JP2008105016A - Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method - Google Patents

Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method Download PDF

Info

Publication number
JP2008105016A
JP2008105016A JP2007233668A JP2007233668A JP2008105016A JP 2008105016 A JP2008105016 A JP 2008105016A JP 2007233668 A JP2007233668 A JP 2007233668A JP 2007233668 A JP2007233668 A JP 2007233668A JP 2008105016 A JP2008105016 A JP 2008105016A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
polyvinylidene fluoride
phase separation
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007233668A
Other languages
Japanese (ja)
Other versions
JP2008105016A5 (en
JP5641553B2 (en
Inventor
Takashi Minaki
尚 皆木
Shinichi Minegishi
進一 峯岸
Masayuki Hanakawa
正行 花川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007233668A priority Critical patent/JP5641553B2/en
Publication of JP2008105016A publication Critical patent/JP2008105016A/en
Publication of JP2008105016A5 publication Critical patent/JP2008105016A5/ja
Application granted granted Critical
Publication of JP5641553B2 publication Critical patent/JP5641553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To make a hollow fiber membrane having a high strength/extension and a high pure water permeability by using a polyvinylidene fluoride resin having a high chemical resistance. <P>SOLUTION: The hollow fiber membrane is made by heat-treating a polyvinylidene fluoride resin made by a thermally induced phase separation method or a non-solvent induced phase separation method at a temperature in the vicinity of its melting point to cause shrinkage. The membrane has a pore volume of pores having diameters not smaller than 0.01 μm and smaller than 0.1 μm of 10<SP>-2</SP>cm<SP>3</SP>/g or smaller and a pore volume, of pores having diameters not smaller than 0.1 μm and not larger than 10 μm of 0.2 cm<SP>3</SP>/g or larger when measurement is made by employing a mercury intrusion method. The breaking strength of the hollow fiber membrane is drastically enhanced, and the breaking extension and the pure water permeability are kept at a high level by the heat treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液状混合物の成分を選択分離するためのポリフッ化ビニリデン系樹脂からなる中空糸膜およびその製造方法に関する。さらに詳しくは、廃水処理、浄水処理、工業用水製造などの水処理に用いられるポリフッ化ビニリデン系樹脂からなる中空糸精密ろ過膜や中空糸限外ろ過膜およびそれらの製造方法に関する。   The present invention relates to a hollow fiber membrane made of a polyvinylidene fluoride resin for selectively separating components of a liquid mixture and a method for producing the same. More specifically, the present invention relates to a hollow fiber microfiltration membrane or a hollow fiber ultrafiltration membrane made of a polyvinylidene fluoride resin used for water treatment such as waste water treatment, water purification treatment, and industrial water production, and a production method thereof.

精密ろ過膜や限外ろ過膜などの分離膜は、食品工業、医療、用水製造および廃水処理分野などをはじめとして様々な方面で利用されている。特に近年では、飲料水製造分野すなわち浄水処理過程においても分離膜が使われるようになってきている。浄水処理などの水処理用途で用いられる場合、処理しなければならない水量が大きいため、単位体積あたり有効膜面積が大きい中空糸膜が一般的に用いられている。さらに該中空糸膜の純水透過性能が優れていれば、膜面積を減らすことが可能となり、装置がコンパクトになるため設備費が節約でき、膜交換費や設置面積の点からも有利になってくる。   Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields including the food industry, medicine, water production and wastewater treatment fields. Particularly in recent years, separation membranes have been used in the field of drinking water production, that is, in the process of water purification. When used in water treatment applications such as water purification, a hollow fiber membrane having a large effective membrane area per unit volume is generally used because of the large amount of water that must be treated. Furthermore, if the hollow fiber membrane has excellent pure water permeation performance, the membrane area can be reduced, and the equipment can be made compact, so that the equipment cost can be saved, and the membrane replacement cost and installation area are advantageous. Come.

また、透過水の殺菌や膜のバイオファウリング防止の目的で次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分に添加したり、膜の薬液洗浄として、塩酸、クエン酸、シュウ酸などの酸や水酸化ナトリウム水溶液などのアルカリ、塩素、界面活性剤などで膜を洗浄したりすることがあるため、近年では耐薬品性の高い素材であるポリフッ化ビニリデン系樹脂を用いた分離膜が開発され、利用されている。また、浄水処理分野では、クリプトスポリジウムなどの耐塩素性を有する病原性微生物が飲料水に混入する問題が20世紀終盤から顕在化してきており、中空糸膜には膜が切れて原水が混入しないような高い強伸度特性が要求されている。   In addition, a disinfectant such as sodium hypochlorite is added to the membrane module for the purpose of sterilizing the permeated water and preventing biofouling of the membrane. In recent years, separation membranes using polyvinylidene fluoride resin, which is a highly chemical-resistant material, have been developed because the membrane may be washed with an alkali such as sodium hydroxide aqueous solution, chlorine, or a surfactant. ,It's being used. Moreover, in the field of water purification treatment, the problem that chlorine-resistant pathogenic microorganisms such as Cryptosporidium are mixed in drinking water has become apparent since the end of the 20th century, and the hollow fiber membrane is cut and the raw water is not mixed. Such a high strength and elongation characteristic is required.

これまでに高透水性かつ高強伸度の耐薬品性の高い中空糸膜を課題とし、種々の製造方法が開示されている。例えば、特許文献1にはポリフッ化ビニリデン系樹脂を良溶媒に溶解したポリマー溶液を、ポリフッ化ビニリデン系樹脂の融点よりかなり低い温度で、口金から押し出して、ポリフッ化ビニリデン系樹脂の非溶媒を含む液体に接触させて非対称多孔構造を形成させる非溶媒誘起相分離法が開示されている、しかしながら非溶媒誘起相分離法では、膜厚方向に均一に相分離を起こすことが困難であり、マクロボイドを含む非対称三次元網目構造の膜となるため機械的な破断強度が十分でないという問題がある。   Various manufacturing methods have been disclosed so far, with a hollow fiber membrane having high water permeability, high strength and high chemical resistance as a subject. For example, Patent Document 1 includes a polymer solution in which a polyvinylidene fluoride resin is dissolved in a good solvent and is extruded from a die at a temperature considerably lower than the melting point of the polyvinylidene fluoride resin, and includes a non-solvent of the polyvinylidene fluoride resin. A non-solvent induced phase separation method in which an asymmetric porous structure is formed by contact with a liquid is disclosed. However, in the non-solvent induced phase separation method, it is difficult to cause phase separation uniformly in the film thickness direction. There is a problem that the mechanical breaking strength is not sufficient because the film has an asymmetric three-dimensional network structure including.

さらに比較的近年では、特許文献2に記載されているように、ポリフッ化ビニリデン系樹脂に無機微粒子と有機液状体を溶融混練しポリフッ化ビニリデン系樹脂の融点以上の温度で口金から押し出して冷却固化し、その後有機液状体と無機微粒子を抽出することにより多孔構造を形成する溶融抽出法が提案されている。溶融抽出法の場合、空孔性の制御が容易で、マクロボイドは形成されず比較的均質な三次元網目構造の膜が得られ破断伸度は高いが、破断強度は十分でなく、また無機微粒子の分散性が悪いとピンホールのような欠陥を生じる可能性がある。さらに、溶融抽出法は、製造コストが極めて高くなるという欠点を有している。   Furthermore, in recent years, as described in Patent Document 2, inorganic fine particles and an organic liquid are melt-kneaded into a polyvinylidene fluoride resin and extruded from the die at a temperature equal to or higher than the melting point of the polyvinylidene fluoride resin to be cooled and solidified. Then, a melt extraction method for forming a porous structure by extracting an organic liquid and inorganic fine particles has been proposed. In the case of the melt extraction method, it is easy to control the porosity, a macro-void is not formed and a relatively homogeneous three-dimensional network structure film is obtained and the elongation at break is high, but the break strength is not sufficient, and inorganic If the dispersibility of the fine particles is poor, defects such as pinholes may occur. Furthermore, the melt extraction method has the disadvantage that the production cost is extremely high.

また特許文献3では、ポリフッ化ビニリデン系樹脂および該樹脂の貧溶媒を含有し、温度が相分離温度以上であるポリフッ化ビニリデン系樹脂溶液を相分離温度以下の冷却浴に吐出し凝固させて中空糸膜を得る熱誘起相分離法が開示されている。この方法により得られる中空糸膜は0.3〜30μmの球状構造を有しており強伸度性能は比較的高いが、必ずしも十分でない。   In Patent Document 3, a polyvinylidene fluoride resin and a poor solvent for the resin are contained, and a polyvinylidene fluoride resin solution having a temperature equal to or higher than the phase separation temperature is discharged into a cooling bath below the phase separation temperature to be solidified. A thermally induced phase separation method for obtaining a yarn membrane is disclosed. The hollow fiber membrane obtained by this method has a spherical structure of 0.3 to 30 μm and has a relatively high strength elongation performance, but it is not always sufficient.

