KR101308998B1 - The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment - Google Patents

The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment Download PDF

Info

Publication number
KR101308998B1
KR101308998B1 KR1020110105507A KR20110105507A KR101308998B1 KR 101308998 B1 KR101308998 B1 KR 101308998B1 KR 1020110105507 A KR1020110105507 A KR 1020110105507A KR 20110105507 A KR20110105507 A KR 20110105507A KR 101308998 B1 KR101308998 B1 KR 101308998B1
Authority
KR
South Korea
Prior art keywords
hollow fiber
polyvinylidene fluoride
fiber membrane
fluoride resin
weight
Prior art date
Application number
KR1020110105507A
Other languages
Korean (ko)
Other versions
KR20130040621A (en
Inventor
김종표
양익배
Original Assignee
에치투엘 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에치투엘 주식회사 filed Critical 에치투엘 주식회사
Priority to KR1020110105507A priority Critical patent/KR101308998B1/en
Publication of KR20130040621A publication Critical patent/KR20130040621A/en
Application granted granted Critical
Publication of KR101308998B1 publication Critical patent/KR101308998B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/082Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/20Plasticizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21817Salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Abstract

본 발명은 폴리불화비닐리덴 (polyvinylidenefluoride, PVDF) 수지를 이용한 고강도 수처리용 중공사막의 제조방법에 방법에 관한 것으로써, 더욱 상세하게는 폴리불화비닐리덴계 수지를 알칼리 수용액으로 개질하여 친수화하고, 친수화된 폴리불화비닐리덴 수지를 10 내지 30 중량%와 미개질 폴리불화비닐리덴 수지를 70 내지 90 중량%를 혼합하고 무기첨가제, 유기첨가제, 양용매 및 가소제를 혼합하여 고온의 방사용액을 제조한 후, 이를 고온 방사하여 고강도 수처리용 중공사막을 제조하는 방법에 관한 것이다. 이와 같이 제조된 고강도 수처리용 중공사막은 폴리불화비닐리덴 수지의 친수화 개질에 의한 내구성 약화를 방지함은 물론 폴리불화비닐리덴 수지가 가지고 있는 소수성으로 인한 저투과 유속과 취약한 내오염성을 극복할 수 있으므로 우수한 수처리 성능을 나타내는 것을 특징으로 한다.The present invention relates to a method for producing a high-strength water treatment hollow fiber membrane using a polyvinylidene fluoride (PVDF) resin, and more particularly, to modify the polyvinylidene fluoride-based resin with an aqueous alkali solution to hydrophilize it. 10 to 30% by weight of the hydrophilized polyvinylidene fluoride resin and 70 to 90% by weight of the unmodified polyvinylidene fluoride resin were mixed, and an inorganic additive, an organic additive, a good solvent and a plasticizer were mixed to prepare a hot spinning solution. After that, it relates to a method of producing a high-strength hollow fiber membrane for high-temperature water by spinning it. The hollow fiber membrane for high-strength water treatment prepared as described above prevents weakening of durability due to hydrophilic modification of the polyvinylidene fluoride resin and overcomes low permeation flow rate and weak contamination resistance due to the hydrophobicity of the polyvinylidene fluoride resin. Therefore, it is characterized by exhibiting excellent water treatment performance.

Description

친수화된 폴리불화비닐리덴 수지를 이용한 고강도 수처리용 중공사막의 제조방법 {The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment}The preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment

본 발명은 폴리불화비닐리덴 수지를 친수화 개질 후 미개질 폴리불화비닐리덴 수지와 혼합하여 고강도 수처리용 중공사막을 제조하는 방법에 관한 것으로서 더욱 상세하게는 폴리불화비닐리덴 수지를 알칼리 수용액을 이용하여 친수화 개질하고, 이를 미개질 폴리불화비닐리덴 수지와 혼합한 후 무기첨가제 및 유기첨가제와 가소제 및 양용매를 혼합하여 고온의 방사용액을 제조한 다음, 이를 이중 구금을 통해 낮은 온도의 응고조로 방사하여 고강도 수처리용 중공사막을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a high-strength hollow fiber membrane for high strength water treatment by mixing polyvinylidene fluoride resin with hydrophilic modification and unmodified polyvinylidene fluoride resin, and more specifically, polyvinylidene fluoride resin using an aqueous alkali solution. After hydrophilic modification and mixing with an unmodified polyvinylidene fluoride resin, an inorganic additive, an organic additive, a plasticizer, and a good solvent are mixed to prepare a high-temperature spinning solution, which is then spun into a low temperature coagulation bath through double detention. The present invention relates to a method for producing a hollow fiber membrane for high strength water treatment.

한외여과 또는 정밀여과 중공사막을 제조하는데 주로 사용되는 고분자 소재로서 폴리설폰 (Polysulfone; PSf), 폴리이서설폰(Polyethersulfone; PES), 폴리불화비닐리덴(Polyvinylidenefluoride; PVDF), 폴리에틸렌(Polyethylene), 폴리프로필렌(Polypropylene; PP), 폴리테트라플루오르에틸렌(Polytetrafluoroethylene; PTFE), 폴리카보네이트(Polycarbonate; PC), 폴리아미드(Polyamide; PA), 폴리에스터(Polyester), 폴리염화비닐(Polyvinylchloride: PVC), 셀룰로오즈나이트레이트(Cellulose nitrate), 재생셀룰로오즈(Regenerated Cellulose), 셀룰로오즈아세테이트(Celluloseacetate; CA), 셀룰로오즈트리아세테이트(Cellulosetriacetate; CTA), 폴리아크릴로나이트릴(Polyacrylonitrile; PAN) 등이 사용된다. 폴리설폰 (Polysulfone; PSf), 폴리이서설폰(Polyethersulfone; PES), 폴리불화비닐리덴(Polyvinylidenefluoride; PVDF)은 소수성 소재로서 일반적으로 상전이법을 이용하여 한외여과막이나 정밀여과 중공사막을 제조한다. 폴리설폰이나 폴리이서설폰은 폴리불화비닐리덴보다 상전이 속도가 훨씬 빠르고 점도가 낮기 때문에 짧은 시간에 많은 양의 중공사막을 제조할 수 있으나, 기계적 강도가 약하여 쉽게 막 표면이 손상되거나 절단되고, 낮은 내화학성으로 인해 장기간 사용시 분리막의 급속한 열화를 초래하며, 상대적으로 막의 공극이 커서 막오염으로 인한 장기 사용상의 문제점이 있었다. 투과속도는 크지만 막의 오염 현상이 심하고 미세 유기물질의 통과를 유발하는 문제점이 있었다. 폴리에틸렌이나 폴리프로필렌은 대표적인 결정성 고분자로서 주로 고분자를 용융하여 압출방사한 후 연신에 의해 결정과 결정 사이에 존재하는 비결정 영역을 찢음으로서 공극을 형성시켜 매우 높은 공극율을 가진다. 따라서 이러한 방법에 의해 제조된 중공사막은 높은 투과유속을 가지게 되지만, 공극이 슬릿모양을 띠고, 상대적으로 큰 공극과 공극분포를 가지게 되어 막오염 제어가 어렵고, 분리성능에 한계를 가지므로 하폐수 처리 등에 극히 제한적으로 사용되는 문제점이 있다. 폴리카보네이트나 폴리에스터 소재는 소재의 특성상 트랙에칭법을 사용하여 분리막으로 제조하지만, 이러한 방법은 균일한 공극을 제조할 수 있는 장점이 있으나, 공극율이 극히 적고, 공극이 큰 정밀여과막에 한정되며, 대규모 분리막 생산이 어려운 문제점을 지닌다. 셀룰로오즈나이트레이트(Cellulosenitrate), 재생셀룰로오즈(Regenerated Cellulose), 셀룰로오즈아세테이트(Celluloseacetate; CA), 셀룰로오즈트리아세테이트(Cellulosetriacetate; CTA), 폴리아크릴로나이트릴(Polyacrylonitrile; PAN)등의 고분자는 상대적으로 친수성의 고분자로서 용매유도상전이법을 이용하여 분리막을 제조하고, 높은 투과유속을 가지지만, 내화학성과 내구성이 약한 문제점을 가지고 있어, 중공사막으로 성형시 쉽게 파단되거나 손상으로 장기 사용상의 문제점을 가지고 있다. Polysulfone (Polysulfone; PSf), Polyethersulfone (PES), Polyvinylidenefluoride (PVDF), Polyethylene, Polypropylene (Polypropylene; PP), Polytetrafluoroethylene (PTFE), Polycarbonate (PC), Polyamide (PA), Polyester, Polyvinylchloride (PVC), Cellulose Nitride Cellulose nitrate, Regenerated Cellulose, Celluloseacetate (CA), Cellulosetriacetate (CTA), Polyacrylonitrile (PAN) and the like are used. Polysulfone (PSf), polyethersulfone (PES), and polyvinylidene fluoride (PVDF) are hydrophobic materials, and generally, ultrafiltration membranes or microfiltration hollow fiber membranes are prepared using a phase transfer method. Polysulfone or polyisulfone have a much higher phase transition speed and lower viscosity than polyvinylidene fluoride, so that a large amount of hollow fiber membranes can be produced in a short time, but the mechanical strength is weak, so that the membrane surface is easily damaged or cut, Due to chemistry, the membrane deteriorates rapidly during long-term use, and there is a problem of long-term use due to membrane contamination due to the relatively large pore size of the membrane. Although the permeation rate is large, the fouling phenomenon of the membrane is severe and there is a problem of causing the passage of fine organic materials. Polyethylene or polypropylene is a typical crystalline polymer, and mainly melts the polymer and extrudes it, and then stretches the amorphous region existing between the crystal and the crystal to form voids, thereby having a very high porosity. Therefore, the hollow fiber membrane produced by this method has a high permeation flux, but the pores are slit-shaped, have a relatively large pore and pore distribution, it is difficult to control the membrane contamination, and the separation performance is limited, so sewage treatment There is a problem that is used extremely limited. Polycarbonate or polyester material is manufactured as a separation membrane using the track etching method due to the characteristics of the material, but this method has the advantage of producing a uniform void, but is extremely limited in the microfiltration membrane with a very small porosity, a large void, Large scale membrane production has a difficult problem. Polymers such as cellulosenitrate, Regenerated Cellulose, Celluloseacetate (CA), Cellulosetriacetate (CTA), Polyacrylonitrile (Polyacrylonitrile; PAN) As a separator, a separation membrane is manufactured by using a solvent induction phase transition method, and has a high permeation flux, but has a weak chemical resistance and durability, and has a problem of long-term use due to breakage or damage when forming into a hollow fiber membrane.

