JPH06246140A - Production of heterogeneous hollow yarn membrane - Google Patents

Production of heterogeneous hollow yarn membrane

Info

Publication number
JPH06246140A
JPH06246140A JP3656693A JP3656693A JPH06246140A JP H06246140 A JPH06246140 A JP H06246140A JP 3656693 A JP3656693 A JP 3656693A JP 3656693 A JP3656693 A JP 3656693A JP H06246140 A JPH06246140 A JP H06246140A
Authority
JP
Japan
Prior art keywords
stretching
oxygen
hollow fiber
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3656693A
Other languages
Japanese (ja)
Inventor
Masayoshi Takatake
正義 高武
Toshikazu Suganuma
俊和 菅沼
Takanori Anazawa
孝典 穴澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP3656693A priority Critical patent/JPH06246140A/en
Publication of JPH06246140A publication Critical patent/JPH06246140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a heterogeneous membrane with a thin dense layer even in the case of no pinholes or a few pinholes in the dense layer and to produce a heterogeneous hollow yarn membrane having a high rate of gas permeation. CONSTITUTION:A crystalline thermoplastic polymer is melt-spun into hollow yarn, crystallization is accelerated by heat treatment if necessary and the hollow yarn is drawn at above a drawing factor at which the oxygen/nitrogen separation factor of the hollow yarn after drawing begins to lower in accordance with the increase in the drawing factor. The drawn hollow yarn is then heat- fixed at a temp. above (drawing temp.+10) deg.C while being shrunk at above a shrinkage at which the oxygen/nitrogen separation factor of the hollow yarn after heat fixing begins to increase in accordance with increase in the shrinkage at the time of heat fixing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分離膜の製法に関し、改
良された中空糸不均質膜の製法に関し、気体透過速度が
向上した中空糸不均質膜の製法に関する。本発明により
製造される中空糸不均質膜は、例えば酸素富化空気の製
造、窒素富化空気の製造、炭酸ガスの濃縮などの気体分
離、また例えば膜型人工肺、養魚槽への隔膜酸素供給、
炭酸ガスの隔膜吸収などの液体への気体の溶解、また例
えば水の脱気、水の脱酸素、水の脱炭酸ガスなどの液体
中の溶存気体の除去、また例えば水からの有機溶剤の除
去などのパーベ−パレ−ション、脱泡などに使用され
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a separation membrane, an improved method for producing a hollow fiber heterogeneous membrane, and a method for producing a hollow fiber heterogeneous membrane having an improved gas permeation rate. The hollow fiber heterogeneous membrane produced according to the present invention can be used for, for example, production of oxygen-enriched air, production of nitrogen-enriched air, gas separation such as concentration of carbon dioxide, and also membrane oxygenator, diaphragm oxygen for fish tanks. Supply,
Dissolution of gas into liquid such as absorption of carbon dioxide in a membrane, removal of dissolved gas in liquid such as degassing of water, deoxygenation of water, decarbonation of water, and removal of organic solvent from water, for example It is used for perforation and defoaming.

【0002】[0002]

【従来の技術】結晶性の熱可塑性重合体からなり、膜表
面または膜内部に実質的に非多孔質の緻密層を有し、膜
内部のその他の部分は連通多孔質となっている、中空糸
不均質膜即ち中空糸型の不均質膜の製造方法、特に、外
表面に実質的に非多孔質の緻密層を有し、膜内部は連通
多孔質となっており、内表面には繊維軸に垂直方向に伸
びた複数の板状結晶とその結晶をつなぐ複数のフィブリ
ルとで囲まれた細孔が開口している中空糸不均質膜の製
造方法については、例えば、気体分離膜に関して特開昭
59−196706および特開昭59−229320
に、気液接触用隔膜に関して特開昭63−258605
に、人工肺用隔膜に関して特開平1−104271に、
そしてこれら全般の膜について特開平4−210216
に開示されている。
2. Description of the Related Art Hollow, which is composed of a crystalline thermoplastic polymer, has a dense layer which is substantially non-porous on the surface of the membrane or inside the membrane, and has other portions inside the membrane which are continuous and porous. A method for producing a heterogeneous membrane of yarn, that is, a hollow-fiber-type heterogeneous membrane, in particular, having a dense layer of substantially nonporous on the outer surface, the inside of the membrane is continuous porous, and the inner surface has fibers. Regarding the method for producing a hollow fiber heterogeneous membrane in which pores surrounded by a plurality of plate crystals extending in the direction perpendicular to the axis and a plurality of fibrils connecting the crystals are open, for example, a gas separation membrane is characterized by JP-A-59-196706 and JP-A-59-229320
Japanese Patent Application Laid-Open No. 63-258605
Japanese Patent Laid-Open No. 1-104271 regarding a diaphragm for artificial lung,
Regarding these general films, JP-A-4-210216
Is disclosed in.

【0003】これらの先行文献に記載されている、溶融
成形による中空糸不均質膜の製造方法は、結晶性の熱可
塑性ポリマーを中空糸状に溶融紡糸し、必要に応じて熱
処理して結晶化を進め、延伸を加えた後、必要に応じて
熱固定する方法である。この製造方法に於る延伸工程
は、膜内部を多孔質化する為に必須の工程であるが、延
伸倍率を高くすると膜表面の緻密層も開裂し、ピンホ−
ル(緻密層を貫通する細孔)が発生する。気体透過速度
の高い不均質膜を得るためには、ピンホールが無くかつ
薄い緻密層と、空隙率の高い多孔質支持層を形成する必
要がある。しかしながら、気体透過速度の向上を目的と
して、即ち、緻密層を薄くし、多孔質支持体の空隙率を
高くすることを目的として延伸倍率を高くすると、ピン
ホールが発生し、気体分離係数の低下を招く結果となっ
ていた。
In the method for producing a hollow fiber heterogeneous membrane by melt molding described in these prior art documents, a crystalline thermoplastic polymer is melt-spun into a hollow fiber shape, and heat-treated as necessary for crystallization. This is a method of advancing and stretching and then heat-fixing if necessary. The stretching step in this manufacturing method is an essential step for making the inside of the membrane porous, but if the stretching ratio is increased, the dense layer on the membrane surface is also cleaved, and
(Holes penetrating the dense layer) are generated. In order to obtain a heterogeneous film having a high gas permeation rate, it is necessary to form a thin dense layer having no pinholes and a porous support layer having a high porosity. However, when the draw ratio is increased for the purpose of improving the gas permeation rate, that is, for making the dense layer thin and increasing the porosity of the porous support, pinholes are generated and the gas separation coefficient is lowered. Has resulted in.

