JP2005193201A - Hydrophilic hollow fiber membrane and its production method - Google Patents

Hydrophilic hollow fiber membrane and its production method Download PDF

Info

Publication number
JP2005193201A
JP2005193201A JP2004004206A JP2004004206A JP2005193201A JP 2005193201 A JP2005193201 A JP 2005193201A JP 2004004206 A JP2004004206 A JP 2004004206A JP 2004004206 A JP2004004206 A JP 2004004206A JP 2005193201 A JP2005193201 A JP 2005193201A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
solvent
polymer compound
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004004206A
Other languages
Japanese (ja)
Inventor
Yoji Yamamoto
洋史 山本
Sachiko Nakatsuka
幸子 中塚
Kensaku Komatsu
賢作 小松
Hitoshi Tsuruta
仁志 鶴田
Takao Shimizu
隆夫 清水
Masahiko Nanjo
正彦 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2004004206A priority Critical patent/JP2005193201A/en
Publication of JP2005193201A publication Critical patent/JP2005193201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow fiber membrane with an excellent pure water permeation performance, a fractioning performance, strength, heat resistance, chemical resistance, a low water absorption property, a process controlling property, a cost efficiency and a pore formation property and excellent mechanical strength using a heat induction phase separation method, and to provide its production method. <P>SOLUTION: The hollow fiber membrane is a hollow fiber membrane formed by heat induction phase separation of a polymer compound and a solvent. The membrane has circular or elliptic fine pores having an average pore diameter of 3 μm or more on an outer surface and an inner surface and has a pure water permeation speed of 30,000 L/m<SP>2</SP>/hr/98kPa or more, and a fraction particle diameter of 1 μm or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、親水性中空糸膜およびその製造方法に関する。更に詳しくは、熱誘起相分離法を用いて、純水透過性能や分画性能、強度、耐熱性、耐薬品性、低吸水性、工程制御性、コスト性、孔形成性、機械的強度に優れ、かつ親水性が付与された中空糸膜およびその製造方法に関する。   The present invention relates to a hydrophilic hollow fiber membrane and a method for producing the same. More specifically, using heat-induced phase separation, pure water permeation performance and fractionation performance, strength, heat resistance, chemical resistance, low water absorption, process controllability, cost, pore formation, and mechanical strength The present invention relates to a hollow fiber membrane excellent in hydrophilicity and a method for producing the same.

近年、選択透過性を有する分離膜を用いた分離手段の技術がめざましく進展している。このような分離操作の技術は、例えば飲料水、超純水および医薬品の製造工程、醸造製品の除菌・仕上げなどにおいて、分離手段、洗浄手段および殺菌手段等を含む一連の浄化システムとして実用化されている。これらの用途分野においては、水のファイン化(高度処理)や安全性向上、精度向上などが高いレベルで要求されていたことから分離膜の利用が普及したものである。しかし、このように分離膜の利用が普及しているにもかかわらず、濾過および分離という観点から見ると、現在でも砂による濾過が主流であり、例えば水道水の製造においては、凝集沈殿と砂濾過とを組み合わせた分離手段が圧倒的大多数を占める。   In recent years, the technology of separation means using a separation membrane having selective permeability has been remarkably advanced. Such separation operation technology has been put to practical use as a series of purification systems including separation means, washing means, sterilization means, etc., for example in the production process of drinking water, ultrapure water and pharmaceuticals, sterilization and finishing of brewed products, etc. Has been. In these fields of application, the use of separation membranes has become widespread because finer water (advanced processing), improved safety, and improved accuracy are required at a high level. However, in spite of the widespread use of separation membranes as described above, from the viewpoint of filtration and separation, filtration with sand is still the mainstream at present. For example, in the production of tap water, coagulation precipitation and sand are used. Separation means combined with filtration accounts for the overwhelming majority.

水道水の製造において分離膜を用いた分離手段の普及がなかなか進まない理由は、砂濾過の方が分離膜による濾過よりも単位濾過面積当たりの透過流速が大きく、従って砂濾過の方が低いコストでの造水が可能であることによる。   The reason why separation means using separation membranes in the production of tap water is not so popular is that sand filtration has a higher permeate flow rate per unit filtration area than filtration by separation membranes, and sand filtration is therefore less expensive. Because it is possible to produce fresh water at

しかし、分離膜は砂濾過と比較して次のような点において圧倒的に優れているため、濾過に要するコストを低減できれば砂濾過に変わる新しい濾過技術として急速に普及するものと思われる。
1.分離精度が高いため、原水水質に左右されず、安定した濾過液が得られ、安全性も高い。
2.砂の入れ替えなど煩雑なメンテナンスが少なく廃棄物も少ない。
3.砂濾過であれば分離精度を改善させるために凝集沈殿処理が必要であるが、膜濾過であれば凝集沈殿処理を省略するか、簡素化することができ、システムの省スぺース化や処理工程の単純化が図れる。
4.膜濾過では濾過液の回収率が高く逆洗に使用する水が少ないため、逆洗による廃液の処理が簡単になる。
However, since separation membranes are overwhelmingly superior to sand filtration in the following points, if the cost required for filtration can be reduced, it will be rapidly spread as a new filtration technique that replaces sand filtration.
1. Since the separation accuracy is high, a stable filtrate can be obtained regardless of the quality of raw water, and the safety is also high.
2. There is little troublesome maintenance such as replacement of sand and less waste.
3. In the case of sand filtration, a coagulation sedimentation treatment is required to improve the separation accuracy, but in the case of membrane filtration, the coagulation sedimentation treatment can be omitted or simplified, and the system can be saved and processed. The process can be simplified.
4). In membrane filtration, the recovery rate of the filtrate is high and the amount of water used for backwashing is small, so that wastewater treatment by backwashing is simplified.

膜濾過による透過速度が砂濾過による透過速度と比較して極端に低い原因としては、従来の分離膜は分画粒子径が0.2μm以下の精密濾過膜や限外濾過膜が主流であるために、分画粒子径が小さく、純水透過速度がもともと低いこと、さらに処理水中に存在する不純物や懸濁物質のほとんどが分離膜でトラップされ、上記トラップされた物質による抵抗の増加で透過速度がさらに低くなってしまうことが考えられる。これに対し、砂濾過の分離精度は5〜10μm程度であり、もともとの純水透過速度が高く、さらに水中に不純物や懸濁物質が存在しても、大きさが5μm以下であれば透過してしまうことから、トラップされた物質等による抵抗も受けにくく、高い濾過速度を維持することができる。砂濾過では、5μm以下の不純物等を完全に除去することはできないが、大部分の用途では既に実用化されている通り、精密濾過や限外濾過のような0.2μm以下の分離精度は必ずしも必要とはされていなかった。   The reason why the permeation rate by membrane filtration is extremely low compared with the permeation rate by sand filtration is that conventional separation membranes are mainly microfiltration membranes and ultrafiltration membranes with a fractional particle size of 0.2 μm or less. In addition, the fractional particle size is small and the pure water permeation rate is originally low, and most of the impurities and suspended solids present in the treated water are trapped by the separation membrane, and the permeation rate is increased by the increase in resistance due to the trapped substance. May be even lower. On the other hand, the separation accuracy of sand filtration is about 5 to 10 μm, the original pure water permeation rate is high, and even if there are impurities and suspended solids in water, it will permeate if the size is 5 μm or less. Therefore, it is difficult to receive resistance due to trapped substances and the like, and a high filtration rate can be maintained. Although sand filtration cannot completely remove impurities of 5 μm or less, etc., separation accuracy of 0.2 μm or less, such as microfiltration or ultrafiltration, is not necessarily required as it has already been put to practical use in most applications. It was not necessary.

しかし最近、例えば、水道水にクリプトスポリジウムやジアルジアなどの原虫類が存在することが安全性の面で問題となっているが、砂濾過による除去では十分とはいえず、限外濾過膜や精密濾過膜を用いた分離手段が一部導入されているものの、膜濾過における造水効率の低さは改善されていない。中空糸膜の孔径が原虫類を除去することで水道水としての安全性が満足されるのに十分な2〜3μm程度にまで大きくかつ分離精度の高い分離膜があれば、膜濾過の特長である高度な分離性能を有しつつ、1μm以下の細菌類や懸濁物質による膜の目詰まりが抑制されることで高い濾過速度を発現かつ維持することができ、水道水をはじめとする様々な用途において利用されるものと考えられる。   Recently, however, the presence of protozoa such as Cryptosporidium and Giardia in tap water has been a problem in terms of safety. However, removal by sand filtration is not sufficient. Although some separation means using a filtration membrane has been introduced, the low water production efficiency in membrane filtration has not been improved. If there is a separation membrane with a high separation accuracy, the pore size of the hollow fiber membrane is large enough to satisfy safety as tap water by removing protozoa, High filtration rate can be expressed and maintained by suppressing clogging of membranes by bacteria and suspended solids of 1 μm or less while having a certain advanced separation performance. It is considered to be used in applications.

大きな孔径を有する濾過膜を製造する方法として、延伸開孔法が挙げられる。該方法は、膜素材を特定条件下でアニール処理および延伸することを特徴とし、その結果、フィブリル化されたラメラ構造を有する濾過膜を製造することができる。しかし該方法により製造された濾過膜は、延伸により繊維方向に配向するため円周方向に対する強度が大きく低下してしまうという問題がある。特に、孔径が大きくなると強度は低下傾向となるため、該方法により実用的な強度を有する濾過膜を製造することは困難である。また、形成される孔の形がスリット状となるため、細長い形状の物質は透過しやすくなり分離精度が低くなりやすい。   An example of a method for producing a filtration membrane having a large pore diameter is a stretch pore opening method. The method is characterized in that the membrane material is annealed and stretched under specific conditions, and as a result, a filtration membrane having a fibrillated lamellar structure can be produced. However, the filtration membrane produced by this method has a problem that the strength in the circumferential direction is greatly reduced because it is oriented in the fiber direction by stretching. In particular, since the strength tends to decrease as the pore diameter increases, it is difficult to produce a filtration membrane having practical strength by this method. In addition, since the shape of the hole to be formed is a slit shape, a long and narrow substance is easily transmitted and the separation accuracy is likely to be lowered.