대한민국 특허공개 제2005-18624호에서는 삼차원 메쉬상 구조와 구상구조를 모두 갖는 다공질막의 제조 및 이의 응용을 개시하고 있다. 본 특허에서는 상기 다공질막의 달성을 위하여 열가소성 수지를 용매에 용해시키고, 상기 수지용액을 방사 노즐로부터 냉각 액체 중에 토출함으로써 고화시켜 다공질막을 제조함에 있어서 상기막의 한쪽 면과 다른 쪽 면에서 냉각 액체의 조성을 변화시켜 삼차원 메쉬상 구조와 구상구조를 모두 갖는 방법, 구상구조로 이루어진 다공질막의 적어도 한쪽 측에 수지 용액을 도포한 후 응고액에 침지함으로써 삼차원 메쉬상 구조를 형성하는 방법, 삼차원 메쉬상 구조 형성용 수지 용액과 구상 구조 형성용 수지용액을 3중 방사 노즐로부터 동시에 토출한 후 고화시킨 삼차원 메쉬상 구조와 구상구조를 모두 갖는 방법을 개시하고 있다. 그러나 이러한 중공사막 제조방법은 공정이 지나치게 복잡하여 제조단가가 상승할 수 없고, 또한 각 층간의 이질적인 공정과 제조공정으로 계면간 접착 불량으로 인한 박리 등의 문제를 일으킬 수 있다. 불테 등은 1996년 출간된 문헌 [A.M.W. Bulte, M.H.V. Mulder, C.A. Smolders, H. Strathmann, Diffusion induced separation with crystallizable nylons. II. Relation to final membrane morphology, Journal of membrane science, 121, 51-58(1996)]에서 열가소성 수지를 이용하여 분리막을 제조할 경우 고온에서 용해시킨 후 낮은 온도의 응고조에 침지함에 의해 구상구조를 갖는 분리막의 제조를 개시하고 있다. 1994년 출간된 리 등의 문헌 [S.-G. Li, G.H. Koops, M.H.V. Mulder, T. van den Boomgaard, C.A. Smolders, Wet spinning of integrally skinned hollow fiber membranes by a modified dual-bath coagulation method using a triple orifice spinneret, Journal of membrane science, 94, 329-340 (1994)], 2005년 출간된 알브레츠 등의 문헌 [W. Albrecht, K. Kneifel, Th. Weigel, R. Hilke, R. Just, M. Schossig, K. Ebert, A. Lendlein, Preparation of highly asymmetric hollow fiber membranes from poly(ether imide) by a modified dry-wet phase inversion techniquie using a triple spinneret, Journal of membrane science, 262, 69-80 (2005)] 등에서 3중 방사 노즐을 이용하여 투과증발용 중공사 분리막의 제조를 개시하고 있다. 대한민국 특허 공개 제2007-102012호에서는 평균입경이 5 마이크론 내외이고, 길이가 5 마이크론 이상의 다수의 막대형 입자 및 평균입경이 5 마이크론 이하의 다수의 구형입자를 포함하는 친수성 폴리불화비닐리덴 수지 다공성 중공사막의 제조를 개시하고 있다. 대한민국 특허 공개 제 2007-113374에서는 중공사막의 중공 중심부로부터 외부 쪽으로, 분리막 내부에 위치하고 평균직경 500 나노미터 이하의 다수의 고분자 나노섬유가 막단면상에 노출되어 있고, 동시에 평균입경 1 내지 5 마이크론 이하의 다수의 미세구형입자를 포함하는 내부층, 상기 내부층의 상부에 위치하고 평균직경 500 나노미터 이하의 다수의 고분자 나노섬유가 막단면에 노출되어 있고, 동시에 평균입경 5 마이크론 초과 10 마이크론의 다수의 중간구형입자를 포함하는 중간층, 및 상기 중간층의 상부에 위치하고 평균직경 500 나노미터 이하의 다수의 고분자 나노섬유가 막단면상에 노출되어 있고, 동시에 평균입경 1 내지 5 마이크론 이하의 다수의 미세구형입자를 포함하는 표면층을 포함하는 폴리불화비닐리덴게 다공성 중공사막의 제조를 개시하고 있다. 또한 대한민국 특허공개 제 2007-113375에서는 중공사막의 중공 중심부로부터 구형 입자의 입경을 달리하는 네 개의 층을 갖는 폴리불화비닐리덴 수지 다공성 중공사막의 제조를 개시하고 있고, 대한민국 특허 공개 제 2007-103187에서는 중공사막의 중심부로부터 바깥쪽으로 내부층은 다수의 구형입자를 포함하고 있으며, 표면층은 다수의 구형 섬유상 입자를 포함하는 폴리불화비닐리덴 수지 다공성 중공사막의 제조를 개시하고 있다. 그러나 이러한 방법은 내부의 두꺼운 층을 형성하고 있는 지지층의 구상구조로 인하여 입자와 입자 사이의 공극이 작아 거대 공극 형성이 어려우므로 수투과를 제한하는 결점을 가지고 있다. 또한 다공성막의 표면에 분리활성층을 갖고 있지 않으므로 미세입자나 병원성 세균, 미생물 등의 제거 효율이 높지 않은 결점을 지닌다. 대한민국 특허공개 제2005-0056245호에서는 폴리불화비닐리덴 미다공막에 전리성 방사선의 조사를 이용하여 친수성 비닐 단량체의 라디칼생성을 유도한 뒤 막표면에 이들 라디칼들을 그래프트 중합시키는 방법을 통해 친수화된 막의 형성을 개시하고 있다. 또한, 대한민국 특허공개 제2006-0003347호에서는 에폭시기, 히드록시기, 카르복시기, 에스테르기, 아미드기를 함유한 친수성 단량체를 현탁중합을 통해 폴리불화비닐리덴 단량체와 공중합하여 제조된 친수화된 폴리불화비닐리덴 수지 다공막을 개시하고 있다. 대한민국 특허공개 제2005-0078747호에서는 친수화된 유기점토를 함유한 나노복합체 중공사막의 제조예를 개시하고 있다. 이외에, 알칼리, 산화제를 이용한 화학적 처리를 통한 친수화된 폴리불화비닐리덴 수지 다공성막의 제조예가 또한 개시되어 있다. 그러나, 이러한 종래 기술에는 중합과 같은 부가적인 공정, 방사선의 사용 같은 고비용 공정 등이 사용되고 있으며, 특히 화학적 처리방법은 흔히 폴리불화비닐리덴 수지 고유의 기계적 강도를 손상시킬 수 있는 결점을 가지고 있다. Korean Patent Publication No. 2005-18624 discloses the preparation and application of a porous membrane having both a three-dimensional mesh structure and a spherical structure. In this patent, in order to achieve the porous membrane, the thermoplastic resin is dissolved in a solvent, and the resin solution is solidified by ejecting the resin solution from the spinning nozzle into the cooling liquid to change the composition of the cooling liquid on one side and the other side of the membrane. A method having both a three-dimensional mesh structure and a spherical structure, a method of forming a three-dimensional mesh structure by applying a resin solution to at least one side of the porous membrane having a spherical structure, and then immersing in a coagulating solution, and a resin for forming a three-dimensional mesh structure A method having both a three-dimensional mesh structure and a spherical structure in which a solution and a resin solution for forming a spherical structure are simultaneously discharged from a triple spinning nozzle and then solidified. However, such a hollow fiber membrane manufacturing method is too complicated to increase the manufacturing cost, and also may cause problems such as peeling due to the interfacial adhesion failure in the heterogeneous process and manufacturing process between each layer. Bulte et al., Published in 1996, published by A.M.W. Bulte, M.H.V. Mulder, C. A. Smolders, H. Strathmann, Diffusion induced separation with crystallizable nylons. II. (Relation to final membrane morphology, Journal of membrane science, 121, 51-58 (1996)], when preparing a membrane using a thermoplastic resin, the membrane having a spherical structure by dissolving at high temperature and immersing in a low temperature coagulation bath The production is started. Lee et al., Published in 1994, S.-G. Li, G.H. Koops, M.H.V. Mulder, T. van den Boomgaard, C.A. Smolders, Wet spinning of integrally skinned hollow fiber membranes by a modified dual-bath coagulation method using a triple orifice spinneret, Journal of membrane science, 94, 329-340 (1994), albretz et al. W. Albrecht, K. Kneifel, Th. Weigel, R. Hilke, R. Just, M. Schossig, K. Ebert, A. Lendlein, Preparation of highly asymmetric hollow fiber membranes from poly (ether imide) by a modified dry-wet phase inversion techniquie using a triple spinneret, Journal of membrane science, 262, 69-80 (2005)] discloses the production of hollow fiber membranes for pervaporation using triple spinning nozzles. Korean Patent Publication No. 2007-102012 discloses a hydrophilic polyvinylidene fluoride resin porous hollow comprising a plurality of rod-shaped particles having an average particle diameter of about 5 microns, a length of 5 microns or more, and a plurality of spherical particles having an average particle diameter of 5 microns or less. Started manufacturing of the desert. In Korean Patent Laid-Open Publication No. 2007-113374, a plurality of polymer nanofibers, which are located inside the separation membrane from the hollow center of the hollow fiber membrane to the outside, are exposed on the cross-section of the membrane and have an average particle diameter of 1 to 5 microns or less. An inner layer comprising a plurality of microspherical particles, a plurality of polymer nanofibers located on top of the inner layer and having an average diameter of 500 nanometers or less are exposed to the cross-section, and at the same time, a plurality of intermediates having an average particle diameter of more than 5 microns and 10 microns An intermediate layer comprising spherical particles, and a plurality of polymer nanofibers, which are located on top of the intermediate layer and have an average diameter of 500 nanometers or less, are exposed on the cross-section, and at the same time, include a plurality of microspherical particles having an average particle diameter of 1 to 5 microns or less. Production of polyvinylidene fluoride porous hollow fiber membrane comprising surface layer And. In addition, Korean Patent Publication No. 2007-113375 discloses the production of a polyvinylidene fluoride resin porous hollow fiber membrane having four layers having different particle diameters from a hollow central part of a hollow fiber membrane. Disclosed is a production of a polyvinylidene fluoride resin porous hollow fiber membrane comprising an inner layer comprising a plurality of spherical particles outward from a central portion of the hollow fiber membrane and a surface layer comprising a plurality of spherical fibrous particles. However, this method has a drawback of limiting water permeation because it is difficult to form large voids due to the small voids between the particles due to the spherical structure of the support layer forming the thick layer inside. In addition, since it does not have a separation active layer on the surface of the porous membrane, it has a drawback that the removal efficiency of microparticles, pathogenic bacteria, microorganisms, etc. is not high. Korean Patent Laid-Open Publication No. 2005-0056245 discloses the formation of hydrophilic vinyl monomers by irradiating polyvinylidene fluoride microporous membranes with ionizing radiation, followed by graft polymerization of these radicals on the membrane surface. It is starting to form. In addition, Korean Patent Publication No. 2006-0003347 discloses a porous hydrophilized polyvinylidene fluoride resin prepared by copolymerizing a hydrophilic monomer containing an epoxy group, a hydroxyl group, a carboxyl group, an ester group, and an amide group with a polyvinylidene fluoride monomer through suspension polymerization. The film is starting. Korean Patent Publication No. 2005-0078747 discloses a preparation example of a nanocomposite hollow fiber membrane containing hydrophilized organic clay. In addition, examples of preparing a hydrophilized polyvinylidene fluoride resin porous membrane through chemical treatment with alkali and oxidizing agent are also disclosed. However, such prior art uses additional processes such as polymerization, expensive processes such as the use of radiation, and the like, and particularly, chemical treatment methods often have the disadvantage of impairing the mechanical strength inherent in polyvinylidene fluoride resin.

