3μmの球晶が積層し、球晶の隙間に空孔が連結した構造をとっていた。製膜平均降温速度が遅いため球晶粒径が大きくなり、それにともない間隙の細孔が大きくなり排除性能が低下したと推定される。
比較例2
実施例1において吐出口温度TsをTc以下の50℃にて吐出しようとしたが、口金内でポリマーの固化がおこり吐出できなかった。
比較例3
吐出口温度Tsを150℃にした以外は実施例1と同様にして中空糸膜を得た。この中空糸膜の性能を表2に示す。粒径0.309μmのポリスチレンユニフォームラテックス粒子の阻止性能は44%と低かった。膜構造は粒径5.1μmの球晶が積層し、球晶の隙間に空孔が連結した構造をとっていた。
比較例4
重量平均分子量(Mw)が4.44×105のフッ化ビニリデンホモポリマー25重量%とγ−ブチロラクトン75重量%を130℃で溶解させて均一溶液を得た。本溶液のTcは31℃と低温であった。このポリマー溶液を用いて、製膜条件を表1に示すように変更した以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の性能を表2に示す。粒径0.309μmのポリスチレンユニフォームラテックス粒子の阻止性能は40%と低かった。膜構造は粒径4.3μmの球晶が積層し、球晶の隙間に空孔が連結した構造をとっていた。
比較例5
重量平均分子量(Mw)が4.44×105のフッ化ビニリデンホモポリマー78重量%とシクロヘキサノン22重量%を145℃で溶解させて均一溶液を得た。本溶液のTcは121℃と高温であった。このポリマー溶液を145℃で静置、脱泡し、製膜条件を表1に示すように変更した以外は実施例1と同様にして中空糸膜を得た。注入液、冷却浴の溶媒にもシクロヘキサノンを用いた。この中空糸膜の性能を表2に示す。は、透過性能0m3/(m2・h・100kPa)で透水性を発現しなかった。
【0042】
【表1】
【0043】
【表2】
【0044】
【発明の効果】
本発明により、十分な機械的強度、流体の透過特性、耐薬品性を併せもち、かつ優れた分離性能をもつ微多孔膜が得られるようになった。
【図面の簡単な説明】
【図1】 液−液型相分離を示す場合の相図を示す。
【図2】 固−液型相分離を示す場合の相図を示す。
【図3】 DSC曲線中のTc、Tmを示す。
【図4】 中空糸膜モジュールの例を示す。
【図5】 平膜モジュールの例を示す。
【図6】 膜濾過装置の例を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polyvinylidene fluoride resin microporous membrane. More specifically, it can be suitably used for separation membranes for water treatment such as microfiltration membranes, ultrafiltration membranes, nanofiltration membrane support bases, reverse osmosis membrane support groups used for turbidity, various filters, and diaphragms. The present invention relates to a method for producing a microporous membrane.
[0002]
[Prior art]
Microporous membranes are used in various filter applications such as microfiltration membranes, ultrafiltration membranes, nanofiltration membrane support substrates, reverse osmosis membrane support substrates, and ion exchange membrane carriers. Among them, microfiltration membranes, ultrafiltration membranes, and nanofiltration membranes are used in various fields including water purification, seawater desalination pretreatment, wastewater treatment, medical use, food industry, and water production. Is widely used in ultrapure water processes such as seawater desalination, semiconductor industry and pharmaceutical industry, and electrodeposition paint reuse processes such as automobile industry. The performance required for membranes in these water treatment applications is generally high water permeability, excellent separation properties, chemical strength and physical strength.
[0003]
In these fields, if the water permeability of the membrane is excellent, the membrane area and operating pressure can be reduced. As a result, the membrane module and raw water supply pump can be miniaturized with the same amount of treated water, and the membrane filtration device can be miniaturized, so that the cost of the device can be saved and the membrane replacement cost and the device installation area are advantageous. If the separation characteristics of the membrane are excellent, not only high-quality treated water can be obtained, but also the pretreatment and posttreatment steps can be simplified in process design. In addition, for example, in water purification treatment, a bactericidal agent such as sodium hypochlorite is added to the membrane module part for the purpose of sterilizing permeate and preventing biofouling of the membrane, or as chemical cleaning of the membrane, acid, alkali, chlorine, The membrane may be washed with a surfactant or the like. Therefore, chemical resistance is required for the separation membrane. In the field of water purification treatment, there is a problem that pathogenic microorganisms that are resistant to chlorine such as cryptosporidium derived from livestock excreta cannot be treated at the water purification plant and are mixed into the treated water. There is a need for sufficient separation properties and high strength so that the membrane is broken and raw water is not mixed. In response to these demands, a separation membrane using a polyvinylidene fluoride resin having high chemical resistance and mechanical strength has been developed and used in recent years.
[0004]
As a method for producing a separation membrane using a polyvinylidene fluoride resin as a raw material, a method of developing a porous property using phase separation is widely used. As the phase separation method, a non-solvent induced phase separation method (Japanese Patent Publication No. 1-2003) is used in which a polymer solution is brought into contact with a non-solvent for the polymer, and phase separation is performed through solvent extraction into the non-solvent. However, since the film obtained by this method becomes an asymmetric film containing macrovoids, there is a problem that the mechanical strength is not sufficient. Further, there are many film forming condition factors given to the film structure and film performance, and there are drawbacks that the film forming process is difficult to control and the reproducibility is poor.