【0004】このため、延伸倍率を高くすることができ
なかった。中空繊維の破断を防ぎつつ、延伸倍率を上げ
るために温度を変えた多段延伸が採用される場合もあっ
たが、限界があった。また、延伸した中空糸は、寸法安
定性を付与するために、定長条件、自由収縮条件、制限
収縮条件などで、延伸糸を高温に曝すことにより熱固定
することが知られていた。
Therefore, the draw ratio cannot be increased. In some cases, multistage drawing at different temperatures was adopted to increase the draw ratio while preventing breakage of the hollow fibers, but there was a limit. Further, it has been known that the stretched hollow fiber is heat-fixed by exposing the stretched yarn to a high temperature under a constant length condition, a free shrinkage condition, a restricted shrinkage condition or the like in order to impart dimensional stability.

【0005】[0005]

【発明が解決しようとする課題】気体分離膜や気・液間
のガス交換膜の分野に於て、気体透過性能を向上させる
こと、即ち気体分離係数を低下させずに気体透過速度を
向上させることは永遠の課題である。本発明者等は、結
晶性の熱可塑性重合体からなる中空糸不均質膜につい
て、高い気体透過速度を実現するための製造方法につい
て検討した結果、延伸および熱固定を特定の条件で実施
することにより、高い気体透過性を実現できることを見
いだし、本発明に到達した。
In the field of gas separation membranes and gas-liquid gas exchange membranes, gas permeation performance is improved, that is, gas permeation rate is improved without lowering the gas separation coefficient. That is an eternal task. The present inventors have conducted a study on a production method for achieving a high gas permeation rate for a hollow fiber heterogeneous membrane made of a crystalline thermoplastic polymer, and as a result, carry out stretching and heat setting under specific conditions. As a result, they have found that high gas permeability can be realized, and arrived at the present invention.

【0006】[0006]

【課題を解決するための手段】即ち、本発明の要旨は、
結晶性の熱可塑性重合体を、中空糸状に溶融紡糸した
後、必要に応じ熱処理して結晶化を進め、次いで、延伸
後の中空糸の酸素/窒素分離係数が延伸倍率の増加に伴
い低下し始める延伸倍率を越えて延伸した後、中空糸を
(延伸温度+10)℃以上の温度で、熱固定後の中空糸
の酸素/窒素分離係数が、熱固定時の収縮量の増加に伴
い増加し始める収縮量を越えて収縮させながら熱固定す
ることを特徴とする中空糸不均質膜の製造方法にある。
The summary of the present invention is as follows.
After melt-spinning the crystalline thermoplastic polymer into a hollow fiber shape, heat treatment is performed if necessary to promote crystallization, and then the oxygen / nitrogen separation coefficient of the hollow fiber after drawing decreases with an increase in draw ratio. After stretching beyond the starting draw ratio, the oxygen / nitrogen separation coefficient of the hollow fiber after heat setting increases at a temperature of (stretching temperature +10) ° C. or higher as the shrinkage amount during heat setting increases. A method for producing a hollow fiber heterogeneous membrane is characterized by heat-setting while shrinking beyond a starting shrinkage amount.

【0007】以下本発明をさらに詳細に説明する。本発
明に使用される重合体は結晶性の熱可塑性重合体であ
る。本発明で言う結晶性の重合体とは到達結晶化度が3
0%以上のものをいう。結晶性の熱可塑性重合体のなか
でも、ポリオレフィン系重合体が結晶性が高く、かつ結
晶化速度が高いため好ましく、なかでも、ポリ(4−メ
チル−1−ペンテン)系重合体が、気体透過速度が高く
かつ酸素/窒素分離係数が高いため、酸素富化空気の製
造や窒素富化空気の製造を目的とした膜を製造するには
特に好適である。
The present invention will be described in more detail below. The polymer used in the present invention is a crystalline thermoplastic polymer. The crystalline polymer referred to in the present invention has an ultimate crystallinity of 3
It means 0% or more. Among the crystalline thermoplastic polymers, a polyolefin-based polymer is preferable because it has high crystallinity and a high crystallization rate. Among them, a poly (4-methyl-1-pentene) -based polymer has a gas permeability. Due to its high velocity and high oxygen / nitrogen separation coefficient, it is particularly suitable for producing membranes intended for the production of oxygen-enriched air or nitrogen-enriched air.

【0008】本発明に使用されるポリ(4−メチル−1
−ペンテン)系重合体は、4−メチル−1−ペンテンの
単独重合体もしくは4−メチル−1−ペンテンを55%
以上含む共重合体または混合物である。本発明の製造方
法は、まず、結晶性の熱可塑性重合体をTm〜(Tm+
100)℃(但し、Tmは重合体の結晶融解温度を示
す)、好ましくは(Tm+20)〜(Tm+50)℃に
て中空糸用ノズルより押し出し、ドラフト比(=引き取
り速度/吐出線速度)50〜1500、好ましくは20
0〜1200にて引き取りつつ気体、好ましくは空気、
窒素または炭酸ガスにて冷却することにより溶融紡糸を
行う。
Poly (4-methyl-1) used in the present invention
-Pentene) -based polymer is a homopolymer of 4-methyl-1-pentene or 55% of 4-methyl-1-pentene.
It is a copolymer or mixture containing the above. In the production method of the present invention, first, a crystalline thermoplastic polymer is added to Tm to (Tm +
100) ° C. (however, Tm represents the crystal melting temperature of the polymer), preferably (Tm + 20) to (Tm + 50) ° C., extruded from a hollow fiber nozzle, and a draft ratio (= take-off speed / discharge linear speed) of 50- 1500, preferably 20
A gas, preferably air, while taking in from 0 to 1200
Melt spinning is performed by cooling with nitrogen or carbon dioxide.

【0009】得られた紡出糸は、必要に応じ熱処理する
(以下熱処理工程と称する)。熱処理は重合体の種類や
中空糸寸法や紡糸冷却条件によっては省くこともできる
が、高性能の不均質膜を製造するためには実施すること
が好ましい。熱処理は、(Tg+10)℃以上(但し、
Tgは重合体のガラス転移温度を示す)、好ましくは
(Tm−60)℃以上、さらに好ましくは(Tm−4
0)℃以上の温度に一定時間保つ方法で実施できる。熱
処理温度の上限はTmである。熱処理は該温度の流体例
えば空気雰囲気に滞留させる方法や、赤外線加熱などの
方法により実施できる。
The obtained spun yarn is heat-treated as necessary (hereinafter referred to as heat treatment step). The heat treatment may be omitted depending on the type of polymer, the size of the hollow fiber and the spinning cooling conditions, but it is preferably carried out to produce a high performance heterogeneous membrane. Heat treatment is (Tg + 10) ° C or higher (however,
Tg represents the glass transition temperature of the polymer), preferably (Tm-60) ° C or higher, and more preferably (Tm-4).
It can be carried out by a method of keeping the temperature at 0) ° C. or higher for a certain time. The upper limit of the heat treatment temperature is Tm. The heat treatment can be carried out by a method in which the fluid at that temperature, for example, an air atmosphere is retained, or a method such as infrared heating.