[문헌1] KR 10-2005-018624[Reference 1] KR 10-2005-018624 [문헌2] KR 10-2007-102012[Document 2] KR 10-2007-102012 [문헌3] KR 10-2007-113374[Reference 3] KR 10-2007-113374 [문헌4] KR 10-2007-113375[Document 4] KR 10-2007-113375 [문헌5] KR 10-2007-103187[Reference 5] KR 10-2007-103187 [문헌6] KR 10-2005-056245[Document 6] KR 10-2005-056245 [문헌7] KR 10-2006-003347[Document 7] KR 10-2006-003347 [문헌8] KR 10-2005-0787478 KR 10-2005-078747

[문헌1] A.M.W. Bulte, M.H.V. Mulder, C.A. Smolder, H. Strathmann, Journal of Membrane Science, 1996, Vol 121, 51-58쪽[Reference 1] A.M.W. Bulte, M.H.V. Mulder, C. A. Smolder, H. Strathmann, Journal of Membrane Science, 1996, Vol 121, 51-58 [문헌2] S.-G. Li, G.H. Koops, M.H.V. Mulder, T.van den Boomgaard, C.A. Smolders, Journal of Membrane Science, 1994, Vol 94, 329-240쪽 [2] S.-G. Li, G.H. Koops, M.H.V. Mulder, T. van den Boomgaard, C.A. Smolders, Journal of Membrane Science, 1994, Vol 94, pp. 329-240 [문헌3] W. Albrecht, K. Kneifel, Th. Weigel, R. Hilke, R. Just, M. Schossig, K. Ebert, A. Lendlein, Journal of membrane science, 2005, Vol 262, 69-80쪽 [3] W. Albrecht, K. Kneifel, Th. Weigel, R. Hilke, R. Just, M. Schossig, K. Ebert, A. Lendlein, Journal of membrane science, 2005, Vol 262, pp. 69-80

이에, 본 발명자들은 상기한 문제점을 해결하기 위하여 폴리불화비닐리덴 수지를 알칼리 수용액에 함침 교반함으로써 친수화하고 친수화된 폴리불화비닐리덴 수지와 미개질된 폴리불화비닐리덴 수지를 혼합한 혼성수지에 무기첨가제, 유기첨가제, 양용매 및 가소제를 혼합한 후 고온에서 용융시켜 방사용액을 제조하고, 제조된 방사용액을 고온으로 유지한 다음, 저온의 응고조로 방사하여 투과유속의 감소 없이 고강도의 수처리용 중공사막을 제조함으로써 본 발명을 완성하였다. In order to solve the above problems, the inventors of the present invention provide a hybrid resin in which a hydrophilized and hydrophilized polyvinylidene fluoride resin and an unmodified polyvinylidene fluoride resin are mixed by impregnating and stirring a polyvinylidene fluoride resin in an aqueous alkali solution. Inorganic additives, organic additives, good solvents and plasticizers are mixed and melted at a high temperature to prepare a spinning solution, and the prepared spinning solution is maintained at a high temperature, and then spun into a low temperature coagulation bath for high strength water treatment without decreasing the permeation flux. This invention was completed by manufacturing a hollow fiber membrane.

본 발명은 친수화된 폴리불화비닐리덴 수지를 이용한 고강도 수처리용 중공사막을 제조하는데 있어서,The present invention provides a hollow fiber membrane for high strength water treatment using a hydrophilized polyvinylidene fluoride resin,

1) 수산화금속을 순수에 용해시켜 알칼리 수용액을 제조하는 단계;1) dissolving the metal hydroxide in pure water to prepare an aqueous alkali solution;

2) 상기 알칼리 수용액에 폴리불화비닐리덴 수지를 혼합한 후 50℃ 내지 95℃의 온도에서 교반하여 친수화된 폴리불화비닐리덴 수지를 제조하는 단계;2) preparing a hydrophilized polyvinylidene fluoride resin by mixing the polyvinylidene fluoride resin in the alkali aqueous solution and then stirring at a temperature of 50 ℃ to 95 ℃;

3) 상기 친수화된 폴리불화비닐리덴 수지를 알칼리 수용액으로부터 분리하여 산으로 세정하면서 중화한 후 여과하여 70℃ 내지 150℃에서 건조하는 단계;3) separating the hydrophilized polyvinylidene fluoride resin from an aqueous alkali solution, neutralizing it with washing with acid, followed by filtration and drying at 70 ° C. to 150 ° C .;

4) 상기 3) 단계에서 제조된 친수화된 폴리불화비닐리덴 수지와 미개질 폴리불화비닐리덴 수지를 혼합한 후 무기첨가제와 유기첨가제, 양용매, 가소제를 혼합하여 고온에서 용융시켜 방사용액을 제조하는 단계; 4) After mixing the hydrophilized polyvinylidene fluoride resin and the unmodified polyvinylidene fluoride resin prepared in step 3), an inorganic additive, an organic additive, a good solvent, and a plasticizer are mixed and melted at a high temperature to prepare a spinning solution. Making;

5) 상기 방사용액과 내부응고제를 이중 구금을 통해 외부응고조로 방사함으로써 중공사막을 제조하는 단계;5) preparing a hollow fiber membrane by spinning the spinning solution and the internal coagulant into an external coagulation tank through double detention;

6) 상기 중공사막을 열수 처리하는 단계;6) hydrothermal treatment of the hollow fiber membrane;

를 포함하는 것을 특징으로 하는 친수화된 폴리불화비닐리덴 수지를 이용한 고강도 수처리용 중공사막의 제조방법에 관한 것이다.It relates to a method for producing a hollow fiber membrane for high strength water treatment using a hydrophilized polyvinylidene fluoride resin, characterized in that it comprises a.

특히, 본 발명은 소수성인 폴리불화비닐리덴 수지를 알칼리용액을 이용해 친수화 개질을 이루어 높은 투과유속을 갖게 하면서, 친수화로 인해 발생되는 문제점인 낮은 기계적 특성을 보강하기 위하여 친수화되지 않은 폴리불화비닐리덴 수지 용액과 혼합하여, 고농도의 용융상태의 방사용액을 제조하여 열유도상분리법(Thermally induced phase separation; TIPS)을 통해 중공사막을 제조함으로써 가혹한 조건의 수처리 분야에 사용이 가능하도록 우수한 기계적 특성을 갖도록 하는 고강도 수처리용 중공사막의 제조방법에 관한 것이다.In particular, the present invention is hydrophilic modification of the hydrophobic polyvinylidene fluoride resin using an alkaline solution to have a high permeation flux, while not hydrophilic polyvinyl fluoride in order to reinforce the low mechanical properties caused by hydrophilization By mixing with a Liden resin solution to prepare a spinning solution in a high concentration of molten state to produce a hollow fiber membrane through the thermally induced phase separation (TIPS) to provide excellent mechanical properties for use in the water treatment field of harsh conditions It relates to a method for producing a high strength hollow fiber membrane for water treatment.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

1) 폴리불화비닐리덴 수지의 친수화1) Hydrophilization of Polyvinylidene Fluoride Resin

소수성의 폴리불화비닐리덴 수지에 수산화기(-OH)를 도입함으로써 친수화를 증가시켜 제조된 중공사막의 투과유속을 향상시키는데 있다. 이러한 목적을 달성하기 위해 수산화기를 가지고 있는 수산화금속이 주로 사용되며, 대표적으로 수산화나트륨(NaOH)과 수산화칼륨(KOH)을 사용한다. 수산화금속을 순수한 물에 용해시켜 사용하되 30 내지 100 중량%를 사용하는 것이 바람직하다. 수산화칼륨이나 수산화마그네슘은 물에 잘 녹지 않기 때문에 물에 녹인 수용액을 사용하더라도 물이 폴리불화비닐리덴 고분자에 대해 비용매이므로 극히 제한적으로 혼합할 수 있어 본 친수화 개질의 목적을 충분히 달성할 수 없다. 상기와 같이 제조된 알칼리 수용액에 폴리불화비닐리덴 수지 10 내지 50 중량%를 넣고 50℃ 내지 95℃의 온도에서 격렬하게 교반한다. 폴리불화비닐리덴 수지는 중량평균 분자량 100,000 달톤 내지 600,000 달톤인 것이 본 발명의 목적에 부합한다. 폴리불화비닐리덴 수지의 중량평균 분자량이 100,000 달톤 미만일 경우 친수화 후 미개질 폴리불화비닐리덴 수지와 혼합하여 중공사막으로 성형할 경우 투과유속은 높게 나타나지만, 기계적 강도가 작아서 수처리 공정에 적용하면 쉽게 파단되거나 손상을 받게 되어 장기간 사용시 문제된다. 폴리불화비닐리덴 수지가 600,000 달톤을 초과하는 중량평균 분자량을 갖게 되면, 친수화 효과가 급격히 감소하여 본 발명의 친수화 개질의 목적을 충분히 달성할 수 없다. 폴리불화비닐리덴 수지는 물에 불용이고 혼합이 어려우므로 친수화 개질을 위해서는 가능하면 수지의 표면과 알칼리 수용액이 최대한 많이 접촉할 수 있는 기회를 가져야 하므로 온도를 높이고, 교반을 매우 강력하게 해야 한다. 상기 알칼리 수용액의 온도가 50℃ 미만이면 반응속도가 너무 늦어 장시간의 제조시간을 요하는 문제점을 가지고 있고, 95℃를 초과할 경우에는 증발이 일어나 본 친수화 목적을 달성할 수 없다. 폴리불화비닐리덴 수지의 반응 여부는 변색 정도로 가늠할 수 있으며, 반응이 일어나면 갈색으로 변색되므로 쉽게 구분할 수 있다. 폴리불화비닐리덴 수지가 갈색으로 변색되어 변색이 더 이상 일어나지 않을 때 알칼리 수용액으로부터 분리한 후 황산이나 질산, 염산 등의 산을 이용하여 폴리불화비닐리덴 수지에 남아 있는 알칼리 수용액을 중화시킨다. 중화가 완료된 폴리불화비닐리덴 수지를 다시 여과공정을 거친 후 70℃ 내지 150℃의 고온 건조기에서 건조시킨다. 건조가 완료된 친수화된 폴리불화비닐리덴 수지 단독으로 중공사막을 제조할 경우 높은 투과유속을 확보할 수는 있으나 매우 낮은 기계적 강도로 인해 수처리 공정에 적용하기가 어렵다. 건조 온도가 70℃ 미만에서는 건조 시간이 오래 걸리고 150℃초과에서는 2차 변형이 발생한다.By introducing a hydroxyl group (-OH) into the hydrophobic polyvinylidene fluoride resin to increase the hydrophilization to improve the permeation flux of the hollow fiber membrane prepared. Metal hydroxides having a hydroxyl group are mainly used to achieve this purpose, and typically sodium hydroxide (NaOH) and potassium hydroxide (KOH). The metal hydroxide is dissolved in pure water and preferably used in an amount of 30 to 100% by weight. Potassium hydroxide and magnesium hydroxide are not very soluble in water, so even if you use an aqueous solution dissolved in water, water is nonsolvent for polyvinylidene fluoride polymer, so it can be mixed in a very limited amount, so the purpose of this hydrophilic reforming cannot be sufficiently achieved. . 10 to 50% by weight of polyvinylidene fluoride resin was added to the aqueous alkali solution prepared as described above, and vigorously stirred at a temperature of 50 ° C to 95 ° C. The polyvinylidene fluoride resin has a weight average molecular weight of 100,000 Daltons to 600,000 Daltons in accordance with the object of the present invention. When the polyvinylidene fluoride resin has a weight average molecular weight of less than 100,000 Daltons, the permeation flux is high when it is mixed with an unmodified polyvinylidene fluoride resin after hydrophilization and formed into a hollow fiber membrane, but the mechanical strength is small, so it is easily broken when applied to a water treatment process. Or damaged, causing problems with prolonged use. When the polyvinylidene fluoride resin has a weight average molecular weight of more than 600,000 Daltons, the hydrophilic effect is drastically reduced, and the object of the hydrophilic modification of the present invention cannot be sufficiently achieved. Since polyvinylidene fluoride resin is insoluble in water and difficult to mix, it is necessary to increase the temperature and make the stirring very strong because hydrophilic modification should have the opportunity to contact the surface of the resin with the aqueous alkali solution as much as possible. If the temperature of the aqueous alkali solution is less than 50 ℃ has a problem that the reaction rate is too slow to require a long production time, when exceeding 95 ℃ evaporation occurs can not achieve this hydrophilic purpose. The reaction of the polyvinylidene fluoride resin can be estimated to the extent of discoloration, and can be easily distinguished since the reaction is discolored to brown. When the polyvinylidene fluoride resin becomes brown and discoloration no longer occurs, the polyvinylidene fluoride resin is separated from the aqueous alkali solution and neutralized with the aqueous alkali solution remaining in the polyvinylidene fluoride resin using an acid such as sulfuric acid, nitric acid, or hydrochloric acid. The neutralized polyvinylidene fluoride resin is again filtered and dried in a high temperature dryer at 70 ° C to 150 ° C. When the hollow fiber membrane is manufactured from the dried hydrophilized polyvinylidene fluoride alone, it is possible to secure a high permeation flux, but it is difficult to apply to the water treatment process due to the very low mechanical strength. Drying takes a long time when the drying temperature is lower than 70 ° C. and secondary deformation occurs above 150 ° C.