[0005]
Further, in recent years, a melt extraction method (Japanese Patent No. 2899903) has been used as a method for obtaining a symmetrical structure film not containing macrovoids. In this method, inorganic fine particles and an organic liquid are melt-kneaded in a polyvinylidene fluoride resin, extruded from a die at a temperature equal to or higher than the melting point of the polyvinylidene fluoride resin, molded by pressing with a press, and then solidified by cooling. Thereafter, an organic liquid and inorganic fine particles are extracted to form a porous structure. In the case of the melt extraction method, the porosity can be easily controlled, a macrovoid is not formed, and a relatively homogeneous and high-strength membrane is obtained. Although the separation performance and water permeability are easy to control, the dispersibility of the inorganic fine particles is excellent. If it is bad, defects such as pinholes may occur. Furthermore, the melt extraction method is a production method having a drawback that the production cost is extremely high.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a microporous membrane having sufficient mechanical strength, fluid permeation characteristics, and chemical resistance, and having excellent separation performance.
[0007]
[Means for Solving the Problems]
The object of the present invention is to make polyvinylidene fluoride.HomopolymerYoAnd a composition comprising only γ-butyrolactone or propylene carbonate dissolved at 120 ° C to 170 ° C.A method for producing a microporous film by discharging a limer solution from a discharge port having a temperature Ts and cooling the polymer solution, wherein the crystallization temperature Tc of the polymer solution is 40 ° C. or more and 105 ° C. or less, and the polymer is cooled. The average cooling rate when the solution passes through Tc is 2 × 10310 ° C / min or more6° C / min or less and Ts isTc <TsThis is achieved by a method for producing a microporous membrane that satisfies the relationship ≦ Tc + 90.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0011]
In the present invention, the solvent is polyvinylidene fluoride.HomopolymerA solvent that can be dissolved by 30% by weight or more below the boiling point of the solvent.Yes, γ-ButyrolactoNLopyrene CarbonateThis is true.
[0012]
The film-forming stock solution used in the present invention is mainly polyvinylidene fluoride.HomopolymerAnd meltOnly in the mediumIt is a polymer solution comprised from. However, non-solvents, nucleating agents, antioxidants, plasticizers, molding aids, lubricants, and the like can be added as necessary, as long as the effects of the present invention are not significantly impaired. A film-forming stock solution is obtained by heating and dissolving these blends.
[0013]
When producing a porous membrane by a thermally induced phase separation method, two types of thermally induced phase separation mechanisms are mainly used. One is a liquid-liquid phase separation method in which a polymer solution that is uniformly dissolved at a high temperature is separated into a polymer rich phase and a dilute phase due to a decrease in the dissolution ability of the solution when the temperature is lowered, and the other is a polymer solution that is uniformly dissolved at a high temperature. However, this is a solid-liquid phase separation method in which crystallization of a polymer occurs during cooling and phase separation into a polymer solid phase and a polymer dilute solution phase (Journal of Membrane Science 117 (1996) 1-31). Whether it is the former or the latter is determined by the phase diagram of the polymer and the solution.
[0014]
FIG. 1 shows a phase diagram when a typical liquid-liquid phase separation is shown. The melting point Tm (° C.) and the crystallization temperature Tc (° C.) of the film-forming stock solution can be obtained by the method described later. For Tm and Tc, unless otherwise specified, in the present invention, a value measured at a DSC heating / cooling rate of 10 ° C./min in differential scanning calorimetry (DSC measurement) is adopted. The binodal curve is obtained by plotting the cloud point obtained from the cloud point measurement. In this case, the binodal curve is on the higher temperature side than the crystallization curve, and when the polymer solution is cooled down, when the solution is gradually cooled down from Tm, the one that is uniformly dissolved by the residual heat reaches the binodal curve The binodal decomposition occurs in the polymer, phase separation into a polymer rich phase and a dilute phase occurs until the crystallization temperature is reached. The porous structure from which the solvent is finally removed is a sea-island structure, although it depends on the polymer solution composition and the cooling rate.
[0015]
FIG. 2 shows a phase diagram when a typical solid-liquid phase separation is shown. In this case, the crystallization curve is on the higher temperature side than the binodal curve. In this case, when the temperature of the polymer solution is lowered, the polymer is crystallized when the crystallization temperature is reached. When the temperature is further lowered, crystal growth occurs. The porous structure from which the solvent is finally removed often has a spherulite structure, although it depends on the polymer solution composition and the temperature lowering rate.
[0016]
For example, polyvinylidene fluorideHomopolymer /All of the solvent phase diagrams are solid-liquid types that are hidden behind the crystallization temperature curve and no binodal curve is observed. The relative position of the binodal curve shifts to a higher temperature as the solvent has a lower affinity for the polymer, but no solvent that exhibits a liquid-liquid type has been reported yet.