【0010】次いで、紡出糸または熱処理を加えた紡出
糸(以下、未延伸糸と称する)に延伸を施す。本発明の
製造方法の特徴の第1は、この工程(以下、延伸工程と
称する)における延伸倍率にある。本発明においては、
延伸工程における延伸倍率を、延伸糸の酸素/窒素分離
係数が低下し始める延伸倍率を越えて延伸する。延伸工
程において、延伸倍率を増して行くと、ある延伸倍率ま
では、延伸後の中空糸(即ち、熱固定などの後処理を行
わない、延伸直後の中空糸。以下、これを延伸糸と称す
る)の、酸素/窒素分離係数は一定(あるいはやや増加
傾向)であるが、ある値を越えると、緻密層にピンホー
ルが発生し、酸素/窒素分離係数が低下し始める。
Next, the spun yarn or the heat treated spun yarn (hereinafter referred to as undrawn yarn) is drawn. The first feature of the manufacturing method of the present invention is the draw ratio in this step (hereinafter referred to as the drawing step). In the present invention,
The draw ratio in the drawing step is set to exceed the draw ratio at which the oxygen / nitrogen separation coefficient of the drawn yarn begins to decrease. In the drawing step, when the draw ratio is increased, the hollow fiber after drawing (that is, the hollow fiber immediately after drawing, which is not subjected to post-treatment such as heat setting, up to a certain draw ratio. Hereinafter, this is referred to as a drawn yarn. ), The oxygen / nitrogen separation coefficient is constant (or slightly increased), but if it exceeds a certain value, pinholes are generated in the dense layer, and the oxygen / nitrogen separation coefficient begins to decrease.

【0011】この、酸素/窒素分離係数が低下し始める
延伸倍率は、重合体の種類、紡糸条件、熱処理条件、延
伸温度、延伸速度などの他の条件により変わるため、絶
対的な値で表示することは困難であるが、延伸倍率を変
えた実験により簡単に求めることができる。さらに延伸
倍率を上げると、それに伴い酸素/窒素分離係数は低下
し、最終的には0.935(微細孔を有する多孔質膜の
酸素/窒素分離係数)に収束する。ここまでの範囲で
は、酸素透過速度は延伸倍率の増加とともに増加する。
さらに延伸倍率を増すと、多孔質構造の崩れにより酸素
透過速度が逆に低下する。この時、酸素/窒素分離係数
は再び上昇する場合もある。
The draw ratio at which the oxygen / nitrogen separation coefficient begins to decrease varies depending on other conditions such as the type of polymer, spinning conditions, heat treatment conditions, drawing temperature, drawing speed, etc., and is therefore expressed as an absolute value. Although it is difficult, it can be easily obtained by an experiment in which the draw ratio is changed. When the stretching ratio is further increased, the oxygen / nitrogen separation coefficient is reduced accordingly, and finally converges to 0.935 (oxygen / nitrogen separation coefficient of the porous membrane having fine pores). In the range so far, the oxygen permeation rate increases with an increase in the draw ratio.
When the stretching ratio is further increased, the oxygen permeation rate is decreased due to the collapse of the porous structure. At this time, the oxygen / nitrogen separation coefficient may increase again.

【0012】本発明の製造方法の特徴の第1は、延伸工
程における延伸倍率にある。本発明においては、延伸工
程における延伸倍率を、延伸糸の酸素/窒素分離係数が
低下し始める延伸倍率を越えて延伸する。よって、延伸
糸の酸素/窒素分離係数は素材重合体の酸素/窒素分離
係数より小さく、0.935以上である。延伸倍率の上
限については特に制約を設ける必要はないが、中空糸の
破断が生じるため、自ずと限界がある。中空糸の破断
は、上述の状況のいずれかの時点で生じる。即ち、酸素
/窒素分離係数が低下し始める前に破断する場合、酸素
/窒素分離係数が低下し始め、0.935に至る前に破
断する場合、酸素/窒素分離係数が0.935で破断す
る場合、酸素透過速度が再低下し始めてから破断する場
合などがあり得る。
The first feature of the manufacturing method of the present invention is the draw ratio in the drawing step. In the present invention, the draw ratio in the drawing step is set to exceed the draw ratio at which the oxygen / nitrogen separation coefficient of the drawn yarn begins to decrease. Therefore, the oxygen / nitrogen separation coefficient of the drawn yarn is smaller than the oxygen / nitrogen separation coefficient of the raw material polymer and is 0.935 or more. Although there is no particular restriction on the upper limit of the draw ratio, there is a limit naturally because the hollow fiber is broken. Hollow fiber breakage occurs at any of the above-mentioned circumstances. That is, when the oxygen / nitrogen separation coefficient starts to decrease, the oxygen / nitrogen separation coefficient starts to decrease, and when it breaks before reaching 0.935, the oxygen / nitrogen separation coefficient breaks at 0.935. In this case, the oxygen permeation rate may start to decrease again and then break.

【0013】中空繊維の破断がどの時点で生じるかは、
重合体の種類、重合体のゲル含有量、紡糸むら、熱処理
条件、延伸温度、延伸速度などに依存する。本発明にお
いては、延伸温度を調節することにより、中空糸の破断
が、酸素/窒素分離係数が低下し始める前に生じること
のないようにすることができる。延伸工程における延伸
倍率は上述のように絶対的な延伸倍率範囲で示すことは
困難であるが、概略の範囲を示せば、1.2以上5未満
であり、1.3以上3.5未満が好ましい。また、本発
明における、延伸工程の延伸倍率は、延伸後の中空糸の
酸素/窒素分離係数の低下が始まる延伸倍率の1.0〜
2.5倍であることが好ましく、1.05〜1.7であ
ることがさらに好ましい。
When the breakage of the hollow fiber occurs
It depends on the type of polymer, the gel content of the polymer, uneven spinning, heat treatment conditions, stretching temperature, stretching speed, and the like. In the present invention, the stretching temperature can be adjusted so that breakage of the hollow fiber does not occur before the oxygen / nitrogen separation coefficient begins to decrease. It is difficult to indicate the draw ratio in the drawing step in the absolute draw ratio range as described above, but if the approximate range is shown, it is 1.2 or more and less than 5, and 1.3 or more and less than 3.5. preferable. Further, the stretching ratio in the stretching step in the present invention is 1.0 to 1.0 of the stretching ratio at which the oxygen / nitrogen separation coefficient of the hollow fiber after stretching starts to decrease.
It is preferably 2.5 times, more preferably 1.05 to 1.7.