2) 방사 용액의 제조2) Preparation of Spinning Solutions

상기에서 제조된 친수화된 폴리불화비닐리덴 수지 10 내지 30 중량%와 미개질 폴리불화비닐리덴 수지 70 내지 90 중량%를 혼합하여 혼성 폴리불화비닐리덴 수지를 제조한다. 친수화된 폴리불화비닐리덴 수지가 10 중량% 미만이면 성형된 중공사막이 높은 소수성을 띄게 되어 낮은 투과유속을 나타낸다. 친수화된 폴리불화비닐리덴 수지가 30 중량% 초과하게 되면 투과유속은 높게 나타나지만 낮은 기계적 강도로 수처리용 중공사막으로 사용하기에는 부적합한 문제점이 있다. 혼성 폴리불화비닐리덴 수지 20 내지 60 중량%, 바람직하게는 25 내지 50 중량%로서 중량평균 분자량 200,000 달톤 내지 700,000달톤으로 단독 혹은 2종 이상 혼합물로 구성하되, 단독으로 사용할 경우에는 250,000 달톤 내지 700,000 달톤의 고분자를 사용하는 것이 바람직하고 2종 이상의 혼합물로 구성할 경우에는 200,000달톤 내지 400,000달톤의 저분자량 폴리불화비닐리덴 수지와 400,000달톤 내지 700,000달톤의 고분자량 폴리불화비닐리덴 수지를 혼합하여 사용하는 것이 바람직하다. 고분자가 20 중량% 미만이면 기계적 강도가 약하여 중공사막으로 성형하여 수처리용으로 사용할 경우 쉽게 절단되어 사용상 불편함을 초래하고, 60 중량%를 초과할 경우에는 높은 점도로 인하여 성형이 어렵고, 공극이 작아서 투과유속이 낮아 수처리용 중공사막으로 사용하기에 부적합하다. 고분자의 중량평균 분자량이 200,000 달톤 미만이 되면 기계적 강도가 약하여 수처리용 중공사막으로 사용하기에는 부적합하고, 중량평균 분자량이 700,000 달톤 초과할 경우에는 점도가 높아 방사하기 어렵거나 형성되는 공극이 작아서 낮은 투과유속을 가지므로 목적하는 수처리용 중공사막으로 사용하기에 부적합하다. 폴리불화비닐리덴 수지는 소수성이므로 물과의 친화성이 약하기 때문에 상전이 속도를 높이고, 이를 조절하기 위해서 무기첨가제를 사용하게 되는데 이들 무기첨가제는 폴리불화비닐리덴 수지 중공사막의 공극 형성에 중요한 역할을 한다. 염화리튬(LiCl), 염화아연(ZnCl2), 염화마그네슘(MgCl2), 황산마그네슘(MgSO4)에서 선택되는 어느 하나 이상의 무기첨가제가 1 내지 20 중량%가 사용된다. 무기첨가제가 1 중량% 미만일 경우 그 첨가 효과가 미미하여 공극형성이 잘 이루어지지 않고, 20 중량%를 초과할 경우 불용 첨가제의 존재와 분산성이 나빠져서 불규칙한 거대공극의 형성과 제조시 불량 중공사막이 형성되는 문제점이 있다. 유기첨가제는 친수성 고분자나 물질로서 폴리에틸렌글리콜(Polyethylenglycol; PEG), 덱스트란(Dextrane), 폴리비닐피롤리돈(Polyvinylpyrrolidone; PVP), 폴리비닐알콜(Polyvinylalcohol; PVA), 폴리에틸렌옥사이드(Polyethyleneoxide; PEO), 폴리비닐아세테이트(Polyvinylacetate; PVAc), 말레인산(Maleic acid)에서 하나이상 선택하여 1 내지 20 중량%를 혼합한다. 친수성 유기첨가제가 1 중량% 미만일 경우 친수성을 나타내는 효과가 미미하여 중공사막으로 성형시 낮은 투과유속을 나타내며, 20 중량%를 넘을 경우 높은 투과유속을 나타내지만, 기계적 강도가 약하여 쉽게 막손상이 발생하거나 낮은 내화학성으로 장기 사용시 문제점이 있다. 5 내지 50 중량%의 가소제를 첨가하는데 가소제란 고분자 물질의 분자들 사이의 강한 결합력으로 인해 딱딱해지는 것을 감소시키기 위해 결합력을 일정수준 약화시켜 부드럽게 만들어 주는 물질로 특히 고분자 용액과는 혼합성이 있어야 한다. 이러한 가소제로서 감마부티로락톤(γ-Butyrolactone), 사이클로헥사논(Cyclohexanone), 이소포론(Isophorone), 디부틸프탈레이트(Dibutylphthalate; DBP), 디에틸헥실프탈레이트(Di-2-ethylhexylphthaltate; DOP)에서 선택되어진 하나 이상의 혼합된 가소제를 사용하는데 이는 중공사막 성형시 성형을 용이하게 하고, 공극형성에 있어서도 매우 중요한 역할을 한다. 가소제가 5 중량% 미만이 되면 그 효과를 얻기 어렵고, 60 중량% 초과되면 큰 공극과 공극율을 가질 수 있어 투과유속은 크지만, 막오염에 취약하고 기계적 강도가 낮아 수처리용 중공사막으로 사용하는데 적합하지 않다. 양용매는 디메틸포름아마이드(N,N-Dimethylformamide; DMF), 디메틸아세트아미드(N,N-Dimethylacetamide; DMAc), 노말메틸피롤리돈(N-Methyl-2-pyrrolidone; NMP), 디메틸설퍼옥사이드(Dimethylsulfoxide; DMSO)에서 어느 하나 이상으로 2 내지 15 중량%를 사용하는데, 양용매가 2 중량% 미만일 경우 제조된 중공사막이 딱딱해지고 신도(Elongation ratio)가 작아 쉽게 부스러지고, 15 중량%를 초과할 경우에는 기계적 강도가 저하되는 문제점이 있다. 이와 같이 제조된 방사 용액은 110℃ 내지 200℃의 고온에서 완전한 용액상태로 이루어지며, 110℃ 미만에서는 재결정에 의한 부분적 고화가 발생하여 성형하기 어렵고, 200℃를 초과할 경우에는 용매가 기화되고, 유기첨가제가 열분해되는 문제점이 있다. 제조된 방사용액은 감압장치 등을 이용하여 탈포하고 내부에 존재하는 불순물이나 비용해 잔존물을 제거하기 위해 금속망을 이용하여 여과한다.A hybrid polyvinylidene fluoride resin is prepared by mixing 10 to 30 wt% of the hydrophilized polyvinylidene fluoride resin prepared above and 70 to 90 wt% of an unmodified polyvinylidene fluoride resin. If the hydrophilized polyvinylidene fluoride resin is less than 10% by weight, the molded hollow fiber membrane becomes highly hydrophobic and exhibits a low permeation flux. When the hydrophilized polyvinylidene fluoride resin is more than 30% by weight, the permeation flux appears high, but there is a problem that is not suitable for use as a hollow fiber membrane for water treatment with low mechanical strength. Mixed polyvinylidene fluoride resin 20 to 60% by weight, preferably 25 to 50% by weight of the weight average molecular weight 200,000 Daltons to 700,000 Daltons alone or in combination of two or more, if used alone 250,000 Daltons to 700,000 Daltons It is preferable to use a high molecular weight, and when using a mixture of two or more kinds, it is preferable to mix 200,000 Daltons to 400,000 Daltons of low molecular weight polyvinylidene fluoride resin and 400,000 Daltons to 700,000 daltons of high molecular weight polyvinylidene fluoride resin. desirable. If the polymer is less than 20% by weight, the mechanical strength is weak, so it is easily cut when used for water treatment by forming into a hollow fiber membrane, and inconvenient in use.In the case of more than 60% by weight, the molding is difficult due to the high viscosity and the void is small. Low permeation flow rate makes it unsuitable for use as a hollow fiber membrane for water treatment. If the weight average molecular weight of the polymer is less than 200,000 Daltons, the mechanical strength is weak, which makes it unsuitable for use as a hollow fiber membrane for water treatment. If the weight average molecular weight exceeds 700,000 Daltons, the viscosity is high and difficult to radiate, or the voids formed are small and the permeation rate is low. It is not suitable for use as a hollow fiber membrane for the desired water treatment. Because polyvinylidene fluoride resin is hydrophobic, it has a weak affinity with water, so that the phase transition speed is increased and inorganic additives are used to control them. These inorganic additives play an important role in forming voids in the polyvinylidene fluoride resin hollow fiber membrane. . 1-20% by weight of one or more inorganic additives selected from lithium chloride (LiCl), zinc chloride (ZnCl 2 ), magnesium chloride (MgCl 2 ), magnesium sulfate (MgSO 4 ) is used. If the inorganic additive is less than 1% by weight, the effect of addition is insignificant, and the pore formation is poor. If the inorganic additive is more than 20% by weight, the presence and dispersibility of insoluble additives are deteriorated. There is a problem. Organic additives are hydrophilic polymers or materials such as polyethylene glycol (PEG), dextran (Dextrane), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyethylene oxide (PEO), Polyvinylacetate (PVAc), maleic acid (maleic acid) at least one selected from 1 to 20% by weight is mixed. If the hydrophilic organic additive is less than 1% by weight, the effect of exhibiting hydrophilicity is insignificant, which shows a low permeation flux when forming into a hollow fiber membrane, and when the hydrophilic organic additive is more than 20% by weight, it shows a high permeation flux. There is a problem in long-term use due to chemical resistance. 5 to 50% by weight of the plasticizer is added to the plasticizer is a material that softens by reducing the binding force to a certain level in order to reduce the hardening due to the strong binding force between the molecules of the polymer material, especially should be mixed with the polymer solution. . As such a plasticizer, it is selected from gamma butyrolactone, γ-Butyrolactone, cyclohexanone, isophorone, dibutylphthalate (DBP), diethylhexylphthalate (DOP). One or more mixed plasticizers are used, which facilitates the molding of the hollow fiber membranes and plays a very important role in the formation of voids. If the plasticizer is less than 5% by weight, it is difficult to obtain the effect, and if it exceeds 60% by weight, it can have a large porosity and porosity. Not. Good solvents include dimethylformamide (N, N-Dimethylformamide; DMF), dimethylacetamide (N, N-Dimethylacetamide; DMAc), normal methylpyrrolidone (N-Methyl-2-pyrrolidone; NMP), and dimethylsulfoxide 2 to 15% by weight of any one or more in DMSO), when the good solvent is less than 2% by weight, the hollow fiber membrane is hardened and elongation (Elongation ratio) is easily broken, and when it exceeds 15% by weight There is a problem that the mechanical strength is lowered. The spinning solution thus prepared consists of a complete solution at a high temperature of 110 ℃ to 200 ℃, below 110 ℃ partial solidification by recrystallization occurs difficult to form, when the temperature exceeds 200 ℃ solvent is vaporized, There is a problem that the organic additive is pyrolyzed. The prepared spinning solution is degassed using a decompression device and filtered using a metal net to remove impurities or inexpensive residues present therein.