[0017]
In the present invention, Tc is defined as follows. Polyvinyl fluorideHomopolymer andMeltingMade of medium onlyA mixture having the same composition as the membrane stock solution is sealed in a sealed DSC vessel, heated to a dissolution temperature at a heating rate of 10 ° C./min using a DSC apparatus, and held for 5 minutes to dissolve uniformly, and then the temperature is lowered. The rising temperature of the crystallization peak observed in the process of lowering the temperature at a rate of 10 ° C./min is defined as Tc (FIG. 3).
[0018]
As a result of extensive studies, we have found that there is a close relationship between the crystallization temperature of this polymer solution and the membrane structure obtained by thermally induced phase separation. In the present invention, the crystallization temperature Tc (° C.) is 40 ° C. or higher.105 ° CThe following polymer solution is used. That is, film forming factorTieBy controlling the crystallization temperature to be high, the film structure, that is, the spherulite particle size can be miniaturized. That the membrane structure is minute means that a membrane having excellent separation performance can be obtained.
The film-forming factors that affect the crystallization temperature of the raw film-forming solution include, for example, the polymer concentration in the polymer solution, polymer grade (molecular weight, branched shape, type of copolymer), solvent type, and crystal formation. There are additives. For example, for the polymer concentration, the higher the polymer concentration, the higher the Tc and the smaller the spherulite particle size. The relationship between Tc itself and the spherulite particle size was also found, and the relationship was found that the spherulite particle size becomes smaller as Tc shifts to a higher temperature. In addition, regarding the influence of the molecular weight of the polymer, it was found that the higher the molecular weight, the smaller the spherulite particle size. There is little correlation between molecular weight and Tc, and it is a homopolymer or copolymer, or a difference in branching shape affects Tc. When the molecular weight is close, if a polymer grade having a high Tc is used due to the difference in branching or copolymer, the spherulite particle size tends to be small.
[0019]
It is preferred for the present invention to select the polymer grade so that the polymer concentration of the polymer solution is increased or the Tc of the polymer solution is increased.That's right.
[0020]
It can be seen that the spherulite structure formation process is a crystal formation process from the results of X-ray diffraction. The crystal formation process is an exothermic process. Generally polyvinylidene fluorideHomopolymerThe first crystal produced when any crystalline polymer crystallizes is called the primary nucleus. This primary nucleus grows into one spherulite. When the primary nucleation rate is slow, the primary nucleation generated at the beginning causes heat generation, so that new primary nucleation around the primary nucleation is suppressed, and the initially generated crystal grows into a large crystal. Since the growth of spherulites continues until the spherulites collide with each other, and the growth stops due to the collisions, the final spherulite grain size depends on the number of primary nuclei generated first. That is, in order to obtain a small microspherulite structure, it is necessary to generate a large number of primary nuclei. A polymer solution having a high Tc is a stock solution that easily undergoes crystallization, and it is considered that primary nuclei are instantly generated at a number of locations at the time of primary nucleation, and a fine spherulite structure is obtained. Conversely, a polymer solution having a low Tc is a stock solution in which crystallization hardly occurs, and the primary nucleation generated during the primary nucleation at the time of primary nucleation suppresses the primary nucleation, resulting in a small and large spherulite number. It is considered that a spherulite structure is obtained.
[0021]
Tc of the polymer solution used in the present invention is 40 ° C. or higher105 ° CIt is as follows. More preferably, it is 45 degreeC or more and 105 degrees C or less, More preferably, it is 48 degreeC or more and 95 degrees C or less. If Tc is lower than 40 ° C., a microstructure film cannot be obtained. Tc105 ° CIf it is higher, the crystallization of the polymer solution is likely to occur easily, and it is necessary to control the film forming conditions such as the dissolution tank, the film forming raw material piping, and the temperature lowering condition at a high temperature, resulting in a lot of energy loss. Further, it is necessary to increase the polymer concentration, and it is difficult to obtain a film having a high porosity.
[0022]
Polyvinyl fluoride in polymer solution used in the present inventionHomopolymer thickThe degree is preferably 30% by weight or more and 60% by weight or less. More preferably, it is 33 to 55 weight%, More preferably, it is 35 to 50 weight%. If the resin concentration is less than 30% by weight, the Tc of the polymer solution becomes low and it is difficult to obtain a microstructure. In addition, since the polymer solution viscosity is lowered, when it is molded into a hollow fiber shape, the strength of the hollow fiber after discharging the die is weakened, and the structure is liable to collapse during winding, which may cause a problem in film formation stability. When the resin concentration is higher than 60% by weight, the porosity of the obtained film is lowered and the permeability is deteriorated. Polyvinyl fluorideHomopolymer thickBy controlling the degree to 30% by weight or more and 60% by weight or less, a film having high permeability, a fine structure can be obtained, and film forming stability is also improved.
[0023]
Here, polyvinylidene fluoride in the film-forming stock solutionHomopolymericThe weight average molecular weight is 2 × 10FiveThe above is preferable. Molecular weight 2 × 10FiveIf it is less than 1, the solution viscosity will be low, the film-forming stability will be poor, and the resulting film strength will tend to be weak. Also, when the polymer has a high molecular weight, the solution viscosity of the polymer solution is high, so the movement of the polymer chain is suppressed, the crystal growth rate is slow, and a large number of spherulite nuclei are formed, so that a film having a microstructure can be obtained. easy. Polyvinylidene fluoride in the present inventionHomopolymericThe weight average molecular weight is preferably 3 × 10Five~ 3x106It is.