分離精度に優れた濾過膜を製造する方法として、相分離を利用する場合が多い。そのような相分離を利用した製造法は、非溶剤誘起相分離法と熱誘起相分離法に大きく分けることができる。非溶剤誘起相分離法では、ポリマーと溶剤からなる均一なポリマー溶液は、非溶剤の進入や溶剤の外部雰囲気への蒸発によって相分離を起こす。この非溶剤誘起相分離法は濾過膜の製造方法としては極めて一般的である。しかしこの方法は、非溶剤中での相分離制御が難しく、非溶剤が必須であるために生産コストがかかり、マクロボイド(粗大孔)が発生しやすいなど、膜物性、工程制御性およびコスト性の面で問題がある。   Phase separation is often used as a method for producing a filtration membrane with excellent separation accuracy. Production methods using such phase separation can be broadly divided into non-solvent induced phase separation methods and thermally induced phase separation methods. In the non-solvent induced phase separation method, a uniform polymer solution composed of a polymer and a solvent undergoes phase separation by the ingress of the non-solvent or evaporation of the solvent to the outside atmosphere. This non-solvent induced phase separation method is very general as a method for producing a filtration membrane. However, this method is difficult to control the phase separation in a non-solvent, and the non-solvent is essential, so the production cost is high and macro voids (coarse pores) are easily generated. There is a problem in terms of.

一方、熱誘起相分離法は通常、以下のステップよりなる。(1)ポリマーと高い沸点を持った溶剤の混合物を高温で溶融させる。(2)成形後、相分離を誘発させるために適当な速度で冷却させ,ポリマーを固化させる。(3)用いた溶剤を抽出する。   On the other hand, the thermally induced phase separation method usually comprises the following steps. (1) A mixture of a polymer and a solvent having a high boiling point is melted at a high temperature. (2) After molding, the polymer is solidified by cooling at an appropriate rate to induce phase separation. (3) Extract the used solvent.

また、熱誘起相分離法が、非溶剤誘起相分離法と比較して有利な点は以下のとおりである。(a)膜の強度を弱める要因となるマクロボイドが発生しない。(b)非溶剤誘起相分離法では、溶剤のほかに非溶剤が必要であるため、製造工程における制御が困難であり、再現性も低い。一方、熱誘起相分離法では非溶剤が必要ないため制御性およびコスト性に優れ、また再現性も高い。(c)孔径制御が比較的容易で、孔径分布がシャープで良好な孔を形成する孔形成性に優れる。 The advantages of the thermally induced phase separation method compared to the non-solvent induced phase separation method are as follows. (A) Macrovoids that cause a decrease in film strength are not generated. (B) In the non-solvent induced phase separation method, a non-solvent is required in addition to the solvent, so that control in the production process is difficult and reproducibility is low. On the other hand, the heat-induced phase separation method does not require a non-solvent, so it has excellent controllability and cost, and has high reproducibility. (C) The pore diameter control is relatively easy, the pore diameter distribution is sharp, and the hole forming property for forming good holes is excellent.

熱誘起相分離には固−液型熱誘起相分離と液−液型熱誘起相分離が存在し、どちらを発現するかは、ポリマーと溶剤の相容性に起因する。両者の相容性が非常に高い場合は固−液型熱誘起相分離を発現するが、相容性が低くなると液−液型熱誘起相分離を発現し、ついに両者は非相容となる。一般に、液−液型熱誘起相分離ではスピノーダル分解により相分離が進行するため、固−液型熱誘起相分離と比較して共連続構造が発現し易いという特徴を持ち、その結果、孔の連通性や均一性などの孔形成性に優れる分離膜を製造することができる。つまり、透過性能と分画性能に優れる分離膜を製造するには、液−液型熱誘起相分離を発現する適切なポリマーと溶剤の組み合わせを選択することが好ましい。一般に、ポリマーと溶剤が液−液型熱誘起相分離を発現する領域は狭いため、該方法により分離膜を製造する場合、ポリマーと溶剤の適切な組み合わせを選ぶことが極めて重要であることが知られている(例えば、非特許文献1参照)。   Thermally induced phase separation includes solid-liquid type thermally induced phase separation and liquid-liquid type thermally induced phase separation, and it is attributed to the compatibility between the polymer and the solvent. When the compatibility of both is very high, solid-liquid type thermally induced phase separation is developed, but when compatibility is low, liquid-liquid type thermally induced phase separation is developed, and finally both become incompatible. . In general, in liquid-liquid type thermally induced phase separation, since phase separation proceeds by spinodal decomposition, it has a feature that a co-continuous structure is easily developed compared to solid-liquid type thermally induced phase separation. A separation membrane having excellent pore forming properties such as communication and uniformity can be produced. That is, in order to produce a separation membrane excellent in permeation performance and fractionation performance, it is preferable to select an appropriate polymer and solvent combination that exhibits liquid-liquid type thermally induced phase separation. In general, since the region where a polymer and a solvent exhibit liquid-liquid type thermally induced phase separation is small, it is known that it is extremely important to select an appropriate combination of a polymer and a solvent when producing a separation membrane by this method. (See, for example, Non-Patent Document 1).

上記した熱誘起相分離法を利用した分離膜の製造方法が知られている(例えば、特許文献1及び2参照)。しかし、これらの方法で得られた多孔膜の平均孔径は上記先行文献に記載されている中空糸膜の孔径はせいぜいサブミクロンオーダーであり、熱誘起相分離法を利用して数μm程度の孔径を有する分離膜を得る手法については全く記載されていない。   A method for producing a separation membrane using the above-described thermally induced phase separation method is known (see, for example, Patent Documents 1 and 2). However, the average pore diameter of the porous membranes obtained by these methods is that of the hollow fiber membrane described in the above-mentioned prior art is at most submicron order, and the pore diameter is about several μm using the thermally induced phase separation method. There is no description at all about a method for obtaining a separation membrane having s.

また、膜素材に親水性高分子化合物を用いた場合、中空糸膜を製膜することは可能なものの、そのような親水性高分子化合物からなる膜に水をはじめとする親水性液体を透過させると、膜自身が膨潤してしまい分離性能が大きく変化するため、膜素材の多くは疎水性高分子であるが、そのままでは水を透過させることが難しく、水をはじめとする親水性液体を透過させるためには親水化処理が必要である。例えば、ポリオレフィン多孔質膜の親水化法としては、水との相容性が良好なアルコールやケトン等の有機溶剤によってポリオレフィン多孔質膜の微細孔部分を含めた表面全体を湿潤処理した後、この有機溶剤を水で置換する有機溶剤湿潤・水置換法、ポリエチレングリコールや界面活性剤等の親水性物質を多孔質膜の表面に吸着させて多孔質膜に親水性を付与する物理的吸着法が知られている(例えば特許文献1及び2参照)。   In addition, when a hydrophilic polymer compound is used as the membrane material, a hollow fiber membrane can be formed, but a hydrophilic liquid such as water can be permeated through the membrane made of such a hydrophilic polymer compound. Since the membrane itself swells and the separation performance changes greatly, most of the membrane material is a hydrophobic polymer, but as it is, it is difficult to permeate water, and hydrophilic liquids such as water are used. In order to allow permeation, a hydrophilic treatment is necessary. For example, as a method for hydrophilizing a polyolefin porous membrane, the entire surface including the microporous portion of the polyolefin porous membrane is wet-treated with an organic solvent such as alcohol or ketone having good compatibility with water, Organic solvent wetting and water replacement methods that replace organic solvents with water, and physical adsorption methods that impart hydrophilicity to porous membranes by adsorbing hydrophilic substances such as polyethylene glycol and surfactants to the surface of the porous membrane. Known (for example, see Patent Documents 1 and 2).

しかし、有機溶剤湿潤・水置換法では、保存中や使用中に一旦細孔内の水が抜けるとその部分は疎水性に戻り水を透過できなくなるので、多孔質膜の周囲に常時水を満たしておく必要があり、取り扱いが煩雑であるという問題を有している。さらに親水化剤を多孔質膜に付着させたままで濾過に用いると、多孔質膜から親水化剤が濾液中に移行してこれを汚染するので、濾液処理に使用する前に親水化剤を多孔質膜から十分に洗浄除去する操作が必要である。物理的吸着法は操作の点では簡単であるが、長時間にわたって使用しているうちに親水性物質が脱離するので必ずしも十分な親水化法であるとはいえない。   However, in the organic solvent wetting and water replacement method, once the water in the pores is removed during storage or use, the portion returns to hydrophobic and water cannot permeate, so the porous membrane is always filled with water. Therefore, it has a problem that handling is complicated. Furthermore, if the hydrophilizing agent is attached to the porous membrane and used for filtration, the hydrophilizing agent will migrate from the porous membrane into the filtrate and contaminate it. An operation of sufficiently washing and removing from the membrane is necessary. Although the physical adsorption method is simple in terms of operation, it cannot be said that it is necessarily a sufficient hydrophilization method because the hydrophilic substance is detached while it is used for a long time.

特開昭54−153872号公報JP 54-153872 A 特開昭59−24732号公報JP 59-24732 A 「ケミカル・エンジニヤリング」 化学工業社 1998年6月号453ページ〜464ページ“Chemical Engineering” Chemical Industry Co., Ltd. June 1998, pages 453-464

本発明の目的は、熱誘起相分離法を用いて、純水透過性能や分画性能、強度、耐熱性、耐薬品性、低吸水性、工程制御性、コスト性、孔形成性に優れ、かつ機械的強度に優れた中空糸膜およびそれを製造する方法を提供することにある。   The purpose of the present invention is to use purely water permeation performance and fractionation performance, strength, heat resistance, chemical resistance, low water absorption, process controllability, cost, and pore formation using a heat-induced phase separation method. Another object of the present invention is to provide a hollow fiber membrane excellent in mechanical strength and a method for producing the same.