3) 응고제 제조3) Coagulant Manufacturing

응고제는 내부응고제 즉, 중공형성제(Bore solution)와 외부응고제(Coagulation bath) 또는 상전이조로 나타내는데, 내부응고제는 중공사막의 중공을 형성하는데 필요하고 외부응고제는 방사된 고분자를 상전이 및 고화시키는데 필요한 용액이다. 내부응고제는 비용매로서 물 또는 에틸렌글리콜을 주로 사용하고, 혼합시 혼합 양용매로서 디메틸피롤리돈 혹은 디메틸아세트아미드, 디메틸포름아미드, 디메틸설퍼옥사이드 등을 제어되지 않은 실온에서 비용매에 대한 양용매의 비를 2대 8 내지 8대 2로 제조하여 탈포하여 사용하며, 바람직하게는 방사용액에 혼합된 양용매와 동일한 양용매를 사용한다. 외부 응고제는 비용매로서 물 혹은 에틸렌글리콜을 단독으로 사용하거나 양용매와 혼합하여 사용하되 양용매는 방사용액에 사용한 용매와 동일한 것이 바람직하고 10 중량%를 넘지 않는 것이 좋다. 만약 양용매의 함유율이 10 중량%를 초과하게되면, 분리막의 고화 속도가 느려지고, 기계적 강도가 약화되며 거대공극이 발생할 수 있다. 또한 중공사막 성형체에 남아있는 용매와 가소제의 추출에도 불리하게 작용하는 문제점을 지닌다. 온도는 0℃ 내지 10 ℃로서 0℃ 미만에서는 비용매인 물이 고화되어 용매로서 작용을 상실하고, 10℃를 초과할 경우에는 표면공극이 커서 투과유속은 증가하였으나 기계적 강도가 낮아 수처리용 중공사막으로 사용하기에 부적합하다. A coagulant is represented by an internal coagulant, that is, a bore solution and an external coagulant bath or a phase transfer tank, in which the internal coagulant is necessary to form the hollow of the hollow fiber membrane and the external coagulant is a solution required to phase-transfer and solidify the spun polymer. to be. The internal coagulant mainly uses water or ethylene glycol as a non-solvent, and a good solvent for a non-solvent at room temperature without control of dimethylpyrrolidone or dimethylacetamide, dimethylformamide, dimethylsulfuroxide, etc. The ratio of 2 to 8 to 8 to 2 to prepare a defoaming, preferably using the same good solvent mixed with the good solvent in the spinning solution. The external coagulant may be used as a nonsolvent, water or ethylene glycol alone or mixed with a good solvent, but the good solvent is preferably the same as the solvent used in the spinning solution and not more than 10% by weight. If the content of the good solvent exceeds 10% by weight, the solidification rate of the membrane is slowed, the mechanical strength is weakened, and macropores may occur. In addition, there is a problem that adversely affects the extraction of the solvent and plasticizer remaining in the hollow fiber membrane molded body. The temperature ranges from 0 ° C to 10 ° C and the nonsolvent water solidifies below 0 ° C and loses its function as a solvent. When it exceeds 10 ° C, the surface voids are large and the permeation flow rate is increased, but the mechanical strength is low. Not suitable for use

4) 중공사막의 제조4) Preparation of Hollow Fiber Membrane

상기 2) 단계에서 제조된 방사용액을 이중구금의 바깥 관으로 흘려보내고, 상기 3)단계에서 제조된 내부 응고제는 이중구금의 중심관으로 흘려서 외부응고조로 방사하여 방사용액을 고화시켜 중공사막을 제조하고 제조된 중공사막은 세정조에서 남아있는 가소제와 양용매가 제거된 후 권취된다. 이중구금의 온도는 110℃ 내지 230℃이고 바람직하게는 130℃ 내지 200℃이다. 이중구금의 온도가 110℃ 미만에서는 구금 내에서 부분적인 고화로 인해 방사가 어렵고, 230℃ 초과하면 용매 기화로 중공사막이 연속 성형되지 못하고 단속되며, 유기용매가 탄화되어 불량 중공사막을 형성하게 된다. 내부응고제는 구금의 중심부에 존재하는 가늘고 좁은 관을 통과하는데 이때 내부응고제의 온도는 1℃ 내지 70℃이며, 바람직하게는 5℃ 내지 50℃이다. 세정조는 물이 단독으로 사용되며 장기 사용시 추출된 용매 내지 가소제의 농도가 증가하므로 일정량을 지속적으로 교환하여 추출된 용매 및 가소제의 증가를 제어할 수 있도록 구성한다.The spinning solution prepared in step 2) flows to the outer tube of the double detention, and the internal coagulant prepared in step 3) flows into the central tube of the double detention to spin into an external coagulation bath to solidify the spinning solution to produce a hollow fiber membrane. The hollow fiber membrane is wound up after the plasticizer and good solvent remaining in the cleaning tank are removed. The temperature of the double detention is 110 ° C to 230 ° C and preferably 130 ° C to 200 ° C. When the temperature of the double detention is less than 110 ° C, it is difficult to spin due to partial solidification in the detention, and when it exceeds 230 ° C, the hollow fiber membrane is not formed continuously due to solvent vaporization, and the organic solvent is carbonized to form a poor hollow fiber membrane. . The internal coagulant passes through a narrow narrow tube present in the center of the detention, wherein the temperature of the internal coagulant is 1 ° C to 70 ° C, preferably 5 ° C to 50 ° C. Since the washing tank is used alone and the concentration of the extracted solvent to the plasticizer increases during long-term use, it is configured to control the increase of the extracted solvent and the plasticizer by continuously exchanging a predetermined amount.

5) 세척과정5) washing process

또한, 본 발명에서는 세정조로부터 권취기로 이송된 중공사막의 내외에 잔존하는 용매를 포함한 가소제와 유기물을 제거하기 위해 세척과정을 더욱 포함할 수 있다. 세척액으로 물의 사용이 바람직하며, 세척시간은 특별히 한정되지는 않으나, 적어도 4시간 이상 2일 이하가 바람직하다.In addition, the present invention may further include a washing process to remove the plasticizer and organic matter including the solvent remaining in the inside and outside of the hollow fiber membrane transferred to the winder from the washing tank. The use of water as the washing liquid is preferred, and the washing time is not particularly limited, but at least 4 hours or more and 2 days or less.

이상에서 상세히 설명한 바와 같이 본 발명에 따라 제조된 친수화된 폴리불화비닐리덴 수지를 이용한 고강도 수처리용 중공사막은 고농도의 고분자를 고온 용융시켜 방사하는 열유도상분리법을 이용하여 중공사막으로 성형함으로써 기계적 강도가 뛰어나고 친수화 개질을 통해서 친수성을 향상시킴으로써, 상대적으로 투과속도도 우수한 중공사막으로 제조할 수 있다.As described in detail above, the hollow fiber membrane for high-strength water treatment using the hydrophilized polyvinylidene fluoride resin prepared according to the present invention is mechanically formed by forming a hollow fiber membrane using a thermally induced phase separation method of melting and spinning a high concentration of polymer at high temperature. By improving the hydrophilicity through excellent hydrophilic modification and excellent strength, it is possible to produce a hollow fiber membrane having a relatively high permeation rate.

도 1은 본 발명에 의해 제조된 분리막 단면에 대한 주사전자현미경사진.
도 2는 본 발명에 의해 제조된 분리막 외부 표면에 대한 주사전자현미경 사진.
도 3은 본 발명에 의해 제조된 분리막 내부 표면에 대한 주사전자현미경 사진.
1 is a scanning electron micrograph of the cross-section of the membrane prepared by the present invention.
Figure 2 is a scanning electron micrograph of the outer surface of the membrane prepared by the present invention.
Figure 3 is a scanning electron micrograph of the inner surface of the membrane prepared by the present invention.

이하, 본 발명을 실시 예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예Example

[실시예 1]Example 1

수산화나트륨을 역삼투막을 거친 초순수에 용해시켜 50 중량%의 알칼리 수용액을 제조한 후, 중량평균 분자량 520,000 달톤인 폴리불화비닐리덴 수지를 30 중량%가 되도록 알칼리 수용액에 함침시킨 다음 50℃에서 5시간 동안 격렬하게 교반한다. 만약 5시간 동안 교반하여도 폴리불화비닐리덴 수지의 변색정도가 약하거나 변색이 발생하지 않으면 더 많은 시간을 들여 교반하여 수지가 갈변할 때까지 지속한다. 갈변된 폴리불화비닐리덴 수지를 여과지나 거름망을 이용하여 걸러서 알칼리 수용액을 충분히 제거한 다음, 35%의 염산처리를 수행하면서 중화시켰다. 산처리를 통해 중화가 완료되면 친수화 개질된 폴리불화비닐리덴 수지를 100℃ 오븐에 넣고 건조시켰다. 이렇게 제조된 분말상태의 폴리불화비닐리덴 수지와 중량평균 분자량 520,000 달톤의 미개질 폴리불화비닐리덴 수지를 15 중량%와 85 중량%가 되도록 혼합하여 혼성 폴리불화비닐리덴 수지를 조성하였다. 혼성수지 40 중량%에 기공을 형성시키기 위한 무기첨가제인 염화리튬 8 중량%, 친수화 고분자인 폴리에틸렌글리콜 3 중량%와 폴리비닐피롤리돈 3 중량%, 양용매인 노말메틸피롤리돈 10 중량%, 그리고 가소제인 감마부티로락톤 39 중량%를 혼합하여 140℃에서 교반하여 방사 용액을 제조하였다. 제조된 방사용액은 140℃를 유지하면서 감압장치를 이용하여 용액 중에 존재하는 기포를 제거하였다. 내부응고제는 물과 노말메틸피롤리돈의 비를 6 대 4로 하여 실온에서 제조한 후 역시 감압장치를 이용하여 탈포하였다. 외부 응고제는 물을 사용하였으며 3를 유지하였다. 방사용액은 150℃를 유지하고 있는 이중구금의 바깥 관으로 펄스가 없는 정량 기어펌프에 의해 이송되고, 내부응고제 역시 정량 기어펌프를 이용하여 이중구금의 중심관으로 이송되어 외부응고조로 방사하였다. 방사된 고분자용액은 외부응고제로 유입되면서 상전이가 발생하면서 고화되어 중공사막으로 성형되고 성형된 중공사막은 세정조를 거쳐 권취되었다. 권취된 중공사막은 남아있는 용매 제거를 위해 순수에 4시간 정도 침지하였다. 침지된 중공사막을 꺼내어 건조한 후 실험용 미니모듈을 제작하여 순수투과도와 배제율을 측정하였다. [도 1]에 본 실시예를 통해 제조된 중공사막의 단면을 주사전자현미경(SEM)으로 촬영한 사진을 나타내고 있으며, [도 2]에는 중공사막의 표면 활성층을, [도 3]은 내부 표면을 각각 나타내고 있다. Sodium hydroxide was dissolved in ultrapure water through a reverse osmosis membrane to prepare 50% by weight of an aqueous alkali solution. Then, the polyvinylidene fluoride resin having a weight average molecular weight of 520,000 Daltons was impregnated with an aqueous alkali solution so as to be 30% by weight, followed by 5 hours at 50 ° C. Stir vigorously. If the discoloration degree of the polyvinylidene fluoride resin is weak or discoloration does not occur even after stirring for 5 hours, the mixture is stirred for more time and continues until the resin turns brown. The browned polyvinylidene fluoride resin was filtered using a filter paper or strainer to sufficiently remove the aqueous alkali solution, and then neutralized with 35% hydrochloric acid treatment. When neutralization was completed through acid treatment, the hydrophilic-modified polyvinylidene fluoride resin was placed in an oven at 100 ° C. and dried. Thus prepared polyvinylidene fluoride resin and a mixed polyvinylidene fluoride resin having a weight average molecular weight of 520,000 Daltons were mixed to 15 wt% and 85 wt% to form a hybrid polyvinylidene fluoride resin. 8% by weight of lithium chloride, an inorganic additive to form pores in 40% by weight of the composite resin, 3% by weight of hydrophilic polymer polyethyleneglycol and 3% by weight of polyvinylpyrrolidone, 10% by weight of normal methylpyrrolidone, Then, 39 wt% of gamma butyrolactone as a plasticizer was mixed and stirred at 140 ° C. to prepare a spinning solution. The prepared spinning solution was removed from the bubble in the solution by using a pressure reduction device while maintaining a 140 ℃. The internal coagulant was prepared at room temperature with a ratio of water to normal methylpyrrolidone 6 to 4, and then degassed using a decompression device. External coagulant used water and maintained 3. The spinning solution is transferred to the outer tube of the double-detention holding the 150 ℃ by a pulse-free metering gear pump, and the internal coagulant is also transferred to the center tube of the double-detention using a fixed-quantity gear pump and spun into an external coagulation tank. The spun polymer solution solidified as the phase transition occurred as it flowed into the external coagulant, was formed into a hollow fiber membrane, and the molded hollow fiber membrane was wound up through a washing tank. The wound hollow fiber membrane was immersed in pure water for about 4 hours to remove the remaining solvent. The immersed hollow fiber membrane was taken out and dried, and then an experimental mini module was manufactured to measure pure permeability and rejection rate. 1 shows a photograph taken by scanning electron microscope (SEM) of a cross section of a hollow fiber membrane prepared according to the present embodiment, [FIG. 2] shows a surface active layer of a hollow fiber membrane, and [FIG. 3] shows an inner surface. Are shown respectively.