【0014】延伸は1段延伸でも多段延伸でもよいが、
多段延伸、なかでも順次温度を上げた多段延伸とするこ
とが、破断することなく必要な延伸倍率を取ることがで
き、優れた性能の膜を得る上で好ましい。多段延伸の場
合には、延伸倍率は、延伸工程における合計の延伸倍率
である。また、延伸工程が、温度(Tg+10)〜(T
m−60)℃(但し、Tgは重合体のガラス転移温度、
Tmは重合体の結晶融解温度)での延伸を含む1段また
は多段延伸であることが好ましく、該温度範囲における
延伸の延伸倍率の合計が1.2〜3.0である1段また
は多段延伸であることがさらに好ましい。
The stretching may be one-stage stretching or multi-stage stretching,
Multi-stage stretching, especially multi-stage stretching in which the temperature is sequentially increased, is preferable in that a required stretching ratio can be obtained without breaking and a film with excellent performance is obtained. In the case of multi-stage stretching, the stretching ratio is the total stretching ratio in the stretching process. In addition, the stretching step is performed at temperatures (Tg + 10) to (Tg
m-60) ° C. (where Tg is the glass transition temperature of the polymer,
Tm is preferably one-step or multi-step drawing including drawing at the crystal melting temperature of the polymer), and one-step or multi-step drawing in which the total draw ratio of the drawing in the temperature range is 1.2 to 3.0. Is more preferable.

【0015】延伸をこの範囲で行うことにより、中空糸
の破断や、多孔質層の構造変化を防ぎつつ延伸倍率を上
げることができる。延伸糸の酸素透過速度や酸素/窒素
分離係数を測定するに当っては、延伸糸を収縮させるこ
と無く、一定長に保ったまま測定する必要がある。収縮
させると、これらの気体透過特性が変わる場合がある。
また、ここで言う酸素/窒素分離係数とは酸素透過速度
を窒素透過速度で除した値を言う。本発明の第2の特徴
は、延伸糸を特定の条件で熱固定(以下、この工程を熱
固定工程と称する)するところにある。
By carrying out the stretching in this range, it is possible to increase the stretching ratio while preventing breakage of the hollow fiber and structural change of the porous layer. In measuring the oxygen permeation rate and oxygen / nitrogen separation coefficient of the drawn yarn, it is necessary to measure the drawn yarn while keeping it at a constant length without shrinking. Upon contraction, these gas permeation properties may change.
The oxygen / nitrogen separation coefficient referred to here is a value obtained by dividing the oxygen permeation rate by the nitrogen permeation rate. The second feature of the present invention is that the drawn yarn is heat-set under a specific condition (hereinafter, this step is referred to as a heat-setting step).

【0016】熱固定において、中空糸を収縮させつつ熱
固定するに当り、熱固定温度を一定に保ち、収縮量をゼ
ロ(即ち定長条件)から徐々に増して行くと、熱固定さ
れた中空糸(以下熱固定糸と称する)の酸素/窒素分離
係数は、最初は延伸糸と同じ値であるが、収縮量の増加
に伴って増加する。また、収縮量を一定に保ちながら熱
固定温度を延伸温度から徐々に上げて行くと、最初は延
伸糸と同じ値であるが、温度の上昇に伴って熱固定糸の
酸素/窒素分離係数は増加する。即ちピンホールの孔径
が小さくなるか、数が減少する。ここで、温度および/
または収縮率を最大限に高くした場合の酸素/窒素分離
係数の最大値は、重合体の酸素/窒素分離係数である場
合もあるし、それより低い場合もある。
In heat setting, when heat-fixing while shrinking the hollow fiber, when the heat-setting temperature is kept constant and the shrinkage amount is gradually increased from zero (that is, the constant length condition), the heat-set hollow The oxygen / nitrogen separation coefficient of the yarn (hereinafter referred to as heat setting yarn) has the same value as that of the drawn yarn at first, but increases as the amount of shrinkage increases. When the heat setting temperature was gradually increased from the drawing temperature while keeping the shrinkage constant, the value was initially the same as that of the drawn yarn, but the oxygen / nitrogen separation coefficient of the heat set yarn increased as the temperature increased. To increase. That is, the diameter of the pinhole becomes smaller or the number of pinholes decreases. Where temperature and /
Alternatively, the maximum value of the oxygen / nitrogen separation coefficient when the shrinkage ratio is maximized may be the oxygen / nitrogen separation coefficient of the polymer or may be lower than that.

【0017】即ち、温度および/または収縮率を最大限
に高くしても、ピンホールが残留する場合がある。本発
明においては熱固定を、熱固定糸の酸素/窒素分離係数
が延伸糸の酸素/窒素分離係数より高くなるに十分な温
度および収縮条件、即ち温度および収縮量を十分に高く
することが特徴である。さらに具体的に述べれば、本発
明においては、(延伸温度+10)℃以上の温度で、熱
固定後の中空糸の酸素/窒素分離係数が、熱固定時の収
縮量の増加に伴い増加し始める収縮量を越えて収縮させ
ながら熱固定する。
That is, pinholes may remain even if the temperature and / or the shrinkage ratio are maximized. In the present invention, the heat setting is characterized in that the temperature and shrinkage conditions are sufficiently high so that the oxygen / nitrogen separation coefficient of the heat setting yarn is higher than the oxygen / nitrogen separation coefficient of the drawn yarn, that is, the temperature and shrinkage amount are sufficiently high. Is. More specifically, in the present invention, at a temperature of (stretching temperature + 10) ° C. or higher, the oxygen / nitrogen separation coefficient of the hollow fiber after heat setting begins to increase as the shrinkage amount during heat setting increases. Heat setting while shrinking beyond the amount of shrinkage.