上記の課題を解決する本発明の中空糸膜は、高分子化合物と溶剤との熱誘起相分離により形成された中空糸膜であって、粘度平均分子量が100万以上である高分子化合物を少なくとも該中空糸膜の1重量%以上含有し、外表面および内表面に平均孔径3μm以上の円形または楕円形の微細孔を有し、純水透過速度が30000L/m/hr/98kPa以上、分画粒子径が1μm以上、かつ親水性を有することを特徴とする。 The hollow fiber membrane of the present invention that solves the above problems is a hollow fiber membrane formed by thermally induced phase separation of a polymer compound and a solvent, and at least a polymer compound having a viscosity average molecular weight of 1,000,000 or more It contains 1% by weight or more of the hollow fiber membrane, has circular or elliptical micropores with an average pore diameter of 3 μm or more on the outer surface and inner surface, and a pure water permeation rate of 30000 L / m 2 / hr / 98 kPa or more, The image particle diameter is 1 μm or more and has hydrophilicity.

本発明に係る中空糸膜の製造方法は、高分子化合物、上記高分子化合物と特定の温度領域で相容して一相状態となりかつ温度変化により相分離を起こしうる溶剤、無機粒子、および無機粒子と親和性を有する凝集剤を上記高分子化合物と溶剤が相容する温度で混練した混合液を調製した後、中空糸状に押出し、冷却することで熱誘起相分離と上記高分子化合物の析出を起こさせて中空糸状物を形成し、上記高分子化合物以外の成分を抽出させるものである。   The method for producing a hollow fiber membrane according to the present invention includes a polymer compound, a solvent that can be mixed with the polymer compound in a specific temperature range to be in a one-phase state and can undergo phase separation due to temperature change, inorganic particles, and inorganic After preparing a mixed solution in which the flocculant having affinity for particles is kneaded at a temperature at which the polymer compound and the solvent are compatible, it is extruded into a hollow fiber shape and cooled to thermally induce phase separation and precipitation of the polymer compound. Is caused to form a hollow fiber-like material, and components other than the polymer compound are extracted.

本発明において用いられる高分子化合物は、特定の温度領域で溶剤と相容して一相状態となり、かつ温度変化により相分離を起こしうるものであれば特に制限はない。膜素材の高分子化合物として通常用いられる疎水性高分子の例としては、例えば高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、ポリスチレン、ポリフッ化ビニリデン、ポリフェニレンスルファイド、ポリブテン、ポリ(4−メチル−1−ペンテン)、ポリクロロトリフルオロエチレン、ポリフェニレンエーテル、ナイロン6、ナイロン11、ポリカーボネートなどを例示することができる。これらの中でも、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリブテン、ポリ(4−メチル−1−ペンテン)、ポリイソブチレン、ポリイソペンテン、ポリペンテンなどのオレフィン系重合体、特にポリエチレンは、上記一相状態となる温度が低く常温で熱誘起相分離を誘起することから経済的に有利であり、かつ延伸することにより配向し強度が高くできるので好ましい。また、高分子化合物の分子量は高い方が膜の強度が強くなるので好ましく、例えばポリエチレンでは重量平均分子量30万以上の重合体が好適に用いられる。 The polymer compound used in the present invention is not particularly limited as long as it is compatible with a solvent in a specific temperature range to become a one-phase state and can cause phase separation due to temperature change. Examples of the hydrophobic polymer usually used as the polymer compound of the membrane material include, for example, high density polyethylene, low density polyethylene, polypropylene, polystyrene, polyvinylidene fluoride, polyphenylene sulfide, polybutene, poly (4-methyl-1- Pentene), polychlorotrifluoroethylene, polyphenylene ether, nylon 6, nylon 11, polycarbonate and the like. Among these, olefin polymers such as high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, polybutene, poly (4-methyl-1-pentene), polyisobutylene, polyisopentene, and polypentene, particularly Polyethylene is preferable because it is economically advantageous because it induces thermally induced phase separation at room temperature because the temperature at which it becomes the one-phase state is low, and it can be oriented and strengthened by stretching. A higher molecular weight of the polymer compound is preferable because the strength of the film is increased. For example, a polymer having a weight average molecular weight of 300,000 or more is suitably used for polyethylene.

本発明において用いられる溶剤は、特定の温度領域で高分子化合物と相容し、かつ温度変化により高分子化合物と相分離を起こすものが用いられる。熱誘起相分離の形態には固−液相分離、液−液相分離が存在するが、本発明はこれらいずれの相分離形態でも適用可能である。一般に高分子化合物と溶剤との相容性が非常に高い場合には固―液相分離状態を、そうでない場合は液―液相分離状態をとることが知られている。固―液相分離状態を取りうる高分子化合物/溶剤の組合せの例としては、ポリエチレン/パラフィン、ポリエチレン/ステアリルアルコール、ポリプロピレン/パラフィン、ポリ(4−メチル−1−ペンテン)/鉱油、ポリフェニレンエーテル/デカリンなどの組み合わせが挙げられる。また液―液相分離状態を取りうる高分子化合物/溶剤の組合せの例としては、ポリエチレン/フタル酸ジブテル、ポリエチレン/フタル酸ジイソデシル/フタル酸ジオクチル、ポリメチルメタクリレート/フタル酸ジオクチル、ポリスチレン/ニトロベンゼン、ポリアクリロニトリル/無水マレイン酸、ポリプロピレン/ジフェニルエーテルなどの組み合わせが挙げられる。また、TG−DTAを用いて測定された(熱誘起相分離温度+30)℃における30秒間での重量減量率が10%以下である溶剤を用いると、膜表面の構造が良好となるため好ましい。   As the solvent used in the present invention, a solvent that is compatible with the polymer compound in a specific temperature range and causes phase separation from the polymer compound due to temperature change is used. Solid-liquid phase separation and liquid-liquid phase separation exist as forms of thermally induced phase separation, but the present invention is applicable to any of these phase separation forms. In general, it is known that a solid-liquid phase separation state is obtained when the compatibility between the polymer compound and the solvent is very high, and a liquid-liquid phase separation state is obtained otherwise. Examples of polymer / solvent combinations that can be in a solid-liquid phase separation include polyethylene / paraffin, polyethylene / stearyl alcohol, polypropylene / paraffin, poly (4-methyl-1-pentene) / mineral oil, polyphenylene ether / Combinations such as decalin are listed. Examples of polymer / solvent combinations that can be in liquid-liquid phase separation include polyethylene / dibutyl phthalate, polyethylene / diisodecyl phthalate / dioctyl phthalate, polymethyl methacrylate / dioctyl phthalate, polystyrene / nitrobenzene, Examples include combinations of polyacrylonitrile / maleic anhydride, polypropylene / diphenyl ether, and the like. Moreover, it is preferable to use a solvent having a weight loss rate of 10% or less in 30 seconds at (thermally induced phase separation temperature + 30) ° C. measured using TG-DTA because the structure of the film surface becomes good.

本発明において用いられる無機粒子は、中空糸膜が大きな孔径を有するための核となるものであり、薬品などによる抽出が容易で粒径分布の比較的狭い微粒子が望ましい。その例として、例えば、シリカ、珪酸カルシウム、珪酸アルミニウム、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、鉄、亜鉛などの金属酸化物または水酸化物、ナトリウム、カリウム、カルシウム等の塩類などを例示することができる。特に、凝集性を有する無機粒子は、通常であれば高分子化合物と溶剤とが相分離してしまうような組成に添加することで高分子化合物と溶剤とが相容状態にあるときの安定性が向上する結果、均質な紡糸が可能となり、より大きな孔径を有する膜を製造することができる。このような凝集性の点から無機粒子としてはシリカが最良である。また中空糸膜の孔径制御、特に孔の連通性を向上させることを目的として、異なる凝集粒子径を有する無機粒子を混合することもできる。   The inorganic particles used in the present invention are the core for the hollow fiber membrane to have a large pore size, and are preferably fine particles that are easy to extract with chemicals and have a relatively narrow particle size distribution. Examples thereof include metal oxides or hydroxides such as silica, calcium silicate, aluminum silicate, calcium carbonate, magnesium carbonate, calcium phosphate, iron and zinc, and salts such as sodium, potassium and calcium. . In particular, the cohesive inorganic particles are usually added to a composition in which the polymer compound and the solvent are phase-separated so that the stability when the polymer compound and the solvent are in a compatible state. As a result of this, homogeneous spinning becomes possible and a membrane having a larger pore diameter can be produced. From such a cohesive point, silica is the best inorganic particle. In addition, inorganic particles having different agglomerated particle diameters can be mixed for the purpose of controlling the pore diameter of the hollow fiber membrane, in particular, improving the connectivity of the pores.