[실시예 2][Example 2]

상기 실시예 1에서 친수화된 폴리불화비닐리덴 수지 35 중량%에 대해 미개질 폴리불화비닐리덴 수지 65 중량%를 혼합하여 실시예 1과 같이 중공사막을 성형하였다.65% by weight of the unmodified polyvinylidene fluoride resin was mixed with 35% by weight of the hydrophilized polyvinylidene fluoride resin in Example 1 to form a hollow fiber membrane as in Example 1.

[실시예 3][Example 3]

상기 실시예 1에서 혼성 폴리불화비닐리덴 수지를 30 중량%로 가소제를 49 중량%로 변화시켜 실시예 1과 같이 중공사막을 제조하였다. In Example 1, a hollow fiber membrane was prepared as in Example 1 by changing the mixed polyvinylidene fluoride resin to 30 wt% and the plasticizer to 49 wt%.

[실시예 4]Example 4

상기 실시예 1에서 수산화나트륨을 수산화칼륨으로 교체하여 알칼리 수용액을 제조한 후 실시예 1과 같이 중공사막을 제조하였다.After replacing the sodium hydroxide with potassium hydroxide in Example 1 to prepare an aqueous alkali solution, a hollow fiber membrane was prepared as in Example 1.

[실시예 5][Example 5]

상기 실시예 1에서 수산화나트륨을 역삼투막으로 제조한 초순수에 용해시켜 10 중량%가 되도록 알칼리 수용액을 제조하여 중량평균 분자량 520,000 달톤인 폴리불화비닐리덴 수지 20 중량%를 침지하여 실시예 1과 같이 중공사막을 제조하였다.In Example 1, sodium hydroxide was dissolved in ultrapure water prepared as a reverse osmosis membrane to prepare an aqueous alkali solution to 10% by weight, soaking 20% by weight of a polyvinylidene fluoride resin having a weight average molecular weight of 520,000 Daltons, as in Example 1 Was prepared.

[실시예 6][Example 6]

상기 실시예 1에서 친수화 개질된 폴리불화비닐리덴 수지를 황산 35%로 중화시킨 후 130 오븐에서 건조시켰다. 건조된 친수화 폴리불화비닐리덴 수지 30 중량%와 미개질 폴리불화비닐리덴 수지 70 중량%를 혼합한 혼성 폴리불화비닐리덴 수지 45 중량%, 염화리튬 8 중량%, 폴리에틸렌글리콜 3중량%, 폴리비닐피롤리돈 3 중량%, 노말메틸피롤리돈 8 중량%, 감마부티로락톤 36 중량%를 140에서 교반 융용시켜 방사용액으로 제조한 후 실시예 1과 같이 중공사막을 제조하였다. The hydrophilic modified polyvinylidene fluoride resin in Example 1 was neutralized with 35% sulfuric acid and then dried in a 130 oven. 45% by weight of mixed polyvinylidene fluoride resin, 30% by weight of dried hydrophilized polyvinylidene fluoride resin and 70% by weight of unmodified polyvinylidene fluoride resin, 8% by weight lithium chloride, 3% by weight polyethylene glycol, polyvinyl 3% by weight of pyrrolidone, 8% by weight of normal methylpyrrolidone, and 36% by weight of gamma butyrolactone were stirred and melted at 140 to prepare a spinning solution, and a hollow fiber membrane was prepared as in Example 1.

[실시예 7][Example 7]

상기 실시예 1에서 혼성 폴리불화비닐리덴 수지 방사용액의 온도를 120, 방사 온도를 130℃로 하여 실시예 1과 같이 중공사막을 제조하였다. In Example 1, a hollow fiber membrane was manufactured in the same manner as in Example 1, wherein the temperature of the mixed polyvinylidene fluoride resin spinning solution was 120 and the spinning temperature was 130 ° C.

[실시예 8][Example 8]

상기 실시예 1에서 물과 노말메틸피롤리돈을 30 중량%와 70 중량%로 혼합한 후 5℃로 하여 실시예 1과 같이 중공사막을 제조하였다. In Example 1, water and normal methylpyrrolidone were mixed at 30% by weight and 70% by weight, and the hollow fiber membrane was prepared as in Example 1 at 5 ° C.

[실시예 9][Example 9]

상기 실시예 1에서 외부 응고조를 순수한 물로 채우고 온도를 1℃로 조정한 후 실시예 1과 같이 중공사막을 제조하였다. In Example 1, the external coagulation bath was filled with pure water and the temperature was adjusted to 1 ° C., followed by preparing a hollow fiber membrane as in Example 1.

[실시예 10][Example 10]

상기 실시예 1에서 혼성 방사용액은 혼합 폴리불화비닐리덴 수지 40 중량%, 염화리튬 5 중량%, 폴리비닐알콜 3 중량%, 노말메틸피롤리돈 10 중량%, 감마부티로락톤 42 중량%를 혼합하여 실시예 1과 같이 중공사막을 제조하였다. In Example 1, the mixed spinning solution was mixed with 40% by weight of mixed polyvinylidene fluoride resin, 5% by weight of lithium chloride, 3% by weight of polyvinyl alcohol, 10% by weight of normal methylpyrrolidone, and 42% by weight of gamma butyrolactone. To prepare a hollow fiber membrane as in Example 1.

[실시예 11][Example 11]

상기 실시예 1에서 혼성 폴리불화비닐리덴 수지 40 중량%, 염화아연 8 중량%, 덱스트란 10 중량%, 노말메틸피롤리돈 8 중량%, 감마부티로락톤 34 중량%로 혼합하여 방사용액을 제조한 후 실시예 1과 같이 중공사막을 제조하였다. In Example 1, 40 wt% of the mixed polyvinylidene fluoride resin, 8 wt% of zinc chloride, 10 wt% of dextran, 8 wt% of normal methylpyrrolidone, and 34 wt% of gamma butyrolactone were mixed to prepare a spinning solution. After the hollow fiber membrane was prepared as in Example 1.

[비교예 1]Comparative Example 1

상기 실시예 1에서 수산화나트륨을 역삼투막으로 제조한 순수에 1 중량%가 되도록 용해시켜 알칼리 수용액을 제조한 후 중량평균분자량 520,000 달톤의 폴리불화비닐리덴 수지 30 중량%를 침지하여 실시예 1과 같이 친수화 후 중공사막을 제조하였다.In Example 1, sodium hydroxide was dissolved in 1% by weight of pure water prepared by reverse osmosis membrane to prepare an aqueous alkali solution, and then immersed 30% by weight of polyvinylidene fluoride resin having a weight average molecular weight of 520,000 Daltons as in Example 1 After hydration, a hollow fiber membrane was prepared.

[비교예 2]Comparative Example 2

상기 실시예 1에서 방사용액으로 미개질된 폴리불화비닐 수지 단독으로 사용하여 제조한 후 실시예 1과 같이 중공사막을 제조하였다.In Example 1, the hollow fiber membrane was prepared as in Example 1 after the preparation using the unmodified polyvinyl fluoride resin alone as a spinning solution.

[비교예 3][Comparative Example 3]

상기 실시예 1에서 친수화 폴리불화비닐리덴 수지 5 중량%를 미개질 폴리불화비닐리덴 수지 95 중량%와 혼합하여 혼성 폴리불화비닐리덴 수지를 조성하여 실시예 1과 같이 중공사막을 제조하였다.In Example 1, 5 wt% of the hydrophilized polyvinylidene fluoride resin was mixed with 95 wt% of the unmodified polyvinylidene fluoride resin to form a hybrid polyvinylidene fluoride resin, thereby preparing a hollow fiber membrane as in Example 1.

[비교예 4][Comparative Example 4]

상기 실시예 1에서 혼성 폴리불화비닐리덴 수지 15 중량%, 염화리튬 10 중량%, 폴리에틸렌글리콜 10 중량%, 노말메틸피롤리돈 12 중량%, 감마부티로락톤 53 중량%를 혼합하여 방사용액을 조제한 후 실시예 1과 같이 중공사막을 제조하였다.A spinning solution was prepared by mixing 15 wt% of a mixed polyvinylidene fluoride resin, 10 wt% of lithium chloride, 10 wt% of polyethylene glycol, 12 wt% of normal methylpyrrolidone, and 53 wt% of gamma butyrolactone in Example 1 After the hollow fiber membrane was prepared as in Example 1.