[0024]
In the present invention, a polymer solution which is a film-forming stock solution is discharged from a discharge port. The discharge port can be selected as appropriate, and a T die, a double tubular discharge port, or the like can be used. The solution discharged from the discharge port is cooled to become a gel-like molded body.
[0025]
In the present invention, the discharge port temperature Ts (° C.) is the temperature at the discharge port of a base that discharges a polymer solution that is a raw film forming solution. In the present invention,Tc <TsTs is controlled so as to satisfy the relationship of ≦ Tc + 90. Tc + 10 ≦ Ts ≦ Tc + 85 is preferable, and Tc + 20 ≦ Ts ≦ Tc + 80 is more preferable. It is advantageous that the Ts is as low as possible from the viewpoint of the cooling effect, but if the temperature is too low, there is a problem in film formation stability. When Ts is lower than Tc, gelation accompanying crystallization occurs at the discharge port, and discharge stability is lowered, leading to clogging of the discharge port. When Ts is larger than Tc + 90, a sufficient cooling effect cannot be obtained due to the residual heat of the film itself in the cooling process, and a microstructure cannot be obtained. The discharge port temperature and the melting temperature may be different. The melting temperature can be preferably set to a temperature higher than the discharge port temperature from the viewpoint of performing the melting uniformly in a short time.
[0026]
As a cooling method, cooling with air, cooling with a roll, or a method of immersing directly in a liquid cooling bath can be used. When extruding with a T-die or the like to obtain a flat film, any of air cooling, roll cooling, and cooling bath cooling can be suitably used. In the case of a flat membrane, a method of coating on a substrate such as a nonwoven fabric as a molding method is also preferably used. In order to obtain a hollow fiber-like membrane, the most preferable method is to discharge from a hollow outlet in order to stabilize the cross-sectional shape of the hollow fiber and then immerse in a liquid cooling bath in the same manner as dry and wet spinning. In this case, the dry part has a role of stabilizing the hollow shape and preventing the coolant from entering the discharge port. However, when the effect as a cooling bath is expected, the dry length is preferably within 10 cm. Air cooling is also possible. However, roll cooling is not suitable for hollow fiber membranes because the cooling rate is uneven.
[0027]
In the cooling bath, it is preferable to use a liquid containing the above-described solvent in a concentration range of 65 wt% to 99 wt%, more preferably 75 wt% to 95 wt%. A plurality of solvents may be mixed and used. The same solvent as that used for the film-forming stock solution is preferably used from the viewpoint of waste liquid recovery. Moreover, a non-solvent may be mixed as long as it does not deviate from the concentration range. In many cases, water is used as the non-solvent. The cooling bath temperature is preferably not higher than Tc of the film forming stock solution. When the cooling bath is in this temperature range, the solid-liquid phase separation induced by temperature becomes dominant in the gelation step. By applying a large temperature difference from the discharge temperature and quenching, the phase separation structure becomes fine, and a membrane structure having excellent separation performance and high strength and elongation is exhibited. Further, by allowing the cooling liquid to contain a solvent having the above concentration range, non-solvent-induced phase separation can be suppressed and molding can be performed without forming a dense layer on the film surface. When the concentration of the solvent in the cooling liquid is low and a non-solvent such as water is contained at a high concentration, a dense layer is formed on the surface of the membrane, and even if it is stretched, the water permeability is lowered. The form of the cooling bath is not particularly limited as long as the cooling liquid and the polymer solution formed into a film can be sufficiently brought into contact with each other and can be cooled, and the cooling liquid is literally stored. The liquid tank may be in the form of a liquid tank, and if necessary, the liquid tank may be circulated or updated with a liquid whose temperature and composition are adjusted. The liquid tank form is most suitable, but in some cases, the cooling liquid may flow in the pipe, or the cooling liquid may be jetted onto a film running in the air. May be.
[0028]
In the present invention, when the polymer solution is cooled, 2 × 10 2 when the polymer solution passes the crystallization temperature Tc.Three10 ° C / min or more6It is characterized by cooling at an average temperature decrease rate Vt of not more than ° C / min. The average cooling rate Vt is preferably 5 × 10Three℃ / min or more 6 × 10Five° C / min or less, more preferably 10Four℃ / min or more 3 × 10FiveIt is below ℃ / min. By performing cooling phase separation at an average temperature drop rate Vt in this range, it becomes possible to produce a microporous membrane having a further microstructure.
[0029]
The average temperature-decreasing rate Vt during film formation in the present invention is determined by the following method a or b.
a. When the polymer solution is in the air when the crystallization temperature Tc is reached
Vt = (Ts−Tc) / t (sc)
Ts: discharge port temperature (° C.), Tc: crystallization temperature (° C.),
t (sc): Elapsed time (min) from reaching the Tc after the film-forming stock solution is discharged
In the measurement of t (sc), it is possible to determine at which point the film temperature in the air reaches Tc by thermography or the like. T (sc) can be calculated from the distance from the discharge port to the Tc arrival point and the film forming speed.
b. When the polymer solution is in the cooling bath when the crystallization temperature Tc is reached
Vt = (Ts−Ta) / t (sa)
Ts: discharge port temperature (° C.), Ta: cooling bath temperature (° C.),
t (sa): Elapsed time (min) from discharge of the film-forming stock solution to arrival of the cooling bath
In the measurement of t (sa), the temperature of the polymer solution is considered to be instantaneously equal to the temperature of the cooling bath when immersed in the cooling bath. Therefore, t (sa) can be calculated from the distance from the discharge port to the liquid level of the cooling bath and the film forming speed.