本発明において用いられる凝集剤とは、無機粒子と親和性があり、さらに無機粒子の凝集性を向上させる働きを有する化合物をいう。凝集剤は、このような要件に加えて、ポリオレフィン系重合体と溶剤とが相容する温度以上の沸点を有することが必要である。なお、無機粒子の凝集性を向上させる点から、凝集剤は親水基を有する化合物であることがより好ましい。ただし、溶剤が上記要件を満たす場合は、新たに凝集剤を添加する必要はない。凝集剤の例としては、エチレングリコール、プロピレングリコール、トリエチレングリコール、ポリエチレングリコール、グリセリンなどの多価アルコール類、モノラウリン酸デカグリセリルのようなポリグリセリン脂肪酸エステル類、モノステアリン酸ポリオキシエチレングリセリンのようなポリオキシエチレングリセリン脂肪酸エステル類、ポリオキシエチレンラウリルエーテルやポリオキシエチレンセチルエーテルのようなポリオキシエチレンアルキルエーテル類、ポリオキシエチレンポリオキシプロピレンセチルエーテルのようなポリオキシエチレンポリオキシプロピレンアルキルエーテル類、ポリオキシエチレンノニルフェニルエーテルのようなポリオキシエチレンアルキルフェニルエーテル類、モノパルミチン酸ポリオキシエチレンソルビタンのようなポリオキシエチレンソルビタン脂肪酸エステル類などが挙げられる。さらに、無機粒子の凝集状態を制御するためや、系全体の溶融状態を安定化させるためにこれらを任意の割合で混合することもできる。系全体の溶融状態を安定にするために混合する凝集剤としては、溶解度パラメータ(SP値)または親水性親油性バランス(HLB値)が、溶剤とすでに添加している凝集剤のそれぞれの間の値をとるようなものが好ましい。なお、SP値についてはJoel R.Fried著「Polymer Science AND Technology」に、またHLB値については西一郎、今井恰知朗、笠井正威共著「界面活性剤便覧」に詳しい記載がある。   The aggregating agent used in the present invention refers to a compound that has an affinity for inorganic particles and has a function of improving the aggregating properties of the inorganic particles. In addition to such requirements, the flocculant must have a boiling point equal to or higher than the temperature at which the polyolefin polymer and the solvent are compatible. In addition, it is more preferable that the aggregating agent is a compound having a hydrophilic group from the viewpoint of improving the aggregation property of the inorganic particles. However, if the solvent satisfies the above requirements, it is not necessary to add a new flocculant. Examples of flocculants include polyhydric alcohols such as ethylene glycol, propylene glycol, triethylene glycol, polyethylene glycol, and glycerin, polyglycerin fatty acid esters such as decaglyceryl monolaurate, and polyoxyethylene glyceryl monostearate. Polyoxyethylene glycerin fatty acid esters, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene cetyl ether, polyoxyethylene polyoxypropylene alkyl ethers such as polyoxyethylene polyoxypropylene cetyl ether , Polyoxyethylene alkylphenyl ethers such as polyoxyethylene nonylphenyl ether, polyoxyethylene monopalmitate Polyoxyethylene sorbitan fatty acid esters such as Nsorubitan thereof. Furthermore, in order to control the aggregation state of the inorganic particles or to stabilize the molten state of the entire system, they can be mixed at an arbitrary ratio. The flocculant mixed to stabilize the melt state of the entire system includes a solubility parameter (SP value) or a hydrophilic / lipophilic balance (HLB value) between each of the solvent and the flocculant already added. Those that take values are preferred. As for the SP value, Joel R. Fried's “Polymer Science AND Technology” and the HLB values are described in detail in “Handbook of Surfactants” written by Nishiichiro, Ima Tomoaki and Masai Kasai.

中空糸膜に親水性を付与させる方法としては、親水性単量体を多孔質フィルムの表面に保持させた状態で放射線を照射する方法や疎水性重合体からなる多孔質構造物をプラズマ処理または含ふっ素ガスを用いた処理方法等の化学的表面変性法、さらに高分子化合物がして疎水性重合体と疎水性重合体に対して40重量部以下0.5重量部以上の親水性重合体からなるブレンド物を高分子化合物として用いる方法等が挙げられる。これらの中で、親水性重合体をブレンドする方法は、工業的コストや工程性の点で最も優れた方法である。   As a method for imparting hydrophilicity to the hollow fiber membrane, a method of irradiating radiation with a hydrophilic monomer held on the surface of the porous film, or a porous structure made of a hydrophobic polymer by plasma treatment or A chemical surface modification method such as a treatment method using a fluorine-containing gas, and further a high molecular weight compound and a hydrophilic polymer in an amount of 40 parts by weight or less and 0.5 parts by weight or more based on the hydrophobic polymer and the hydrophobic polymer. And a method of using a blend comprising the above as a polymer compound. Among these, the method of blending the hydrophilic polymer is the most excellent method in terms of industrial cost and processability.

高分子化合物として疎水性重合体と疎水性重合体に対して40重量部以下5重量部以上の親水性重合体からなるブレンド物を用いる場合において、親水性重合体としては、例えば、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、ポリビニルアルコール、ポリビニルピロリドン等やこれらの変性重合体が例示されるが、親水性を有し熱誘起相分離後の析出処理において溶出されない程度に高い粘度又は分子量を有していればこれらに限定されるものではない。特に疎水性高分子との相容性の点からは、エチレン−酢酸ビニル共重合体が好適に用いられる。親水性重合体は、疎水性重合体に対して40重量部以下より好ましくは20重量部以上、かつ5重量部以上より好ましくは5重量部以上の範囲で用いられる。親水性重合体の量が上記した範囲より大きくなると、水をはじめとする親水性液体を透過させたときに、膜自身が膨潤してしまい分離性能が顕著に変化するため、また親水性重合体の量が上記した範囲より少ないと親水性の効果を奏さないためいずれも好ましくない。   In the case of using, as the polymer compound, a hydrophobic polymer and a blend comprising a hydrophilic polymer of 40 parts by weight or less and 5 parts by weight or more based on the hydrophobic polymer, the hydrophilic polymer may be, for example, ethylene-acetic acid. Examples thereof include vinyl copolymers, ethylene-vinyl alcohol copolymers, polyvinyl alcohol, polyvinyl pyrrolidone and the like, and modified polymers thereof, which are hydrophilic and high enough not to be eluted in the precipitation treatment after thermally induced phase separation. As long as it has viscosity or molecular weight, it is not limited to these. In particular, from the viewpoint of compatibility with a hydrophobic polymer, an ethylene-vinyl acetate copolymer is preferably used. The hydrophilic polymer is used in an amount of 40 parts by weight or less, preferably 20 parts by weight or more, and more preferably 5 parts by weight or more, more preferably 5 parts by weight or more based on the hydrophobic polymer. When the amount of the hydrophilic polymer is larger than the above range, when the hydrophilic liquid such as water is permeated, the membrane itself swells and the separation performance changes significantly. If the amount is less than the above range, any hydrophilic effect will not be obtained, which is not preferable.

上記した高分子化合物、溶剤、無機粒子および凝集剤からなる混合液の組成は、製造された中空糸膜が優れた機械的強度を有し、所望の孔径および中空糸の外表面から内表面までを貫通する貫通孔が所望の性能を満たす程度に存在し得る範囲内で自由に設定することができる。混合液の組成は上記した各構成成分の化学構造等により異なるが、高分子化合物、溶剤、無機粒子および凝集剤の組成比の合計を120とした場合に(以下も同様)、高分子化合物:溶剤:無機粒子:凝集剤=15〜25:25〜50:10〜30:20〜50の範囲内にあることが望ましい。混合液の組成がこの範囲を外れると、混合液を中空糸状に紡糸するときの安定性が低下して均質な中空糸状物を紡糸することが困難となり、また、高分子化合物の量が上記した量より多いときには、均質な中空糸状物を紡糸することは可能であっても得られる中空糸膜の空隙率が低くなり、本発明の特徴である大きな孔径や大きい純水透過速度を得るのが困難となる傾向にある。   The composition of the mixed liquid composed of the polymer compound, the solvent, the inorganic particles and the flocculant described above is such that the produced hollow fiber membrane has excellent mechanical strength, and has a desired pore diameter and from the outer surface to the inner surface of the hollow fiber. Can be freely set within a range in which the through hole penetrating the hole can exist to the extent that the desired performance is satisfied. The composition of the mixed solution varies depending on the chemical structure and the like of each component described above, but when the total composition ratio of the polymer compound, the solvent, the inorganic particles, and the flocculant is 120 (the same applies hereinafter), the polymer compound: Solvent: inorganic particles: flocculant = 15-25: 25-50: 10-30: 20-50 is desirable. If the composition of the mixed solution is out of this range, the stability when spinning the mixed solution into a hollow fiber shape is lowered, making it difficult to spin a homogeneous hollow fiber material, and the amount of the polymer compound is as described above. When the amount is more than the amount, the porosity of the hollow fiber membrane obtained is low even if it is possible to spin a homogeneous hollow fiber-like material, and the large pore diameter and the large pure water permeation rate that are the characteristics of the present invention are obtained. It tends to be difficult.

上記した高分子化合物、溶剤、無機粒子および凝集剤からなる混合液には、必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、染料、増粘剤などの各種添加剤を本発明の目的を損なわない範囲で添加することができる。   If necessary, various additives such as antioxidants, ultraviolet absorbers, lubricants, antiblocking agents, dyes, thickeners, etc., may be added to the liquid mixture composed of the polymer compound, solvent, inorganic particles and aggregating agent. It can add in the range which does not impair the objective of this invention.

上記した高分子化合物、溶剤、無機粒子および凝集剤からなる混合液は、二軸混練設備、プラストミル、ミキサーなどの中で混練される。混練温度は高分子化合物と溶剤とが相容しかつ上記混合物の各成分が分解しない範囲で設定する。混合液は混練された後、十分気泡を除去され、ギヤポンプなどの計量ポンプで計量して二重環構造のノズルより押出される。このときに、二重環構造のノズルの中心部からは、中空糸形状を形成するために、空気、窒素などの気体、または高分子化合物を溶解せず上記混合液の押出温度以上の沸点を有する液体が同時に押出される。上記二重環構造のノズルの中心部から押出すのに用いられる液体としては、テトラエチレングリコールやプロピレングリコール、グリセリンなどを例示することができ、これらを用いると、得られる中空糸の内表面における構造が粗大化し、大きな孔径を得るうえで効果的である。   The mixed liquid composed of the above-described polymer compound, solvent, inorganic particles and aggregating agent is kneaded in a biaxial kneading equipment, a plast mill, a mixer or the like. The kneading temperature is set in such a range that the polymer compound and the solvent are compatible and each component of the mixture is not decomposed. After the mixture is kneaded, the bubbles are sufficiently removed, measured by a measuring pump such as a gear pump, and extruded from a nozzle having a double ring structure. At this time, in order to form a hollow fiber shape from the center of the nozzle having a double ring structure, a boiling point equal to or higher than the extrusion temperature of the above mixture without dissolving a gas such as air or nitrogen, or a polymer compound. The liquid it has is extruded at the same time. Examples of the liquid used for extruding from the center of the nozzle having the double ring structure include tetraethylene glycol, propylene glycol, and glycerin. When these are used, the inner surface of the hollow fiber to be obtained is used. It is effective in obtaining a large pore size by coarsening the structure.

