JPH02284634A - Production of porous membrane of polytetrafluoroethylene resin and production of membrane separation apparatus with the same membrane - Google Patents

Production of porous membrane of polytetrafluoroethylene resin and production of membrane separation apparatus with the same membrane

Info

Publication number
JPH02284634A
JPH02284634A JP10814889A JP10814889A JPH02284634A JP H02284634 A JPH02284634 A JP H02284634A JP 10814889 A JP10814889 A JP 10814889A JP 10814889 A JP10814889 A JP 10814889A JP H02284634 A JPH02284634 A JP H02284634A
Authority
JP
Japan
Prior art keywords
membrane
resin
polytetrafluoroethylene resin
water
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10814889A
Other languages
Japanese (ja)
Other versions
JPH0734854B2 (en
Inventor
Takashi Kawai
孝 河合
Kunitada Fukada
深田 国忠
Tomoko Katsu
勝 智子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1108148A priority Critical patent/JPH0734854B2/en
Publication of JPH02284634A publication Critical patent/JPH02284634A/en
Publication of JPH0734854B2 publication Critical patent/JPH0734854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a porous membrane capable of being made effectively hydrophilic and ensuring satisfactory water permeability by heat-treating a molded body of a mixture of polytetrafluoroethylene resin dispersed in a liq. with a fiber forming polymer, removing the polymer and sticking a surfactant. CONSTITUTION:Polytetrafluoroethylene(PTFE) resin dispersed in a liq. is mixed with a fiber forming polymer such as viscose and this mixture is molded. The molded body is heat-treated at the m.p. of the PTFE resin or above, then the fiber forming polymer is removed. A surfactant having <=30dyn/cm surface tension at 25 deg.C when dissolved in water to 0.1wt.% concn. is then stuck. Since the resulting porous membrane is made effectively hydrophilic by the surfactant and water can be passed through the membrane only by applying a slight water pressure, a significant separating effect is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は逆浸透、限外ろ過、精密ろ過など濃縮、物質分
離に適する新規なポリテトラフルオロエチレン系樹脂多
孔膜の製法及びその膜を用いた膜分離装置の製法に関す
るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a new polytetrafluoroethylene resin porous membrane suitable for concentration and substance separation such as reverse osmosis, ultrafiltration, and microfiltration, and the use of the membrane. This paper relates to a method for manufacturing a membrane separation device.

(従来の技術) 従来より、逆浸透、限外ろ過、精密ろ過などに、セルロ
ースアセテート系、ポリエチレン、ポリプロピIノン系
、ポリメチルメタクリレート系、ポリアクリロニトリル
系、ポリスルホン系などの多孔膜が用いられてきたが、
透過性能、機械的強度、耐熱性、耐アルカリ性、耐酸性
、耐溶媒性、耐薬品性などに欠点を有していた。
(Prior art) Porous membranes such as cellulose acetate-based, polyethylene, polypropylene-based, polymethyl methacrylate-based, polyacrylonitrile-based, and polysulfone-based membranes have been used for reverse osmosis, ultrafiltration, microfiltration, etc. However,
It had drawbacks in permeation performance, mechanical strength, heat resistance, alkali resistance, acid resistance, solvent resistance, chemical resistance, etc.

かかる観点から、機械的強度、耐熱性、耐アルカリ性、
耐酸性、耐溶媒性、耐薬品性などに優れた特性を有する
ポリテトラフルオロエチレン系樹脂が注目され、多孔膜
化が検討されてきた。例えば、特公昭42−13560
号、特開昭46−7284号、特開昭50−71759
号にあるような、液体状潤滑剤を含む未焼結ポリテトラ
フルオロエチレン樹脂混和物、あるいは固体状造孔剤と
樹脂分散液との凝集混合物からの成形物を、未焼結状態
で少なくとも一方向に延伸した状態で約327℃以上に
加熱することを特徴とした方法で得た例がこれまでにあ
るが、膜の多孔構造の制御が不十分で性能が低いもので
あるか、製膜性が悪く、膜厚の厚いものしかできず、か
つ親水化の効果が十分でないため通水時の水圧負担が大
きいという問題があった。
From this point of view, mechanical strength, heat resistance, alkali resistance,
Polytetrafluoroethylene resins, which have excellent properties such as acid resistance, solvent resistance, and chemical resistance, have attracted attention, and the creation of porous membranes has been studied. For example, Special Publication No. 42-13560
No., JP-A-46-7284, JP-A-50-71759
A molded article made from an unsintered polytetrafluoroethylene resin mixture containing a liquid lubricant or an agglomerated mixture of a solid pore-forming agent and a resin dispersion, as described in No. So far, there have been examples in which membranes have been obtained using a method characterized by heating the membrane to a temperature of approximately 327°C or higher in a stretched state, but either the pore structure of the membrane is insufficiently controlled and the performance is low, or the membrane formation process is poor. There were problems in that it had poor properties and could only be formed with a thick film, and the hydrophilic effect was not sufficient, resulting in a large water pressure burden when water was passed through.

(発明が解決しようとする課題) 本発明者らは上記欠点のないポリテトラフルオロエチレ
ン系樹脂多孔膜及びそれを用いた膜分離装置について鋭
意検討した結果、本発明に到達した。
(Problems to be Solved by the Invention) The present inventors have arrived at the present invention as a result of intensive studies on a polytetrafluoroethylene resin porous membrane and a membrane separation device using the same that do not have the above-mentioned drawbacks.

(課題を解決するための手段) 本発明は次の構成を有する。(Means for solving problems) The present invention has the following configuration.

(1)ポリテトラフルオロエチレン系樹脂分散液と繊維
形成性重合体を混合して得た均一混合物を成形し、得ら
れた成形物を樹脂の融点以上の温度で熱処理した後、繊
維形成性重合体を除去し、次いで0.1重量%(以下w
t%と略称する)水溶液の表面張力が3 Q dyne
s/cm (25℃)以下の界面活性剤を付着させるこ
とを特徴とするポリテトラフルオロエチレン系樹脂多孔
膜の製法。
(1) A homogeneous mixture obtained by mixing a polytetrafluoroethylene resin dispersion and a fiber-forming polymer is molded, and the resulting molded product is heat-treated at a temperature higher than the melting point of the resin. The coalescence was removed, and then 0.1% by weight (hereinafter w
The surface tension of an aqueous solution (abbreviated as t%) is 3 Q dyne
s/cm (25° C.) or less.

(2)ポリテトラフルオロエチレン系樹脂分散液と繊維
形成性重合体を混合して得た均一混合物を成形し、得ら
れた成形物を樹脂の融点以上の温度で熱処理した後、繊
維形成性重合体を除去し、次いで下記工程の組合わせ処
理を行うことを特徴とする膜分離装置の製法。
(2) A homogeneous mixture obtained by mixing a polytetrafluoroethylene resin dispersion and a fiber-forming polymer is molded, and the resulting molded product is heat-treated at a temperature higher than the melting point of the resin. A method for manufacturing a membrane separation device, which comprises removing coalescence and then performing a combination treatment of the following steps.

■0.1wt%水溶液の表面張力が30 dynes/
cm(25℃)以下である界面活性剤を付着させる工程
■The surface tension of 0.1wt% aqueous solution is 30 dynes/
A step of attaching a surfactant having a temperature of not more than cm (25° C.).

■ポリテトラフルオロエチレン系樹脂多孔膜をケース内
に収納し、護膜を介して流路を形成し、護膜及び該ケー
スの端部を樹脂でシール固定する工程。
(2) The process of storing a porous polytetrafluoroethylene resin membrane in a case, forming a flow path through a protective membrane, and sealing and fixing the protective membrane and the end of the case with resin.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いる界面活性剤水溶液の表面張力が30 d
7nes/am (25℃)よりも高いと目的とする親
水化の効果が十分でない。したがって、0. 1wt%
水溶液の表面張力が30 d7nes/am (25℃
)以下であることが必須であり、膜の素材によっては2
5 dynes/cm (25℃)以下が好ましく、さ
らには20 dynes/cm (25℃)以下がより
好ましい。
The surface tension of the surfactant aqueous solution used in the present invention is 30 d.
If it is higher than 7nes/am (25°C), the desired hydrophilic effect will not be sufficient. Therefore, 0. 1wt%
The surface tension of an aqueous solution is 30 d7nes/am (25℃
) or below, and depending on the material of the membrane, 2
It is preferably 5 dynes/cm (25°C) or less, and more preferably 20 dynes/cm (25°C) or less.