[비교예 5][Comparative Example 5]

상기 실시예 1에서 혼성 폴리불화비닐리덴 수지 65 중량%, 염화리튬 5 중량%, 폴리에틸렌글리콜 2 중량%, 폴리비닐피롤리돈 2 중량%, 노말메틸피롤리돈 6 중량%, 감마부티로락톤 20 중량%를 혼합하여 방사용액을 조제한 후 실시예 1과 같이 방사하고자 하였으나, 고분자가 완전히 용해되지 않았으며, 점도가 너무 높아 중공사막으로 성형하는 것이 불가능하였다.65 wt% of the mixed polyvinylidene fluoride resin in Example 1, lithium chloride 5% by weight, polyethylene glycol 2% by weight, polyvinylpyrrolidone 2% by weight, normal methylpyrrolidone 6% by weight, gamma butyrolactone 20 After preparing the spinning solution by mixing the wt% was to spin as in Example 1, the polymer was not completely dissolved, it was impossible to mold into a hollow fiber membrane because the viscosity is too high.

[비교예 6][Comparative Example 6]

상기 실시예 1에서 내부응고제를 순수한 물로 조제한 후 실시예 1과 같이 중공사막을 제조하였다.After the internal coagulant was prepared in pure water in Example 1, a hollow fiber membrane was prepared as in Example 1.

[비교예 7][Comparative Example 7]

상기 실시예 1에서 외부응고제를 순수한 물로 조제한 후 30℃로 유지하면서 실시예 1과 같이 중공사막을 제조하였다.In Example 1, after the external coagulant was prepared with pure water, a hollow fiber membrane was prepared as in Example 1 while maintaining at 30 ° C.

[실험예 1][Experimental Example 1]

상기 실시예 및 비교예에서 제조된 중공사막들을 모듈로 제조하여 순수투과도, 배제율 (폴리스티렌 단분산 입자; 직경 100 나노미터) 및 인장강도, 신도를 하기한 방법으로 측정하였다.The hollow fiber membranes prepared in Examples and Comparative Examples were prepared as modules to measure pure permeability, rejection rate (polystyrene monodisperse particles; diameter of 100 nanometers), tensile strength, and elongation.

순수투과도의 측정;Measurement of pure permeability;

제조된 중공사막 50가닥을 30cm의 폴리카보네이트 투명관에 장입하고 양쪽 끝을 폴리우레탄이나 에폭시 접착제를 이용하여 포팅하여 유효막면적 0.0651㎡인 실험용 미니모듈을 제조하였다. 20℃ 순수를 50kPa 하에 십자흐름 방식의 외압형으로 모듈의 한 측면으로 공급하여 투과된 물의 양을 측정한 뒤, 단위시간, 단위막면적당 투과량으로 환산하였다.50 hollow fiber membranes were inserted into a 30 cm polycarbonate transparent tube, and both ends were potted using a polyurethane or epoxy adhesive to prepare an experimental minimodule having an effective membrane area of 0.0651 m 2. 20 ° C. pure water was supplied to one side of the module in a cross flow method under 50 kPa to measure the amount of permeated water, and then converted into unit time and per unit membrane area.

배제율의 측정;Measurement of exclusion rate;

100 나노미터 크기인 단분산 폴리스티렌 입자 수용액을 20℃의 순수에 분산시켜 500 피피엠 입자수용액을 제조하였다. 중공사막 2가닥을 20cm의 투명관에 삽입하고 양측을 포팅하여 배제율 측정용 미니 모듈을 제작하였다. 상기 제조된 모듈의 일측면으로 입자수용액을 50kPa의 압력으로 공급하여 투과된 수용액 및 초기 공급된 원수에 분산된 폴리스티렌 농도를 자외선 분광기 (Shimadzu사, UV-1601PC)를 이용하여 측정하였다.A 500 nanometer aqueous solution was prepared by dispersing an aqueous solution of monodisperse polystyrene particles having a size of 100 nanometers in pure water at 20 ° C. Two hollow fiber membranes were inserted into a 20 cm transparent tube, and both sides were potted to prepare a mini-module for measuring exclusion rate. Particle aqueous solution was supplied to one side of the prepared module at a pressure of 50 kPa to measure the permeated aqueous solution and polystyrene concentration dispersed in the initially supplied raw water using an ultraviolet spectrometer (Shimadzu, UV-1601PC).

이후, 240 나노미터의 파장에서 측정된 흡수피크의 상대적인 비를 하기의 식을 이용하여 백분율로 환산하여 배제율을 결정하였다.Then, the exclusion rate was determined by converting the relative ratio of the absorption peak measured at a wavelength of 240 nanometers into a percentage using the following equation.

배제율(퍼센트) = (공급수 농도-투과수 농도) ÷ 공급수 농도 X 100Exclusion rate (percent) = (feed water concentration-permeate concentration) ÷ feed water concentration X 100

인장강도 신도의 측정;Measurement of tensile strength elongation;

인장강도 및 신도는 인장시험기를 이용하여, 파지거리 60 밀리미터의 시료를 크로스헤드 스피드를 분당 50 밀리미터의 속도로 5회 측정하여 평균값을 취하였다.
Tensile strength and elongation were averaged by measuring a crosshead speed 5 times at a rate of 50 millimeters per minute using a tensile tester.

각각의 투과실험의 결과를 표 1에 나타내었다.The results of each transmission experiment are shown in Table 1.

순수투과플럭스
(L/㎡-hr) at 20℃, 50kPa
Pure Permeate Flux
(L / ㎡-hr) at 20 ℃, 50kPa
배제율(%)
at 20℃, 50kPa
% Rejection
at 20 ℃, 50kPa
파단강도(N)Breaking Strength (N)
실시예 1Example 1 312312 98.498.4 5.75.7 실시예 2Example 2 341341 97.897.8 5.45.4 실시예 3Example 3 353353 98.598.5 5.25.2 실시예 4Example 4 303303 99.199.1 5.85.8 실시예 5Example 5 298298 97.897.8 6.16.1 실시예 6Example 6 343343 95.995.9 5.55.5 실시예 7Example 7 288288 99.799.7 7.37.3 실시예 8Example 8 422422 95.195.1 5.05.0 실시예 9Example 9 292292 99.699.6 6.36.3 실시예 10Example 10 279279 99.699.6 6.86.8 실시예 11Example 11 320320 99.199.1 5.15.1 비교예 1Comparative Example 1 201201 92.192.1 6.56.5 비교예 2Comparative Example 2 187187 99.299.2 6.16.1 비교예 3Comparative Example 3 199199 98.398.3 6.76.7 비교예 4Comparative Example 4 520520 62.762.7 2.82.8 비교예 5Comparative Example 5 -- -- -- 비교예 6Comparative Example 6 192192 99.099.0 5.85.8 비교예 7Comparative Example 7 382382 68.868.8 2.72.7

상기 표 1에서 보이는 바와 같이, 본 발명에 따른 실시예 1 내지 실시예 11의 경우 순수투과플럭스는 20℃, 50kPa의 막여과 압력에서 279 내지 422 L/㎡-hr를 나타내고, 배제율은 순수투과플럭스 측정과 같은 조건에서 평균 입자크기 0.1 의 폴리스티렌 입자 500 ppm 농도의 수용액 기준 95.1 내지 99.6%를 나타내었고 파단강도는 5.0 내지 7.3 N을 나타내어 높은 수투과도와 입자 배제율, 그리고 기계적 강도를 가지고 있음을 알 수 있다. 반면에 비교예 1 내지 비교예 3에서와 같이 친수화 폴리불화비닐리덴 수지가 거의 없거나 사용하지 않은 경우 파단강도는 6.0 N 이상, 용질 배제율 90% 이상으로 비교적 높게 나타났으나 순수투과플럭스는 200 L/㎡-hr로 낮게 나타나는 문제점이 있었다. 친수화된 폴리불화비닐리덴 수지와 미개질 폴리불화비닐리덴 수지가 혼합된 혼합 수지가 15 중량%로 매우 낮을 경우 순수투과플럭스는 매우 높게 나타나지만, 용질 배제율이 63% 정도로 낮고 기계적 강도도 낮은 문제점을 지닌다. 비교예 5에서와 같이 혼합수지 농도가 너무 높으면 방사되지 않는다. 내부 응고제와 외부 응고제의 온도나 용액 구성도 매우 중요한 요소임을 비교예 6 내지 비교예 7에서 알 수 있다. As shown in Table 1, in Examples 1 to 11 according to the present invention, the pure permeation flux represents 279 to 422 L / m 2 -hr at a membrane filtration pressure of 20 ° C. and 50 kPa, and the rejection rate is pure permeation. Under the same conditions as the flux measurement, the average particle size was 0.15.1 to 99.6% based on an aqueous solution of 500 ppm of polystyrene particles with an average particle size of 0.1. The breaking strength was 5.0 to 7.3 N, indicating high water permeability, particle rejection rate, and mechanical strength. Able to know. On the other hand, when the hydrophilic polyvinylidene fluoride resin was little or not used as in Comparative Examples 1 to 3, the breaking strength was relatively higher than 6.0 N and the solute rejection ratio was 90% or higher, but the pure permeate flux was 200%. There was a problem appearing as low as L / ㎡-hr. When the mixed resin mixed with the hydrophilized polyvinylidene fluoride resin and the unmodified polyvinylidene fluoride resin is very low at 15% by weight, the pure permeate flux is very high, but the solute rejection rate is as low as 63% and the mechanical strength is low. Has If the mixed resin concentration is too high as in Comparative Example 5, it is not spun. It can be seen from Comparative Examples 6 to 7 that the temperature and solution configuration of the internal coagulant and the external coagulant are also very important factors.

친수화된 폴리불화비닐리덴 수지를 이용한 고강도 중공사막을 모듈로 제조하여 정수처리, 하수처리, 하수 재이용, 해수담수화 전처리 공정 등에 사용할 경우 높은 투과유속으로 낮은 운전비를 구현할 수 있고, 우수한 기계적 물성으로 장기간 사용할 수 있으므로 차세대 고효율 수처리용 중공사막으로 사용할 수 있다.The high-strength hollow fiber membrane made of hydrophilized polyvinylidene fluoride resin can be manufactured as a module and used for water purification, sewage treatment, sewage reuse, seawater desalination pretreatment, etc. It can be used as a hollow fiber membrane for the next generation high efficiency water treatment.