さらに高い破断強度を有する中空糸膜として、中空糸膜の長軸方向に配向した有機ポリマーの繊維状組織(フィブリル)で構成された膜が報告されている。例えば特許文献4では、ポリエチレンを溶融賦形し、アニール処理を施し延伸する、いわゆる延伸開孔法により中空糸膜の長軸方向に配向したミクロフィブリルと中空糸膜の厚さ方向に配向したスタックドラメラとの結節部とから形成されるスリット状微細孔を有する中空繊維膜が開示されている。この膜は破断強度に優れ、製造過程で溶剤を使用しないことから安全性に優れるという利点を有している。しかしながら、溶融紡糸では微細孔を形成するために非常に高倍率で延伸するので、破断伸度が低く、また十分な純水透過性能を得るには孔径が大きくなってしまう。
特公平1−22003号公報 特許第2899903号公報 国際公開第03/031038号パンフレット 特開昭57−66114号公報
Further, as a hollow fiber membrane having a high breaking strength, a membrane composed of an organic polymer fibrous structure (fibril) oriented in the long axis direction of the hollow fiber membrane has been reported. For example, in Patent Document 4, a microfibril oriented in the major axis direction of a hollow fiber membrane and a stack oriented in the thickness direction of the hollow fiber membrane by a so-called stretch opening method in which polyethylene is melt-shaped, subjected to an annealing treatment and stretched. A hollow fiber membrane having slit-like micropores formed from a knot portion with a lamella is disclosed. This film has the advantage that it has excellent breaking strength and is excellent in safety because no solvent is used in the production process. However, in melt spinning, drawing is performed at a very high magnification in order to form micropores. Therefore, the elongation at break is low, and the pore diameter becomes large to obtain sufficient pure water permeation performance.
Japanese Patent Publication No. 1-2003 Japanese Patent No. 2899903 International Publication No. 03/031038 Pamphlet JP-A-57-66114

本発明では上記のような従来技術の問題点に鑑み、耐薬品性の高いポリフッ化ビニリデン系樹脂を用い、高い強伸度性能をもち、かつ高い純水透過性能を有する中空糸膜を提供することを目的とする。   In view of the above-described problems of the prior art, the present invention provides a hollow fiber membrane that uses a polyvinylidene fluoride resin having high chemical resistance, has high strength and elongation performance, and has high pure water permeability. For the purpose.

上記課題を解決するための本発明は、
(1) 水銀圧入法により測定した、直径が0.01μm以上0.1μm未満の細孔の容積が10−2cm/g以下であり、かつ直径が0.1μm以上10μm以下の細孔の容積が0.2cm/g以上であることを特徴とする、ポリフッ化ビニリデン系樹脂からなる中空糸膜。
(2) 前記中空糸膜が球状構造からなる(1)に記載の中空糸膜。
(3) 前記球状構造の直径が0.5μm以上3μm以下である(1)又は(2)に記載の中空糸膜。
(4) 熱誘起相分離法あるいは非溶媒誘起相分離法により製造された、ポリフッ化ビニリデン系樹脂からなる中空糸膜を、該中空糸膜の融点をTmとしたときTm−40℃≦T<Tmを満たす温度Tで熱処理することを特徴とするポリフッ化ビニリデン系樹脂からなる中空糸膜の製造方法。
(5) 前記熱処理時の中空糸膜の長さ方向の収縮率を5%以上25%以下とする(4)に記載の中空糸膜の製造方法。
により構成される。
The present invention for solving the above problems is as follows.
(1) The volume of pores having a diameter of 0.01 μm or more and less than 0.1 μm measured by mercury porosimetry is 10 −2 cm 3 / g or less, and the pores having a diameter of 0.1 μm or more and 10 μm or less A hollow fiber membrane made of a polyvinylidene fluoride-based resin, wherein the volume is 0.2 cm 3 / g or more.
(2) The hollow fiber membrane according to (1), wherein the hollow fiber membrane has a spherical structure.
(3) The hollow fiber membrane according to (1) or (2), wherein the spherical structure has a diameter of 0.5 μm or more and 3 μm or less.
(4) When a hollow fiber membrane made of a polyvinylidene fluoride resin produced by a thermally induced phase separation method or a non-solvent induced phase separation method is used, the melting point of the hollow fiber membrane is Tm−40 ° C. ≦ T < A method for producing a hollow fiber membrane comprising a polyvinylidene fluoride-based resin, wherein the heat treatment is performed at a temperature T satisfying Tm.
(5) The method for producing a hollow fiber membrane according to (4), wherein a shrinkage ratio in the length direction of the hollow fiber membrane during the heat treatment is 5% or more and 25% or less.
Consists of.

本発明によれば、化学的および物理的耐久性が非常に高く、かつ高い純水透過性能を有する中空糸膜を得ることができる。   According to the present invention, a hollow fiber membrane having extremely high chemical and physical durability and high pure water permeation performance can be obtained.

本発明は、ポリフッ化ビニリデン系樹脂からなる中空糸膜であり、水銀圧入法により測定した、直径が0.01μm以上0.1μm未満の細孔の容積が10−2cm/g以下であり、かつ直径が0.1μm以上10μm以下の細孔の容積が0.2cm/g以上であることを特徴とする。 The present invention is a hollow fiber membrane made of a polyvinylidene fluoride-based resin, and has a pore volume of 10 −2 cm 3 / g or less having a diameter of 0.01 μm or more and less than 0.1 μm as measured by a mercury intrusion method. And the volume of pores having a diameter of 0.1 μm or more and 10 μm or less is 0.2 cm 3 / g or more.

水銀圧入法とは水銀の表面張力が大きいことを利用し、水銀を浸入させるために加えた圧力から空隙の大きさを、浸入した水銀量から空隙の容積を測定する方法である。本発明ではJIS R 1655に準拠し行えばよく、実施例に記載の方法が好ましく採用される。試料の中空糸膜は十分に水洗した後、凍結乾燥を行い、さらに真空乾燥させ絶乾状態にして用いる。   The mercury intrusion method is a method of measuring the size of the void from the pressure applied to intrude mercury and the volume of the void from the amount of intruded mercury, utilizing the fact that the surface tension of mercury is large. In this invention, what is necessary is just to perform based on JISR1655 and the method as described in an Example is employ | adopted preferably. The hollow fiber membrane of the sample is thoroughly washed with water, then freeze-dried, and further vacuum-dried and used in an absolutely dry state.

直径が0.01μm以上0.1μm未満の細孔は主に中空糸膜を形成する固形部内の空隙であり、直径が0.1μm以上10μm以下の細孔は中空糸膜を形成する固形部間の空隙である。固形部内の空隙が小さいということは、固形部を構成するポリマー分子がより密に配列していることを意味し、そのような固形部で形成される中空糸膜は高い破断強度、破断伸度を有する。   The pores having a diameter of 0.01 μm or more and less than 0.1 μm are mainly voids in the solid part forming the hollow fiber membrane, and the pores having a diameter of 0.1 μm or more and 10 μm or less between the solid parts forming the hollow fiber membrane It is a void. Small voids in the solid part mean that the polymer molecules constituting the solid part are arranged more densely, and the hollow fiber membrane formed by such a solid part has high breaking strength and breaking elongation. Have

さらに中空糸膜を形成する固形部間の空隙が大きいと、高い純水透過性能を示す。すなわち直径が0.01μm以上0.1μm未満の細孔の容積が10−2cm/g以下であり、かつ直径が0.1μm以上10μm以下の細孔の容積が0.2cm/g以上9cm/以下である中空糸膜は、高い破断強度、破断伸度、純水透過性能を併せ有することができる。 Furthermore, when the space | gap between the solid parts which form a hollow fiber membrane is large, a high pure water permeation performance is shown. That is, the volume of pores having a diameter of 0.01 μm or more and less than 0.1 μm is 10 −2 cm 3 / g or less, and the volume of pores having a diameter of 0.1 μm or more and 10 μm or less is 0.2 cm 3 / g or more. A hollow fiber membrane of 9 cm 3 / less can have both high breaking strength, breaking elongation, and pure water permeability.