【0018】(延伸温度+10)℃以上の温度であれ
ば、収縮させることによる酸素/窒素分離係数の上昇が
十分な量となる。さらに、熱固定温度は(Tm−50)
〜Tm℃が好ましく、(Tm−30)〜(Tm−10)
℃がさらに好ましい。また、本発明における熱固定時収
縮量は、熱固定工程までの加工条件や、熱固定温度、熱
固定時間の影響を受け一定ではないが、通常10〜40
%である。さらに、(Tm−50)〜Tm℃、好ましく
は(Tm−30)〜(Tm−10)℃の温度において、
10〜30%収縮させる熱固定を含む1段または多段熱
固定であることが最も好ましい。特に、酸素/窒素分離
係数の高い膜を作製する場合には、酸素/窒素分離係数
の上昇を十分とするために、この温度、収縮条件の熱固
定であることが好ましい。
If the temperature is (stretching temperature + 10) ° C. or higher, the oxygen / nitrogen separation coefficient is sufficiently increased by shrinking. Furthermore, the heat setting temperature is (Tm-50)
To Tm ° C. are preferable, and (Tm-30) to (Tm-10)
C is even more preferred. Further, the shrinkage amount during heat setting in the present invention is not constant under the influence of the processing conditions up to the heat setting step, the heat setting temperature, and the heat setting time, but is usually 10 to 40.
%. Furthermore, at a temperature of (Tm-50) to Tm ° C, preferably (Tm-30) to (Tm-10) ° C,
Most preferred is a single-stage or multi-stage heat setting, including heat setting that causes 10 to 30% shrinkage. In particular, in the case of producing a film having a high oxygen / nitrogen separation coefficient, it is preferable that the temperature and shrinkage conditions are heat set in order to sufficiently increase the oxygen / nitrogen separation coefficient.

【0019】熱処理条件をこの範囲にすると、延伸工程
で生じたピンホ−ルが閉塞し、かつ融着するものと推定
される。本発明により製造される中空糸不均質膜の気体
分離係数は、酸素/窒素分離係数が、素材となる重合体
の分離係数である膜の場合、即ち緻密層に事実上ピンホ
ールが存在しない膜の場合に最も効果的であるが、緻密
層に多少のピンホールが存在する場合にも効果を発揮す
る。即ち本発明は、酸素/窒素分離係数が0.940以
上の不均質膜に適用可能であり、酸素/窒素分離係数が
1.1以上の膜の場合により効果的である。
When the heat treatment conditions are set within this range, it is presumed that the pinhole generated in the drawing step is closed and fused. The gas separation coefficient of the hollow fiber heterogeneous membrane produced according to the present invention is a membrane in which the oxygen / nitrogen separation coefficient is the separation coefficient of the polymer as the raw material, that is, a membrane in which there are virtually no pinholes in the dense layer. It is most effective in the case of, but it is also effective when there are some pinholes in the dense layer. That is, the present invention can be applied to a heterogeneous membrane having an oxygen / nitrogen separation coefficient of 0.940 or more, and is more effective in the case of a membrane having an oxygen / nitrogen separation coefficient of 1.1 or more.

【0020】本発明が効果を発揮する中空糸不均質膜の
構造については、特に制約を設ける必要はなく、特開昭
59−196706に記載されたような構造であり得
る。即ち、緻密層が中空糸膜の外表面にある場合、内表
面にある場合、膜内部にある場合、緻密層が明確な層と
しては観察されないが、膜を透過する気体は1以上の非
多孔部を溶解拡散機構により透過する場合などである。
本発明で製造される中空糸不均質膜の寸法は特に制約を
設ける必要はないが、外径は40μm〜3mmが好まし
く、100〜500μmがさらに好ましい。膜厚は5μ
m〜1mmであることが好ましく、10〜50μmがさ
らに好ましい。
The structure of the hollow fiber heterogeneous membrane in which the present invention is effective is not particularly limited, and may be the structure described in JP-A-59-196706. That is, when the dense layer is on the outer surface of the hollow fiber membrane, on the inner surface of the hollow fiber membrane, or inside the membrane, the dense layer is not observed as a clear layer, but the gas that permeates the membrane has one or more non-porous layers. This is the case when a part is permeated by a dissolution diffusion mechanism.
The dimensions of the hollow fiber heterogeneous membrane produced by the present invention are not particularly limited, but the outer diameter is preferably 40 μm to 3 mm, more preferably 100 to 500 μm. Film thickness is 5μ
The thickness is preferably m to 1 mm, more preferably 10 to 50 μm.

【0021】[0021]

【実施例】以下実施例により、本発明をさらに具体的に
説明するが、本発明がこれにより限定されるものではな
い。 [酸素透過速度および酸素/窒素分離係数の測定方法]
延伸糸は、収縮させること無く針金その他の固定治具に
固定してサンプリングし、中空糸膜を定長に保ったま
ま、固定治具ごとモジュールケースに挿入、封止して、
測定用のミニモジュールを作製する。サンプルとなる中
空糸長は特に制約はないが、3m以上とすると、変動が
平均化され好ましい。測定用ミニモジュールは、AST
M−D−1434に準じて、圧力法または体積法で測定
する。この時、気体の圧力差は1〜3kgf/cm2
範囲とする。熱固定後の中空糸膜については定長に保つ
操作を行わないこと以外は延伸糸の場合と同様にして測
定する。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. [Measurement method of oxygen transmission rate and oxygen / nitrogen separation coefficient]
The stretched yarn is fixed on a wire or other fixing jig without shrinking, and is sampled. With the hollow fiber membrane kept at a fixed length, the drawn yarn is inserted into the module case and sealed,
Make a mini module for measurement. The length of the hollow fiber used as a sample is not particularly limited, but if it is 3 m or more, the fluctuation is averaged, which is preferable. The mini module for measurement is AST
According to MD-1434, it measures by a pressure method or a volume method. At this time, the gas pressure difference is in the range of 1 to 3 kgf / cm 2 . The hollow fiber membrane after heat setting is measured in the same manner as in the case of the stretched yarn except that the operation of keeping the length constant is not performed.

【0022】[実施例1]メルトインデックス(AST
M−D−1238、260℃、5kgによる)26のポ
リ(4−メチル−1−ペンテン)(Tm=240℃)を
直径6mmの円環型ノズルから、285℃にて溶融押し
出しし、0.2m/秒の横風で冷却し、長さ4mの紡糸
筒を経た後、ノズル下5.5mの位置で引き取り速度1
20m/分、ドラフト350でボビンに巻き取った。こ
の紡出糸をローラー系にて連続的に、温度210℃の熱
風炉に滞留時間5秒で通すことにより熱処理し、35
℃、延伸倍率1.2の冷延伸、および150℃、延伸倍
率1.6の熱延伸(冷延伸と合わせた延伸倍率は1.9
2となる)を行った後、210℃の熱風炉を、5%収縮
させつつ、滞留時間3秒で通過させる第1段熱固定を行
った後、70℃、自由長条件で6時間エ−ジングした
(第2段熱固定)。エ−ジングにより、エ−ジング前の
長さの16%が収縮した。
[Example 1] Melt index (AST
MD-1238, 260 ° C., 5 kg) 26 poly (4-methyl-1-pentene) (Tm = 240 ° C.) was melt extruded at 285 ° C. from an annular nozzle having a diameter of 6 mm, After cooling with a cross wind of 2 m / sec and passing through a spinning cylinder with a length of 4 m, the take-up speed was 1 at a position 5.5 m below the nozzle.
It was wound on a bobbin with a draft 350 at 20 m / min. This spun yarn is continuously heat-treated by passing it through a hot air oven having a temperature of 210 ° C. for a residence time of 5 seconds in a roller system,
C., cold stretching at a draw ratio of 1.2, and hot stretching at 150.degree. C. and a draw ratio of 1.6 (the draw ratio combined with the cold draw is 1.9.
2), and then the first stage heat setting is performed in which the hot air oven at 210 ° C. is shrunk by 5% and the residence time is 3 seconds, and then at 70 ° C. for 6 hours under a free length condition. It was dipped (2nd stage heat setting). By aging, 16% of the length before aging contracted.