ノズルより押し出された押出成形物は、例えば冷却といった温度の変化により高分子化合物と溶剤とが相分離を起こして高分子化合物が固化し、中空糸状物を形成する。本発明においては、高分子化合物が熱誘起相分離を起こして固化することが重要である。高分子化合物と高分子化合物が相容する溶媒との混合物が高分子化合物の貧溶媒中との接触により固化するときには、上記混合物と非溶媒の界面にあたる部分が緻密な層を形成し、得られる膜が不均一な構造となり、高い分離精度が得られない虞がある。冷却の方法は、空気中で行なう方法、液体中に導入する方法、一旦空気中を通した後に液体中に導入する方法などがありいずれの方法を用いても良いが、冷却の速度が中空糸膜の強度や伸度、さらに孔径制御に大きく影響するので冷却速度をコントロールできるように雰囲気温度を温風で制御したり、冷却に用いられる液体の温度を制御することが望ましい。冷却に用いられる液体としては工業的には水が好ましいが、凝集剤または溶剤と相容する有機液体を用いることも可能である。   The extruded product extruded from the nozzle causes a phase separation between the polymer compound and the solvent due to a change in temperature such as cooling, and the polymer compound is solidified to form a hollow fiber-like product. In the present invention, it is important that the polymer compound is solidified by causing heat-induced phase separation. When a mixture of a polymer compound and a solvent compatible with the polymer compound is solidified by contact with the poor solvent of the polymer compound, a portion corresponding to the interface between the mixture and the non-solvent forms a dense layer, and is obtained. There is a possibility that the membrane has a non-uniform structure and high separation accuracy cannot be obtained. The method of cooling includes a method in air, a method of introducing into a liquid, a method of once passing through air, and a method of introducing into a liquid, and any method may be used. Since the strength and elongation of the membrane and the pore diameter control are greatly affected, it is desirable to control the ambient temperature with warm air so that the cooling rate can be controlled, or to control the temperature of the liquid used for cooling. As the liquid used for cooling, water is industrially preferable, but an organic liquid compatible with the flocculant or solvent can also be used.

次いで、上記により形成された中空糸状物から、溶剤、無機粒子および凝集剤を抽出して中空糸膜を得る。これらの成分の抽出は、紡糸、固化などの操作と共に工程中で連続的に行なうことができるし、中空糸状物を一旦枠やカセなどに巻き取った後に行なっても、あるいは中空糸状物を所定の形状のケースに収納してモジュール化した後に行なっても良い。各成分の抽出に用いる溶剤は、抽出温度において高分子化合物の非溶剤であることが必要である。抽出溶剤は抽出成分の化学構造等によっても異なるが、例えば溶剤がパラフィンの場合は、ヘキサン、テトラクロロエタン、トリクロロフルオロメタン、トリクロロエチレンなどが挙げられる。また無機粒子がシリカの場合は、アルカリ溶液による抽出が好適である。さらに凝集剤がポリオキシエチレンポリオキシプロピレンセチルエーテルの場合は、ヘキサン、アセトン、メタノール、水などが挙げられる。中空糸膜は、これらの処理を行なった後に、例えば枠やカセに巻き取った状態で乾燥される。   Next, the hollow fiber membrane is obtained by extracting the solvent, the inorganic particles, and the flocculant from the hollow fiber formed as described above. The extraction of these components can be carried out continuously in the process together with operations such as spinning and solidification, or can be carried out after the hollow fiber-like product is once wound on a frame or a cassette, or the hollow fiber-like product can be obtained in a predetermined manner. It may be carried out after being housed in a case of the shape and modularized. The solvent used for extraction of each component needs to be a non-solvent for the polymer compound at the extraction temperature. Although the extraction solvent varies depending on the chemical structure of the extraction component, for example, when the solvent is paraffin, hexane, tetrachloroethane, trichlorofluoromethane, trichloroethylene and the like can be mentioned. In addition, when the inorganic particles are silica, extraction with an alkaline solution is preferable. Further, when the flocculant is polyoxyethylene polyoxypropylene cetyl ether, hexane, acetone, methanol, water and the like can be mentioned. After performing these treatments, the hollow fiber membrane is dried, for example, in a state of being wound around a frame or a cassette.

また、本発明において中空糸膜の強度を向上させるために延伸を行なうことも可能である。延伸の方法としては、熱延伸、冷延伸、熱固定などの方法を目的とする強度に応じて適宜組み合わせて実施することができる。但し、延伸の程度が過ぎると、得られる中空糸膜がフィブリル化を起こして微細孔がスリット状となり、分離精度が低くなったり、円周方向に対する強度が逆に低下してしまうために好ましくない。膜の濾過においては円周方向の強度も重要であるため、膜の表面がスリット状微細孔にならず円形または楕円形を保持する範囲内で延伸比率を制御する必要がある。延伸は中空糸状物を形成後に溶剤や無機粒子などが存在している状態で行なう、溶剤および凝集剤を抽出した後で中空糸状物内に無機粒子が存在している状態で行なう、溶剤、無機粒子および凝集剤の抽出を行なった後に行なうなど、任意の方法で行なって良い。延伸時において中空糸状物内に無機粒子が存在する状態で延伸を行なう場合、無機粒子が孔形成の核となることにより、大きな孔径を有する中空糸膜が得られるため好ましい。このような延伸を行なうことで、強度が向上するだけでなく空隙率が大きくなり、その結果高い純水透過速度を有する膜が製造できる。   Further, in the present invention, stretching can be performed in order to improve the strength of the hollow fiber membrane. As the stretching method, methods such as hot stretching, cold stretching, and heat setting can be appropriately combined according to the intended strength. However, if the degree of stretching is too high, the resulting hollow fiber membrane is fibrillated and the micropores become slit-like, so that the separation accuracy is lowered and the strength in the circumferential direction is adversely decreased. . In the filtration of the membrane, the strength in the circumferential direction is also important. Therefore, it is necessary to control the stretching ratio within a range in which the membrane surface does not become slit-like micropores but maintains a circular or elliptical shape. Stretching is performed in a state where a solvent or inorganic particles are present after forming the hollow fiber-like material, and is performed in a state where inorganic particles are present in the hollow fiber-like material after extracting the solvent and the flocculant. It may be performed by any method, for example, after the particles and the flocculant are extracted. When stretching is performed in a state where inorganic particles are present in the hollow fiber-like material at the time of stretching, it is preferable because a hollow fiber membrane having a large pore diameter can be obtained by the inorganic particles becoming the core of pore formation. By performing such stretching, not only the strength is improved but also the porosity is increased, and as a result, a membrane having a high pure water permeation rate can be produced.

このようにして得られた本発明の中空糸膜は、内径が0.2〜2mm、外径が0.4〜5mmであり、外表面および内表面に平均孔径3μm以上の円形または楕円形の微細孔を有する。ここでいう平均孔径とは、外表面および内表面の少なくとも2ヶ所について電子顕微鏡を用いて写真撮影(例えば倍率600倍)し、写真の視野範囲内に見える全ての微細孔の内半径を計測し、上記操作を計測した微細孔数が少なくとも100個を越えるまで上記操作を繰り返した上で、上記計測値の平均値を求め、これを平均孔径としたものである。また円形または楕円径とは、上記電子顕微鏡写真で測定した微細孔の長径と短径の比が平均で1:1〜6:1以下のものをいう。膜の断面は内外表面よりも大きな孔径を有する網目状の構造が好ましいが、対称構造や非対称構造、またはフィンガーライク構造やボイドを有していても良い。また、中空糸膜内の空間の体積比である空隙率は50〜95%、好ましくは70〜90%である。空隙率が50%よりも小さくなると十分な純水透過速度を得ることが困難であり、90%を越えると膜の強度が低下し、膜濾過の実施中に中空糸膜の破断や折れが発生し膜としての耐久性に欠ける。本発明の中空糸膜はこのような膜構造を有しているため、純水透過速度が30000L/m/hr/98kPa以上と従来の膜と比べ格段に高くまた分画粒子径1μm以上を有する。さらに、本発明の製造方法によると、純水透過速度が150000L/m/hr/98kPa以上、分画粒子径が3μm以上の膜も製造することが可能である。また、孔径が大きくなることで湿潤状態でも100kPa以下の低い圧力で空気などの気体が透過できるようになるため、気体逆洗などの物理的手段による洗浄が可能となる。 The hollow fiber membrane of the present invention thus obtained has an inner diameter of 0.2 to 2 mm, an outer diameter of 0.4 to 5 mm, and has a circular or elliptical shape with an average pore diameter of 3 μm or more on the outer surface and the inner surface. Has micropores. The average pore diameter here means taking a photograph (for example, 600 times magnification) using an electron microscope at least two places on the outer surface and the inner surface, and measuring the inner radius of all the fine holes visible in the field of view of the photograph. The above operation is repeated until the number of fine pores measured for the above operation exceeds at least 100, the average value of the measured values is obtained, and this is the average pore diameter. The circular or elliptical diameter means that the ratio of the major axis to the minor axis of the micropores measured by the electron micrograph is 1: 1 to 6: 1 or less on average. The cross section of the membrane is preferably a network structure having a larger pore diameter than the inner and outer surfaces, but may have a symmetric structure, an asymmetric structure, a finger-like structure, or a void. Moreover, the porosity which is the volume ratio of the space in the hollow fiber membrane is 50 to 95%, preferably 70 to 90%. When the porosity is less than 50%, it is difficult to obtain a sufficient pure water permeation rate. When the porosity exceeds 90%, the strength of the membrane is lowered, and the hollow fiber membrane is broken or broken during membrane filtration. It lacks durability as a thin film. Since the hollow fiber membrane of the present invention has such a membrane structure, the pure water permeation rate is 30000 L / m 2 / hr / 98 kPa or higher, which is much higher than conventional membranes and has a fractional particle diameter of 1 μm or more. Have. Furthermore, according to the production method of the present invention, it is possible to produce a membrane having a pure water permeation rate of 150,000 L / m 2 / hr / 98 kPa or more and a fractional particle diameter of 3 μm or more. Further, since the pore diameter is increased, a gas such as air can be permeated at a low pressure of 100 kPa or less even in a wet state, so that cleaning by physical means such as gas backwashing is possible.