直径が0.01μm以上0.1μm未満の細孔の容積は好ましくは10−2cm/g以下であり、より好ましくは10−3cm/g以下、さらに好ましくは10−5cm/g以下である。直径が0.01μm以上0.1μm未満の細孔の容積が10−2cm/gを超えると、十分な破断強度、破断伸度が得られない。また直径が0.1μm以上10μm以下の細孔の容積は好ましくは0.2cm/g以上5cm/以下であり、より好ましくは0.3cm/g以上2cm/以下、さらに好ましくは0.3cm/g以上1cm/以下である。直径が0.1μm以上10μm以下の細孔の容積が、0.2cm/g未満では純水透過性能が低くなる場合があり、5cm/以下を超えると、破断強度、破断伸度とともに阻止性能が著しく低下する場合がある。 The volume of pores having a diameter of 0.01 μm or more and less than 0.1 μm is preferably 10 −2 cm 3 / g or less, more preferably 10 −3 cm 3 / g or less, still more preferably 10 −5 cm 3 / g. g or less. When the volume of pores having a diameter of 0.01 μm or more and less than 0.1 μm exceeds 10 −2 cm 3 / g, sufficient breaking strength and breaking elongation cannot be obtained. The volume of pores having a diameter of 0.1 μm or more and 10 μm or less is preferably 0.2 cm 3 / g or more and 5 cm 3 / less, more preferably 0.3 cm 3 / g or more and 2 cm 3 / less, further preferably 0. It is 3 cm 3 / g or more and 1 cm 3 / or less. Blocking diameter and the volume of the following pore 10μm or 0.1 [mu] m, is less than 0.2 cm 3 / g may pure water permeability is low, when it exceeds 5 cm 3 / below the breaking strength, with elongation at break Performance may be significantly reduced.

本発明の中空糸膜は、耐薬品性、物理的強度が高いポリフッ化ビニリデン系樹脂からなる。ポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂を意味し、複数の種類のフッ化ビニリデン共重合体を含有しても構わない。フッ化ビニリデン共重合体は、フッ化ビニリデン残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーなどとの共重合体である。かかる共重合体としては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。また、本発明の効果を損なわない程度に、前記フッ素系モノマー以外の例えばエチレンなどのモノマーが共重合されていても良い。     The hollow fiber membrane of the present invention is made of a polyvinylidene fluoride resin having high chemical resistance and physical strength. The polyvinylidene fluoride resin means a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer, and may contain a plurality of types of vinylidene fluoride copolymers. The vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers. Examples of the copolymer include a copolymer of vinylidene fluoride and at least one selected from vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and trifluoroethylene chloride. Further, a monomer such as ethylene other than the fluorine-based monomer may be copolymerized to such an extent that the effects of the present invention are not impaired.

また本発明の中空糸膜は平均直径が0.5μm以上3μm以下の球状構造からなることが好ましい。球状構造とは中空糸膜の長さ方向に垂直な断面に見られる、球状の固形部が互いにその一部を共有することにより連結された構造である。比較的大きな固形部がその多くの部分を共有して連結された構造であることから物理的強度が高く、同時に空隙も大きくなることから純水透過性能も高くなる。     The hollow fiber membrane of the present invention preferably has a spherical structure with an average diameter of 0.5 μm to 3 μm. The spherical structure is a structure in which spherical solid portions are connected by sharing a part of each other, as seen in a cross section perpendicular to the length direction of the hollow fiber membrane. Since the relatively large solid part is connected to share many parts, the physical strength is high, and at the same time, the voids are increased, so that the pure water permeation performance is also improved.

またその球状構造の平均直径とは球状の固形部の平均直径(長径と短径の平均値)である。球状構造の平均直径は0.5μm以上3μm以下が好ましく、より好ましくは0.9μm以上2μm以下である。平均直径が0.5μm未満では、球状構造間の空隙が小さくなり純水透過性能が低下してしまう。逆に3μmを超えると、球状の固形部間の連結が少なくなり、物理的強度が低下したり、球状構造間の空隙が大きくなりすぎて阻止性能が低下したりする。   The average diameter of the spherical structure is the average diameter of the spherical solid part (average value of major axis and minor axis). The average diameter of the spherical structure is preferably 0.5 μm or more and 3 μm or less, more preferably 0.9 μm or more and 2 μm or less. If the average diameter is less than 0.5 μm, the gap between the spherical structures becomes small, and the pure water permeation performance deteriorates. On the other hand, when the thickness exceeds 3 μm, the connection between the spherical solid parts decreases, and the physical strength decreases, or the gap between the spherical structures becomes too large, and the blocking performance decreases.

本発明では主に球状構造からなることが好ましいが、三次元網目構造などその他の構造を含んでいてもよい。また中空糸膜の長さ方向に垂直な断面では球状の固形部が見られるが、同じ中空糸膜を径方向に垂直な断面で観察すると柱状構造が見られる、即ち三次元的には実際は球状ではなく円柱状であっても、本発明では球状構造と判断する。   In the present invention, it is preferably mainly composed of a spherical structure, but may include other structures such as a three-dimensional network structure. In addition, a spherical solid portion is seen in the cross section perpendicular to the length direction of the hollow fiber membrane, but when the same hollow fiber membrane is observed in the cross section perpendicular to the radial direction, a columnar structure is seen, that is, in three dimensions, it is actually a spherical shape. However, even if it is a cylindrical shape, it is determined as a spherical structure in the present invention.

次に、本発明の中空糸膜を得るための好ましい方法について述べる。   Next, a preferred method for obtaining the hollow fiber membrane of the present invention will be described.

ポリフッ化ビニリデン系樹脂から中空糸膜を製造する方法としては、熱誘起相分離法、非溶媒誘起相分離法、溶融抽出法、延伸開孔法などが挙げられるが、このうち本発明では熱誘起相分離法あるいは非溶媒誘起相分離法を利用することが必要である。   Examples of the method for producing a hollow fiber membrane from a polyvinylidene fluoride resin include a heat-induced phase separation method, a non-solvent-induced phase separation method, a melt extraction method, and a stretch-opening method. It is necessary to use a phase separation method or a non-solvent induced phase separation method.

熱誘起相分離とは、高温で溶解した樹脂溶液を冷却することにより固化せしめる相分離であり、非溶媒誘起相分離とは、樹脂溶液を非溶媒に接触させることにより固化せしめる相分離である。   Thermally induced phase separation is a phase separation in which a resin solution dissolved at high temperature is solidified by cooling, and non-solvent induced phase separation is a phase separation in which a resin solution is solidified by contacting with a nonsolvent.

熱誘起相分離法を利用して中空糸膜を製造する場合、ポリフッ化ビニリデン系樹脂溶液の溶媒としては、樹脂の貧溶媒が好ましく、シクロヘキサノン、イソホロン、γ−ブチロラクトン、ジメチルスルホキシド等のアルキルケトン、エステル等の比較的樹脂の溶解度が高い貧溶媒が特に好ましく採用される。   When producing a hollow fiber membrane using a heat-induced phase separation method, as a solvent for the polyvinylidene fluoride resin solution, a poor solvent for the resin is preferable, alkyl ketones such as cyclohexanone, isophorone, γ-butyrolactone, dimethyl sulfoxide, A poor solvent having a relatively high resin solubility such as an ester is particularly preferably employed.

また非溶媒誘起相分離法を利用して中空糸膜を製造する場合、ポリフッ化ビニリデン系樹脂溶液の溶媒としては、樹脂の良溶媒が好ましく、この良溶媒としては、N−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン等の低級アルキルケトン、エステル、アミド等およびその混合溶媒が挙げられる。他方、非溶媒は、樹脂の非溶媒であり、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o−ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素、またはその他の塩素化有機液体およびその混合溶媒等が挙げられる。     When a hollow fiber membrane is produced using a non-solvent induced phase separation method, the solvent for the polyvinylidene fluoride resin solution is preferably a good solvent for the resin, and the good solvent is N-methyl-2-pyrrolidone. , Dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran and other lower alkyl ketones, esters, amides and the like, and mixed solvents thereof. On the other hand, the non-solvent is a non-solvent for the resin, such as water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene. Aliphatic hydrocarbons such as glycol, butylene glycol, pentanediol, hexanediol, low molecular weight polyethylene glycol, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons, or other chlorinations Examples thereof include organic liquids and mixed solvents thereof.

本発明のもう一つの態様は、熱誘起相分離法あるいは非溶媒誘起相分離法により製造された、ポリフッ化ビニリデン系樹脂からなる中空糸膜を、該中空糸膜の融点をTmとしたときTm−40℃≦T<Tmを満たす温度Tで熱処理することを特徴とする。さらに、該熱処理により該中空糸膜の長さ方向に収縮率5%以上25%以下の収縮を生じさせることが好ましい。     Another embodiment of the present invention relates to a hollow fiber membrane made of a polyvinylidene fluoride resin produced by a thermally induced phase separation method or a non-solvent induced phase separation method, wherein the melting point of the hollow fiber membrane is Tm. Heat treatment is performed at a temperature T satisfying −40 ° C. ≦ T <Tm. Further, it is preferable that the heat treatment causes a shrinkage of 5% or more and 25% or less in the length direction of the hollow fiber membrane.