[0030]
Average cooling rate is 2 × 10ThreeWhen the temperature is less than ° C./min, the porous structure is enlarged and a membrane having good separation performance cannot be obtained. On the other hand, the average cooling rate is 106In order to make it larger than ° C./min, it is necessary to cool at a very high rate. For example, in the case of using a cooling system with a cooling bath, it is necessary to discharge at a very high discharge speed and immerse in the cooling bath, and there is a problem of uneven discharge and uneven cooling. I can't get it.
[0031]
The reason why the microstructure can be obtained by increasing the cooling rate when passing through the crystallization temperature Tc is that heat generation during primary nucleation due to the temperature drop, which is the cause of crystal growth, is removed by rapid cooling. This is considered to be due to the generation of the microstructure.
[0032]
The microporous membrane of the present invention obtained by the manufacturing method as described above has a strength compared to that of a conventional microporous membrane due to a structure in which microscopic spherulite structures are connected and voids are formed in the gaps. It is possible to increase the water permeability and the separation performance.
[0033]
In the case of obtaining a hollow fiber-like microporous membrane, it is preferable to discharge the polymer solution from a tube outside the double tubular discharge port and inject an injection solution or an injection gas into the hollow portion. In this case, the injection solution or the injection gas is preferably one that does not dissolve or soften the polymer solution in the film forming process from the viewpoint of moldability. The injection gas is preferably an inert gas such as nitrogen or air, and may contain solvent vapor or water vapor in order to control the aggregation of the polymer. However, in order to obtain a high degree of freedom in the polymer solution composition that can be selected to form a hollow fiber membrane and an efficient cooling effect, a method of forming a hollow portion using an injection solution is more preferably employed. In the case of using an injection solution, the aforementioned polyvinylidene fluoride is used.HomopolymerOn the other hand, it is preferable to use a liquid containing a solvent having solubility in a concentration range of 70% by weight or more, more preferably 80% by weight or more. A plurality of solvents may be used as a mixture. Use of the same solvent as that used for the polymer solution that is the film-forming stock solution is preferable from the viewpoint of waste liquid recovery. Moreover, a non-solvent may be mixed as long as it does not deviate from the concentration range. In many cases, water is used as the non-solvent. When the injection composition for forming the hollow portion is within this concentration range, non-solvent-induced phase separation is suppressed, and a membrane having excellent permeability can be formed without forming a dense layer on the inner surface of the membrane. Is possible. The temperature of the hollow portion forming gas or the hollow portion forming liquid is preferably Ts or less so as not to dissolve or soften the polymer solution in the film forming step.
[0034]
The cooled and gelled membrane is then immersed in an extraction solvent, or the solvent is extracted by membrane drying to obtain a porous membrane. In addition to the above manufacturing process, uniaxial or biaxial stretching is performed to improve membrane permeability for the purpose of improving porosity and pore diameter by stretching or tearing the contact portion between spherulites, and strengthening membrane strength by stretching orientation. It can also be preferably adopted. Stretching may be performed at any time before and after the solvent extraction process as long as it is gelled and the film is phase-separated. The stretching temperature is preferably in the temperature range of 50 ° C. to 140 ° C., and the stretching ratio is preferably in the range of 1 to 5.0 times, more preferably in the range of 1.1 to 3.0 times. The stretching ratio here is the ratio of the sample length after stretching to the sample length before stretching in the case of uniaxial stretching, and the ratio of the film area after stretching to the film area before stretching in the case of biaxial stretching. is there. When it is stretched in a low temperature atmosphere of less than 50 ° C., it is difficult to stably and uniformly stretch, and there is a possibility that only a structurally weak portion is broken. When stretched at a temperature exceeding 140 ° C, polyvinylidene fluorideHomopolymericSince it is close to the melting point, the porous structure is melted and stretched without forming too many pores, so that the water permeation performance does not increase. The stretching is preferably performed in a liquid because temperature control is easy, but it may be performed in a gas such as steam. Alternatively, temperature control may be performed at the rolling part as in the rolling method. As the drawing bath liquid, polyvinylidene fluorideHomopolymerThose that do not substantially dissolve are used. Water is convenient and preferable, but when stretching at about 90 ° C. or higher, it is also preferable to use low molecular weight polyethylene glycol or the like. Also preferred is a mixture of water and polyethylene glycol.
[0035]
A membrane module using a porous membrane manufactured by the manufacturing method of the present invention, a membrane filtration device using the membrane module, and a method for producing permeated water from raw water using the membrane filtration device include wastewater treatment. It can contribute to the advancement of water treatment technologies such as water purification and industrial water production. Here, the module refers to a module in which a plurality of hollow fiber membranes are bundled and placed in a cylindrical container, and both ends or ends are fixed with polyurethane, epoxy resin, etc., and permeate can be collected. Or by fixing both ends of the hollow fiber membrane in a flat plate shape so that the permeated water can be collected. Examples are shown in FIGS. The membrane filtration device is a device for performing membrane filtration of raw water by providing a pressure means such as a pump or a water level difference on the raw water side of the membrane module or a suction means such as a pump or siphon on the permeate side, and an example is shown in FIG. Raw water includes river water, lake water, ground water, seawater, sewage, drainage, and treated water thereof.