乾燥後の中空糸膜を所定の本数ずつ束ね所定の形状のケースに収納した後、ウレタン樹脂、エポキシ樹脂等で端部を固定することによって中空糸膜モジュールが得られる。中空糸膜モジュールとしては、中空糸膜の両端が開口固定されているタイプのもの、中空糸膜の一端が開口固定されかつ他端が密封されているが固定はされていないタイプのもの等、種々の形態のものが公知である。   A hollow fiber membrane module can be obtained by bundling a predetermined number of hollow fiber membranes after drying and storing the hollow fiber membranes in a case having a predetermined shape, and then fixing the ends with urethane resin, epoxy resin, or the like. As the hollow fiber membrane module, a type in which both ends of the hollow fiber membrane are fixed open, a type in which one end of the hollow fiber membrane is fixed open and the other end is sealed but not fixed, etc. Various forms are known.

以下、実施例により本発明を具体的に説明する。なお、本発明はこれによってなんら限定を受けるものではない。   Hereinafter, the present invention will be described specifically by way of examples. In addition, this invention does not receive any limitation by this.

高分子化合物として高密度ポリエチレン(日本ポリケム(株)社製:「ノバテック」HB214R 重量平均分子量43万)、親水性重合体としてエチレン―酢酸ビニル共重合体(三井・デュポン ポリケミカル株式会社製:「EVAFLEX」P−1905)、溶剤として流動パラフィン(中央化成株式会社製:350−S)、無機粒子としてシリカ(株式会社トクヤマ社製:「ファインシール」X−45;平均凝集粒子径4.0〜5.0μm)、および凝集剤としてエチレングリコール(株式会社日本触媒社製)(以下EGと表記)を重量比で18:2:50:20:30の割合となるように混合液を調製した。この混合液の組成を図1に示す。   High-density polyethylene as a polymer compound (manufactured by Nippon Polychem Co., Ltd .: “Novatec” HB214R weight average molecular weight 430,000), ethylene-vinyl acetate copolymer (Mitsui / DuPont Polychemical Co., Ltd. as a hydrophilic polymer: “ EVAFLEX "P-1905), liquid paraffin as a solvent (Chuo Kasei Co., Ltd .: 350-S), inorganic particles as silica (Tokuyama Co., Ltd .:" Fine Seal "X-45; average aggregated particle size 4.0- 5.0 μm), and ethylene glycol (manufactured by Nippon Shokubai Co., Ltd.) (hereinafter referred to as EG) as a flocculant was prepared so that the weight ratio was 18: 2: 50: 20: 30. The composition of this mixed solution is shown in FIG.

(HLB値)
なお、表1に記載したHLB値は西一郎、今井恰知朗、笠井正威共著「界面活性剤便覧」に記載の方法に従って、以下の式から算出することにより決定した。
(HLB値)=20×(物質中の親水部の分子量)/(物質の分子量) (1)
(1)式において、分子量は国際純正・応用化学連合(IUPAC)原子量の値を用いて算出する。
(HLB value)
In addition, the HLB value described in Table 1 was determined by calculating from the following formula according to the method described in “Surfactant Handbook” by Nishiichiro Nishi, Ichiro Imai and Masai Kasai.
(HLB value) = 20 × (molecular weight of hydrophilic part in substance) / (molecular weight of substance) (1)
In the formula (1), the molecular weight is calculated using the value of the International Pure and Applied Chemical Association (IUPAC) atomic weight.

(SP値)
また、表1に記載したSP値は以下の式から算出することにより決定した。
(SP値)=ρ×ΣF/M (2)
(2)式において、ρは25℃における物質の密度、Mは物質の分子量、Fはmolar attraction constantで各結合ごとに決められた定数であり、ここではHoyによって報告された数値(Joel R. Fried著「Polymer Science AND Technology」に詳しい記載有り)を用いた。なおSP値の単位は(MPa)1/2である。
(SP value)
Moreover, the SP value described in Table 1 was determined by calculating from the following formula.
(SP value) = ρ × ΣF / M (2)
In the formula (2), ρ is the density of the substance at 25 ° C., M is the molecular weight of the substance, and F is a constant determined for each bond by the molar attraction constant. Here, the numerical value reported by Hoy (Joel R. Fried's "Polymer Science AND Technology"). The unit of SP value is (MPa) 1/2 .

上記した混合液を、二軸混練押出機中で加熱混練(温度165℃)して、押出したストランドをペレタイザーに通すことでチップ化した。このチップを、外径2.5mm、内径1.1mmの二重環構造のノズルを装着した押出機(165℃)を用いて押出した。このときテトラエチレングリコールを押出物の中空部内に注入した。
紡口から空気中に押し出した押出成形物を、2cmの空中走行距離を経て、水浴中(温度20℃)に入れ、約50cm水浴中を通過させて冷却固化させた。次いで、得られた中空糸を50℃のヘキサン中で60分の浸漬を2回繰り返して溶剤(350−S)を抽出除去し、次に室温のメタノール中で60分の浸漬を2回繰り返して凝集剤(EG)と注入液(テトラエチレングリコール)を抽出除去した。
The above mixed solution was heated and kneaded (temperature: 165 ° C.) in a twin-screw kneading extruder, and the extruded strand was passed through a pelletizer to form chips. The chip was extruded using an extruder (165 ° C.) equipped with a double ring nozzle having an outer diameter of 2.5 mm and an inner diameter of 1.1 mm. At this time, tetraethylene glycol was injected into the hollow portion of the extrudate.
The extruded product extruded from the spinning nozzle into the air was placed in a water bath (temperature 20 ° C.) through an air travel distance of 2 cm, and passed through an approximately 50 cm water bath to be cooled and solidified. Next, the hollow fiber thus obtained was immersed twice in hexane at 50 ° C. for 60 minutes to extract and remove the solvent (350-S), and then immersed in methanol at room temperature for 60 minutes twice. The flocculant (EG) and the injection solution (tetraethylene glycol) were extracted and removed.

このようにして得られた中空糸状物を80℃の熱水中で繊維方向に原長の約3倍長となるよう延伸処理をした後に、100℃の熱水中で熱固定を行ない、次いで80℃の3N水酸化ナトリウム水溶液中で60分の浸漬を2回繰り返して無機粒子(「ファインシール」X―45)を抽出除去すると同時に、エチレン―酢酸ビニル共重合体中のアセチル基を加水分解することで膜へ親水性を付与させた。その後、水洗、乾燥工程を経て中空糸膜を得た。製造した中空糸膜について以下の手法に従って試験を行った。試験結果を表2に示す。   The hollow fiber-like material thus obtained was stretched in hot water at 80 ° C. so as to be about 3 times the original length in the fiber direction, and then heat-set in hot water at 100 ° C., Extraction and removal of inorganic particles (“Fine Seal” X-45) by repeating immersion for 60 minutes in 80 ° C. 3N sodium hydroxide solution twice and hydrolysis of acetyl group in ethylene-vinyl acetate copolymer By doing so, hydrophilicity was imparted to the membrane. Then, the hollow fiber membrane was obtained through the water washing and the drying process. The manufactured hollow fiber membrane was tested according to the following method. The test results are shown in Table 2.

(孔の長径と短径の比および平均孔径)
外表面および内表面の少なくとも2ヶ所について電子顕微鏡を用いて写真撮影し、写真の視野範囲内に見える全ての微細孔の長径、短径および内半径を計測し、計測する微細孔数が100個以上になるまで上記操作を行う。その後、外表面および内表面のそれぞれについて、上記計測した孔の長径と短径の比および内半径の平均値を求め、これを孔の長径と短径の比および平均孔径とした。
(Ratio of major and minor diameters of pores and average pore diameter)
At least two locations on the outer and inner surfaces are photographed using an electron microscope, and the major, minor, and inner radii of all micropores that are visible within the field of view of the photograph are measured. The number of micropores to be measured is 100 The above operation is performed until the above is reached. Thereafter, for each of the outer surface and the inner surface, the measured ratio of the major axis and minor axis of the hole and the average value of the inner radius were obtained, and this was defined as the ratio of the major axis and minor axis of the hole and the average pore diameter.

(分画粒子径)
異なる粒子径を有する少なくとも2種類の粒子の阻止率を測定し、その測定値を元にして下記の近似式(3)において、Rが90となるSの値を求め、これを分画粒子径とした。
R=100/(1−m×exp(−a×log(s))) (3)
(1)式中、aおよびmは中空糸膜によって定まる定数であって、2種類以上の阻止率の測定値をもとに算出される。ただし、0.1μm径の粒子の阻止率が90%以上の場合の分画粒子径は、<0.1μmと表記される。
(Fractional particle size)
The rejection rate of at least two kinds of particles having different particle diameters is measured, and the value of S at which R is 90 is determined in the following approximate expression (3) based on the measured values. It was.
R = 100 / (1−m × exp (−a × log (s))) (3)
In the formula (1), a and m are constants determined by the hollow fiber membrane, and are calculated based on measured values of two or more types of rejection. However, the fractional particle size in the case where the rejection rate of 0.1 μm diameter particles is 90% or more is expressed as <0.1 μm.

(純水透過速度)
測定はドライ状態とウエット状態で実施した。ウエット状態での測定は、70%エタノール水溶液に中空糸膜を12時間浸漬後に有効長が3cmの片端開放型の中空糸膜モジュールを用いて、原水として純水を利用し、濾過圧力が50kPa、温度が25℃の条件で中空糸膜の外側から内側に濾過(外圧濾過)して時間当たりの透水量を測定し、単位膜面積、単位時間、単位圧力当たりの透水量に換算した数値で算出した。ウエット状態を測定度、中空糸膜を乾燥後、70%エタノール水溶液への浸漬処理を行わないこと以外は上記と同じ方法で純水透過速度の測定を行い、ドライ状態での純水透過速度とした。
(Pure water transmission rate)
The measurement was performed in a dry state and a wet state. In the wet state, the hollow fiber membrane was immersed in a 70% ethanol aqueous solution for 12 hours, and then a hollow fiber membrane module having an effective length of 3 cm was used, and pure water was used as raw water, and the filtration pressure was 50 kPa. Measure the water permeability per hour by filtering from the outside to the inside of the hollow fiber membrane at a temperature of 25 ° C (external pressure filtration), and calculate with the numerical value converted to the water permeability per unit membrane area, unit time, and unit pressure did. Measure the pure water permeation rate by the same method as above except that the wet state is measured and the hollow fiber membrane is dried and then not immersed in a 70% aqueous ethanol solution. did.