ここで中空糸膜の融点Tmは前記の通り、DSC測定装置を用いて乾燥状態の中空糸膜を速度10℃/minで昇温させたときのピークトップの温度であり、ポリフッ化ビニリデンからなる中空糸膜の場合175℃付近である。     Here, as described above, the melting point Tm of the hollow fiber membrane is a peak top temperature when the dry hollow fiber membrane is heated at a rate of 10 ° C./min using a DSC measuring apparatus, and is made of polyvinylidene fluoride. In the case of a hollow fiber membrane, it is around 175 ° C.

中空糸膜を、上記したように中空糸膜融点に近い高温で熱処理すると、中空糸膜を形成する固形部内の非晶部でポリマーのミクロブラウン運動が活発化した後、一部で結晶化したり、あるいは固形部内の中空糸膜の融点より低温で溶融する結晶部が、一度溶融した後、より高温で溶融する結晶部に再結晶化したりすることで、固形部が収縮し、破断強度が大幅に向上すると考えられる。しかし熱処理時に固形部間の大きな空隙はほとんど変化しないために、純水透過性能の低下は抑制されると考えられる。ここで中空糸膜の融点より低温で溶融する結晶部とは次の結晶部を示す。乾燥状態の中空糸膜を示差走査熱量測定(DSC測定)装置を用いて、速度10℃/minで昇温させたとき、ブロードな吸熱ピークが現れる。この吸熱ピークの中で中空糸膜の融点にあたるピークトップより低温側にテーリングした部分に起因する結晶部が中空糸膜の融点より低温で溶融する結晶部である。すなわち結晶部全体の中でエネルギー的に不安定な結晶部であると考えられる。     When the hollow fiber membrane is heat-treated at a high temperature close to the melting point of the hollow fiber membrane as described above, after the micro-Brownian motion of the polymer is activated in the amorphous part in the solid part forming the hollow fiber membrane, it is partially crystallized. Or, the crystal part that melts at a temperature lower than the melting point of the hollow fiber membrane in the solid part is once melted and then recrystallized into a crystal part that melts at a higher temperature, so that the solid part contracts and the breaking strength is greatly increased. It is thought that it will improve. However, since the large voids between the solid parts hardly change during the heat treatment, it is considered that the decrease in pure water permeation performance is suppressed. Here, the crystal part melted at a temperature lower than the melting point of the hollow fiber membrane refers to the following crystal part. When the dried hollow fiber membrane is heated at a rate of 10 ° C./min using a differential scanning calorimetry (DSC measurement) device, a broad endothermic peak appears. In this endothermic peak, the crystal part caused by the tailing portion at the lower temperature side than the peak top corresponding to the melting point of the hollow fiber membrane is a crystal part that melts at a temperature lower than the melting point of the hollow fiber membrane. That is, it is considered that the crystal part is unstable in terms of energy in the whole crystal part.

このように熱誘起相分離法および非溶媒誘起相分離法では、樹脂の溶解度が高い良溶媒あるいは貧溶媒を用いることにより、樹脂と溶媒を分子レベルで混合させられるため、固化させた際に、樹脂の分子間に溶媒分子が介在する。そのため形成される分子間の空隙が多くなり、また中空糸膜の融点より低温で溶融する結晶部すなわちエネルギー的に不安定な結晶部が多くなると考えられる。このような状態の中空糸膜を熱処理することにより、破断強度が向上すると考えられる。     As described above, in the thermally induced phase separation method and the non-solvent induced phase separation method, the resin and the solvent can be mixed at the molecular level by using a good solvent or a poor solvent having high resin solubility. Solvent molecules are interposed between the resin molecules. Therefore, it is considered that there are more voids between molecules formed, and more crystal parts are melted at a temperature lower than the melting point of the hollow fiber membrane, that is, crystal parts that are energetically unstable. It is considered that the breaking strength is improved by heat-treating the hollow fiber membrane in such a state.

なお、熱誘起相分離法には主に2種類の相分離機構がある。一つは高温時に均一に溶解した樹脂溶液が、降温時に溶液の溶解能力低下が原因で樹脂の濃厚相と希薄相に分離する液−液相分離法、もう一つが高温時に均一に溶解した樹脂溶液が、降温時に樹脂の結晶化が起こりポリマー固体相とポリマー希薄溶液相に相分離する固−液相分離法である。前者の方法では主に三次元網目構造が、後者の方法では球状構造が形成される。本発明では上述した理由から、後者の相分離機構により球状構造を形成させることがより好ましい。球状構造の場合、固形部がバルキーであるため、固形部間の空隙が収縮しにくく、高い純水透過性能を維持できることも好ましい理由である。このことから固−液相分離が誘起される樹脂濃度および溶媒を選択することが好ましく採用される。また冷却する際は冷却浴を用いることが好ましく、樹脂溶液の溶媒と同じか、固化を速くさせるなどのために前記樹脂の非溶媒を低濃度で含有することが好ましい。   The thermally induced phase separation method has mainly two types of phase separation mechanisms. One is a liquid-liquid phase separation method in which a resin solution that is uniformly dissolved at a high temperature is separated into a dense phase and a dilute phase due to a decrease in the solution's dissolving ability when the temperature is lowered, and the other is a resin that is uniformly dissolved at a high temperature. This is a solid-liquid phase separation method in which crystallization of a resin occurs when the solution is cooled and phase separation is performed into a polymer solid phase and a polymer dilute solution phase. In the former method, a three-dimensional network structure is mainly formed, and in the latter method, a spherical structure is formed. In the present invention, for the reason described above, it is more preferable to form a spherical structure by the latter phase separation mechanism. In the case of a spherical structure, since the solid part is bulky, it is also preferable that the gap between the solid parts is difficult to shrink and that high pure water permeation performance can be maintained. Therefore, it is preferable to select a resin concentration and a solvent that induce solid-liquid phase separation. Moreover, when cooling, it is preferable to use a cooling bath, and it is preferable to contain the non-solvent of the resin at a low concentration in order to make the resin solution the same as the solvent of the resin solution or to accelerate the solidification.

熱誘起相分離法および非溶媒誘起相分離法に対して溶融抽出法は、樹脂と無機微粒子と樹脂への溶解度の低い有機液状体とを高温で混練することにより高温の液状体とした後に固化させ、その後に無機微粒子と有機液状体を抽出して、分子が集まった固形部の間に空隙を形成させる方法である。この方法では高温の液状体において樹脂と有機液状体とが分子レベルで混合していないため、固化させた際に樹脂の分子間に溶媒分子が介在しない。また混練温度は樹脂の融点以上である。このため、固化させた後に中空糸膜を融点未満の温度で熱処理しても、結晶状態は変化せず破断強度の向上はみられない。   In contrast to the heat-induced phase separation method and the non-solvent-induced phase separation method, the melt extraction method is a method in which a resin, inorganic fine particles, and an organic liquid material having low solubility in the resin are kneaded at a high temperature and then solidified after being made into a high temperature liquid material. Thereafter, inorganic fine particles and an organic liquid are extracted, and voids are formed between solid portions where molecules are collected. In this method, since the resin and the organic liquid are not mixed at the molecular level in the high-temperature liquid, no solvent molecules are interposed between the molecules of the resin when solidified. The kneading temperature is not less than the melting point of the resin. For this reason, even if the hollow fiber membrane is heat-treated at a temperature lower than the melting point after solidification, the crystalline state does not change and the breaking strength is not improved.

また、延伸開孔法は、樹脂を溶融賦形し、アニール処理を施し延伸する方法である。この方法も溶融抽出法と同様に、溶媒を使用せず、溶融するが、固化させた後に3倍以上の非常に高倍率で延伸することで結晶状態が変化する。しかしこの変化は結晶化の促進であり、その後融点未満の温度で熱処理しても、熱処理温度以下での寸法安定性は向上するが結晶状態はほとんど変化せず、強度の向上など本発明の効果が発現しない。   The stretch opening method is a method in which a resin is melt-shaped, annealed and stretched. This method is melted without using a solvent as in the case of the melt extraction method. However, after solidifying, the crystal state is changed by stretching at a very high magnification of 3 times or more. However, this change is the promotion of crystallization, and even if heat treatment is performed at a temperature lower than the melting point, the dimensional stability below the heat treatment temperature is improved, but the crystal state is hardly changed, and the effects of the present invention such as improvement in strength are achieved. Does not develop.