【0023】一方、150℃にて熱延伸の延伸倍率を変
え、熱固定を行わないサンプルを作製し、気体透過速度
および気体分離係数を測定したところ、分離係数が低下
しはじめる延伸倍率は1.4(冷延伸と合わせて1.6
8)であり、延伸倍率2.1(冷延伸と合わせて2.5
2)で中空糸が破断した。得られた中空糸膜は外径29
3μm、内径223μm、膜厚35μmであり、SEM
にて観察したところ、外表面には細孔は認められず、内
表面には、繊維軸方向に垂直に長く伸びた結晶が繊維方
向に積層しており、その積層結晶間をフィブリルがつな
いでおり、結晶とフィブリルで囲まれた部分が、繊維軸
方向に長い楕円形の細孔として観察され、細孔の平均直
径は約0.05μmであった。
On the other hand, when the stretching ratio of hot stretching was changed at 150 ° C. to prepare a sample without heat setting and the gas permeation rate and the gas separation coefficient were measured, the stretching ratio at which the separation coefficient began to decrease was 1. 4 (1.6 with cold drawing
8) and a draw ratio of 2.1 (2.5 together with cold drawing.
The hollow fiber was broken in 2). The obtained hollow fiber membrane has an outer diameter of 29.
3 μm, inner diameter 223 μm, film thickness 35 μm, SEM
No pores were observed on the outer surface, and crystals extending long in the fiber axis direction were laminated in the fiber direction on the outer surface, and fibrils were connected between the laminated crystals. However, the portion surrounded by crystals and fibrils was observed as elliptical pores elongated in the fiber axis direction, and the average diameter of the pores was about 0.05 μm.

【0024】また、斜めに削ぎ切った中空糸膜断面は、
細孔径が約0.1μmの多孔質構造であった。この中空
糸不均質膜の気体透過特性は、酸素透過速度が2.1×
10 -5[cm3/cm2・s・cmHg]、酸素/窒素分
離係数が4.2[−]であった。
Further, the cross section of the hollow fiber membrane cut off diagonally is
It had a porous structure with a pore size of about 0.1 μm. This hollow
Oxygen permeation rate is 2.1 ×
10 -Five[Cm3/ Cm2・ S ・ cmHg], oxygen / nitrogen content
The separation coefficient was 4.2 [-].

【0025】[実施例2]延伸工程が延伸温度100
℃、延伸倍率1.8の1段延伸であること、第1段熱固
定の処理時間が1秒であること、第2段熱固定条件が、
自由長、70℃、6時間であること以外は実施例1と同
様にして中空糸不均質膜を作製した。この時、第2段熱
固定において、第1段熱固定後の中空繊維長に対して2
8%収縮した。一方、これとは別に、延伸工程における
延伸倍率を変える実験を行ったところ、延伸糸の酸素/
窒素分離係数が低下し始める延伸倍率は1.4であっ
た。
[Example 2] Stretching temperature is 100 at the stretching step.
℃, the draw ratio of 1.8, single-stage stretching, the first stage heat setting treatment time is 1 second, the second stage heat setting conditions,
A hollow fiber heterogeneous membrane was produced in the same manner as in Example 1 except that the free length was 70 ° C. and 6 hours. At this time, in the second stage heat setting, the hollow fiber length after the first stage heat setting is 2
Shrink 8%. On the other hand, in addition to this, an experiment was conducted to change the draw ratio in the drawing process.
The draw ratio at which the nitrogen separation coefficient began to decrease was 1.4.

【0026】得られた膜をSEMにより観察すると、外
表面に少数の、孔径約0.05μmの細孔が観察された
ほかは、寸法、外表面形状、内表面形状、断面形状とも
に実施例1とほぼ同様であった。また、この中空糸不均
質膜の気体透過特性は、酸素透過速度が1.3×10-4
[cm3/cm2・s・cmHg]、酸素/窒素分離係数
が1.15[−]であった。
When the obtained film was observed by SEM, a small number of pores having a pore size of about 0.05 μm were observed on the outer surface, and the dimensions, outer surface shape, inner surface shape, and cross-sectional shape of Example 1 were obtained. Was almost the same as. The gas permeation characteristics of this hollow fiber heterogeneous membrane are such that the oxygen permeation rate is 1.3 × 10 −4.
[Cm 3 / cm 2 · s · cmHg] and the oxygen / nitrogen separation coefficient were 1.15 [−].

【0027】[実施例3]熱延伸の延伸倍率が1.5で
あること、熱固定が180℃、25%収縮条件の1段で
あること以外時は実施例1と同様の方法にて中空糸不均
質膜を作製した。得られた膜の外表面には少数の孔径約
0.05μmの細孔が観察された。膜内部および内表面
は実施例1と同様であった。この中空糸不均質膜の気体
透過特性は、酸素透過速度が2.4×10-5[cm3
cm2・s・cmHg]、酸素/窒素分離係数が3.4
[−]であった。
[Example 3] Hollow by the same method as in Example 1 except that the draw ratio of heat drawing is 1.5 and the heat setting is one stage under the conditions of 180 ° C and 25% shrinkage. A yarn heterogeneous film was prepared. A small number of pores having a pore size of about 0.05 μm were observed on the outer surface of the obtained membrane. The inside and the inside surface of the film were the same as in Example 1. The gas permeation characteristic of this hollow fiber heterogeneous membrane is that the oxygen permeation rate is 2.4 × 10 −5 [cm 3 /
cm 2 · s · cmHg], and the oxygen / nitrogen separation coefficient is 3.4.
It was [-].