[0036]
【Example】
The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.
[0037]
Here, parameters related to the present invention were measured by the following method.
(1) Melting temperature Tm (° C), crystallization temperature Tc (° C)
Vinylidide fluorideHomopolymer andMeltingMade of medium onlyA mixture having the same composition as the membrane stock solution is sealed in a sealed DSC container and heated at a rate of temperature increase of 10 ° C./min using a DSC-6200 manufactured by Seiko Denshi.SolveThe starting temperature of the melting peak observed during the heating process was defined as the uniform melting temperature Tm. Furthermore, after melting for 5 minutes, the rising temperature of the crystallization peak observed in the process of lowering the temperature at a temperature lowering rate of 10 ° C./min was defined as the crystallization temperature Tc (FIG. 3).
(2) Cloud point (° C)
Vinylidide fluorideHomopolymer andMeltingMade of medium onlyA mixture of the same composition as the membrane stock solution is sealed with a preparation, cover glass, and grease, heated to a melting temperature with a microscope cooling / heating device (LK-600 manufactured by Japan High-Tech), and held for 5 minutes for dissolution. After that, the cloud point observed in the process of lowering the temperature at a temperature lowering rate of 10 ° C./min was taken as the cloud point temperature.
(3) Average cooling rate Vt
Unless otherwise stated, b. The following method was used for calculation.
[0038]
Vt = (Ts−Ta) / (dry length / extrusion speed of polymer solution)
Ts: discharge port temperature (° C.), Ta: cooling bath temperature (° C.),
(4) Transmission characteristics
The reverse osmosis membrane treated water at 25 ° C is fed to a hollow fiber membrane small module (length is about 20cm, number of hollow fiber membranes is about 1 to 10) using a water level difference of 1.5m as driving force, and permeated for a certain time The value obtained by measuring the amount of water was calculated by converting per 100 kPa.
(5) Polystyrene latex blocking performance
A stock solution in which uniform latex particles made of Seradyn having a particle size of 0.309 μm are dispersed in reverse osmosis membrane treated water is used as feed water, and a permeation water is obtained by cross flow filtration with a feed pressure of 3 kPa and an average membrane surface velocity of 20 cm / s. It was. The polystyrene latex concentration of the feed water and the permeated water was determined from an ultraviolet-visible spectrophotometer, and the rejection was determined from the following equation. The permeated water concentration was determined by sampling the solution 30 minutes after the start of filtration.
[0039]
Rej. = (1-Cb / Ca) × 100
Rej. : Rejection (%), Ca: feed water concentration (ppm), Cb: permeate concentration (ppm)
(5) Breaking strength and elongation of the hollow fiber membrane
Using a tensile tester, a membrane having a test length of 50 mm in a wet state was measured at a crosshead speed of 50 mm / min under a load of 2000 g full scale.
Example 1
Weight average molecular weight (Mw) is 4.17 × 10FiveA homogeneous solution was obtained by dissolving 40% by weight of the vinylidene fluoride homopolymer and 60% by weight of γ-butyrolactone at 150 ° C. The Tc of this solution was 57 ° C. Accordingly, the discharge temperature Ts is 57.℃ <Ts≦ 147° C.This polymer solution was allowed to stand at 110 ° C., defoamed, and discharged from the tube outside the double tubular die for hollow fiber molding at Ts = 100 °
[0040]
The performance of this hollow fiber membrane is shown in Table 2. Mechanical strength, permeation characteristics and separation performance were all high. The film structure had a structure in which spherulites having a particle size of 1.8 μm were stacked and pores were connected to the gaps between the spherulites.
Example 2
Weight average molecular weight (Mw) is 4.17 × 10FiveA homogeneous solution was obtained by dissolving 33% by weight of vinylidene fluoride homopolymer and 67% by weight of γ-butyrolactone at 120 ° C. The Tc of this solution was 41 ° C. Accordingly, the discharge temperature Ts is 41.℃ <Ts≦ 131° C.Using this polymer solution, a hollow fiber membrane was obtained in the same manner as in Example 1 except that the membrane formation conditions were changed as shown in Table 1. As an injection solution into the hollow part, an injection solution consisting of 90% by weight of γ-butyrolactone and 10% by weight of water was used. The performance of this hollow fiber membrane is shown in Table 2. Both transmission characteristics and separation performance were high. The film structure had a structure in which spherulites having a particle diameter of 3.2 μm were stacked and pores were connected to the gaps between the spherulites.