以上の理由から本発明の中空糸膜の製造方法としては、熱誘起相分離法あるいは非溶媒誘起相分離法を利用することが必要であり、さらに球状構造を形成させるため熱誘起相分離法の固−液相分離法がより好ましく採用され、得られた中空糸膜に融点に近い高温で熱処理することが必要である。   For the above reasons, it is necessary to use a thermally induced phase separation method or a non-solvent induced phase separation method as a method for producing the hollow fiber membrane of the present invention. A solid-liquid phase separation method is more preferably employed, and it is necessary to heat-treat the obtained hollow fiber membrane at a high temperature close to the melting point.

ここで、非溶媒誘起相分離法あるいは熱誘起相分離法を利用して製造された中空糸膜は、熱処理前に空隙を拡大し純水透過性能を向上させることおよび破断強度を強化させるために延伸することも好ましく採用される。延伸の条件は、好ましくは50〜120℃、より好ましくは60〜100℃の温度範囲で、好ましくは1.1〜4倍、より好ましくは1.1〜2倍の延伸倍率である。50℃未満では、安定して均質に延伸することが困難であり、120℃を超える温度では、中空糸膜が軟化し中空部がつぶれてしまうことがある。また、延伸は液体中で行う方が温度制御が容易であり好ましいが、スチームなどの気体中で行っても構わない。液体としては水が簡便で好ましいが、90℃程度以上で延伸する場合には、低分子量のポリエチレングリコールなどを用いることも好ましい。   Here, the hollow fiber membrane manufactured using the non-solvent induced phase separation method or the thermally induced phase separation method is used to expand the voids before heat treatment to improve pure water permeation performance and to enhance the breaking strength. Stretching is also preferably employed. The stretching conditions are preferably 50 to 120 ° C., more preferably 60 to 100 ° C., preferably 1.1 to 4 times, more preferably 1.1 to 2 times. If it is less than 50 ° C., it is difficult to stably and uniformly stretch, and if it exceeds 120 ° C., the hollow fiber membrane may be softened and the hollow portion may be crushed. Further, stretching is preferably performed in a liquid because temperature control is easy, but may be performed in a gas such as steam. As the liquid, water is simple and preferable, but when stretching at about 90 ° C. or higher, it is also preferable to use low molecular weight polyethylene glycol or the like.

次に熱処理の方法について、詳細に述べる。   Next, the heat treatment method will be described in detail.

熱処理する中空糸膜は、加熱により溶解させないために、乾燥状態か樹脂の非溶媒で湿潤した状態が好ましい。熱処理温度TはTm−40℃≦T<Tmが必要であり、再結晶化を促進し、破断強度をより向上させる観点から、好ましくはTm−25℃≦T<Tm、さらに好ましくはTm−15℃≦T<Tmである。T<Tm−40℃では固形部の収縮が小さく破断強度が十分に向上せず、Tm≦Tでは溶融し固形部間の空隙を維持できずに透水量が著しく低下する。また熱処理時の長さ方向の収縮率は5%以上25%以下が好ましく、破断強度を向上させ、破断伸度、純水透過性能を維持させる観点から、より好ましくは10%以上25%以下、さらに好ましくは15%以上25%以下である。ここで長さ方向の収縮率とは、
[(収縮前の中空糸膜の長さ−収縮後の中空糸膜の長さ)/(収縮前の中空糸膜の長さ)]×100(%)
で求められる。長さ方向の収縮率が5%未満では破断強度が十分に向上せず、25%を超えると純水透過性能が著しく低下する。ここで長さ方向の収縮率を、中空糸膜を緊張状態にすることで5%未満に制御した場合、その分径方向に大きく収縮する。この場合、破断強度は向上するが、同時に破断伸度が低下してしまったり、中空糸膜が過大な張力により潰れてしまったりする。
The hollow fiber membrane to be heat-treated is preferably in a dry state or wetted with a resin non-solvent so as not to be dissolved by heating. The heat treatment temperature T needs to satisfy Tm−40 ° C. ≦ T <Tm. From the viewpoint of promoting recrystallization and further improving the breaking strength, Tm−25 ° C. ≦ T <Tm, more preferably Tm−15. C ≦ T <Tm. When T <Tm−40 ° C., the shrinkage of the solid part is small and the breaking strength is not sufficiently improved. Further, the shrinkage in the length direction during heat treatment is preferably 5% or more and 25% or less, more preferably 10% or more and 25% or less from the viewpoint of improving the breaking strength and maintaining the breaking elongation and pure water permeability. More preferably, it is 15% or more and 25% or less. Here, the shrinkage in the length direction is
[(Length of hollow fiber membrane before shrinkage-Length of hollow fiber membrane after shrinkage) / (Length of hollow fiber membrane before shrinkage)] x 100 (%)
Is required. When the shrinkage in the length direction is less than 5%, the breaking strength is not sufficiently improved. Here, when the shrinkage rate in the length direction is controlled to be less than 5% by bringing the hollow fiber membrane into a tension state, the shrinkage is greatly contracted in the radial direction. In this case, the breaking strength is improved, but at the same time, the breaking elongation is lowered or the hollow fiber membrane is crushed by excessive tension.

長さ方向の収縮率を制御する手段としては、製造工程上で、収縮率に応じて後の駆動ロールの回転速度を前の駆動ロールの回転速度より減速させた二つの駆動ロール間で、加熱することが好ましく採用される。この際二つの駆動ロール間に、二つの駆動ロールの回転速度の間の回転速度で回転する駆動ロール、あるいはフリーロールを一つ以上設置してもよい。また加熱方法は、特に限定されないが、熱媒循環、電熱線ヒーターや熱風により雰囲気を加熱することによる乾熱加熱や、スチームを利用して加熱する湿熱加熱や、あるいは、ポリエチレングリコールなどの高沸点の液体を利用する高温液体中の加熱が好ましく採用される。またオフラインの場合、無張力の状態で、長さ方向の収縮率が5%以上25%以下になるように加熱温度、加熱時間を調整すればよい。加熱方法はオンラインの場合と同様である。     As a means for controlling the contraction rate in the length direction, heating is performed between two drive rolls in which the rotational speed of the subsequent drive roll is decelerated from the rotational speed of the previous drive roll in accordance with the contraction rate in the manufacturing process. It is preferably adopted. At this time, one or more drive rolls or free rolls rotating at a rotational speed between the rotational speeds of the two drive rolls may be installed between the two drive rolls. The heating method is not particularly limited, but heat medium circulation, dry heat heating by heating the atmosphere with a heating wire heater or hot air, wet heat heating using steam, or high boiling point such as polyethylene glycol Heating in a high-temperature liquid using the above liquid is preferably employed. In the case of off-line, the heating temperature and the heating time may be adjusted so that the shrinkage rate in the length direction is 5% or more and 25% or less in a tensionless state. The heating method is the same as in the online case.

膜の熱処理については一般的に知られているが、従来の技術では、熱処理温度以下での寸法安定性のために利用されている。そのため本発明に比べ熱処理温度は低く、収縮率も小さい。本発明では本質的に高い物理的強度と純水透過性能を有する球状構造の膜に、収縮率が大きくなる融点近くの高温で熱処理することにより、物理的強度を著しく高め、純水透過性能を維持できることを特徴とする。     The heat treatment of the film is generally known, but in the prior art, it is used for dimensional stability below the heat treatment temperature. Therefore, the heat treatment temperature is lower and the shrinkage rate is smaller than that of the present invention. In the present invention, a spherical film having essentially high physical strength and pure water permeation performance is heat-treated at a high temperature near the melting point where the shrinkage rate increases, thereby significantly increasing the physical strength and improving the pure water permeation performance. It can be maintained.

以下に具体的な実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。ここで本発明に関連するパラメーターは以下の方法で測定した。   Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples. Here, parameters related to the present invention were measured by the following methods.

(1)中空糸膜の融点Tm
セイコー電子(株)製の示差走査熱量計(DSC−6200)を用いて、乾燥状態の中空糸膜を密封式DSC容器に密封し、昇温速度10℃/minで昇温する過程で観察されるピークのピークトップ温度を中空糸膜の融点Tmとした。
(1) Melting point Tm of hollow fiber membrane
Using a differential scanning calorimeter (DSC-6200) manufactured by Seiko Denshi Co., Ltd., the dry hollow fiber membrane was sealed in a sealed DSC container and observed in the process of increasing the temperature at a rate of temperature increase of 10 ° C./min. The peak top temperature of the peak is the melting point Tm of the hollow fiber membrane.