(熱誘起相分離温度)
高分子化合物と溶剤からなる混合液の滴構造形成温度と結晶化温度を測定することで、熱誘起相分離温度を決定した。滴構造形成温度は、温度コントローラ(Limkam社製、TH−600PM)付きの光学顕微鏡(株式会社ニコン製、ECLIPSE E600POL)を用いて測定した。予め混練しておいた混合液を、混練時の温度で2分間ホールドすることで溶解した後、10℃/分で冷却し、その過程で観察される滴構造形成の温度を測定した。一方、結晶化温度は、DSC(PERKIN ELMER社製、Pyris1)を用いて測定した。予め混練しておいた混合液を、90℃/分で室温から混練温度まで加熱した後に、混練温度で2分間ホールドし、次いで10℃/分で冷却し、その過程で観察される吸熱ピークから結晶化温度を見積もった。なお、両測定とも少なくとも2回以上実施し、その平均値から両温度を決定した。上記測定より得られた滴構造形成温度と結晶化温度の差が±5℃の範囲であれば固−液型熱誘起相分離と判断し、結晶化温度を熱誘起相分離温度とした。一方、滴構造形成温度が結晶化温度よりも5℃以上高ければ液−液型熱誘起相分離と判断し、滴構造形成温度を熱誘起相分離温度とした。
(Thermally induced phase separation temperature)
The thermally induced phase separation temperature was determined by measuring the temperature at which the droplet structure was formed and the crystallization temperature of the mixed solution composed of the polymer compound and the solvent. The droplet structure formation temperature was measured using an optical microscope (Nikon Corporation, ECLIPSE E600POL) with a temperature controller (Limka, TH-600PM). The liquid mixture previously kneaded was dissolved by holding for 2 minutes at the temperature at the time of kneading, and then cooled at 10 ° C./min, and the temperature of droplet structure formation observed in the process was measured. On the other hand, the crystallization temperature was measured using DSC (manufactured by PERKIN ELMER, Pyris 1). After the pre-kneaded mixture was heated from room temperature to the kneading temperature at 90 ° C./min, held at the kneading temperature for 2 minutes, then cooled at 10 ° C./min, from the endothermic peak observed in the process The crystallization temperature was estimated. Both measurements were performed at least twice, and both temperatures were determined from the average value. If the difference between the droplet structure formation temperature and the crystallization temperature obtained from the above measurement was in the range of ± 5 ° C., it was judged as solid-liquid type thermally induced phase separation, and the crystallization temperature was defined as the thermally induced phase separation temperature. On the other hand, if the droplet structure forming temperature is higher than the crystallization temperature by 5 ° C. or more, it is determined that the liquid-liquid type thermally induced phase separation is used, and the droplet structure forming temperature is defined as the thermally induced phase separation temperature.

(溶剤の重量減量率)
溶剤をTG−DTA(理学電機株式会社製、Thermo Plus TG8120)に10mgセットし、(熱誘起相分離温度+30)℃まで500℃/分で昇温後、(熱誘起相分離温度+30)℃で30秒間ホールドし、この時間内における溶剤のTG(熱重量)の重量減量率を見積もった。
(Weight loss rate of solvent)
10 mg of solvent is set in TG-DTA (Rigaku Denki Co., Thermo Plus TG8120), heated to 500 ° C / min to (thermally induced phase separation temperature +30) ° C, and then (thermally induced phase separation temperature +30) ° C. Holding for 30 seconds, the weight loss rate of TG (thermal weight) of the solvent within this time was estimated.

高密度ポリエチレン:エチレン−酢酸ビニル共重合体:流動パラフィン:シリカ:EGを重量比で15:5:40:20:40とした以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2に示す。   A hollow fiber membrane was obtained in the same manner as in Example 1 except that the weight ratio of high density polyethylene: ethylene-vinyl acetate copolymer: liquid paraffin: silica: EG was 15: 5: 40: 20: 40. Table 1 shows the composition of the mixed solution used for the production of this hollow fiber membrane, and Table 2 shows the test results.

無機粒子としてシリカ1(株式会社トクヤマ社製:「ファインシール」X−45;平均凝集粒子径4.0〜5.0μm)およびシリカ2(株式会社トクヤマ社製:「ファインシール」X−30、平均凝集粒子径2.5〜4.0μm)の混合物を用い、かつ、凝集剤としてEGおよびデカグリセリンラウリン酸エステル(三菱化学フーズ株式会社製:L−7D)を用い、かつ、高密度ポリエチレン:エチレン−酢酸ビニル共重合体:流動パラフィン:シリカ1:シリカ2:EG:デカグリセリンラウリン酸エステルを重量比で15:5:40:5:15:30:10としたこと以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2に示す。   As inorganic particles, silica 1 (manufactured by Tokuyama Co., Ltd .: “Fine Seal” X-45; average aggregate particle diameter 4.0 to 5.0 μm) and silica 2 (manufactured by Tokuyama Co., Ltd .: “Fine Seal” X-30, A mixture having an average aggregated particle size of 2.5 to 4.0 μm), EG and decaglycerin laurate (manufactured by Mitsubishi Chemical Foods, Inc .: L-7D) as an aggregating agent, and high-density polyethylene: Example 1 except that the weight ratio of ethylene-vinyl acetate copolymer: liquid paraffin: silica 1: silica 2: EG: decaglycerin laurate was 15: 5: 40: 5: 15: 30: 10 In the same manner, a hollow fiber membrane was obtained. Table 1 shows the composition of the mixed solution used for the production of this hollow fiber membrane, and Table 2 shows the test results.

溶剤として溶剤1:ジオクチルフタレート(和光純薬株式会社製、和光1級)(以下DOPと略記することがある)および溶剤2:ジイソデシルフタレート(和光純薬株式会社製、和光1級)(以下DIDPと略記することがある)の混合物を用い、無機粒子としてシリカ(株式会社トクヤマ社製:「ファインシール」X−30、平均凝集粒子径2.5〜4.0μm)を用い、かつ、高密度ポリエチレン:エチレン−酢酸ビニル共重合体:DOP:DIDP:シリカ:EGを重量比で20:5:10:30:20:35とした以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2に示す。   Solvents: Solvent 1: Dioctyl phthalate (Wako Pure Chemical Industries, Wako Grade 1) (hereinafter sometimes abbreviated as DOP) and Solvent 2: Diisodecyl phthalate (Wako Pure Chemical Industries, Wako Grade 1) (hereinafter DIDP) And silica (manufactured by Tokuyama Co., Ltd .: “Fine Seal” X-30, average agglomerated particle diameter of 2.5 to 4.0 μm) and a high density. A hollow fiber membrane was obtained in the same manner as in Example 1 except that the weight ratio of polyethylene: ethylene-vinyl acetate copolymer: DOP: DIDP: silica: EG was changed to 20: 5: 10: 30: 20: 35. . Table 1 shows the composition of the mixed solution used for the production of this hollow fiber membrane, and Table 2 shows the test results.

参考例1
高分子化合物として高密度ポリエチレン(「ノバテック」HB214R)、溶剤として流動パラフィン(350−S)、無機粒子としてシリカ(「ファインシール」X−45)、および凝集剤としてEGを用い、かつ、高密度ポリエチレン:流動パラフィン:シリカ:EGを重量比で20:50:20:30とした以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表3に示す。
Reference example 1
High density polyethylene (“Novatec” HB214R) as a polymer compound, liquid paraffin (350-S) as a solvent, silica (“Fine Seal” X-45) as inorganic particles, and EG as a flocculant, and high density A hollow fiber membrane was obtained in the same manner as in Example 1 except that polyethylene: liquid paraffin: silica: EG was used at a weight ratio of 20: 50: 20: 30. Table 1 shows the composition of the mixed solution used for the production of this hollow fiber membrane, and Table 3 shows the test results.

参考例2
溶剤として溶剤1:DOPおよび溶剤2:DIDPの混合物を用い、かつ、無機粒子としてシリカ(「ファインシール」X−30)を用い、かつ、高密度ポリエチレン:DOP:DIDP:シリカ:EGを重量比で25:10:30:20:35とした以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表3に示す。
Reference example 2
A mixture of solvent 1: DOP and solvent 2: DIDP as the solvent, silica (“fine seal” X-30) as the inorganic particles, and a high-density polyethylene: DOP: DIDP: silica: EG ratio by weight A hollow fiber membrane was obtained in the same manner as in Example 1 except that the ratio was 25: 10: 30: 20: 35. Table 1 shows the composition of the mixed solution used for the production of this hollow fiber membrane, and Table 3 shows the test results.

Figure 2005193201
Figure 2005193201

Figure 2005193201
Figure 2005193201

Figure 2005193201
Figure 2005193201

実施例3で得られた中空糸膜の外表面を示す電子顕微鏡写真である。4 is an electron micrograph showing the outer surface of the hollow fiber membrane obtained in Example 3. FIG. 実施例3で得られた中空糸膜の断面を示す電子顕微鏡写真である。3 is an electron micrograph showing a cross section of the hollow fiber membrane obtained in Example 3. FIG. 実施例3で得られた中空糸膜の内表面を示す電子顕微鏡写真である。3 is an electron micrograph showing the inner surface of the hollow fiber membrane obtained in Example 3. FIG.