その他には界面活性剤に制限は特になく、陰イオン系、
陽イオン系、両性系、非イオン性系の界面活性剤の中か
ら選択でき、単独または混合して使用することができる
。とりわけ耐熱性、耐薬品性が必要な場合には炭化水素
系界面活性剤の疎水基の水素原子をフッ素原子で全部あ
るいは一部置換したフッ化炭素系化合物であるフッ素系
界面活性剤等が好ましい。
There are no other restrictions on surfactants; anionic,
The surfactants can be selected from cationic, amphoteric, and nonionic surfactants, and can be used alone or in combination. In particular, when heat resistance and chemical resistance are required, fluorinated surfactants, which are fluorocarbon compounds in which all or part of the hydrogen atoms in the hydrophobic group of the hydrocarbon surfactant are replaced with fluorine atoms, are preferred. .

本発明では、ポリテトラフルオロエチレン系樹脂多孔膜
に0゜1wt%水溶液の表面張力が3゜d7nes/c
m (25℃)以下の界面活性剤が付着していることに
特徴があるが、加圧しただけで通水するためには膜の表
面だけではなく膜内部の多孔構造組織にも該界面活性剤
が付着しているのが好ましい。
In the present invention, the polytetrafluoroethylene resin porous membrane has a surface tension of 3°d7nes/c of a 0°1 wt% aqueous solution.
It is characterized by the adhesion of a surfactant with a temperature of less than Preferably, the agent is attached.

したがって、付着させる方法としては、該界面活性剤の
溶液を膜内部の多孔構造組織まで注入することが好まし
い。具体的には、膜あるいはモジュールを該界面活性剤
溶液に浸漬して減圧するかあるいはモジュールで加圧し
て膜内部に該界面活性剤溶液を通液した後、乾燥する方
法が好ましい。
Therefore, as a method for adhesion, it is preferable to inject a solution of the surfactant into the porous structure inside the membrane. Specifically, it is preferable to immerse the membrane or module in the surfactant solution and reduce the pressure, or apply pressure with the module to pass the surfactant solution inside the membrane, and then dry it.

本発明で用いる界面活性剤の付着量は、用いたポリテト
ラフルオロエチレン系樹脂および界面活性剤の種類によ
って異なるので一部にはいえないが、膜の重量に対して
0.001wt%以上でないと効果がなく、好ましくは
0.01wt%以上がよく、さらには0.05wt%以
上がより好ましい。
The amount of the surfactant used in the present invention varies depending on the type of polytetrafluoroethylene resin and surfactant used, so it cannot be determined in part, but it must be 0.001 wt% or more based on the weight of the membrane. Since there is no effect, the content is preferably 0.01 wt% or more, and more preferably 0.05 wt% or more.

一方、付着量が多くなると膜にべとつきがみられたり、
膜の表面に粉が浮いたりするので100wt%以下がよ
く、好ましくは5Qwt%以下がよく、さらにはl O
w t%以下がより好ましい。
On the other hand, when the amount of adhesion increases, the film becomes sticky,
Since powder may float on the surface of the membrane, the content is preferably 100wt% or less, preferably 5Qwt% or less, and even lO
More preferably, it is less than wt%.

本発明におけるポリテトラフルオロエチレン系樹脂多孔
膜は、分離孔径が0.01〜2μであるものならばすべ
てよいが、単位体積当りの有効面積を大きくとって、装
置の小型化およびコストダウンができて経済的であると
いう点から中空糸膜が好ましいが、中空糸膜において中
空部の圧力損失をおさえるためには中空率(膜部と中空
部を合せた全体の断面積に対する中空部の断面積の割合
い)が高いほどよく、30%以上、好ましくは35%以
上がよく、さらには40%以上がより好ましい。
The porous polytetrafluoroethylene resin membrane used in the present invention may be any membrane as long as it has a separation pore diameter of 0.01 to 2μ, but it is possible to downsize the device and reduce costs by increasing the effective area per unit volume. Hollow fiber membranes are preferable because they are economical, but in order to suppress the pressure loss in the hollow part of the hollow fiber membrane, the hollow ratio (the cross-sectional area of the hollow part relative to the total cross-sectional area of the membrane part and the hollow part) The higher the ratio (I), the better; it is 30% or more, preferably 35% or more, and even more preferably 40% or more.

本発明におけるポリテトラフルオロエチレン系樹脂は、
テトラフルオロエチレンホモポリマーテトラフルオロエ
チレン−パーフルオロアルキルビニルエーテル共重合体
、テトラフルオロエチレン−へキサフルオロプロピレン
共重合体、テトラフルオロエチレン−エチレン共重合体
などのテトラフルオロエチレンを主体とした共重合体単
独あるいはそれらの混合物である。
The polytetrafluoroethylene resin in the present invention is
Tetrafluoroethylene homopolymer Single copolymer based on tetrafluoroethylene, such as tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, and tetrafluoroethylene-ethylene copolymer Or a mixture thereof.

本発明におけるポリテトラフルオロエチレン系樹脂は、
水系または有機系分散液として使用されるが、界面活性
剤を含む水系媒体中で乳化重合によって得られる水系分
散液あるいはその濃縮液などが特に好ましく、さらにく
わしくは、粒子径1μ以下、より好ましくは0.8μ以
下のポリテトラフルオロエチレン系樹脂粒子の均一分散
液が好ましい。
The polytetrafluoroethylene resin in the present invention is
Although it is used as an aqueous or organic dispersion, an aqueous dispersion obtained by emulsion polymerization in an aqueous medium containing a surfactant or a concentrate thereof is particularly preferable, and more specifically, a particle size of 1 μm or less is more preferable. A uniform dispersion of polytetrafluoroethylene resin particles of 0.8 μm or less is preferred.

本発明における繊維形成性重合体とは、繊維化可能でし
かもポリテトラフルオロエチレン系樹脂分散液と混合し
て成形可能な均一混合物をつくる重合体であればすべて
よいが、水系分散液の場合にはビスコース(セルロース
キサントゲン酸すトリウム系)、ポリビニルアルコール
系、アルギン酸ソーダ系の重合体単独あるいはそれらの
混合物が好ましい。
The fiber-forming polymer in the present invention may be any polymer that can be made into fibers and forms a homogeneous mixture that can be molded by mixing with a polytetrafluoroethylene resin dispersion, but in the case of an aqueous dispersion, is preferably a viscose (cellulose xanthate-based), polyvinyl alcohol-based, or sodium alginate-based polymer alone or a mixture thereof.

本発明における繊維形成性重合体のポリテトラフルオロ
エチレン系樹脂に対する混合割合は、用いた繊維形成性
重合体の種類によって異なるが、好ましくは10〜30
0 w t%、さらに好ましくは30〜200wt%が
よい。繊維形成性重合体の混合割合が10wt%より少
ないと、平均孔径がo、oiμ以上の多孔膜が得られず
、300wt%より多いと膜の機械的強度が低く実用的
でない。
The mixing ratio of the fiber-forming polymer to the polytetrafluoroethylene resin in the present invention varies depending on the type of fiber-forming polymer used, but is preferably 10 to 30
0 wt%, more preferably 30 to 200 wt%. If the mixing ratio of the fiber-forming polymer is less than 10 wt%, a porous membrane with an average pore diameter of o, oiμ or more cannot be obtained, and if it is more than 300 wt%, the mechanical strength of the membrane is low and is not practical.

本発明において、ポリテトラフルオロエチレン系樹脂分
散液と繊維形成性重合体を混合する時、添加剤を混合し
てもよい。
In the present invention, when mixing the polytetrafluoroethylene resin dispersion and the fiber-forming polymer, additives may be mixed.