(2)中空糸膜の純水透過性能
純水透過性能の測定方法は、中空糸膜の2〜5本程度からなる長さ約15cmの小型モジュールを作製し、温度25℃、ろ過差圧16kPaの条件で逆浸透膜処理水を送液し、一定時間の透過水量(m)を測定して得た値を、単位時間(hr)、単位有効膜面積(m)、50kPa当たりに換算して算出した。
(2) Pure water permeation performance of hollow fiber membrane The pure water permeation performance was measured by preparing a small module of about 15 cm in length consisting of about 2 to 5 hollow fiber membranes at a temperature of 25 ° C and a filtration differential pressure of 16 kPa. The value obtained by feeding the reverse osmosis membrane treated water under the conditions of the above and measuring the permeated water amount (m 3 ) for a certain time is converted per unit time (hr), unit effective membrane area (m 2 ), per 50 kPa And calculated.

(3)中空糸膜の破断強度、破断伸度
引張試験機((株)東洋ボールドウィン製TENSILON/RTM−100)を用いて、逆浸透膜処理水で湿潤させた中空糸膜を試験長50mm、フルスケール5kgの加重でクロスヘッドスピード50mm/分にて測定し求めた。
(3) Breaking strength and breaking elongation of hollow fiber membrane Using a tensile tester (TENSILON / RTM-100 manufactured by Toyo Baldwin Co., Ltd.), a hollow fiber membrane wetted with reverse osmosis membrane treated water has a test length of 50 mm. Measurement was made at a crosshead speed of 50 mm / min with a full scale load of 5 kg.

(4)水銀圧入法による中空糸膜の細孔径分布測定
中空糸膜を次の方法により絶乾した。熱処理をしていない、水で湿潤した状態の中空糸膜は、−20℃で約50時間凍結乾燥した後、さらに常温で約8時間真空乾燥した。熱処理した中空糸膜は、常温で約8時間真空乾燥した。この絶乾中空糸膜を約5mmの長さに切断し、試料重量を電子天秤((株)島津製作所製AW220)で秤量した。細孔径分布はマイクロメリテックス社製ポアサイザー9320により測定した。試験片を装置付属の約5cmのガラス製のセルに封入し減圧下に水銀を注入した後、装置付属の耐圧容器中でオイルを介して約4kPa〜207MPa(細孔径約7nm〜350μmに対応)の範囲で昇圧することで行った。水銀の表面張力は484dyn/cm、水銀の接触角は141.3°を用いて計算した。
(4) Measurement of pore diameter distribution of hollow fiber membrane by mercury porosimetry The hollow fiber membrane was absolutely dried by the following method. The hollow fiber membrane that was not heat-treated and was wet with water was freeze-dried at -20 ° C for about 50 hours, and then further vacuum-dried at room temperature for about 8 hours. The heat-treated hollow fiber membrane was vacuum dried at room temperature for about 8 hours. This absolutely dry hollow fiber membrane was cut into a length of about 5 mm, and the sample weight was weighed with an electronic balance (AW220 manufactured by Shimadzu Corporation). The pore size distribution was measured with a pore sizer 9320 manufactured by Micromeritex Corporation. The test piece is sealed in a glass cell of about 5 cm 3 attached to the device, and mercury is injected under reduced pressure. Then, it is about 4 kPa to 207 MPa (corresponding to pore diameter of about 7 nm to 350 μm) through oil in a pressure vessel attached to the device. ) Was performed by increasing the pressure within the range. The surface tension of mercury was calculated using 484 dyn / cm, and the contact angle of mercury was 141.3 °.

(実施例1)
重量平均分子量41.7万のフッ化ビニリデンホモポリマー28重量%とジメチルスルホキシド72重量%を120℃で溶解した。このフッ化ビニリデンホモポリマー溶液を二重管式口金の外側の管から吐出し、同時にジメチルスルホキシド90重量%の水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%の水溶液からなる温度10℃の浴中で固化させた後、水洗して90℃の水中で1.4倍に延伸した。得られた中空糸膜の融点は170℃であり、球状構造であった。その後、回転速度が8m/分と6.8m/分の二つの駆動ロール間で、熱風により雰囲気を160℃にした乾熱雰囲気中を通過させて、長さ方向に収縮率15%で収縮させた。得られた中空糸膜の性能を表1に示す。
(Example 1)
28% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 72% by weight of dimethyl sulfoxide were dissolved at 120 ° C. The vinylidene fluoride homopolymer solution was discharged from the outer tube of the double-tube die, and at the same time, an aqueous solution of 90% by weight of dimethyl sulfoxide was discharged from the inner tube of the double-tube die to obtain an 85% by weight aqueous solution of dimethyl sulfoxide. After solidifying in a bath at a temperature of 10 ° C., it was washed with water and stretched 1.4 times in water at 90 ° C. The resulting hollow fiber membrane had a melting point of 170 ° C. and a spherical structure. After that, between two drive rolls with a rotational speed of 8 m / min and 6.8 m / min, the air is passed through a dry heat atmosphere with hot air at 160 ° C. and contracted at a shrinkage rate of 15% in the length direction. It was. The performance of the obtained hollow fiber membrane is shown in Table 1.

(実施例2)
重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とγ−ブチロラクトン62重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液を二重管式口金の外側の管から吐出し、同時にγ−ブチロラクトン85重量%の水溶液を二重管式口金の内側の管から吐出し、γ−ブチロラクトン85重量%の水溶液からなる温度9℃の浴中で固化させた後、水洗して85℃の水中で1.5倍に延伸した。得られた中空糸膜の融点は173℃であり、球状構造であった。その後、回転速度が10m/分と8m/分の二つの駆動ロール間で、熱風により雰囲気を165℃にした乾熱雰囲気中を通過させて、長さ方向に収縮率20%で収縮させた。得られた中空糸膜の性能を表1に示す。
(Example 2)
38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 62% by weight of γ-butyrolactone were dissolved at 150 ° C. This vinylidene fluoride homopolymer solution was discharged from the outer tube of the double-tube base, and at the same time, an aqueous solution of 85% by weight of γ-butyrolactone was discharged from the inner tube of the double-tube base to obtain 85% by weight of γ-butyrolactone. After solidifying in a bath composed of an aqueous solution of 9 ° C., it was washed with water and stretched 1.5 times in water at 85 ° C. The resulting hollow fiber membrane had a melting point of 173 ° C. and a spherical structure. After that, between two driving rolls with a rotational speed of 10 m / min and 8 m / min, it was passed through a dry heat atmosphere with hot air at 165 ° C. and contracted at a shrinkage rate of 20% in the length direction. The performance of the obtained hollow fiber membrane is shown in Table 1.

(実施例3)
延伸後の中空糸膜を、回転速度が10m/分と9m/分の二つの駆動ロール間で、熱風により雰囲気を165℃にした乾熱雰囲気中を通過させて、長さ方向に収縮率10%で収縮させた以外は実施例2と同様にした。得られた中空糸膜の性能を表1に示す。
(Example 3)
The stretched hollow fiber membrane is passed between two drive rolls with rotational speeds of 10 m / min and 9 m / min through a dry heat atmosphere with hot air at 165 ° C., and the shrinkage rate is 10 in the length direction. The same procedure as in Example 2 was performed except that the shrinkage was%. The performance of the obtained hollow fiber membrane is shown in Table 1.

(実施例4)
延伸後の中空糸膜を、無緊張状態で、熱風により雰囲気を170℃にした乾熱雰囲気中に静置させて、長さ方向に収縮率21%で収縮させた以外は実施例2と同様にした。得られた中空糸膜の性能を表1に示す。
Example 4
The stretched hollow fiber membrane was allowed to stand in a dry heat atmosphere in which the atmosphere was set to 170 ° C. with hot air in an unstrained state, and was contracted at a contraction rate of 21% in the length direction, as in Example 2. I made it. The performance of the obtained hollow fiber membrane is shown in Table 1.

(実施例5)
延伸後の中空糸膜を、無緊張状態で、、熱風により雰囲気を160℃にした乾熱雰囲気中に静置させて、長さ方向に収縮率18%で収縮させた以外は実施例2と同様にした。得られた中空糸膜の性能を表1に示す。
(Example 5)
Example 2 except that the stretched hollow fiber membrane was allowed to stand in a dry heat atmosphere in which the atmosphere was made 160 ° C. with hot air in a non-tensioned state and contracted at a contraction rate of 18% in the length direction. The same was done. The performance of the obtained hollow fiber membrane is shown in Table 1.

(実施例6)
延伸後の中空糸膜を、無緊張状態で、、熱風により雰囲気を140℃にした乾熱雰囲気中に静置させて、長さ方向に収縮率17%で収縮させた以外は実施例2と同様にした。得られた中空糸膜の性能を表1に示す。
(Example 6)
Example 2 except that the stretched hollow fiber membrane was allowed to stand in a dry heat atmosphere in which the atmosphere was 140 ° C. with hot air in an unstrained state, and contracted at a contraction rate of 17% in the length direction. The same was done. The performance of the obtained hollow fiber membrane is shown in Table 1.