【0028】[実施例4]紡糸温度が300℃であるこ
と、延伸工程が延伸温度150℃、延伸倍率2.1であ
ること、熱固定工程が190℃、5秒、10%収縮条件
と、150℃、30秒、20%収縮条件の2段熱固定で
あること以外は実施例1と同様の方法にて中空糸不均質
膜を作製した。一方、延伸工程における延伸倍率を変え
る実験を行ったところ、延伸糸の酸素/窒素分離係数が
低下し始める延伸倍率は1.6であった。
[Example 4] The spinning temperature was 300 ° C, the stretching temperature was 150 ° C and the stretching ratio was 2.1, and the heat setting step was 190 ° C for 5 seconds and 10% shrinkage conditions. A hollow fiber heterogeneous membrane was produced in the same manner as in Example 1 except that the two-step heat setting was performed under the conditions of 150 ° C., 30 seconds, and 20% shrinkage. On the other hand, when an experiment for changing the draw ratio in the drawing step was conducted, the draw ratio at which the oxygen / nitrogen separation coefficient of the drawn yarn started to decrease was 1.6.

【0029】得られた膜の外表面には、細孔は観察され
なかった。膜内部は多孔質であり、内表面は孔径約0.
3μmの細孔が開口していた。また、この中空糸不均質
膜の気体透過特性は、酸素透過速度が1.5×10
-5[cm3/ cm2・s・cmHg]、酸素/窒素分離
係数が4.2[−]であった。
No pores were observed on the outer surface of the obtained film. The inside of the membrane is porous and the inner surface has a pore size of about 0.
The pores of 3 μm were open. The gas permeation characteristics of this hollow fiber heterogeneous membrane were such that the oxygen permeation rate was 1.5 × 10 5.
-5 [cm 3 / cm 2 · s · cmHg], and the oxygen / nitrogen separation coefficient was 4.2 [-].

【0030】[比較例1]熱延伸倍率が1.3であるこ
と以外は実施例1と同様にして中空糸不均質膜を作製し
た。この膜をSEMで観察したところ、外表面、膜断面
および膜内表面は実施例1で得た膜と同様であった。こ
の中空糸不均質膜の気体透過特性は、酸素透過速度が
1.2×10-5[cm 3/cm2・s・cmHg]、酸素
/窒素分離係数が4.2[−]であった。
[Comparative Example 1] The heat draw ratio is 1.3.
A hollow fiber heterogeneous membrane was prepared in the same manner as in Example 1 except that
It was Observation of this film with a SEM revealed that it had an outer surface and a film cross section.
The inner surface of the film was the same as that of the film obtained in Example 1. This
The gas permeability of the hollow fiber heterogeneous membrane of
1.2 x 10-Five[Cm 3/ Cm2・ S ・ cmHg], oxygen
/ The nitrogen separation coefficient was 4.2 [-].

【0031】[比較例2]熱固定が210℃、10秒、
5%収縮条件の1段のみであること以外は実施例1と同
様にして中空糸不均質膜を作製した。この膜をSEMで
観察したところ、外表面、膜断面および膜内表面は実施
例1で得た膜と同様であった。この中空糸不均質膜の気
体透過特性は、酸素透過速度が1.0×10-4[cm 3
/cm2・s・cmHg]、酸素/窒素分離係数が1.
1[−]であった。
[Comparative Example 2] Heat setting at 210 ° C. for 10 seconds,
Same as Example 1 except that only one step of 5% shrinkage condition is used.
In this way, a hollow fiber heterogeneous membrane was produced. This film with SEM
Observation revealed that the outer surface, the cross section of the film, and the inner surface of the film were
It was similar to the membrane obtained in Example 1. This hollow fiber heterogeneous membrane
As for the body permeability characteristics, the oxygen transmission rate is 1.0 x 10-Four[Cm 3
/ Cm2.S.cmHg] and the oxygen / nitrogen separation coefficient is 1.
It was 1 [-].

【0032】[比較例3]熱延伸倍率が1.3であるこ
と、および、熱固定が210℃、10秒、5%収縮条件
の1段のみであること以外は実施例1と同様にして中空
糸不均質膜を作製した。この膜をSEMで観察したとこ
ろ、外表面、膜断面および膜内表面は実施例1で得た膜
と同様であった。この中空糸不均質膜の気体透過特性
は、酸素透過速度が1.0×10-5[cm 3/cm2・s
・cmHg]、酸素/窒素分離係数が4.2[−]であ
った。
[Comparative Example 3] The thermal draw ratio was 1.3.
And, heat setting is 210 ° C, 10 seconds, 5% shrinkage condition
Hollow in the same manner as in Example 1 except that there is only one stage
A yarn heterogeneous film was prepared. This film was observed by SEM.
B, the outer surface, the cross section of the membrane, and the inner surface of the membrane were the membranes obtained in Example 1.
Was similar to. Gas permeation characteristics of this hollow fiber heterogeneous membrane
Has an oxygen transmission rate of 1.0 × 10-Five[Cm 3/ Cm2・ S
-CmHg] and oxygen / nitrogen separation coefficient is 4.2 [-]
It was.

【0033】[0033]