添加剤としては、加熱分解、抽出、溶解、放射線分解な
どにより除去することができるものであればすべてよい
が、例えば、珪酸力ウシラム、珪酸アルミニウムなどの
珪酸塩類、炭酸カルシウム、炭酸マグネシウムなどの炭
酸塩類、リン酸ナトリウム、リン酸カルシウムなどのリ
ン酸塩類、酢酸塩類、シュウ酸塩類、塩化アンモニウム
、塩化ナトリウムなどの塩酸塩類、硫酸ナトリウム、硫
酸バリウムなどの硫酸塩類、硝酸塩類、過塩素酸塩類な
どの弱酸・強酸塩類、鉄粉などの金属粉、アルミナ、ジ
ルコニア、酸化マグネシウムなどの金属酸化物類、微粉
珪酸、カオリンクレー、珪藻土などの無機微粉体、ポリ
アミド系、ポリエステル系、ポリオレフィン系、ポリス
ルホン系、ポリ塩化ビニル系、ポリフッ化ビニリデン系
、ポリフッ化ビニル系、などの樹脂微粉体、シリコンオ
イル、ヘキサフルオロプロピレノキサイドオリゴマーク
ロロトリフルオロエチレノリゴマー、フタル酸エステル
類、トリメリット酸エステル類、セパチン酸エステル類
、アジピン酸エステル類、アゼライン酸エステル類、リ
ン酸エステル類などの耐熱性有機物などから選択して、
単独または混合して使用することができる。
Any additive may be used as long as it can be removed by thermal decomposition, extraction, dissolution, radiolysis, etc., but examples include silicates such as silicate, aluminum silicate, and carbonates such as calcium carbonate and magnesium carbonate. Salts, phosphates such as sodium phosphate and calcium phosphate, hydrochlorides such as acetates, oxalates, ammonium chloride and sodium chloride, sulfates such as sodium sulfate and barium sulfate, nitrates, and weak acids such as perchlorates.・Strong acid salts, metal powders such as iron powder, metal oxides such as alumina, zirconia, and magnesium oxide, inorganic fine powders such as finely divided silicic acid, kaolin clay, and diatomaceous earth, polyamides, polyesters, polyolefins, polysulfones, and polyesters. Resin fine powder such as vinyl chloride, polyvinylidene fluoride, polyvinyl fluoride, silicone oil, hexafluoropropylenoxide oligomer, chlorotrifluoroethylene oligomer, phthalate esters, trimellitic acid esters, cepatic acid Select from heat-resistant organic substances such as esters, adipate esters, azelaic esters, phosphoric esters, etc.
Can be used alone or in combination.

本発明における添加剤の全量は、用いた添加剤、ポリテ
トラフルオロエチレン系樹脂および繊維形成性重合体の
種類によって異なるので一概にはいえないが、ポリテト
ラフルオロエチレン系樹脂に対して1000 w t%
以下がよく、1000 w t%より多いと膜の機械的
強度が低く実用的でない。
The total amount of additives in the present invention varies depending on the type of additive, polytetrafluoroethylene resin, and fiber-forming polymer used, so it cannot be determined unconditionally, but it is 1000 wt for polytetrafluoroethylene resin. %
The content should preferably be below 1000 wt%, and if it exceeds 1000 wt%, the mechanical strength of the membrane will be low and not practical.

一方、添加剤は加えることによって多孔構造を一層増加
調整することができるので好ましいが、IQwt%以上
でないと添加効果がみられない。30〜700 w t
%の範囲がより好ましく、さらに好ましくは50〜50
0wt%の範囲がよい。
On the other hand, additives are preferable because they can further increase and adjust the pore structure, but the effect of addition is not seen unless the additive is IQwt% or more. 30-700 wt
The range of % is more preferable, and even more preferably 50 to 50
A range of 0 wt% is preferable.

本発明ではさらに分散剤を混合してもよい。添加剤単独
ではその凝集がみられ、フィルターづまりをおこしてト
ラブルの原因になったり、成形物が不均一になったり、
成形物に欠陥ができたりして問題となる場合に分散剤を
混合使用するのが好ましい。
In the present invention, a dispersant may be further mixed. Additives alone can cause agglomeration, which can clog filters and cause problems, and molded products may become uneven.
It is preferable to mix and use a dispersant when problems occur such as defects in the molded product.

分散剤としては、添加剤の凝集をおさえる効果があるも
のならばすべてよく、市販の各種の界面活性剤や解こう
剤などの中から選択できる。
Any dispersant may be used as long as it has the effect of suppressing agglomeration of additives, and can be selected from various commercially available surfactants, peptizers, and the like.

界面活性剤としては、例えば陰イオン系、陽イオン系、
両性系、非イオン性系の中から最適のHLBを界面活性
剤を選択することができ、フッ素系界面活性剤も好まし
い。
Examples of surfactants include anionic, cationic,
The optimal HLB surfactant can be selected from amphoteric surfactants and nonionic surfactants, and fluorine surfactants are also preferred.

解こう剤としては、例えばアクリル酸オリゴマ、アクリ
ル酸共重合体オリゴマー、メタクリル酸オリゴマー、メ
タクリル酸共重合体オリゴマーなどのフリー酸型あるい
は塩型などの中から適宜選択することができる。
The peptizer can be appropriately selected from free acid type or salt type, such as acrylic acid oligomers, acrylic acid copolymer oligomers, methacrylic acid oligomers, and methacrylic acid copolymer oligomers.

本発明における分散剤の添加量は、用いた添加剤によっ
て異なるので一概にはいえないが、添加剤に対してO,
01wt%以上でないと添加効果がみられない。0.1
〜100wt%の範囲がより好ましく、さらに好ましく
は1〜50wt%の範囲がよい。
The amount of dispersant added in the present invention varies depending on the additive used, so it cannot be determined unconditionally, but the amount of O,
If the amount is less than 0.01 wt%, no effect of addition will be observed. 0.1
The range is more preferably 1 to 100 wt%, and even more preferably 1 to 50 wt%.

本発明ではポリテトラフルオロエチレン系樹脂分散液と
繊維形成性重合体を100℃以下の温度で混合すること
が好ましく、この100℃より高温で混合すると分散液
中の樹脂粒子や添加剤が凝集して、成形時にフィルタづ
まりをおこしてトラブルの原因になったり、成形物が不
均一になったり、成形物に欠陥ができたりして問題とな
る場合がある。さらには80℃以下、60℃以下と温度
が低い方が好ましく、より好ましくは40℃以下がよい
In the present invention, it is preferable to mix the polytetrafluoroethylene resin dispersion and the fiber-forming polymer at a temperature of 100°C or lower; if they are mixed at a temperature higher than 100°C, the resin particles and additives in the dispersion will aggregate. This may cause problems such as filter clogging during molding, causing problems, or non-uniformity of the molded product, or defects in the molded product. Furthermore, the temperature is preferably as low as 80°C or lower, 60°C or lower, and more preferably 40°C or lower.

本発明における均一混合物とは、成形物が得られるもの
ならばすべてよいが、成形温度で粘度が10〜1000
0ポイズの液体が好ましく用いられ、さらに好ましくは
100〜5000ポイズの液体がよい。
The homogeneous mixture in the present invention may be any mixture as long as a molded product can be obtained, but the mixture has a viscosity of 10 to 1000 at the molding temperature.
A liquid of 0 poise is preferably used, more preferably a liquid of 100 to 5000 poise.

本発明における均一混合物中のポリテトラフルオロエチ
レン系樹脂の濃度は、用いた繊維形成性重合体や添加剤
の種類、成形方法などによって異なるが、通常1〜50
wt%、好ましくは5〜30wt%の範囲である。
The concentration of the polytetrafluoroethylene resin in the homogeneous mixture in the present invention varies depending on the fiber-forming polymer used, the type of additives, the molding method, etc., but is usually 1 to 50%.
wt%, preferably in the range of 5 to 30 wt%.

本発明における成形物は、圧延成形、押出し成形あるい
は両者を組合わせた成形方法で得られる物であり、目的
とする成形物の形状にあわせてシート状物の製造あるい
は中空糸などの紡糸が選ばれるが、種々の成形条件がと
れて成形物の構造が制御しやすいという点から中空糸の
紡糸が好ましい。
The molded product in the present invention is obtained by rolling, extrusion, or a combination of the two, and manufacturing of a sheet-like product or spinning of hollow fibers is selected depending on the shape of the desired molded product. However, hollow fiber spinning is preferred because it allows various molding conditions to be used and the structure of the molded product can be easily controlled.