(実施例7)
延伸後の中空糸膜を、両端を固定した緊張状態で、熱風により雰囲気を160℃にした乾熱雰囲気中に静置させて長さ方向の収縮率0%とした以外は実施例2と同様にした。得られた中空糸膜の性能を表1に示す。
(Example 7)
The stretched hollow fiber membrane was left in a dry heat atmosphere with hot air at 160 ° C. in a tension state with both ends fixed, and the shrinkage in the length direction was 0%, as in Example 2. I made it. The performance of the obtained hollow fiber membrane is shown in Table 1.

(比較例1)
熱処理をしなかった以外は実施例2と同様にして得られた中空糸膜の性能を表1に示す。
(Comparative Example 1)
Table 1 shows the performance of the hollow fiber membrane obtained in the same manner as in Example 2 except that no heat treatment was performed.

(比較例2)
延伸後の中空糸膜を、無緊張状態で、熱風により雰囲気を190℃にした乾熱雰囲気中に静置させて、長さ方向に収縮率23%で収縮させた以外は実施例2と同様にした。得られた中空糸膜の性能を表1に示す。
(Comparative Example 2)
The stretched hollow fiber membrane was allowed to stand in a dry heat atmosphere in which the atmosphere was 190 ° C. with hot air in an unstrained state, and was contracted in the length direction at a contraction rate of 23%. I made it. The performance of the obtained hollow fiber membrane is shown in Table 1.

(比較例3)
延伸後の中空糸膜を、無緊張状態で、熱風により雰囲気を120℃にした乾熱雰囲気に静置させて、長さ方向に収縮率8%で収縮させた以外は実施例2と同様にした。得られた中空糸膜の性能を表1に示す。
(Comparative Example 3)
The stretched hollow fiber membrane was allowed to stand in a dry heat atmosphere in which the atmosphere was 120 ° C. with hot air in an unstrained state, and was contracted at a contraction rate of 8% in the length direction, as in Example 2. did. The performance of the obtained hollow fiber membrane is shown in Table 1.

Figure 2008105016
Figure 2008105016

本発明法により製造されるポリフッ化ビニリデン系中空糸膜は、化学的耐久性及び物理的耐久性が非常に高く、かつ高い純水透過性能を有するので、廃水処理、浄水処理、工業用水製造などの水処理において用いられる中空糸膜として有用である。   The polyvinylidene fluoride-based hollow fiber membrane produced by the method of the present invention has very high chemical durability and physical durability, and has high pure water permeation performance, so that waste water treatment, water purification treatment, industrial water production, etc. It is useful as a hollow fiber membrane used in water treatment.

Claims (5)

水銀圧入法により測定した、直径が0.01μm以上0.1μm未満の細孔の容積が10−2cm/g以下であり、かつ直径が0.1μm以上10μm以下の細孔の容積が0.2cm/g以上であることを特徴とする、ポリフッ化ビニリデン系樹脂からなる中空糸膜。 The volume of pores having a diameter of 0.01 μm or more and less than 0.1 μm, measured by a mercury intrusion method, is 10 −2 cm 3 / g or less, and the volume of pores having a diameter of 0.1 μm or more and 10 μm or less is 0 A hollow fiber membrane made of a polyvinylidene fluoride-based resin, characterized by being 2 cm 3 / g or more. 前記中空糸膜が球状構造からなる請求項1に記載の中空糸膜。 The hollow fiber membrane according to claim 1, wherein the hollow fiber membrane has a spherical structure. 前記球状構造の直径が0.5μm以上3μm以下である請求項1又は2に記載の中空糸膜。 The hollow fiber membrane according to claim 1 or 2, wherein the spherical structure has a diameter of 0.5 µm to 3 µm. 熱誘起相分離法あるいは非溶媒誘起相分離法により製造された、ポリフッ化ビニリデン系樹脂からなる中空糸膜を、該中空糸膜の融点をTmとしたとき、Tm−40℃≦T<Tmを満たす温度Tで熱処理することを特徴とするポリフッ化ビニリデン系樹脂からなる中空糸膜の製造方法。 When a hollow fiber membrane made of a polyvinylidene fluoride resin produced by a thermally induced phase separation method or a non-solvent induced phase separation method is defined as Tm−40 ° C. ≦ T <Tm, where Tm is the melting point of the hollow fiber membrane. A method for producing a hollow fiber membrane comprising a polyvinylidene fluoride resin, characterized by heat treatment at a temperature T to be satisfied. 前記熱処理時の中空糸膜の長さ方向の収縮率を5%以上25%以下とする請求項4に記載の中空糸膜の製造方法。 The manufacturing method of the hollow fiber membrane of Claim 4 which makes the shrinkage | contraction rate of the length direction of the hollow fiber membrane at the time of the said heat processing 5% or more and 25% or less.
JP2007233668A 2006-09-26 2007-09-10 Method for producing hollow fiber membrane Active JP5641553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233668A JP5641553B2 (en) 2006-09-26 2007-09-10 Method for producing hollow fiber membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006260147 2006-09-26
JP2006260147 2006-09-26
JP2007233668A JP5641553B2 (en) 2006-09-26 2007-09-10 Method for producing hollow fiber membrane

Publications (3)

Publication Number Publication Date
JP2008105016A true JP2008105016A (en) 2008-05-08
JP2008105016A5 JP2008105016A5 (en) 2010-10-21
JP5641553B2 JP5641553B2 (en) 2014-12-17

Family

ID=39438818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233668A Active JP5641553B2 (en) 2006-09-26 2007-09-10 Method for producing hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP5641553B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222262A (en) * 2009-03-19 2010-10-07 Idemitsu Kosan Co Ltd Method for producing alkoxy-n,n-dialkylacetamide and polymer solution
CN101890310A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 Porous membrane using acetic acid-2-ethoxyl ethyl ester and polyethylene glycol as diluents and preparation method
CN101961606A (en) * 2010-09-02 2011-02-02 燕山大学 Process for preparing ethylenediaminetetraacetic dianhydride modified polyvinylidene fluoride separation membrane and resin
CN101961605A (en) * 2010-09-02 2011-02-02 燕山大学 Preparation process for diethylene triaminepentaacetic acid dianhydride modified polyvinylidene fluoride separation membrane and resin
WO2011093241A1 (en) * 2010-01-28 2011-08-04 東レ株式会社 Method for producing chemicals by continuous fermentation
CN102489176A (en) * 2011-12-21 2012-06-13 天津膜天膜科技股份有限公司 Preparation method of hollow fiber internal pressure composite film
CN102806022A (en) * 2012-09-06 2012-12-05 天津工业大学 Method for preparing polyacrylonitrile (PAN)-base microporous membrane
CN103877868A (en) * 2012-12-19 2014-06-25 中国科学院大连化学物理研究所 Separation membrane preparation method and high-flux and high-strength separation membrane
WO2015087702A1 (en) * 2013-12-13 2015-06-18 東レ株式会社 Multilayer separation membrane
CN104984667A (en) * 2015-07-03 2015-10-21 鞍山中科美清节能环保技术有限公司 PVDF ultra-filtration membrane
WO2017038224A1 (en) * 2015-08-31 2017-03-09 東レ株式会社 Porous hollow fiber membrane
WO2017209151A1 (en) * 2016-05-31 2017-12-07 東レ株式会社 Porous hollow-fiber membrane and production process therefor
WO2017222062A1 (en) * 2016-06-24 2017-12-28 東レ株式会社 Composite porous hollow fiber membrane, production method for composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module
JP6264508B1 (en) * 2016-05-31 2018-01-24 東レ株式会社 Hollow fiber membrane module
WO2021020571A1 (en) 2019-07-31 2021-02-04 東レ株式会社 Separation film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106178975A (en) * 2016-08-26 2016-12-07 广州特锶源净化设备制造有限公司 A kind of Kynoar/polyacrylonitrile blended hollow-fibre membrane