Claims (11)

高分子化合物と溶剤との熱誘起相分離により形成された中空糸膜であって、外表面および内表面に平均孔径3μm以上の円形または楕円形の微細孔を有し、純水透過速度が30000L/m/hr/98kPa、分画粒子径が1μm以上で、かつ、親水性を有することを特徴とする中空糸膜。 A hollow fiber membrane formed by thermally induced phase separation between a polymer compound and a solvent, and has circular or elliptical micropores with an average pore diameter of 3 μm or more on the outer surface and inner surface, and a pure water permeation rate of 30000 L A hollow fiber membrane characterized by having / m 2 / hr / 98 kPa, a fractional particle size of 1 μm or more, and hydrophilicity. 高分子化合物がオレフィン系重合体である請求項1に記載の親水性中空糸膜。 The hydrophilic hollow fiber membrane according to claim 1, wherein the polymer compound is an olefin polymer. 中空糸膜が高分子化合物、上記高分子化合物と特定の温度領域で相容して一相状態となりかつ温度変化により相分離を起こしうる溶剤、無機粒子、および無機粒子と親和性を有する凝集剤を高分子化合物と溶剤が相容する温度で混練した混合液を調製した後、冷却することで高分子化合物と溶剤との熱誘起相分離と上記高分子化合物の析出を起こさせることにより形成されたものである請求項1に記載の親水性中空糸膜。 The hollow fiber membrane is a polymer compound, a solvent that is compatible with the polymer compound in a specific temperature range to be in a one-phase state, and can cause phase separation by temperature change, an inorganic particle, and a flocculant having an affinity for the inorganic particle The mixture is prepared by kneading the mixture at a temperature at which the polymer compound and the solvent are compatible with each other, and then cooling it to cause thermally induced phase separation between the polymer compound and the solvent and precipitation of the polymer compound. The hydrophilic hollow fiber membrane according to claim 1, wherein 高分子化合物が疎水性重合体と疎水性重合体に対して40重量部以下0.5重量部以上の親水性重合体からなることを特徴とする請求項3に記載の親水性中空糸膜。 The hydrophilic hollow fiber membrane according to claim 3, wherein the polymer compound comprises a hydrophobic polymer and a hydrophilic polymer in an amount of 40 parts by weight or less and 0.5 parts by weight or more based on the hydrophobic polymer. 高分子化合物と溶剤との熱誘起相分離の後、延伸処理されてなることを特徴とする請求項3または4に記載の親水性中空糸膜。 The hydrophilic hollow fiber membrane according to claim 3 or 4, wherein the hydrophilic hollow fiber membrane is stretched after thermally induced phase separation between the polymer compound and the solvent. 凝集剤が親水基を有する化合物であることを特徴とする請求項3〜5のいずれか一項に記載の親水性中空糸膜。 The hydrophilic hollow fiber membrane according to any one of claims 3 to 5, wherein the flocculant is a compound having a hydrophilic group. 高分子化合物、上記高分子化合物と特定の温度領域で相容して一相状態となりかつ温度変化により相分離を起こしうる溶剤、無機粒子、および無機粒子と親和性を有する凝集剤を上記高分子化合物と溶剤が相容する温度で混練した混合液を調製した後、中空糸状に押出し、冷却することで熱誘起相分離と上記高分子化合物の析出を起こさせて中空糸状物を形成し、溶剤、無機粒子、および無機粒子と親和性を有する凝集剤を抽出することを特徴とする親水性中空糸膜の製造方法。 A polymer compound, a solvent that is compatible with the polymer compound in a specific temperature range to be in a one-phase state and can cause phase separation due to temperature change, an inorganic particle, and a flocculant having an affinity for the inorganic particle After preparing a liquid mixture kneaded at a temperature at which the compound and the solvent are compatible, the mixture is extruded into a hollow fiber shape and cooled to cause heat-induced phase separation and precipitation of the polymer compound, thereby forming a hollow fiber material. A method for producing a hydrophilic hollow fiber membrane, comprising extracting inorganic particles and a flocculant having affinity for inorganic particles. 高分子化合物がオレフィン系重合体である請求項7に記載の親水性中空糸膜の製造方法。 The method for producing a hydrophilic hollow fiber membrane according to claim 7, wherein the polymer compound is an olefin polymer. 高分子化合物が疎水性重合体と疎水性重合体に対して40重量部以下5重量部以上の親水性重合体からなることを特徴とする請求項7に記載の親水性中空糸膜。 The hydrophilic hollow fiber membrane according to claim 7, wherein the polymer compound comprises a hydrophobic polymer and a hydrophilic polymer in an amount of 40 parts by weight or less and 5 parts by weight or more based on the hydrophobic polymer. 高分子化合物と溶剤との熱誘起相分離の後、延伸処理することを特徴とする請求項7〜9のいずれか一項に記載の親水性中空糸膜の製造方法。 The method for producing a hydrophilic hollow fiber membrane according to any one of claims 7 to 9, wherein a stretching treatment is performed after thermally induced phase separation between the polymer compound and the solvent. 凝集剤が親水基を有する化合物であることを特徴とする請求項7〜10のいずれか一項に記載の親水性中空糸膜の製造方法。
The method for producing a hydrophilic hollow fiber membrane according to any one of claims 7 to 10, wherein the flocculant is a compound having a hydrophilic group.
JP2004004206A 2004-01-09 2004-01-09 Hydrophilic hollow fiber membrane and its production method Pending JP2005193201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004004206A JP2005193201A (en) 2004-01-09 2004-01-09 Hydrophilic hollow fiber membrane and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004004206A JP2005193201A (en) 2004-01-09 2004-01-09 Hydrophilic hollow fiber membrane and its production method

Publications (1)

Publication Number Publication Date
JP2005193201A true JP2005193201A (en) 2005-07-21

Family

ID=34818887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004004206A Pending JP2005193201A (en) 2004-01-09 2004-01-09 Hydrophilic hollow fiber membrane and its production method

Country Status (1)

Country Link
JP (1) JP2005193201A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018284A1 (en) * 2005-08-09 2007-02-15 Asahi Kasei Kabushiki Kaisha Separation membrane for use in treatment of liquid comprising aromatic ether polymer which is hydrophilized with hydrophilizing agent
JP2008062226A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous membrane made from vinylidene fluoride resin and method for preparing the same
EP2052771A1 (en) * 2006-08-10 2009-04-29 Kuraray Co., Ltd. Porous membrane of vinylidene fluoride resin and process for producing the same
JP2021505358A (en) * 2018-05-04 2021-02-18 シャンハイ・エネルギー・ニュー・マテリアルズ・テクノロジー・カンパニー・リミテッドShanghai Energy New Materials Technology Co.,Ltd. Porous membrane for water treatment and how to manufacture it
CN116770456A (en) * 2023-06-06 2023-09-19 中山大学 Thermoplastic elastomer hollow porous fiber and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018284A1 (en) * 2005-08-09 2007-02-15 Asahi Kasei Kabushiki Kaisha Separation membrane for use in treatment of liquid comprising aromatic ether polymer which is hydrophilized with hydrophilizing agent
US8602221B2 (en) 2005-08-09 2013-12-10 Asahi Kasei Kabuhiki Kaisha Separation membrane for use in treatment of liquid comprising aromatic ether polymer hydrophilized with hydrophilizing agent
JP2008062226A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous membrane made from vinylidene fluoride resin and method for preparing the same
EP2052771A1 (en) * 2006-08-10 2009-04-29 Kuraray Co., Ltd. Porous membrane of vinylidene fluoride resin and process for producing the same
EP2052771B1 (en) * 2006-08-10 2018-12-26 Kuraray Co., Ltd. Porous membrane of vinylidene fluoride resin and process for producing the same
JP2021505358A (en) * 2018-05-04 2021-02-18 シャンハイ・エネルギー・ニュー・マテリアルズ・テクノロジー・カンパニー・リミテッドShanghai Energy New Materials Technology Co.,Ltd. Porous membrane for water treatment and how to manufacture it
JP7046956B2 (en) 2018-05-04 2022-04-04 シャンハイ・エネルギー・ニュー・マテリアルズ・テクノロジー・カンパニー・リミテッド Porous membrane for water treatment and how to manufacture it
US11325074B2 (en) 2018-05-04 2022-05-10 Shanghai Energy New Materials Technology Co., Ltd. Porous membrane for water treatment and method for preparing the same
CN116770456A (en) * 2023-06-06 2023-09-19 中山大学 Thermoplastic elastomer hollow porous fiber and preparation method and application thereof
CN116770456B (en) * 2023-06-06 2024-06-11 大白熊(广州)新材料科技有限公司 Thermoplastic elastomer hollow porous fiber and preparation method and application thereof

Similar Documents

Publication Publication Date Title
TW572776B (en) Hollow fiber membrane and method for producing the same
JP5603781B2 (en) Vinylidene fluoride resin porous membrane and method for producing the same
JP5619532B2 (en) Vinylidene fluoride resin porous membrane and method for producing the same
KR101409712B1 (en) Porous membrane of vinylidene fluoride resin and process for producing the same
WO2007080862A1 (en) Polyvinylidene fluoride hollow yarn type microporous film and process for production of the same
JP2010104983A (en) Polyamide hollow fiber film and method for producing the same
JP5318385B2 (en) Porous membrane made of vinylidene fluoride resin and method for producing the same
JP5878288B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
JP5716283B2 (en) Porous separation flat membrane and method for producing the same
JP4564758B2 (en) Method for producing vinylidene fluoride resin porous membrane
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
JP4269576B2 (en) Method for producing microporous membrane
JP2006218441A (en) Porous membrane and its production method
JP3724412B2 (en) Hollow fiber membrane manufacturing method and hollow fiber membrane module
JP2008062227A (en) Raw material solution for preparing membrane, porous membrane, and method for preparing porous membrane
US9610545B2 (en) Hollow-fibre membrane having novel structure, and production method therefor
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
KR101308998B1 (en) The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment
JP2005193201A (en) Hydrophilic hollow fiber membrane and its production method
JP2004041835A (en) Hollow fiber membrane and its manufacturing method
JP2005193200A (en) Hollow fiber membrane having excellent mechanical strength and its production method
JP4572531B2 (en) Membrane stock solution for separation membrane and separation membrane
JP3805634B2 (en) Porous hollow fiber membrane and method for producing the same
WO2011027878A1 (en) Porous vinylidene fluoride resin membrane and process for producing same
KR101308996B1 (en) The Preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061226

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080902

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090120

Free format text: JAPANESE INTERMEDIATE CODE: A02