例えば、成形用混合物をガラス板、金属板などの平板あ
るいは連続したベルトなどに流延した後、凝固液に浸漬
して凝固させるか、成形用混合物を平膜用スリット口金
から押出して、直接あるいはいったん空気中を通して凝
固液に導いて凝固させるか、または中空糸用口金から、
成形用混合物と同時に芯に非凝固性あるいは凝固性の流
体を押出して、直接あるいはいったん空気中を通って凝
固液中に導くか、あるいは、成形用混合物と同時に芯に
凝固液を押出して、直接あるいはいったん空気中を通っ
て非凝固性の流体中に導いて凝固させる方法で成形でき
る。ここでいう非凝固性流体とは、凝固作用のないもの
ならばすべてよいが、用いた繊維形成性重合体の種類に
よって異なるため一概にはいえないが、例えば、水、グ
リセリン、エチレングリコール、ポリエチレングリコー
ル、流動パラフィン、イソプルピルミリステート、フレ
オンなどや、それらの混合液体、空気、窒素、不活性ガ
スなどの気体などから適宜選んで用いられる。
For example, after casting the molding mixture onto a flat plate such as a glass plate or metal plate or a continuous belt, the molding mixture can be immersed in a coagulating liquid to solidify it, or the molding mixture can be extruded through a slit die for flat membranes and then directly or Either by passing it through the air and introducing it into a coagulating liquid to solidify it, or from a hollow fiber nozzle.
Either a non-coagulable or coagulable fluid is extruded through the core at the same time as the molding mixture and the fluid is introduced directly or once through the air into the coagulation liquid, or a coagulation liquid is extruded through the core at the same time as the molding mixture and directly introduced. Alternatively, it can be formed by passing through the air and introducing it into a non-solidifying fluid to solidify it. The non-coagulating fluid mentioned here may be any fluid as long as it does not have a coagulating effect, but it cannot be generalized because it depends on the type of fiber-forming polymer used, but examples include water, glycerin, ethylene glycol, and polyethylene. It can be appropriately selected from glycol, liquid paraffin, isopropyl myristate, freon, etc., mixed liquids thereof, air, nitrogen, and gases such as inert gases.

口金温度は、原液の粘度との関係から製糸性に大きく影
響するため特定することはできないが、通常120℃以
下の温度が良い。さらには凝固液温度より20℃低い温
度以上であることが好ましく、口金面と凝固液面の間の
距離が短い時に顕著になる口金面への蒸気の凝結による
製糸性の悪化を防ぐことができる。
The temperature of the die cannot be specified because it greatly affects the spinning properties due to its relationship with the viscosity of the stock solution, but a temperature of 120° C. or lower is usually good. Furthermore, the temperature is preferably at least 20°C lower than the coagulating liquid temperature, and can prevent deterioration in spinning properties due to steam condensation on the die surface, which becomes noticeable when the distance between the die surface and the coagulating liquid surface is short. .

押出した成形用混合物が一旦空気中を通って凝固液中に
導く場合の空気走行中の条件は、成形物の寸法、成形速
度などによってかわるものであり、−船釣に規定するこ
とはできないが、口金面から凝固液に導入されるまでの
距離は、通常O02〜200cmの範囲が成形の安定性
の点から好まj7い。雰囲気温度は、通常、大気温度も
しくは室内温度であるが、場合によっては、冷却して行
うこともできる。
The conditions during air travel when the extruded molding mixture passes through the air and is introduced into the coagulation liquid vary depending on the size of the molded product, molding speed, etc. - Although they cannot be specified for boat fishing, The distance from the mouth surface to the point where the material is introduced into the coagulating liquid is preferably in the range of 02 to 200 cm from the viewpoint of molding stability. The ambient temperature is usually atmospheric temperature or indoor temperature, but depending on the case, it may be cooled.

凝固液としては、本発明の繊維形成性重合体の非溶媒で
あってかつ成形用混合物の溶媒と親和性があって相溶し
うるちのならばすべてよいが、用いた繊維形成性重合体
の種類によって異なり、例えば、硫酸ナトリウム、硫酸
アンモニウム、硫酸亜鉛、硫酸カリウム、硫酸亜鉛、硫
酸銅、硫酸マグネシウム、硫酸アルミニウム、塩化カル
シウム、塩化マグネシウム、塩化亜鉛などの無機塩水溶
液、硫酸、塩酸、硝酸、酢酸、17ゆう酸、はう酸など
の酸、あるいはこれらの混合物などから適宜選んで用い
られる。また、凝固液の温度は、成形性に大きな影響を
与えるが、通常、0〜98℃付近で実施される。
Any coagulating liquid may be used as long as it is a non-solvent for the fiber-forming polymer of the present invention and has affinity and miscibility with the solvent of the molding mixture. Varies depending on the type, such as aqueous solutions of inorganic salts such as sodium sulfate, ammonium sulfate, zinc sulfate, potassium sulfate, zinc sulfate, copper sulfate, magnesium sulfate, aluminum sulfate, calcium chloride, magnesium chloride, zinc chloride, sulfuric acid, hydrochloric acid, nitric acid, acetic acid. , 17 oxalic acid, halonic acid, or a mixture thereof. Further, the temperature of the coagulating liquid has a large influence on moldability, but it is usually carried out at around 0 to 98°C.

本発明における熱処理は、ポリテトラフルオロエチレン
系樹脂粒子を互いに融着させることができる条件であれ
ばすべてよく、真空中、空気中、窒素中、酸素中、硫黄
ガス中、ヘリウムガス中、シリコンオイル中などの種々
の雰囲気下、ポリテトラフルオロエチレン系樹脂の融点
以上の温度で実施できる。また成形物を張力下または無
張力下で熱処理を行なうことができ、さらにバッチ処理
あるいは連続処理の選択もできる。さらにくわ(7くは
固定しないで自由の状態で処理する方法、熱処理前に延
伸して処理枠に固定するか、定長あるいは収縮率をきめ
た条件で処理枠に固定して処理する方法、あるいは延伸
、定長、収縮のいずれかまたはそれらの組合わせの条件
で連続的に処理する方法も適宜採用できる。
The heat treatment in the present invention may be performed under any conditions as long as the polytetrafluoroethylene resin particles can be fused together, such as in vacuum, air, nitrogen, oxygen, sulfur gas, helium gas, silicone oil, etc. It can be carried out in various atmospheres such as inside the room at a temperature higher than the melting point of the polytetrafluoroethylene resin. Furthermore, the molded product can be heat-treated under tension or without tension, and batch processing or continuous processing can also be selected. In addition, hoes (7) are processed in a free state without being fixed, stretched before heat treatment and fixed to the processing frame, or fixed to the processing frame under conditions with a fixed length or shrinkage rate, Alternatively, a method of continuous treatment under the conditions of stretching, constant length, shrinkage, or a combination thereof can also be adopted as appropriate.

また、延伸は熱処理の前、後、熱処理中に行なうことが
でき、また組合わせて行なうこともできるが、あまり延
伸倍率が高すぎると膜面に平行な面でみた孔の形状に実
質的な配向のない膜が得られないか、孔径の制御が不可
能で透過性能の信頼性の低い膜しか得られない。
In addition, stretching can be performed before, after, or during heat treatment, or can be performed in combination, but if the stretching ratio is too high, the shape of the pores as seen in a plane parallel to the membrane surface will be affected. Either it is impossible to obtain a membrane without orientation, or it is impossible to control the pore size, resulting in a membrane with low reliability in permeation performance.

通常延伸倍率は1−11−・3倍、延伸温度は室温から
熱処理温度の範囲で適宜選択でき、また延伸を2方向に
行なうこともできる。
Usually, the stretching ratio is 1-11-.3 times, and the stretching temperature can be appropriately selected within the range from room temperature to the heat treatment temperature, and stretching can also be carried out in two directions.

本発明では、熱処理後の成形物から繊維形成性重合体を
除去することにより多孔膜を形成するが、ここでいう繊
維形成性重合体は熱処理によって当初のものとは異なっ
ていることもある。
In the present invention, a porous membrane is formed by removing the fiber-forming polymer from the molded article after heat treatment, but the fiber-forming polymer referred to here may differ from the original one due to the heat treatment.

本発明における熱処理後の成形物から繊維形成性重合体
および必要に応じて添加j−た添加剤を除去する方法は
液体、ガス、熱、放射線などを使って行なうような、溶
解法、分解法、あるいはこれらを組合わせた方法が採用
でき、バッチ式、連続的に実施できる。また成形物をモ
ジュールあるいはエレメントに組込んでから実施するこ
ともてきる。
In the present invention, the fiber-forming polymer and optionally added additives can be removed from the heat-treated molded product by a dissolution method or a decomposition method using liquid, gas, heat, radiation, etc. , or a combination of these methods can be adopted, and can be carried out batchwise or continuously. It is also possible to carry out the process after incorporating the molded product into a module or element.