Claims (12)

친수화된 폴리불화비닐리덴 수지를 이용한 고강도 수처리용 중공사막의 제조방법에 있어서,
1) 수산화금속을 순수에 용해시켜 알칼리 수용액을 제조하는 단계;
2) 상기 알칼리 수용액에 폴리불화비닐리덴 수지를 혼합한 후 50℃ 내지 95℃의 온도에서 교반하여 친수화된 폴리불화비닐리덴 수지를 제조하는 단계;
3) 상기 친수화된 폴리불화비닐리덴 수지를 상기 알칼리 수용액으로부터 분리하여 산으로 세정하면서 중화한 후 여과하여 70℃ 내지 150℃에서 건조하는 단계;
4) 상기 3) 단계에서 건조된 친수화된 폴리불화비닐리덴 수지와 미개질 폴리불화비닐리덴 수지를 혼합하여 혼성 폴리불화비닐리덴 수지를 제조한 후 무기첨가제와 유기첨가제, 양용매, 가소제를 혼합하여 방사용액을 제조하는 단계;
5) 상기 방사용액과 내부응고제를 이중 구금을 통해 외부응고조로 방사함으로써 중공사막을 제조하는 단계;
6) 상기 중공사막을 열수 처리하는 단계;
를 포함하는 것을 특징으로 하는 친수화된 폴리불화비닐리덴 수지를 이용한 고강도 수처리용 중공사막의 제조방법.
In the manufacturing method of the hollow fiber membrane for high strength water treatment using a hydrophilized polyvinylidene fluoride resin,
1) dissolving the metal hydroxide in pure water to prepare an aqueous alkali solution;
2) preparing a hydrophilized polyvinylidene fluoride resin by mixing the polyvinylidene fluoride resin in the alkali aqueous solution and then stirring at a temperature of 50 ℃ to 95 ℃;
3) separating the hydrophilized polyvinylidene fluoride resin from the aqueous alkali solution, neutralizing it with washing with acid, followed by filtration and drying at 70 ° C. to 150 ° C .;
4) mixed with the hydrophilized polyvinylidene fluoride resin and the unmodified polyvinylidene fluoride resin dried in step 3) to prepare a mixed polyvinylidene fluoride resin, and then mixed with an inorganic additive, an organic additive, a good solvent, a plasticizer Preparing a spinning solution;
5) preparing a hollow fiber membrane by spinning the spinning solution and the internal coagulant into an external coagulation tank through double detention;
6) hydrothermal treatment of the hollow fiber membrane;
Method for producing a high-strength water treatment hollow fiber membrane using a hydrophilized polyvinylidene fluoride resin comprising a.
제 1항에 있어서,
상기 1)단계에서 알칼리 수용액은 수산화나트륨, 수산화칼륨에서 선택되어진 하나 이상을 순수에 5 내지 100 중량%를 용해시켜 30℃ 내지 95℃가 유지되도록 하는 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 1,
Alkali aqueous solution in step 1) is a method for producing a high-strength water treatment hollow fiber membrane characterized in that 30 to 95 ℃ is maintained by dissolving at least one selected from sodium hydroxide, potassium hydroxide 5 to 100% by weight in pure water. .
제 1항에 있어서,
상기 2)단계에서 폴리불화비닐리덴 수지 10 내지 50 중량%, 알칼리 수용액 50 내지 90 중량%를 혼합한 후 교반하는 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 1,
10 to 50% by weight of the polyvinylidene fluoride resin, 50 to 90% by weight of the aqueous alkali solution in step 2) is mixed and stirred, the method for producing a high-strength water treatment hollow fiber membrane.
제 1항에 있어서,
상기 3)단계에 있어서 세정 및 중화에 사용하는 산은 황산, 염산, 질산 중에서 하나 이상 선택되어진 것을 사용하는 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 1,
The acid used for cleaning and neutralizing in step 3) is a method for producing a high-strength water treatment hollow fiber membrane, characterized in that at least one selected from sulfuric acid, hydrochloric acid, nitric acid.
제 1항에 있어서,
상기 4)단계에 있어서 친수화된 폴리불화비닐리덴 수지를 미개질 폴리불화비닐리덴 수지에 10 내지 30 중량 %를 혼합하여 혼성 폴리불화비닐리덴 수지를 제조하는 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 1,
The hollow fiber membrane for high-strength water treatment of the hydrophilic polyvinylidene fluoride resin in step 4) is mixed with unmodified polyvinylidene fluoride resin to prepare a mixed polyvinylidene fluoride resin. Manufacturing method.
제 1항에 있어서,
상기 4) 단계에 있어서 무기 첨가제는 염화리튬, 염화아연, 황산마그네슘, 황산칼륨, 염화마그네슘에서 하나 이상 선택되고, 유기첨가제는 폴리에틸렌글리콜, 덱스트란, 폴리비닐피롤리돈, 폴리비닐알콜, 폴리에틸렌옥사이드, 폴리비닐아세테이트에서 하나이상 선택되고, 가소제는 감마부티로락톤, 사이클로헥사논, 이소포론, 디옥틸프탈레이트, 디메틸프탈레이트에서 하나 이상 선택되고, 양용매는 노말메틸피롤리돈, 디메틸포름아미드, 디메틸아세트아미드, 디메틸설퍼옥사이드에서 하나 이상 선택하는 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 1,
In the step 4), the inorganic additive is at least one selected from lithium chloride, zinc chloride, magnesium sulfate, potassium sulfate, and magnesium chloride, and the organic additive is polyethylene glycol, dextran, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene oxide. At least one selected from polyvinylacetate, a plasticizer is selected from at least one of gamma butyrolactone, cyclohexanone, isophorone, dioctylphthalate and dimethyl phthalate, and the good solvent is normal methylpyrrolidone, dimethylformamide, and dimethylacetate. Method for producing a high-strength water treatment hollow fiber membrane, characterized in that at least one selected from amide, dimethyl sulfoxide.
제 1항에 있어서,
상기 4) 단계에 있어서 혼성 폴리불화비닐리덴 수지 20 내지 60 중량%, 무기 첨가제 1 내지 20 중량%, 유기첨가제 1 내지 20 중량%, 가소제 5 내지 50 중량%, 양용매 2 내지 15 중량% 인 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 1,
In step 4), 20 to 60% by weight of the mixed polyvinylidene fluoride resin, 1 to 20% by weight of an inorganic additive, 1 to 20% by weight of an organic additive, 5 to 50% by weight of a plasticizer, and 2 to 15% by weight of a good solvent. A method of producing a hollow fiber membrane for high strength water treatment, characterized in that.
제 1항에 있어서,
상기 4)단계에 있어서 방사 용액의 온도는 110℃ 내지 200℃인 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 1,
The method of producing a high-strength water treatment hollow fiber membrane, characterized in that the temperature of the spinning solution in step 4) is 110 ℃ to 200 ℃.
제 1항에 있어서,
상기 5) 단계에 있어서 방사노즐은 이중구금으로 구성되어 중심관으로는 내부 응고액을 토출시키고, 외부관으로는 4)단계에서 제조된 방사 용액을 토출시켜 중심에 중공이 형성되도록 하는 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 1,
In the step 5), the spinneret is composed of a double detention to discharge the internal coagulating solution to the center tube, and to discharge the spinning solution prepared in step 4) to the outer tube to form a hollow in the center. Method for producing a high-strength hollow fiber membrane for water treatment.
제 9항에 있어서,
내부 응고액은 물 20 내지 80 중량%와 노말메틸피롤리돈, 디메틸포름아마이드, 디메틸설퍼옥사이드, 디메틸아세트아미드에서 선택되어진 하나 이상의 용매가 20 내지 80 중량%가 혼합된 혼합용매인 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 9,
The internal coagulating solution is a mixed solvent of 20 to 80% by weight of water and 20 to 80% by weight of at least one solvent selected from normal methylpyrrolidone, dimethylformamide, dimethylsulfuroxide, and dimethylacetamide. Method for producing hollow fiber membrane for high strength water treatment.
제 10항에 있어서,
내부 응고액의 온도는 1℃ 내지 70℃인 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 10,
The temperature of the internal coagulating liquid is 1 ℃ to 70 ℃ manufacturing method of a high-strength water treatment hollow fiber membrane.
제 1항에 있어서,
제 5단계에 있어서 외부 응고조는 물로 이루어지고 1℃ 내지 10℃인 것을 특징으로 하는 고강도 수처리용 중공사막의 제조방법.
The method of claim 1,
In the fifth step, the external coagulation bath is made of water, and the manufacturing method of the high-strength water treatment hollow fiber membrane, characterized in that 1 ℃ to 10 ℃.
KR1020110105507A 2011-10-14 2011-10-14 The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment KR101308998B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110105507A KR101308998B1 (en) 2011-10-14 2011-10-14 The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110105507A KR101308998B1 (en) 2011-10-14 2011-10-14 The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment

Publications (2)

Publication Number Publication Date
KR20130040621A KR20130040621A (en) 2013-04-24
KR101308998B1 true KR101308998B1 (en) 2013-09-16

Family

ID=48440395

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110105507A KR101308998B1 (en) 2011-10-14 2011-10-14 The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment

Country Status (1)

Country Link
KR (1) KR101308998B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190096156A (en) * 2018-02-08 2019-08-19 경상대학교산학협력단 hollow fiber membrane for water treatement and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775137B1 (en) * 2015-06-03 2017-09-19 롯데케미칼 주식회사 Preparation method of hollow fiber membrane and hollow fiber membrane
US20210077953A1 (en) * 2019-09-18 2021-03-18 Panasonic Intellectual Property Management Co., Ltd. Ion permeable membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090024393A (en) * 2007-09-04 2009-03-09 (주)필로스 Preparation method of modified fluorine polymer membrane
KR20090037963A (en) * 2006-08-10 2009-04-16 가부시키가이샤 구라레 Porous membrane of vinylidene fluoride resin and process for producing the same
KR20100114808A (en) * 2009-04-16 2010-10-26 주식회사 파라 Method for asymmetric microporous hollow fiber membrane
KR20110079153A (en) * 2009-12-31 2011-07-07 이영호 Manufaturing method of hallow fiber membrane for water treatment and hallow fiber membrane thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090037963A (en) * 2006-08-10 2009-04-16 가부시키가이샤 구라레 Porous membrane of vinylidene fluoride resin and process for producing the same
KR20090024393A (en) * 2007-09-04 2009-03-09 (주)필로스 Preparation method of modified fluorine polymer membrane
KR20100114808A (en) * 2009-04-16 2010-10-26 주식회사 파라 Method for asymmetric microporous hollow fiber membrane
KR20110079153A (en) * 2009-12-31 2011-07-07 이영호 Manufaturing method of hallow fiber membrane for water treatment and hallow fiber membrane thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190096156A (en) * 2018-02-08 2019-08-19 경상대학교산학협력단 hollow fiber membrane for water treatement and preparation method thereof
KR102048428B1 (en) 2018-02-08 2019-11-25 경상대학교산학협력단 hollow fiber membrane for water treatement and preparation method thereof

Also Published As

Publication number Publication date
KR20130040621A (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5622833B2 (en) High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
AU2002338039B2 (en) Hollow fiber film and method for production thereof
KR101597829B1 (en) Porous Membrane and Method for Manufacturing The Same
KR101026690B1 (en) Highly porous membrane using that and preparing method thereof
KR101539608B1 (en) Polyvinylidene fluoride Hollow Fiber Membranes and Preparation Thereof
KR20070113375A (en) Asymmetric poly(vinylidene fluoride) hollow fiber membranes and methods to make membranes
KR20070036151A (en) Porous membrane for water treatment and process for producing the same
KR20100114808A (en) Method for asymmetric microporous hollow fiber membrane
KR101738976B1 (en) polyvinylidene fluoride hollow fiber membrane and manufacturing method thereof
KR101394416B1 (en) Method for Manufacturing Polyvinylidene fluoride Hollow fiber membrane and Hollow fiber membrane
KR20140046638A (en) Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
KR100650330B1 (en) A hollow fiber membrane with good permeability of water
KR101308998B1 (en) The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment
KR20120059755A (en) Method for manufacturing a hollow fiber membrane for water treatment using cellulose resin
KR101308996B1 (en) The Preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment
KR20100007245A (en) Asymmetric hollow fiber membranes and preparation thereof
KR20070113374A (en) Porous poly(vinylidene fluoride) hollow fiber membranes composed of spherical particles containing polymeric nanofibers
KR20130040622A (en) The preparation method of hollow fiber membrane with high permeation using hydrophilized polyvinylidenefluoride for water treatment
KR102139208B1 (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
KR20130040625A (en) Polyvinylidenefluoride hollow fiber membrane with secondary barrier for water treatment and preparation thereof
KR20070103187A (en) Porous poly(vinylidene fluoride) hollow fiber membranes composed of both fibril and nodular structures
KR20070102011A (en) Porous poly(vinylidene fluoride) hollow fiber membranes for high water permeance and methods to make membranes
KR101331066B1 (en) Polyethersulfone hollow fiber membrane and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160908

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170922

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180910

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190910

Year of fee payment: 7