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297980A (en) * 1985-10-23 1987-05-07 三菱レイヨン株式会社 Composite hollow fiber membrane
JPH02284634A (en) * 1989-04-26 1990-11-22 Toray Ind Inc Production of porous membrane of polytetrafluoroethylene resin and production of membrane separation apparatus with the same membrane
JPH06246140A (en) * 1993-02-25 1994-09-06 Dainippon Ink & Chem Inc Production of heterogeneous hollow yarn membrane
JP2001179062A (en) * 1999-12-27 2001-07-03 Asahi Kasei Corp Microporous film
JP2002253939A (en) * 2001-03-05 2002-09-10 Mitsubishi Rayon Co Ltd Method for manufacturing hollow fiber membrane
WO2003026779A1 (en) * 2001-08-01 2003-04-03 Asahi Kasei Kabushiki Kaisha Multilayer microporous film
JP2003210954A (en) * 2002-01-24 2003-07-29 Toray Ind Inc Method of manufacturing hollow fiber membrane and hollow fiber membrane
JP2005213425A (en) * 2004-01-30 2005-08-11 Nitto Denko Corp Porous film and method for producing the same
JP2006063095A (en) * 2004-08-24 2006-03-09 Kureha Corp Method for producing vinylidene fluoride-based resin porous membrane
WO2007032331A1 (en) * 2005-09-14 2007-03-22 Kureha Corporation Vinylidene fluoride resin hollow fiber porous membrane and method for production thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297980A (en) * 1985-10-23 1987-05-07 三菱レイヨン株式会社 Composite hollow fiber membrane
JPH02284634A (en) * 1989-04-26 1990-11-22 Toray Ind Inc Production of porous membrane of polytetrafluoroethylene resin and production of membrane separation apparatus with the same membrane
JPH06246140A (en) * 1993-02-25 1994-09-06 Dainippon Ink & Chem Inc Production of heterogeneous hollow yarn membrane
JP2001179062A (en) * 1999-12-27 2001-07-03 Asahi Kasei Corp Microporous film
JP2002253939A (en) * 2001-03-05 2002-09-10 Mitsubishi Rayon Co Ltd Method for manufacturing hollow fiber membrane
WO2003026779A1 (en) * 2001-08-01 2003-04-03 Asahi Kasei Kabushiki Kaisha Multilayer microporous film
JP2003210954A (en) * 2002-01-24 2003-07-29 Toray Ind Inc Method of manufacturing hollow fiber membrane and hollow fiber membrane
JP2005213425A (en) * 2004-01-30 2005-08-11 Nitto Denko Corp Porous film and method for producing the same
JP2006063095A (en) * 2004-08-24 2006-03-09 Kureha Corp Method for producing vinylidene fluoride-based resin porous membrane
WO2007032331A1 (en) * 2005-09-14 2007-03-22 Kureha Corporation Vinylidene fluoride resin hollow fiber porous membrane and method for production thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222262A (en) * 2009-03-19 2010-10-07 Idemitsu Kosan Co Ltd Method for producing alkoxy-n,n-dialkylacetamide and polymer solution
WO2011093241A1 (en) * 2010-01-28 2011-08-04 東レ株式会社 Method for producing chemicals by continuous fermentation
CN101890310A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 Porous membrane using acetic acid-2-ethoxyl ethyl ester and polyethylene glycol as diluents and preparation method
CN101961606A (en) * 2010-09-02 2011-02-02 燕山大学 Process for preparing ethylenediaminetetraacetic dianhydride modified polyvinylidene fluoride separation membrane and resin
CN101961605A (en) * 2010-09-02 2011-02-02 燕山大学 Preparation process for diethylene triaminepentaacetic acid dianhydride modified polyvinylidene fluoride separation membrane and resin
CN102489176A (en) * 2011-12-21 2012-06-13 天津膜天膜科技股份有限公司 Preparation method of hollow fiber internal pressure composite film
CN102806022A (en) * 2012-09-06 2012-12-05 天津工业大学 Method for preparing polyacrylonitrile (PAN)-base microporous membrane
CN102806022B (en) * 2012-09-06 2014-06-11 天津工业大学 Method for preparing polyacrylonitrile (PAN)-base microporous membrane
CN103877868B (en) * 2012-12-19 2016-07-06 中国科学院大连化学物理研究所 A kind of preparation method separating film and high flux high intensity separation film
CN103877868A (en) * 2012-12-19 2014-06-25 中国科学院大连化学物理研究所 Separation membrane preparation method and high-flux and high-strength separation membrane
US10040033B2 (en) 2013-12-13 2018-08-07 Toray Industries, Inc. Multilayer separation membrane
WO2015087702A1 (en) * 2013-12-13 2015-06-18 東レ株式会社 Multilayer separation membrane
KR20160097205A (en) * 2013-12-13 2016-08-17 도레이 카부시키가이샤 Multilayer separation membrane
JPWO2015087702A1 (en) * 2013-12-13 2017-03-16 東レ株式会社 Multi-layer separation membrane
KR102265728B1 (en) * 2013-12-13 2021-06-16 도레이 카부시키가이샤 Multilayer separation membrane
CN104984667A (en) * 2015-07-03 2015-10-21 鞍山中科美清节能环保技术有限公司 PVDF ultra-filtration membrane
WO2017038224A1 (en) * 2015-08-31 2017-03-09 東レ株式会社 Porous hollow fiber membrane
US10456753B2 (en) 2015-08-31 2019-10-29 Toray Industries, Inc. Porous hollow fiber membrane
JP6264508B1 (en) * 2016-05-31 2018-01-24 東レ株式会社 Hollow fiber membrane module
WO2017209151A1 (en) * 2016-05-31 2017-12-07 東レ株式会社 Porous hollow-fiber membrane and production process therefor
US11077407B2 (en) 2016-05-31 2021-08-03 Toray Industries, Inc. Porous hollow-fiber membrane and production process therefor
JPWO2017209151A1 (en) * 2016-05-31 2019-03-28 東レ株式会社 Porous hollow fiber membrane and method for producing the same
KR102267825B1 (en) 2016-05-31 2021-06-24 도레이 카부시키가이샤 Porous hollow fiber membrane and manufacturing method thereof
KR20190014507A (en) * 2016-05-31 2019-02-12 도레이 카부시키가이샤 Porous hollow fiber membrane and manufacturing method thereof
WO2017222062A1 (en) * 2016-06-24 2017-12-28 東レ株式会社 Composite porous hollow fiber membrane, production method for composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module
US11020709B2 (en) 2016-06-24 2021-06-01 Toray Industries, Inc. Composite porous hollow fiber membrane, production method for composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module
JPWO2017222062A1 (en) * 2016-06-24 2019-04-11 東レ株式会社 Composite porous hollow fiber membrane, method for producing composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and method for operating composite porous hollow fiber membrane module
KR102281508B1 (en) 2016-06-24 2021-07-26 도레이 카부시키가이샤 Composite porous hollow fiber membrane, manufacturing method of composite porous hollow fiber membrane, operating method of composite porous hollow fiber membrane module and composite porous hollow fiber membrane module
KR20190022545A (en) * 2016-06-24 2019-03-06 도레이 카부시키가이샤 Composite Porous Hollow Fiber Membrane, Manufacturing Method of Composite Porous Hollow Fiber Membrane, Operation Method of Composite Porous Hollow Fiber Membrane Module and Composite Porous Hollow Fiber Membrane Module
WO2021020571A1 (en) 2019-07-31 2021-02-04 東レ株式会社 Separation film
JPWO2021020571A1 (en) * 2019-07-31 2021-09-13 東レ株式会社 Separation membrane
KR20220019074A (en) 2019-07-31 2022-02-15 도레이 카부시키가이샤 separator
CN114206482A (en) * 2019-07-31 2022-03-18 东丽株式会社 Separation membrane
CN114206482B (en) * 2019-07-31 2023-01-03 东丽株式会社 Separation membrane
US11617991B2 (en) 2019-07-31 2023-04-04 Toray Industries, Inc. Separation film
EP4005658A4 (en) * 2019-07-31 2023-08-23 Toray Industries, Inc. Separation film

Also Published As

Publication number Publication date
JP5641553B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5641553B2 (en) Method for producing hollow fiber membrane
JP5339677B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
JP5068168B2 (en) Vinylidene fluoride resin hollow fiber porous membrane
US7351338B2 (en) Porous membrane of vinylidene fluoride resin and process for producing the same
US7780014B2 (en) Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof
JP4835221B2 (en) Hollow fiber membrane and method for producing the same
WO2003031038A1 (en) Hollow fiber film and method for production thereof
WO2007032331A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for production thereof
WO2010082437A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and process for producing same
JP4781691B2 (en) Porous membrane and method for producing the same
WO2007123004A1 (en) Porous hollow-fiber membrane of vinylidene fluoride resin and process for producing the same
WO2009119373A1 (en) Hollow-fiber membrane and process for production thereof
JP4832739B2 (en) Method for producing vinylidene fluoride resin porous membrane
KR20070031330A (en) Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
JP6662305B2 (en) Porous hollow fiber membrane
KR102524285B1 (en) porous hollow fiber membrane
JP2010137196A (en) Method for manufacturing porous hollow-fiber membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131018

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

R151 Written notification of patent or utility model registration

Ref document number: 5641553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151