Example 3
Weight average molecular weight (Mw) is 3.58 × 10FiveA homogeneous solution was obtained by dissolving 55% by weight of vinylidene fluoride homopolymer and 45% by weight of propylene carbonate at 170 ° C. The Tc of this solution was 78 ° C. Accordingly, the discharge temperature Ts is 78.℃ <Ts≦ 168° C.Using this polymer solution, a hollow fiber membrane was obtained in the same manner as in Example 1 except that the membrane formation conditions were changed as shown in Table 1. Propylene carbonate was also used as a solvent for the injection solution and the cooling bath. The performance of this hollow fiber membrane is shown in Table 2. Mechanical strength, permeation characteristics and separation performance were all high. The film structure had a structure in which spherulites having a particle size of 1.9 μm were laminated and pores were connected to the gaps between the spherulites.
Example 4
Weight average molecular weight (Mw) is 4.17 × 10FiveA homogeneous solution was obtained by dissolving 55% by weight of vinylidene fluoride homopolymer and 45% by weight of propylene carbonate at 170 ° C. The Tc of this solution was 79 ° C. Accordingly, the discharge temperature Ts is 79.C <Ts ≦ 169 ° C.Using this polymer solution, a hollow fiber membrane was obtained in the same manner as in Example 3 except that the membrane formation conditions were changed as shown in Table 1. In observation by thermography, the temperature of the hollow fiber was lowered to 79 ° C. or less at 3 cm below the base, and the average film forming temperature drop rate Vt was a. Using this method, it was calculated as 3500 ° C./min.
[0041]
The performance of this hollow fiber membrane is shown in Table 2. Both transmission characteristics and separation performance were high. The film structure had a structure in which spherulites having a particle size of 2.2 μm were laminated and vacancies were connected to gaps between the spherulites.
Example 5
Weight average molecular weight (Mw) is 3.58 × 10FiveA homogeneous solution was obtained by dissolving 50% by weight of vinylidene fluoride homopolymer and 50% by weight of propylene carbonate at 170 ° C. The Tc of this solution was 73 ° C. Accordingly, the discharge temperature Ts is 73.℃ <Ts≦ 163° C.This polymer solution was produced from a T-die having a dry length of 7 cm and a 120 ° C. T-die to a winding roll having a winding speed of 10.0 m / min in a cooling bath composed of 85% by weight of propylene carbonate and 15% by weight of water at a liquid temperature of 5 ° C. The film was cast at an average film temperature drop rate of 16429 ° C./min and gelled in a cooling bath to obtain a flat film. The performance of this membrane is shown in Table 2. Mechanical strength, permeation characteristics and separation performance were all high. The film structure had a structure in which spherulites having a particle diameter of 3.2 μm were stacked and pores were connected to the gaps between the spherulites.
Comparative Example 1
Weight average molecular weight (Mw) is 4.44 × 10FiveA homogeneous solution was obtained by dissolving 35% by weight of vinylidene fluoride homopolymer and 65% by weight of γ-butyrolactone at 130 ° C. The Tc of this solution was 47 ° C. Accordingly, the discharge temperature Ts is 47.℃ <Ts≦ 137° C.Using this polymer solution, a hollow fiber membrane was obtained in the same manner as in Example 1 except that the membrane formation conditions were changed as shown in Table 1. The performance of this hollow fiber membrane is shown in Table 2. The blocking performance of polystyrene uniform latex particles having a particle size of 0.309 μm was as low as 33%. The film structure had a structure in which spherulites having a particle size of 4.3 μm were stacked and pores were connected to the gaps between the spherulites. It is presumed that the spherulite particle size was increased due to the slow average film formation temperature decreasing rate, and the pores in the gap were increased accordingly, and the exclusion performance was lowered.
Comparative Example 2
In Example 1, an attempt was made to discharge at a discharge port temperature Ts of 50 ° C., which is equal to or lower than Tc.
Comparative Example 3
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the discharge port temperature Ts was set to 150 ° C. The performance of this hollow fiber membrane is shown in Table 2. The blocking performance of polystyrene uniform latex particles having a particle size of 0.309 μm was as low as 44%. The film structure had a structure in which spherulites having a particle size of 5.1 μm were stacked and pores were connected to the gaps between the spherulites.
Comparative Example 4
Weight average molecular weight (Mw) is 4.44 × 10Five25% by weight of the vinylidene fluoride homopolymer and 75% by weight of γ-butyrolactone were dissolved at 130 ° C. to obtain a uniform solution. The Tc of this solution was as low as 31 ° C. Using this polymer solution, a hollow fiber membrane was obtained in the same manner as in Example 1 except that the membrane formation conditions were changed as shown in Table 1. The performance of this hollow fiber membrane is shown in Table 2. The blocking performance of polystyrene uniform latex particles having a particle size of 0.309 μm was as low as 40%. The film structure had a structure in which spherulites having a particle size of 4.3 μm were stacked and pores were connected to the gaps between the spherulites.
Comparative Example 5
Weight average molecular weight (Mw) is 4.44 × 10Five78% by weight of vinylidene fluoride homopolymer and 22% by weight of cyclohexanone were dissolved at 145 ° C. to obtain a uniform solution. The Tc of this solution was as high as 121 ° C. A hollow fiber membrane was obtained in the same manner as in Example 1 except that this polymer solution was allowed to stand at 145 ° C., defoamed, and the membrane formation conditions were changed as shown in Table 1. Cyclohexanone was also used as a solvent for the injection solution and the cooling bath. The performance of this hollow fiber membrane is shown in Table 2. Transmission performance 0mThree/ (M2・ Water permeability was not developed at h · 100 kPa).