【効果】本発明は、緻密層にピンホールが無い場合であ
れ、多少のピンホールが存在する場合であれ、緻密層の
厚みの薄い不均質膜が得られ、高い気体透過速度を有す
る中空糸不均質膜の製造方法を提供できる。
[Effect] The present invention can provide a hollow fiber having a high gas permeation rate, which can obtain a heterogeneous membrane having a thin dense layer, whether the dense layer has no pinholes or some pinholes. A method for manufacturing a heterogeneous film can be provided.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 結晶性の熱可塑性重合体を、中空糸状に
溶融紡糸した後、必要に応じ熱処理して結晶化を進め、
次いで、延伸後の中空糸の酸素/窒素分離係数が延伸倍
率の増加に伴い低下し始める延伸倍率を越えて延伸した
後、中空糸を(延伸温度+10)℃以上の温度で、熱固
定後の中空糸の酸素/窒素分離係数が、熱固定時の収縮
量の増加に伴い増加し始める収縮量を越えて収縮させな
がら熱固定することを特徴とする中空糸不均質膜の製造
方法。
1. A crystalline thermoplastic polymer is melt-spun into a hollow fiber and then heat-treated as necessary to promote crystallization,
Then, the oxygen / nitrogen separation coefficient of the stretched hollow fiber starts to decrease with an increase in the stretch ratio, and the hollow fiber is stretched at a temperature of (stretching temperature + 10) ° C. or higher and then heat-set. A method for producing a hollow fiber heterogeneous membrane, characterized in that the oxygen / nitrogen separation coefficient of the hollow fiber is heat-set while shrinking beyond the amount of shrinkage that begins to increase as the amount of shrinkage during heat setting increases.
【請求項2】 延伸における延伸倍率が、延伸後の中空
糸の酸素/窒素分離係数の低下が始まる延伸倍率の1.
0〜2.5倍である請求項1記載の製造方法。
2. The stretching ratio in the stretching is 1. The stretching ratio at which the reduction of the oxygen / nitrogen separation coefficient of the hollow fiber after stretching starts.
The production method according to claim 1, which is 0 to 2.5 times.
【請求項3】 延伸が、温度(Tg+10)〜(Tm−
60)℃における延伸を含む1段または多段延伸であ
り、該温度範囲における延伸の合計の延伸倍率が1.2
〜3.0である請求項1または2記載の製造方法。
3. The stretching is carried out at a temperature (Tg + 10) to (Tm−).
60) The single-stage or multi-stage stretching including the stretching at the temperature range of 1.2, and the total stretching ratio in the temperature range is 1.2.
The manufacturing method according to claim 1 or 2, wherein
【請求項4】 熱固定が、温度(Tm−50)〜Tm℃
における熱固定を含む1段または多段熱固定であり、該
1段または多段熱固定の合計の収縮量が10〜40%で
ある請求項1記載の製造方法。
4. The heat setting is performed at a temperature (Tm-50) to Tm ° C.
2. The production method according to claim 1, wherein the heat shrinkage is one-stage or multi-stage heat-setting including heat-setting, and the total shrinkage amount of the one-stage or multi-stage heat setting is 10 to 40%.
【請求項5】 結晶性の熱可塑性重合体が、ポリオレフ
ィン系重合体である請求項1〜4のいずれかに記載の製
造方法。
5. The production method according to claim 1, wherein the crystalline thermoplastic polymer is a polyolefin-based polymer.
【請求項6】 ポリオレフィン系重合体が、ポリ(4−
メチル−1−ペンテン)系重合体である請求項5記載の
製造方法。
6. The polyolefin polymer is poly (4-
The method according to claim 5, which is a methyl-1-pentene) -based polymer.
JP3656693A 1993-02-25 1993-02-25 Production of heterogeneous hollow yarn membrane Pending JPH06246140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3656693A JPH06246140A (en) 1993-02-25 1993-02-25 Production of heterogeneous hollow yarn membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3656693A JPH06246140A (en) 1993-02-25 1993-02-25 Production of heterogeneous hollow yarn membrane

Publications (1)

Publication Number Publication Date
JPH06246140A true JPH06246140A (en) 1994-09-06

Family

ID=12473317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3656693A Pending JPH06246140A (en) 1993-02-25 1993-02-25 Production of heterogeneous hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPH06246140A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
JP2008105016A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method
JPWO2011129023A1 (en) * 2010-04-16 2013-07-11 旭化成ケミカルズ株式会社 Amorphous porous hollow fiber membrane, method for producing a shaped porous hollow fiber membrane, module using the shaped porous hollow fiber membrane, filtration device, and water treatment method
WO2013141033A1 (en) 2012-03-23 2013-09-26 東レ株式会社 Polymethylpentene conjugate fiber or porous polymethylpentene fiber and fiber structure comprising same
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
CN115155329A (en) * 2022-07-11 2022-10-11 杭州科百特过滤器材有限公司 Polyolefin hollow fiber membrane for asymmetric degassing and preparation method and application thereof
WO2024043218A1 (en) * 2022-08-26 2024-02-29 東レ株式会社 Separation membrane and method for producing same
WO2024048359A1 (en) * 2022-08-30 2024-03-07 東レ株式会社 Separation membrane and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
JP2008105016A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method
JPWO2011129023A1 (en) * 2010-04-16 2013-07-11 旭化成ケミカルズ株式会社 Amorphous porous hollow fiber membrane, method for producing a shaped porous hollow fiber membrane, module using the shaped porous hollow fiber membrane, filtration device, and water treatment method
JP5631871B2 (en) * 2010-04-16 2014-11-26 旭化成ケミカルズ株式会社 Amorphous porous hollow fiber membrane, method for producing a shaped porous hollow fiber membrane, module using the shaped porous hollow fiber membrane, filtration device, and water treatment method
JP2014240071A (en) * 2010-04-16 2014-12-25 旭化成ケミカルズ株式会社 Modified porous hollow fiber membrane, manufacturing method of modified porous hollow fiber membrane, module using modified porous hollow fiber membrane, filtration device and water treatment method
US9511529B2 (en) 2010-04-16 2016-12-06 Asahi Kasei Chemicals Corporation Deformed porous hollow fiber membrane, production method of deformed porous hollow fiber membrane, and module, filtration device, and water treatment method in which deformed porous hollow fiber membrane is used
US9821501B2 (en) 2010-04-16 2017-11-21 Asahi Kasei Chemicals Corporation Production method of deformed porous hollow fiber membrane
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
WO2013141033A1 (en) 2012-03-23 2013-09-26 東レ株式会社 Polymethylpentene conjugate fiber or porous polymethylpentene fiber and fiber structure comprising same
CN115155329A (en) * 2022-07-11 2022-10-11 杭州科百特过滤器材有限公司 Polyolefin hollow fiber membrane for asymmetric degassing and preparation method and application thereof
WO2024043218A1 (en) * 2022-08-26 2024-02-29 東レ株式会社 Separation membrane and method for producing same
WO2024048359A1 (en) * 2022-08-30 2024-03-07 東レ株式会社 Separation membrane and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4664681A (en) Heterogeneous membrane and process for production thereof
US4405688A (en) Microporous hollow fiber and process and apparatus for preparing such fiber
US4802942A (en) Method of making multilayer composite hollow fibers
US4541981A (en) Method for preparing a uniform polyolefinic microporous hollow fiber
US5013439A (en) Microporous membranes having increased pore densities and process for making the same
GB2041821A (en) Process for Preparing Hollow Microporous Polypropylene Fibers
JPH0526528B2 (en)
JPS5938322B2 (en) Microporous hollow fiber and its manufacturing method
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JPH07116483A (en) Manufacture of hollow fiber dual membrane
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
EP0342026B1 (en) Microporous membranes having increased pore densities and process for making the same
JPS6245318A (en) Preparation of gas separation membrane
JPH06210146A (en) Hollow fiber inhomogeneous membrane and its production
JPS6342006B2 (en)
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JPH0254377B2 (en)
JPS62269706A (en) Composite membrane of porous hollow polyolefin yarn and its production
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JPS6240441B2 (en)
JP3383926B2 (en) Manufacturing method of hollow fiber type heterogeneous membrane
JPH0450053B2 (en)
JPH07155568A (en) Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane
JPS6137363B2 (en)