用いた繊維形成性重合体および添加剤の種類によって異
なるので一部にはいえないが、通常、硫酸、硝酸、塩酸
、過塩素酸フッ酸などの酸の()1独もしくは混合物、
あるいは水酸化すトリウム、水酸化カリウムなどのアル
カリの単独もしくは混合物を主成分とした液体を室温か
ら200℃の範囲の温度に加熱した中に熱処理後の成形
物を浸漬する方法、あるいはモジュールあるいはエレメ
ントにj7てからこの液体に浸漬あるいはこの液体を循
環させる方法が簡便に用いられる。
It depends on the type of fiber-forming polymer and additives used, so it cannot be said in part, but it is usually a mixture of acids such as sulfuric acid, nitric acid, hydrochloric acid, perchloric acid and hydrofluoric acid,
Alternatively, a method of immersing the heat-treated molded product in a liquid mainly composed of alkali such as thorium hydroxide or potassium hydroxide alone or in a mixture heated to a temperature in the range of room temperature to 200°C, or a module or element. A method of immersing or circulating this liquid after washing is easily used.

モジュールあるいはエレメントにしてから繊維形成性重
合体を除去する場合には、成形物のシール部の繊維形成
性重合体が除去しにくく微量ではあるが残るため、特に
溶出物が問題になる場合には、シールする前に熱処理成
形物の端部のみ繊維形成性重合体を除去しておくことが
好ましい。
When removing the fiber-forming polymer after making it into a module or element, it is difficult to remove the fiber-forming polymer from the sealing part of the molded product and it remains, albeit in a small amount, especially if eluted matter is a problem. It is preferable to remove the fiber-forming polymer from only the ends of the heat-treated molded product before sealing.

また、このようにして製膜した膜にさらに延伸処理を行
なって、膜の透過性能や機械的強度、寸法安定性などを
変えることもできる。延伸倍率は1゜1〜3倍程度で、
温度は通常室温からポリテトラフルオロエチレン系樹脂
の融点の範囲であるが、延伸後に温度をかけて熱固定す
ることもできる。
Further, the membrane thus formed can be further subjected to a stretching treatment to change its permeability, mechanical strength, dimensional stability, etc. The stretching ratio is about 1°1 to 3 times,
The temperature is usually in the range from room temperature to the melting point of the polytetrafluoroethylene resin, but heat setting can also be carried out by applying a temperature after stretching.

この様にして得たポリテトラフルオロエチレン系樹脂多
孔性を用いて膜分離装置を作成する場合、下記工程の組
合わせ処理を行うが、いずれが前後になっても良い。
When creating a membrane separation device using the porous polytetrafluoroethylene resin obtained in this way, a combination of the following steps is performed, but any one of them may be performed before or after.

00.1wt%水溶液の表面張力が30 drnes/
cm(25℃)以下である界面活性剤を付着させる工程
The surface tension of 00.1 wt% aqueous solution is 30 drnes/
A step of attaching a surfactant having a temperature of not more than cm (25° C.).

■ポリテトラフルオロエチレン系樹脂多孔膜をケース内
に収納し、護膜を介して流路を形成し、護膜及び該ケー
スの端部を樹脂でシール固定する工程。
(2) The process of storing a porous polytetrafluoroethylene resin membrane in a case, forming a flow path through a protective membrane, and sealing and fixing the protective membrane and the end of the case with resin.

上記した膜及びケースの端部をシール固定するために用
いる樹脂は、膜素材の融点の違いを利用して融着固定す
るかあるいは例えば架橋反応のような化学反応によって
硬化固定できるものならばすべてよく、フッ素系樹脂、
オレフィン系樹脂、イミド系樹脂、アミド系樹脂、エス
テル系樹脂、ウレタン系樹脂、エポキシ系樹脂、アクリ
ロニトリル系樹脂などが好ましい。
The resin used to seal and fix the ends of the membrane and case mentioned above can be any resin that can be fixed by fusion by utilizing the difference in melting point of the membrane materials or by curing and fixing by chemical reaction such as crosslinking reaction. Often, fluororesin,
Preferable examples include olefin resins, imide resins, amide resins, ester resins, urethane resins, epoxy resins, and acrylonitrile resins.

特に、溶出物が極めて少なく、耐熱性、耐薬品性が要求
される場合には、PTFE系樹脂(融点約327℃)の
他、実際に上声されている材料の例をあげれば、テトラ
フルオロエチレン−パーフルオロアルキルビニルエーテ
ル共重合体系樹脂(融点約306℃)、テトラフルオロ
エチレン−ヘキサフルオロプロピレン共重合体系樹脂(
融点約270℃)、テトラフルオロエチレン−エチレン
共重合体系樹脂(融点約260℃)、ビニリデンフルオ
ライド重合体系樹脂(融点約174℃)、クロロトリフ
ルオロエチレン重合体系樹脂(融点約211℃)などの
フッ素系樹脂が好ましく、さらに好ましくは、PTFE
系樹脂(融点約327℃)の膜と同樹脂、テトラフルオ
ロエチレン−パーフルオロアルキルビニルエーテル共重
合体系樹脂(融点約306℃)あるいはテトラフルオロ
エチレン−ヘキサフルオロプロピレン共重合体系樹脂(
融点約270℃)の組合わせ、テトラフルオロエチレン
−パーフルオロアルキルビニルエーテル共重合体系樹脂
(融点約306℃)の膜とテトラフルオロエチレン−ヘ
キサフルオロプロピレン共重合体系樹脂(融点約270
℃)の組合わせがよい。
In particular, in cases where very little eluate is required and heat resistance and chemical resistance are required, in addition to PTFE resin (melting point approximately 327°C), examples of materials that are actually being talked about include tetrafluorocarbon resin. Ethylene-perfluoroalkyl vinyl ether copolymer resin (melting point approximately 306°C), tetrafluoroethylene-hexafluoropropylene copolymer resin (
melting point approximately 270°C), tetrafluoroethylene-ethylene copolymer resin (melting point approximately 260°C), vinylidene fluoride polymer resin (melting point approximately 174°C), chlorotrifluoroethylene polymer resin (melting point approximately 211°C), etc. Fluororesin is preferable, and PTFE is more preferable.
membrane of the same resin (melting point: approx. 327°C), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (melting point: approx. 306°C), or tetrafluoroethylene-hexafluoropropylene copolymer resin (melting point: approx. 306°C).
(melting point: approx. 270°C), a membrane of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (melting point: approx. 306°C) and a tetrafluoroethylene-hexafluoropropylene copolymer resin (melting point: approx. 270°C).
°C) combination is good.

護膜及び該ケースの端部の固定用樹脂の使用形態は、ペ
レット、パウダー、シート、ディスバージョン、液状な
どのいずれでもよい。
The protective film and the resin for fixing the ends of the case may be used in any form such as pellets, powder, sheet, dispersion, or liquid.

本発明における護膜及び該ケースの端部のシール固定の
方法には特に制限はなく、熱融着固定あるいは例えば架
橋反応のような化学反応硬化固定などいずれの方法でも
よく、具体的には、加熱こて、各種ヒーター、オーブン
、超音波接着器などを使った部分あるいは全体の加熱、
加圧、減圧、静置、振動あるいは遠心力をかけるなどの
手段を単独あるいは組合わせて実施することができる。
There are no particular limitations on the method of sealing the protective film and the end of the case in the present invention, and any method such as heat fusion fixing or chemical reaction curing fixation such as crosslinking reaction may be used.Specifically, Heating the part or the whole using a heating iron, various heaters, oven, ultrasonic adhesive, etc.
Measures such as pressurization, depressurization, standing still, vibration, or application of centrifugal force can be carried out singly or in combination.

モジュールあるいはエレメントの形状には制限はなく、
中空糸膜モジュールあるいはエレメントの場合には糸束
がストレートに配置され、その両端がシール固定された
形状のものあるいは糸がU字形に曲げて束ねられた糸束
の端部がシール固定された形状のものが使い易さの点か
ら好ましい。
There are no restrictions on the shape of the module or element;
In the case of a hollow fiber membrane module or element, the fiber bundle is arranged straight and both ends are fixed with a seal, or the fiber bundle is bent into a U shape and the end of the bundle is fixed with a seal. is preferable from the viewpoint of ease of use.

第1図は本発明の一例である中空糸膜分離装置のエレメ
ントの一例を示した外観図、第2図は第1図のエレメン
トの断面図である。
FIG. 1 is an external view showing an example of an element of a hollow fiber membrane separation device that is an example of the present invention, and FIG. 2 is a sectional view of the element shown in FIG. 1.

本発明によって得られる膜の分離装置は、ケース保護カ
バー2で被覆された膜(中空糸膜)1の複数本が束状で
配置され、膜1の端部はハウジングシール用部材3と固
定樹脂4によってシール固定されている。
In the membrane separation device obtained by the present invention, a plurality of membranes (hollow fiber membranes) 1 covered with a case protective cover 2 are arranged in a bundle, and the ends of the membranes 1 are connected to a housing sealing member 3 and a fixed resin. It is sealed and fixed by 4.

本発明により得られるポリテトラフルオロエチレン系樹
脂多孔性膜は、モジュールあるいはエレメントなどの分
離装置として、海水の淡水化、脱塩、工業排水中の塩基
、酸などの除去、電子工業用などの超純水、高純度薬品
の製造、脱脂大波、電着塗装液などの回収、紙パルプ廃
液処理、油水分離、油エマルジヨン分離などの工業排水
処理、醗酵生産物の分離精製、果汁、野菜ジュースの濃
縮、大豆処理、製糖工業などの食品工業における濃縮、
分離、精製、人工腎臓、血液成分の分離、菌分離用ミク
ロフィルター、医薬品の分離、精製などの医療用途、バ
イオリアクターなどのバイオテクノロジー分野などに広
く用いられる。
The polytetrafluoroethylene resin porous membrane obtained by the present invention can be used as a separation device such as a module or element for desalination of seawater, desalination, removal of bases, acids, etc. from industrial wastewater, and ultraviolet rays for use in the electronic industry. Manufacture of pure water and high purity chemicals, recovery of degreasing and electrocoating liquids, paper pulp waste liquid treatment, oil/water separation, oil emulsion separation, and other industrial wastewater treatment, separation and purification of fermentation products, and concentration of fruit and vegetable juices. , soybean processing, concentration in the food industry such as the sugar industry,
It is widely used in medical applications such as separation, purification, artificial kidneys, blood component separation, microfilters for bacterial isolation, pharmaceutical separation and purification, and biotechnology fields such as bioreactors.

以下に実施例を示すが、これに限定されるものではない
Examples are shown below, but the invention is not limited thereto.

(1)膜の寸法 光学顕微鏡を使用して測定した。(1) Membrane dimensions Measured using an optical microscope.

(2)中空率 (1)の方法で測定(7た中空糸膜の寸法を使って、膜
部と中空部を合せた全体の断面積に対する中空部の断面
積の割合いを百分率(%)で算出した。
(2) Hollow ratio Measured using method (1) (7) Using the dimensions of the hollow fiber membrane, the ratio of the cross-sectional area of the hollow part to the total cross-sectional area of the membrane part and the hollow part is expressed as a percentage (%) It was calculated by

(3)空孔率 エタノール置換法を使って空孔に純水を充填した膜の重
量(W)と絶乾型1(Wo)およびその体積(V)を測
定し、次式を使って算出した。
(3) Measure the weight (W) of the membrane whose pores are filled with pure water using the porosity ethanol replacement method, the bone dry type 1 (Wo), and its volume (V), and calculate using the following formula. did.

(W−Wo) X 100/V  (%)(4)透水性 平膜は市販のカートリッジに組込んで37℃に保ちなが
ら水圧をかけ、一定時間に膜を透過する水の量と有効膜
面積および膜間圧力差から透水性を算出した。
(W-Wo) and the water permeability was calculated from the transmembrane pressure difference.

中空糸膜を小型モジュールにして37℃に保ちながら中
空糸内側に水圧をかけ、一定時間に膜を透過する水の量
と有効膜面積および膜間圧力差から透水性を算出した。
The hollow fiber membrane was made into a small module, water pressure was applied to the inside of the hollow fiber while maintaining the temperature at 37°C, and water permeability was calculated from the amount of water permeating through the membrane in a certain period of time, the effective membrane area, and the pressure difference between the membranes.

(5)200ppm−ポリスチレンラテックス粒子分散
液の濾過性能 市販のポリスチレンラテックス粒子分散液を使って、前
記(4)の方法で透水性を測定l〜た。
(5) Filtration performance of 200 ppm polystyrene latex particle dispersion Using a commercially available polystyrene latex particle dispersion, water permeability was measured by the method described in (4) above.

粒子阻止率は、原液濃度COと透過液濃度Cを測定して
次式で算出した。
The particle rejection rate was calculated by measuring the concentration CO of the stock solution and the concentration C of the permeated solution using the following formula.

(Co−C)X100/Co  (%)(実施例) 実施例1 アルギン酸ソーダ(半井化学社製、300cps)50
部、硫酸バリウム(X線増影剤バリトップ、堺化学工業
社製)600部、シリコーンオイル(トーμ・シリコー
ン社製5H−200)30部、フッ素系界面活性剤(住
友スリーエム社製FC−129)60部を精製水800
部に10℃で溶解混合して均一な原液を得た。この原液
にポリテトラフルオロエチレンの水系分散液(ダイキン
社製D−2、固形分61重量%、界面活性剤5゜7重量
%)500部を添加し、10℃で撹拌して均一な原液を
得た。この原液の粘度は1.0℃で約2000ポイズで
あった。この原液を中空糸用口金から口金温度130℃
で、約10重量%塩化カルシウム水溶液の芯液とともに
押出;−1空気中を5cm走行させた後、約40重量%
塩化カルシウム水溶液からなる約40℃の凝固液に導い
て凝固させた後、水洗して、20m/minで中空糸を
巻きとった。口金フィルターとして1.0μカツトフイ
ルターを使ったが、フィルターづまりもなく安定に紡糸
できた。この中空糸膜を熱風乾燥器にいれて昇温し、3
40°Cで30分間熱処理した後、濃硫酸に浸漬放置し
てアルギン酸ソーダおよびシリコーンオイルあるいはそ
れらの変性物ならびに硫酸バリウムを除去17た。
(Co-C)
1 part, barium sulfate (X-ray contrast agent Varitop, manufactured by Sakai Chemical Industry Co., Ltd.) 600 parts, silicone oil (5H-200 manufactured by Tomu Silicone Co., Ltd.) 30 parts, fluorine surfactant (manufactured by Sumitomo 3M Co., Ltd. FC- 129) 60 parts to 800 parts of purified water
A homogeneous stock solution was obtained by dissolving and mixing the mixture at 10°C. To this stock solution, 500 parts of an aqueous dispersion of polytetrafluoroethylene (D-2 manufactured by Daikin, solid content 61% by weight, surfactant 5.7% by weight) was added and stirred at 10°C to obtain a uniform stock solution. Obtained. The viscosity of this stock solution was about 2000 poise at 1.0°C. Transfer this stock solution from the hollow fiber nozzle to a nozzle temperature of 130°C.
Extrusion with a core liquid of approximately 10% by weight calcium chloride aqueous solution; -1 After traveling 5 cm in air, approximately 40% by weight
After being introduced into a coagulating solution of calcium chloride aqueous solution at about 40°C and coagulated, the hollow fiber was washed with water and wound at 20 m/min. A 1.0μ cut filter was used as a spinneret filter, and stable spinning was possible without any filter clogging. This hollow fiber membrane was placed in a hot air dryer and heated to 3
After heat treatment at 40°C for 30 minutes, the sample was left immersed in concentrated sulfuric acid to remove sodium alginate, silicone oil or modified products thereof, and barium sulfate.

この中空糸膜の空孔率は約60%で、得られた湿潤中空
糸膜の寸法は内径:約500p膜厚:約110μ、中空
率は約48%であった。次にフッ素系界面活性剤(住友
スリーエム社製FC−129,0,1wt%水溶液の表
面張力(25℃)=17dynes/en+)の0.1
wt%水溶液に中空糸束を浸漬し、膜の空孔も十分に置
換した後、液を切ってから熱風乾燥器で糸束を乾燥した
。フッ素系界面活性剤の付着量は約0.08wt%対ポ
リマ重量であった。この乾燥糸は水に浸漬しただけで透
明となり、加圧するとすぐに膜を通して通水が確認でき
た。透過性能は純水で透水性: 2400m1/m−h
r−mrnHg、200ppmポリスチレンラテックス
粒子分散液の濾過評価では、粒子径0.212μのラテ
ックスで透水性=940ml/n(−hr−nnmHg
、阻止率: ]−00%であった。
The porosity of this hollow fiber membrane was about 60%, the dimensions of the obtained wet hollow fiber membrane were: inner diameter: about 500p, membrane thickness: about 110μ, and hollowness: about 48%. Next, the surface tension of a fluorine-based surfactant (Sumitomo 3M FC-129, 0.1 wt% aqueous solution (25°C) = 17 dynes/en+) is 0.1
The hollow fiber bundle was immersed in a wt % aqueous solution to sufficiently replace the pores in the membrane, the liquid was drained, and the fiber bundle was dried in a hot air dryer. The amount of fluorosurfactant deposited was approximately 0.08 wt% to polymer weight. This dried thread became transparent just by immersing it in water, and water flow through the membrane was immediately confirmed when pressure was applied. Water permeability with pure water: 2400m1/m-h
In the filtration evaluation of r-mrnHg, 200ppm polystyrene latex particle dispersion, water permeability = 940ml/n (-hr-nnmHg
, Rejection rate: ]-00%.

比較例1 実施例1.と同様にして得た、フッ素系界面活性剤(住
友スリーエム社製FC−129,0,1%水溶液の表面
張力(25℃)  : 17 d7nes/cm)を付
着する前の乾燥糸を水に浸漬したが、糸は白色のままで
あった。また透水性の測定で1 kg /alまで加圧
しても膜を通しての通水は見られなかった。
Comparative Example 1 Example 1. Dip the dry yarn in water before attaching the fluorine-based surfactant (Sumitomo 3M FC-129, 0.1% aqueous solution surface tension (25°C): 17 d7nes/cm) obtained in the same manner as above. However, the thread remained white. In addition, water permeability measurements showed that no water was observed to pass through the membrane even when the pressure was increased to 1 kg/al.

比較例2 比較例1の乾燥糸をフッ素系界面活性剤(住友スリーエ
ム社製FC−98、Q、1wt%水溶液の表面張力(2
5℃)  : 40drnes/cm)の0. 1wt
%水溶液に減圧下で浸漬したが、膜の空孔を十分に置換
することができず、液を切ってから熱風乾燥器で糸束を
乾燥し、フッ素系界面活性剤の付着量を測定したところ
0.001wt%対ポリマ重量にも満たなかった。この
乾燥糸は水に浸漬したが、糸は白色のままであった。ま
た透水性の測定で1 kg/carまで加圧しても膜を
通しての通水はみられなかった。
Comparative Example 2 The dried yarn of Comparative Example 1 was treated with a fluorine-based surfactant (FC-98, Q manufactured by Sumitomo 3M Co., Ltd., and the surface tension of a 1 wt % aqueous solution (2
5°C): 0.40 drnes/cm). 1wt
% aqueous solution under reduced pressure, but the pores in the membrane could not be replaced sufficiently, so after draining the liquid, the yarn bundle was dried in a hot air dryer and the amount of fluorosurfactant attached was measured. However, it was less than 0.001 wt% to polymer weight. The dried yarn was immersed in water, but the yarn remained white. Furthermore, water permeability measurements showed that no water was observed to pass through the membrane even when the pressure was increased to 1 kg/car.

比較例3 熱処理温度を310℃にしたことを除いて、その他は実
施例1と同様にして中空糸膜を作ったところ、濃硫酸に
一晩浸漬放置してアルギン酸ソーダおよびシリコーンオ
イルあるいはそれらの変性物ならびに硫酸バリウムを除
去すると、くずれて中空糸膜の形態を保持出来なかった
Comparative Example 3 A hollow fiber membrane was produced in the same manner as in Example 1, except that the heat treatment temperature was 310°C. It was immersed in concentrated sulfuric acid overnight and then treated with sodium alginate and silicone oil or their modified components. When the substance and barium sulfate were removed, the hollow fiber membrane collapsed and could not maintain its shape.

実施例2 実施例1で得た酸洗浄、水洗後の多孔性中空糸400本
をU字型に束ねた糸束の先端部5Qmmを静かにテトラ
フルオロエチレン−ヘキサフルオロプロピレン共重合体
(融点270℃)の水系ディスバージョン(固形分50
wt%、粘度20cp1比重1.4)中に15秒間浸漬
した後室温にて乾燥させ、中空糸表面に樹脂の薄膜を形
成させ、引き続きこの浸漬乾燥手順を5回静かに繰返す
ことにより、中空糸表面にむらなく樹脂の被膜を形成さ
せた。次に、糸束の被膜部周辺をテトラフルオロエチレ
ン−ヘキサフルオロプロピレン共重合体(融点270℃
)のフィルムおよびステンレス製の固定治具で締付け、
電気炉中で328℃に加熱して樹脂を溶融し中空糸を連
続気泡の混入無く接着させた。次に固定治具をはずし、
該中空糸接着部にPTFE製のハウジングシール部材を
はめこみ、テトラフルオロエチレン−ヘキサフルオロプ
ロピレン共重合体(融点270℃)ペレットを充填し真
空雰囲気中で328℃に加熱して中空糸束にシール部材
を固定した。次に、中空糸束シール部片端をスライスし
て中空部が開孔したエレメントとした。このエレメント
をフッ素系界面活性剤(住友スリーエム社製FC−12
9,0,1wt%水溶液の表面張力(25℃)  : 
17d7nes/cm)の0,1wt%水溶液に浸漬し
、膜の空孔も十分に置換した後、液を切ってから熱風乾
燥器でエレメントを乾燥した。フッ素系界面活性剤の中
空糸への付着量は約0.7wt%対ポリマ重量であった
。このエレメントの中空糸は水に浸漬しただけで透明と
なり、加圧するとすぐに膜を通して通水が確認できた。
Example 2 A 5Q mm tip end of a U-shaped bundle of 400 porous hollow fibers obtained in Example 1 after acid washing and water washing was gently injected into a tetrafluoroethylene-hexafluoropropylene copolymer (melting point 270). °C) aqueous dispersion (solids content 50
wt%, viscosity 20cp1 specific gravity 1.4) for 15 seconds and then dried at room temperature to form a thin film of resin on the hollow fiber surface, and then gently repeating this immersion-drying procedure five times. A resin film was evenly formed on the surface. Next, the periphery of the coating part of the yarn bundle was coated with tetrafluoroethylene-hexafluoropropylene copolymer (melting point: 270°C).
) film and stainless steel fixing jig,
The resin was melted by heating to 328° C. in an electric furnace, and the hollow fibers were bonded together without the inclusion of open air bubbles. Next, remove the fixing jig,
A PTFE housing sealing member is fitted into the hollow fiber bonding part, and tetrafluoroethylene-hexafluoropropylene copolymer (melting point 270°C) pellets are filled, and the sealing member is attached to the hollow fiber bundle by heating to 328°C in a vacuum atmosphere. was fixed. Next, one end of the hollow fiber bundle seal portion was sliced to obtain an element with an open hollow portion. This element was treated with a fluorosurfactant (FC-12 manufactured by Sumitomo 3M).
Surface tension of 9, 0, 1 wt% aqueous solution (25°C):
The element was immersed in a 0.1 wt % aqueous solution of 17d7nes/cm) to sufficiently replace the pores in the membrane, the liquid was drained, and the element was dried in a hot air dryer. The amount of the fluorosurfactant attached to the hollow fibers was about 0.7 wt % to the weight of the polymer. The hollow fibers of this element became transparent just by immersing them in water, and water flow through the membrane could be confirmed as soon as pressure was applied.

また含水状態でエアーリークテストを行なったが、シー
ル洩れはみられなかった。
An air leak test was also conducted in a water-containing state, but no seal leakage was observed.

比較例4 実施例2と同様にして得た、フッ素系界面活性剤(住友
スリーエム社製FC−129,0,1wt%水溶液(表
面張力(25℃)  : 17d7nes/am)を中
空糸に付着する前のエレメントを水に浸漬したが、糸は
白色のままであった。また1kg/cnrまで水圧をか
けても膜を通しての通水は見られなかった。
Comparative Example 4 A fluorine-based surfactant (FC-129 manufactured by Sumitomo 3M, 0.1 wt% aqueous solution (surface tension (25°C): 17d7nes/am) obtained in the same manner as in Example 2 was attached to the hollow fiber. The previous element was immersed in water, but the thread remained white.Also, no water flow was observed through the membrane even when water pressure was applied to 1 kg/cnr.

比較例5 比較例4のエレメントをフッ素系界面活性剤(住友スリ
ーエム社製FC−98,0,1wt%水溶液の表面張力
(25℃)  : 40 d7nes/cm)の0.1
wt%水溶液に減圧下で浸漬したが、膜の空孔を十分に
置換することができず、液を切ってから熱風乾燥器でエ
レメントを乾燥し、フッ素系界面活性剤の中空糸への付
着量を測定したところ0.001wt%対ポリマ重量に
もみたなかった。
Comparative Example 5 The element of Comparative Example 4 was treated with a fluorine-based surfactant (Sumitomo 3M FC-98, surface tension of 0.1 wt% aqueous solution (25°C): 40 d7nes/cm) of 0.1
Although it was immersed in a wt% aqueous solution under reduced pressure, the pores in the membrane could not be replaced sufficiently, so the element was dried in a hot air dryer after draining the liquid, and the fluorosurfactant adhered to the hollow fibers. When the amount was measured, it was not even 0.001 wt% to polymer weight.

このエレメントの中空糸は水に浸漬しても白色のままで
あった。また1kg/cnrまで水圧をかけても膜を通
しての通水は見られなかった。
The hollow fibers of this element remained white even when immersed in water. Further, even when a water pressure of up to 1 kg/cnr was applied, no water flow was observed through the membrane.

(発明の効果) 本発明のポリテトラフルオロエチレン系樹脂多孔膜は、
界面活性剤が付着しているため親水化の効果が大きく、
わずかの水圧をかけるだけで膜を通して通水でき、通水
時の水圧負担がないので分離効果に優れる。
(Effects of the invention) The polytetrafluoroethylene resin porous membrane of the present invention has
Because the surfactant is attached, the hydrophilic effect is large,
Water can be passed through the membrane by applying only a small amount of water pressure, and it has excellent separation effects because there is no water pressure burden when water passes through.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る膜分離装置のエレメントの一例で
ある中空糸膜モジュールのエレメントの一例を示した外
観図、第2図は第1図のエレメントの断面図である。 1:膜(中空糸膜) 2:ケース保護カバー 3:ハウジングシール用部材 4:固定樹脂
FIG. 1 is an external view showing an example of an element of a hollow fiber membrane module, which is an example of an element of a membrane separation device according to the present invention, and FIG. 2 is a sectional view of the element shown in FIG. 1. 1: Membrane (hollow fiber membrane) 2: Case protective cover 3: Housing seal member 4: Fixed resin

Claims (2)

【特許請求の範囲】[Claims] (1)ポリテトラフルオロエチレン系樹脂分散液と繊維
形成性重合体を混合して得た均一混合物を成形し、得ら
れた成形物を樹脂の融点以上の温度で熱処理した後、繊
維形成性重合体を除去し、次いで0.1重量%水溶液の
表面張力が30dynes/cm(25℃)以下の界面
活性剤を付着させることを特徴とするポリテトラフルオ
ロエチレン系樹脂多孔膜の製法。
(1) A homogeneous mixture obtained by mixing a polytetrafluoroethylene resin dispersion and a fiber-forming polymer is molded, and the resulting molded product is heat-treated at a temperature higher than the melting point of the resin. A method for producing a porous polytetrafluoroethylene resin membrane, which comprises removing the coalescence, and then attaching a surfactant having a surface tension of 30 dynes/cm (25° C.) or less in a 0.1% aqueous solution.
(2)ポリテトラフルオロエチレン系樹脂分散液と繊維
形成性重合体を混合して得た均一混合物を成形し、得ら
れた成形物を樹脂の融点以上の温度で熱処理した後、繊
維形成性重合体を除去し、次いで下記工程の組合わせ処
理を行うことを特徴とする膜分離装置の製法。 [1]0.1重量%水溶液の表面張力が30dynes
/cm(25℃)以下である界面活性剤を付着させる工
程。 [2]ポリテトラフルオロエチレン系樹脂多孔膜をケー
ス内に収納し、該膜を介して流路を形成し、該膜及び該
ケースの端部を樹脂でシール固定する工程。
(2) A homogeneous mixture obtained by mixing a polytetrafluoroethylene resin dispersion and a fiber-forming polymer is molded, and the resulting molded product is heat-treated at a temperature higher than the melting point of the resin. A method for manufacturing a membrane separation device, which comprises removing coalescence and then performing a combination treatment of the following steps. [1] The surface tension of a 0.1% aqueous solution is 30 dynes
/cm (25°C) or less. [2] A step of storing a porous polytetrafluoroethylene resin membrane in a case, forming a flow path through the membrane, and sealing and fixing the membrane and the ends of the case with resin.
JP1108148A 1989-04-26 1989-04-26 Method for producing porous polytetrafluoroethylene resin membrane and method for producing a membrane separation apparatus using the membrane Expired - Lifetime JPH0734854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108148A JPH0734854B2 (en) 1989-04-26 1989-04-26 Method for producing porous polytetrafluoroethylene resin membrane and method for producing a membrane separation apparatus using the membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108148A JPH0734854B2 (en) 1989-04-26 1989-04-26 Method for producing porous polytetrafluoroethylene resin membrane and method for producing a membrane separation apparatus using the membrane

Publications (2)

Publication Number Publication Date
JPH02284634A true JPH02284634A (en) 1990-11-22
JPH0734854B2 JPH0734854B2 (en) 1995-04-19

Family

ID=14477163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108148A Expired - Lifetime JPH0734854B2 (en) 1989-04-26 1989-04-26 Method for producing porous polytetrafluoroethylene resin membrane and method for producing a membrane separation apparatus using the membrane

Country Status (1)

Country Link
JP (1) JPH0734854B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105016A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method
JP2015142902A (en) * 2013-12-26 2015-08-06 住友電気工業株式会社 Regeneration filtration module, regeneration device of used alkaline degreasing liquid and regeneration method of used alkaline degreasing liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434407A (en) * 1987-07-30 1989-02-03 Toray Industries Porous membrane of polytetrafluoroethylene-base resin and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434407A (en) * 1987-07-30 1989-02-03 Toray Industries Porous membrane of polytetrafluoroethylene-base resin and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105016A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method
JP2015142902A (en) * 2013-12-26 2015-08-06 住友電気工業株式会社 Regeneration filtration module, regeneration device of used alkaline degreasing liquid and regeneration method of used alkaline degreasing liquid

Also Published As

Publication number Publication date
JPH0734854B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
WO1989000879A1 (en) Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
US5013339A (en) Compositions useful for making microporous polyvinylidene fluoride membranes, and process
US4115492A (en) Process for preparing microporous polyethylene hollow fibers
JP4656839B2 (en) Halar film
EP1435261B1 (en) Method for production of a hollow fiber membrane
JP5882282B2 (en) Atmospheric pressure microwave plasma treated porous membrane
EP0193725B1 (en) Process for spinning hollow fiber membranes
US5246582A (en) Synthetic hydrophilic membranes and method for their manufacture
KR102205185B1 (en) Microporous polyvinylidene fluoride membrane
US10406487B2 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
JP3442384B2 (en) Polyvinylidene fluoride film
Stengaard Preparation of asymmetric microfiltration membranes and modification of their properties by chemical treatment
WO2001028667A1 (en) Heat-resistant microporous film
CN113731188A (en) Hollow fiber membrane and method for producing hollow fiber membrane
TW201622805A (en) Microporous polyvinylidene fluoride flat membrane
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
JPH078549B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPS6138208B2 (en)
JPH02284634A (en) Production of porous membrane of polytetrafluoroethylene resin and production of membrane separation apparatus with the same membrane
JPH0468010B2 (en)
KR20010101764A (en) Microporous hollow fiber membranes from perfluorinated thermoplastic polymers
JPS5916503A (en) Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
JPH0338231A (en) Hydrophilic-hydrophobic separation unit membranes and separation membrane and its preparation
JPH0468011B2 (en)
JPH078548B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same