[0042]
[Table 1]
[0043]
[Table 2]
[0044]
【The invention's effect】
According to the present invention, a microporous membrane having sufficient mechanical strength, fluid permeation characteristics, and chemical resistance and having excellent separation performance can be obtained.
[Brief description of the drawings]
FIG. 1 shows a phase diagram in the case of showing liquid-liquid type phase separation.
FIG. 2 shows a phase diagram in the case of showing solid-liquid type phase separation.
FIG. 3 shows Tc and Tm in the DSC curve.
FIG. 4 shows an example of a hollow fiber membrane module.
FIG. 5 shows an example of a flat membrane module.
FIG. 6 shows an example of a membrane filtration device.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002131269A JP4269576B2 (en) | 2002-05-07 | 2002-05-07 | Method for producing microporous membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002131269A JP4269576B2 (en) | 2002-05-07 | 2002-05-07 | Method for producing microporous membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003320228A JP2003320228A (en) | 2003-11-11 |
JP4269576B2 true JP4269576B2 (en) | 2009-05-27 |
Family
ID=29543969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002131269A Expired - Fee Related JP4269576B2 (en) | 2002-05-07 | 2002-05-07 | Method for producing microporous membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4269576B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108585112A (en) * | 2018-03-23 | 2018-09-28 | 武汉工程大学 | A kind of membrane separation device efficiently separating oily wastewater |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7338692B2 (en) | 2003-09-12 | 2008-03-04 | 3M Innovative Properties Company | Microporous PVDF films |
JP4623626B2 (en) * | 2004-01-30 | 2011-02-02 | 日東電工株式会社 | Porous membrane and method for producing the same |
JP4987471B2 (en) * | 2004-04-14 | 2012-07-25 | 株式会社クレハ | Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof |
EP1787711A4 (en) * | 2004-06-15 | 2008-04-23 | Kureha Corp | Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same |
JP4931796B2 (en) * | 2005-02-15 | 2012-05-16 | 株式会社クレハ | Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof |
JP2006281202A (en) * | 2005-03-11 | 2006-10-19 | Toray Ind Inc | Hollow fiber membrane, dipped type membrane module using it, separating apparatus, and production method of hollow fiber membrane |
JP4835221B2 (en) * | 2005-03-25 | 2011-12-14 | 東レ株式会社 | Hollow fiber membrane and method for producing the same |
CN103635516B (en) | 2011-04-19 | 2015-01-07 | 三菱丽阳株式会社 | Method for dissolving and degassing polymer, and method for producing porous film |
KR101885255B1 (en) | 2012-03-30 | 2018-08-03 | 코오롱인더스트리 주식회사 | Porous Membrane and Method for Manufacturing The Same |
US10456753B2 (en) * | 2015-08-31 | 2019-10-29 | Toray Industries, Inc. | Porous hollow fiber membrane |
KR102524285B1 (en) * | 2016-02-25 | 2023-04-24 | 도레이 카부시키가이샤 | porous hollow fiber membrane |
-
2002
- 2002-05-07 JP JP2002131269A patent/JP4269576B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108585112A (en) * | 2018-03-23 | 2018-09-28 | 武汉工程大学 | A kind of membrane separation device efficiently separating oily wastewater |
Also Published As
Publication number | Publication date |
---|---|
JP2003320228A (en) | 2003-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5062798B2 (en) | Method for producing hollow fiber membrane | |
JP5339677B2 (en) | Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof | |
JP5068168B2 (en) | Vinylidene fluoride resin hollow fiber porous membrane | |
JP4987471B2 (en) | Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof | |
JP4931796B2 (en) | Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof | |
JP4269576B2 (en) | Method for producing microporous membrane | |
WO2010082437A1 (en) | Vinylidene fluoride resin hollow fiber porous membrane and process for producing same | |
WO2007032331A1 (en) | Vinylidene fluoride resin hollow fiber porous membrane and method for production thereof | |
WO2007125709A1 (en) | Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same | |
JP2006218441A (en) | Porous membrane and its production method | |
KR101530432B1 (en) | Polymer composition for preparing acetylated alkyl cellulose membrane and preparation method of acetylated alkyl cellulose membrane using the same | |
JP3724412B2 (en) | Hollow fiber membrane manufacturing method and hollow fiber membrane module | |
JP4564758B2 (en) | Method for producing vinylidene fluoride resin porous membrane | |
KR101036312B1 (en) | Asymmetric Hollow Fiber Membranes and Preparation Thereof | |
KR20130040620A (en) | Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment | |
KR20070031330A (en) | Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same | |
JP2004041835A (en) | Hollow fiber membrane and its manufacturing method | |
JP2005193201A (en) | Hydrophilic hollow fiber membrane and its production method | |
CN113195082A (en) | Porous membranes for high pressure filtration | |
JP2005193200A (en) | Hollow fiber membrane having excellent mechanical strength and its production method | |
CN113195081A (en) | Porous membranes for high pressure filtration | |
KR20130040622A (en) | The preparation method of hollow fiber membrane with high permeation using hydrophilized polyvinylidenefluoride for water treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080325 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080507 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081001 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090216 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4269576 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |