JPH06246139A - Heterogeneous hollow fiber membrane and its production - Google Patents

Heterogeneous hollow fiber membrane and its production

Info

Publication number
JPH06246139A
JPH06246139A JP3656493A JP3656493A JPH06246139A JP H06246139 A JPH06246139 A JP H06246139A JP 3656493 A JP3656493 A JP 3656493A JP 3656493 A JP3656493 A JP 3656493A JP H06246139 A JPH06246139 A JP H06246139A
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
fiber membrane
heterogeneous
dense layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3656493A
Other languages
Japanese (ja)
Inventor
Masayoshi Takatake
正義 高武
Toshikazu Suganuma
俊和 菅沼
Takanori Anazawa
孝典 穴澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP3656493A priority Critical patent/JPH06246139A/en
Publication of JPH06246139A publication Critical patent/JPH06246139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To produce a membrane passing gas at a higher rate as compared with a membrane having the same gas separation factor. CONSTITUTION:This heterogeneous hollow fiber membrane is made of a crystalline thermoplastic polymer, has a practically nonporous dense layer in the surface and contains open pores in the interior and this membrane has periodic ruggedness having 0.5-25mum pitch and 0.1-5mum depth at the dense layer side surface in the axial direction of the fibers. In order to produce this membrane, melt spinning, drawing and heat fixing at a temp. below (drawing temp.+10) deg.C under 15-40% shrinkage are successively carried out. First-stage heat fixing by holding in the temp. range of (Tm-50) deg.C to Tm deg.C for >=1 sec and second- stage heat fixing at a temp. below the first-stage heat fixing temp. under 10-40% shrinkage of the length of the hollow fibers after the first-stage heat fixing may be carried out in palce of the above heat fixing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分離膜に関し、改良され
た不均質中空繊維膜に関し、気体透過速度が向上した不
均質中空繊維膜に関する。本発明の不均質中空繊維膜
は、例えば、酸素富化空気の製造、窒素富化空気の製
造、炭酸ガスの濃縮などの気体分離、また例えば膜型人
工肺、養魚槽への隔膜酸素供給、炭酸ガスの隔膜吸収な
どの液体への気体の溶解、また例えば水の脱気、水の脱
酸素、水の脱炭酸ガスなどの液体中の溶存気体の除去、
また例えば水からの有機溶剤の除去などのパーベ−パレ
−ション、脱泡などに使用される。
TECHNICAL FIELD The present invention relates to a separation membrane, an improved heterogeneous hollow fiber membrane, and a heterogeneous hollow fiber membrane having an improved gas permeation rate. The heterogeneous hollow fiber membrane of the present invention includes, for example, production of oxygen-enriched air, production of nitrogen-enriched air, gas separation such as concentration of carbon dioxide, and membrane oxygenator, for example, supply of diaphragm oxygen to a fish tank, Dissolution of gas into liquid such as absorption of carbon dioxide in a diaphragm, and removal of dissolved gas in liquid such as degassing of water, deoxidation of water, decarbonation of water, etc.
It is also used for pervaporation such as removal of organic solvent from water, defoaming and the like.

【0002】[0002]

【従来の技術】結晶性の熱可塑性重合体からなり、表面
に実質的に非多孔質の緻密層を有し、膜内部は連通多孔
質となっている、不均質中空繊維膜即ち中空糸型の不均
質膜、特に、外表面に実質的に非多孔質の緻密層を有
し、膜内部は連通多孔質となっており、内表面には繊維
軸に垂直方向に伸びた複数の板状結晶とその結晶をつな
ぐ複数のフィブリルとで囲まれた細孔が開口している不
均質中空繊維膜は、溶融成形法にて製造できることが知
られている。
2. Description of the Related Art Heterogeneous hollow fiber membranes, that is, hollow fiber type, which are composed of a crystalline thermoplastic polymer, have a dense layer of substantially non-porous surface, and have a continuous porous inside Of non-homogeneous membranes, in particular, having a dense layer that is substantially non-porous on the outer surface, the interior of the membrane is continuous porous, and the inner surface has a plurality of plate-like shapes extending in the direction perpendicular to the fiber axis. It is known that a heterogeneous hollow fiber membrane having open pores surrounded by crystals and a plurality of fibrils connecting the crystals can be produced by a melt molding method.

【0003】例えば、気体分離膜及びその製造方法が特
開昭59−196706および特開昭59−22932
0に、気液接触用隔膜が特開昭63−258605に、
人工肺用隔膜が特開平1−104271に、そしてこれ
ら全般の膜が特開平4−210216に開示されてい
る。しかし、これらの先行文献に記載された不均質中空
繊維膜の緻密層側の表面は平滑であった(例えば、特開
平1−104271に写真が掲載されている)。
For example, a gas separation membrane and a method for producing the same are disclosed in JP-A-59-196706 and JP-A-59-22932.
No. 0, a diaphragm for gas-liquid contact is disclosed in JP-A-63-258605,
Diaphragms for artificial lung are disclosed in JP-A-1-104271, and membranes for all of them are disclosed in JP-A-4-210216. However, the surface of the heterogeneous hollow fiber membranes described in these prior arts on the side of the dense layer was smooth (for example, a photograph is disclosed in JP-A-1-104271).

【0004】溶融成形による不均質中空繊維膜の製造方
法は、結晶性の熱可塑性ポリマーを中空糸状に溶融押し
出し、引取りによる応力下で冷却固化させ、必要に応じ
熱処理し、延伸を加えた後、必要に応じ熱固定する方法
である。この製造方法はコーティングなどを行うこと無
く、表面緻密層と多孔質支持層を同時に成形することが
できるため、工程が単純で生産性がよく、また成形され
た不均質膜は、緻密層と支持体との剥離が生じる恐れが
無いなど、優れた特性を有する。
A method for producing a heterogeneous hollow fiber membrane by melt molding is as follows. A crystalline thermoplastic polymer is melt-extruded into a hollow fiber shape, cooled and solidified under stress by pulling, heat-treated as required, and stretched. It is a method of heat fixing if necessary. In this manufacturing method, the surface dense layer and the porous support layer can be formed at the same time without coating, so the process is simple and the productivity is good. It has excellent properties such as no risk of peeling from the body.

【0005】またポリ(4−メチル−1−ペンテン)系
重合体は、気体分離膜の素材として、高い酸素/窒素分
離係数と、高い酸素透過係数を有し、酸素富化膜や窒素
富化膜の素材として好適な素材である。
The poly (4-methyl-1-pentene) -based polymer has a high oxygen / nitrogen separation coefficient and a high oxygen permeation coefficient as a material for a gas separation membrane, and has an oxygen-rich membrane and a nitrogen-rich membrane. It is a suitable material for the membrane.

【0006】[0006]

【発明が解決しようとする課題】気体分離膜や気・液間
のガス交換膜の分野に於て、気体透過性能を向上させる
こと、即ち気体分離係数を低下させずに気体透過速度を
向上させることは永遠の課題である。本発明者等は、結
晶性の熱可塑性重合体からなる、外表面に緻密層を有す
る不均質中空繊維膜について、高い気体透過速度を実現
するための膜構造について検討した結果、外表面に緻密
層を有する不均質中空繊維膜の外表面に凹凸構造を付与
することにより、高い気体透過性を実現できることを見
いだし、本発明に到達した。
In the field of gas separation membranes and gas-liquid gas exchange membranes, gas permeation performance is improved, that is, gas permeation rate is improved without lowering the gas separation coefficient. That is an eternal task. The inventors of the present invention have studied a heterogeneous hollow fiber membrane having a dense layer on the outer surface, which is made of a crystalline thermoplastic polymer, as a result of studying the membrane structure for achieving a high gas permeation rate, It has been found that high gas permeability can be realized by providing an uneven structure on the outer surface of a heterogeneous hollow fiber membrane having a layer, and arrived at the present invention.

【0007】[0007]

【課題を解決するための手段】即ち、本発明の要旨は、
結晶性の熱可塑性重合体からなり、不均質膜型の、即ち
表面に実質的に非多孔質の緻密層を有し膜内部は連通多
孔質となっている、中空繊維膜、特に、外表面に実質的
に非多孔質の緻密層を有し、膜内部は連通多孔質となっ
ており、内表面には繊維軸に垂直方向に伸びた複数の板
状結晶とその結晶間をつなぐ複数のフィブリルとで囲ま
れた細孔が開口している中空繊維膜であって、外表面
に、繊維軸方向に0.5〜25μm、深さが0.1〜5
μmの周期性の凹凸を有することを特徴とする不均質中
空繊維膜にある。
The summary of the present invention is as follows.
Hollow fiber membrane made of a crystalline thermoplastic polymer, that is, a heterogeneous membrane type, that is, having a dense layer that is substantially non-porous on the surface, and the inside of the membrane is continuous and porous, especially the outer surface Has a substantially non-porous dense layer, the inside of the membrane is a continuous porous layer, and the inner surface has a plurality of plate-like crystals extending in the direction perpendicular to the fiber axis and a plurality of plate-like crystals connecting the crystals. A hollow fiber membrane having open pores surrounded by fibrils, the outer surface of which is 0.5 to 25 μm in the fiber axis direction and a depth of 0.1 to 5 μm.
A heterogeneous hollow fiber membrane characterized by having irregularities with a periodicity of μm.

【0008】以下本発明をさらに詳細に説明する。本発
明で言う不均質膜とは、気体分離膜分野で一般的に用い
られる用語であり、膜の表面に形成された実質的に非多
孔質の緻密層と、それを支持する連通多孔質支持層から
なる膜であって、緻密層と支持層とが同一素材で構成さ
れ、緻密層(またはその前駆体)と支持層とが実質的に
同時に一体成形されたものを意味する。
The present invention will be described in more detail below. The heterogeneous membrane referred to in the present invention is a term generally used in the field of gas separation membranes, and a substantially non-porous dense layer formed on the surface of the membrane and a continuous porous support that supports the dense layer. A film composed of layers, which means that the dense layer and the supporting layer are composed of the same material, and the dense layer (or its precursor) and the supporting layer are substantially integrally molded.

【0009】本発明の不均質中空繊維膜(以下単に膜と
称する場合もある)は、中空繊維型の膜であり、中空繊
維の外表面に実質的に非多孔質の緻密層を有し、膜(中
空繊維壁)内部には互いに連絡した細孔が形成された多
孔質となっており、中空繊維の内表面には細孔が開口し
た構造を有する。
The heterogeneous hollow fiber membrane of the present invention (hereinafter sometimes simply referred to as a membrane) is a hollow fiber type membrane having a substantially non-porous dense layer on the outer surface of the hollow fiber, The inside of the membrane (hollow fiber wall) is porous with pores communicating with each other, and the inner surface of the hollow fiber has a structure in which pores are opened.

【0010】外表面には実質的に細孔は開口しておら
ず、非多孔質であるが、多少の細孔が開口していること
は許容される(以下、緻密層を貫通している細孔をピン
ホールと称する)。外表面におけるピンホールの存在量
は走査型電子顕微鏡(SEM)によっても観察できる
が、定量化は困難である。そこで、許容されるピンホー
ル存在量を気体分離係数で規定する。即ち、緻密層にピ
ンホールがわずかでも存在すると、気体分離係数例えば
酸素/窒素分離係数が急激に低下し、ピンホールの増加
に伴い、表面緻密層が全く存在しない多孔質膜の酸素/
窒素分離係数0.935に近づく(例えば、仲川勤:高
圧ガス、18(9)、471(1981)に記載されて
いる)が、本発明でいう不均質膜は、酸素/窒素分離係
数が0.940以上のものである。
No pores are substantially opened on the outer surface and it is non-porous, but it is acceptable that some pores are opened (hereinafter, the dense layer is penetrated. The pores are called pinholes). The amount of pinholes present on the outer surface can be observed by a scanning electron microscope (SEM), but it is difficult to quantify them. Therefore, the allowable amount of pinholes is defined by the gas separation coefficient. That is, if there are even a few pinholes in the dense layer, the gas separation coefficient, for example, the oxygen / nitrogen separation coefficient, drops sharply.
Although the nitrogen separation factor approaches 0.935 (for example, Tsutomu Nakagawa: High pressure gas, 18 (9), 471 (1981)), the heterogeneous membrane of the present invention has an oxygen / nitrogen separation factor of 0. .940 or more.

【0011】本発明の膜の、酸素/窒素分離係数の上
限、即ち緻密層にピンホールが全く存在しない場合の分
離係数は、重合体の種類や添加物によって決定され、そ
の値は個々に異なるため、本発明では上限を設けること
を要しない。膜内部、即ち中空糸壁の外表面以外の部分
は多孔質となっている。膜内部が多孔質であることは、
中空糸を縦または斜めに切断した断面をSEMで観察す
る事によって確認できる。本発明の不均質中空繊維膜の
縦断面および横断面を、必要に応じてエッチング処理を
施し、SEMにてさらに詳細に観察すると、膜内部には
積層した板状結晶(この板状結晶は湾曲していることが
多い)が繊維軸にほぼ直角方向に長く発達しており、そ
の板状結晶間が空隙となっていることが分かる。
The upper limit of the oxygen / nitrogen separation coefficient of the membrane of the present invention, that is, the separation coefficient in the case where no pinholes are present in the dense layer, is determined by the type of the polymer and the additive, and the value thereof is different. Therefore, it is not necessary to set an upper limit in the present invention. The inside of the membrane, that is, the portion other than the outer surface of the hollow fiber wall is porous. The fact that the inside of the membrane is porous means that
It can be confirmed by observing a cross section obtained by cutting the hollow fiber vertically or obliquely with an SEM. When the longitudinal section and the transverse section of the heterogeneous hollow fiber membrane of the present invention were subjected to etching treatment as required and observed in more detail with SEM, the laminated plate-like crystals (the plate-like crystals were curved It can be seen that there are gaps between the plate crystals.

【0012】板状結晶間をつなぐミクロフィブリルが観
察される場合もある。膜内部の細孔径は0.01〜5μ
mである。膜内部の細孔径は、SEMまたは水銀ポロシ
メーターにて測定することができる。膜の内表面には繊
維軸にほぼ直角方向に伸びた複数の板状結晶とその結晶
間をつなぐ複数のフィブリルとで囲まれた細孔が開口し
ている。この様子は、膜内表面のSEM観察にて確認す
ることができる。この細孔の開口形状は円形、繊維軸方
向に短い楕円形、繊維軸方向に長い楕円形または繊維軸
方向に長いスリット状などであり得る。
In some cases, microfibrils connecting plate crystals are observed. Pore diameter inside the membrane is 0.01-5μ
m. The pore diameter inside the membrane can be measured by SEM or a mercury porosimeter. On the inner surface of the film, pores surrounded by a plurality of plate crystals extending in a direction substantially perpendicular to the fiber axis and a plurality of fibrils connecting the crystals open. This state can be confirmed by SEM observation of the inner surface of the film. The opening shape of the pores may be circular, ellipse short in the fiber axis direction, ellipse long in the fiber axis direction, or slit-like long in the fiber axis direction.

【0013】いずれの場合にも細孔の孔径(SEMで観
察される細孔の縦横の平均値)は、0.01〜5μmで
ある。また、膜の製造条件によっては、繊維軸にほぼ直
角方向に伸びた複数の板状結晶が明瞭でない場合もある
が、このような場合にはイオンエッチングなどのエッチ
ング処理を施すことにより積層板状結晶の存在が明瞭に
観察される。本発明の膜はこのような構造を取ることに
より、高い強度を実現している。
In each case, the pore diameter (average of the longitudinal and lateral pores observed by SEM) is 0.01 to 5 μm. In addition, depending on the manufacturing conditions of the film, there are cases where a plurality of plate-shaped crystals extending in a direction substantially perpendicular to the fiber axis are not clear, but in such a case, an etching treatment such as ion etching is applied to form a laminated plate-like crystal. The presence of crystals is clearly observed. The film of the present invention achieves high strength by having such a structure.

【0014】本発明の不均質中空繊維膜は、外表面に凹
凸を有していることを特徴とする。この凹凸はしわ状、
鱗状、波状、多数の丘状など種々の場合があり、その凸
部に注目すれば、繊維軸にほぼ垂直に配置された線状で
ある場合、繊維軸にほぼ垂直に配置された蛇行した線状
である場合、網目状である場合、独立した点である場合
などがあり得る。また、独立した点状においては、各点
が繊維軸方向に一列に並んでいる場合、ランダムに配置
されている場合などがあり得る。
The heterogeneous hollow fiber membrane of the present invention is characterized by having irregularities on the outer surface. This unevenness is wrinkled,
There are various cases such as scaly, wavy, and many hills, and paying attention to the convex portion, if it is a linear shape arranged almost perpendicular to the fiber axis, a meandering line arranged almost perpendicular to the fiber axis. It may be a shape, a mesh, an independent point, or the like. Further, in the case of independent dots, there may be cases where the points are arranged in a line in the fiber axis direction or randomly arranged.

【0015】凹凸の繊維軸方向の周期は0.5〜25μ
m、好ましくは1〜10μmであり、凹凸の深さは0.
1〜5μm、好ましくは0.2〜1.0μmである。但
しこの凹凸はかなり不規則である場合もあり、従って、
ここで言う周期とは、最頻値即ち、凹凸のラプラ−ス変
換スペクトルにおけるピーク値を意味する。もちろん、
この周期の凹凸と重複して、さらに長い周期あるいは短
い周期の凹凸が存在することも可能である。また凹凸の
深さは、最頻周期の凹凸の振幅の2倍を意味する。凹凸
の周期や深さは、レーザー顕微鏡、原子間力顕微鏡(A
FM)、走査型トンネル顕微鏡(STM)などにより定
量的に測定することができる。
The period of the irregularities in the fiber axis direction is 0.5 to 25 μm.
m, preferably 1 to 10 μm, and the depth of the unevenness is 0.
It is 1 to 5 μm, preferably 0.2 to 1.0 μm. However, this unevenness can be quite irregular, so
The period referred to here means the most frequent value, that is, the peak value in the Laplace-transformed spectrum of unevenness. of course,
It is also possible that the irregularities of a longer period or a shorter period exist so as to overlap with the irregularities of this period. Further, the depth of the unevenness means twice the amplitude of the unevenness of the most frequent cycle. The cycle and depth of the unevenness are determined by laser microscope, atomic force microscope (A
FM), scanning tunneling microscope (STM), etc.

【0016】本発明の、外表面に凹凸を有する不均質膜
は高い気体透過速度を示す。しかし、膜の気体透過速度
に影響するこれ以外の要因も多い。例えば、膜厚(中空
糸壁の厚み)を厚くすると、気体透過速度の低い膜が得
られがちであることから、同一寸法の膜で比較すべきで
ある。同一寸法の膜で比較すると、本発明の膜は従来知
られていた、表面に凹凸を有しない膜に比べて高い透過
速度を示す。本発明は膜厚が厚い場合、例えば30μm
以上の場合に特に有効である。
The heterogeneous membrane of the present invention having irregularities on the outer surface exhibits a high gas permeation rate. However, there are many other factors that affect the gas permeation rate of the membrane. For example, when the film thickness (the thickness of the hollow fiber wall) is increased, a film having a low gas permeation rate tends to be obtained, and therefore, films having the same size should be compared. When compared with a film having the same size, the film of the present invention exhibits a higher permeation rate than the conventionally known film having no unevenness on the surface. In the present invention, when the film thickness is large, for example, 30 μm
It is particularly effective in the above cases.

【0017】また、緻密層に多少のピンホ−ルが存在
し、酸素/窒素の分離係数が0.940以上αp未満
(αpは重合体自体の酸素/窒素分離係数。緻密層にピ
ンホールがない場合には、膜の酸素/窒素分離係数はこ
の値に一致する)である場合にも注意深い比較が必要で
ある。緻密層にピンホールが存在する場合には、膜を透
過する気体の量は、緻密層部分の透過量とピンホールの
透過量との和となるが、緻密層を透過する速度に比べピ
ンホール部を透過する速度が高いため、膜の気体透過速
度はピンホールの存在密度に大きく依存する。
Further, there are some pinholes in the dense layer, and the oxygen / nitrogen separation coefficient is 0.940 or more and less than αp (αp is the oxygen / nitrogen separation coefficient of the polymer itself. There are no pinholes in the dense layer. In some cases, the oxygen / nitrogen separation factor of the membrane is in agreement with this value) also requires careful comparison. When there are pinholes in the dense layer, the amount of gas that permeates the membrane is the sum of the amount of permeation in the dense layer and the amount of permeation of the pinholes. The gas permeation rate of the membrane largely depends on the density of pinholes because the rate of permeation through the part is high.

【0018】したがって、本発明の効果を、単なる気体
透過速度の比較からは判定できない。このような場合に
は、同じ気体分離係数を示す膜での気体透過速度の比較
により効果を判定できる。あるいは、例えば前出の特開
平1−104271記載の計算式で算出される緻密層の
厚みが薄くなることで判定できる。このような、外表面
に凹凸のある不均質中空繊維膜が、優れた気体透過速度
を示す理由は不明であるが、理由の一つとして外表面緻
密層の実質表面積の増加が考えられる。気体透過速度は
膜表面積に比例することが知られているから、膜表面の
凹凸により表面積が実質的に増加すれば、緻密層の厚み
が同一であっても気体透過速度が増加することになる。
Therefore, the effect of the present invention cannot be judged by merely comparing the gas permeation rates. In such a case, the effect can be judged by comparing the gas permeation rates of the membranes having the same gas separation coefficient. Alternatively, it can be determined by, for example, the thickness of the dense layer calculated by the calculation formula described in JP-A-1-104271 described above becoming thin. The reason why such a heterogeneous hollow fiber membrane having irregularities on the outer surface exhibits an excellent gas permeation rate is unknown, but one possible reason is that the substantial surface area of the outer surface dense layer is increased. It is known that the gas permeation rate is proportional to the membrane surface area. Therefore, if the surface area is substantially increased due to the unevenness of the membrane surface, the gas permeation rate will increase even if the dense layer has the same thickness. .

【0019】あるいは、緻密層の厚みを薄くできる製造
条件を採用できるためである可能性もある。もちろんこ
れは、あくまで機構の推定であり、本発明を限定するも
のではない。本発明の膜を構成する重合体は結晶性の熱
可塑性重合体である。本発明の膜は溶融成形法で製造す
ることができる。溶融成形法で製造するためには結晶性
の熱可塑性重合体である必要がある。本発明で言う結晶
性の重合体とは到達結晶化度が30%以上のものをい
う。
Alternatively, it may be because manufacturing conditions can be adopted which can reduce the thickness of the dense layer. Of course, this is only a mechanism estimation and does not limit the present invention. The polymer constituting the membrane of the present invention is a crystalline thermoplastic polymer. The film of the present invention can be manufactured by a melt molding method. A crystalline thermoplastic polymer is required for production by the melt molding method. The crystalline polymer referred to in the present invention is one having an ultimate crystallinity of 30% or more.

【0020】結晶性の熱可塑性重合体のなかでも、ポリ
オレフィン系重合体が結晶性が高く、かつ結晶化速度が
高いため好ましく、なかでも、ポリ(4−メチル−1−
ペンテン)系重合体が、気体透過速度が高くかつ酸素/
窒素分離係数が高いため、酸素富化空気の製造や窒素富
化空気の製造を目的とした膜を製造するには特に好適で
ある。本発明に使用されるポリ(4−メチル−1−ペン
テン)系重合体は、4−メチル−1−ペンテンの単独重
合体もしくは4−メチル−1−ペンテンを55%以上含
む共重合体または混合物である。
Among the crystalline thermoplastic polymers, polyolefin-based polymers are preferable because they have high crystallinity and a high crystallization rate. Among them, poly (4-methyl-1-) is preferable.
The pentene) -based polymer has a high gas permeation rate and oxygen /
The high nitrogen separation coefficient makes it particularly suitable for producing oxygen-enriched air and membranes for producing nitrogen-enriched air. The poly (4-methyl-1-pentene) -based polymer used in the present invention is a homopolymer of 4-methyl-1-pentene or a copolymer or mixture containing 55% or more of 4-methyl-1-pentene. Is.

【0021】本発明の不均質中空繊維膜の寸法は特に制
約を設ける必要はないが、外径は40μm〜3mmが好
ましく、100〜500μmがさらに好ましい。膜厚は
5μm〜1mmであることが好ましく、10〜50μm
がさらに好ましい。本発明の製造方法は、まず、結晶性
の熱可塑性重合体をTm〜(Tm+100)℃(但し、
Tmは重合体の結晶融解温度を示す)、好ましくは(T
m+20)〜(Tm+50)℃にて中空糸ノズルより押
し出し、ドラフト比(=引き取り速度/吐出線速度)5
0〜1500、好ましくは200〜1200にて引き取
りつつ気体、好ましくは空気、窒素または炭酸ガスにて
冷却することにより、溶融紡糸を行う。
The size of the heterogeneous hollow fiber membrane of the present invention is not particularly limited, but the outer diameter is preferably 40 μm to 3 mm, more preferably 100 to 500 μm. The film thickness is preferably 5 μm to 1 mm, 10 to 50 μm
Is more preferable. In the production method of the present invention, first, a crystalline thermoplastic polymer is treated at Tm to (Tm + 100) ° C. (however,
Tm indicates the crystal melting temperature of the polymer), preferably (T
m + 20) to (Tm + 50) ° C., extruded from a hollow fiber nozzle, draft ratio (= take-off speed / discharge linear speed) 5
Melt spinning is carried out by cooling with a gas, preferably air, nitrogen or carbon dioxide while taking it in at 0 to 1500, preferably 200 to 1200.

【0022】得られた紡出糸は、必要に応じ熱処理す
る。熱処理は重合体の種類や中空糸寸法や紡糸冷却条件
によっては省くこともできるが、高性能の不均質膜を製
造するためには実施することが好ましい。熱処理は、好
ましくは(Tm−50)〜Tm℃、さらに好ましくは
(Tm−30)〜Tm℃の温度に曝す方法で実施でき
る。熱処理は、高温の気体または液体雰囲気中に滞留さ
せる方法や、赤外線加熱などの方法を採用することがで
きる。
The obtained spun yarn is heat-treated if necessary. The heat treatment may be omitted depending on the type of polymer, the size of the hollow fiber and the spinning cooling conditions, but it is preferably carried out to produce a high performance heterogeneous membrane. The heat treatment can be carried out by a method of exposing to a temperature of (Tm-50) to Tm ° C, more preferably (Tm-30) to Tm ° C. For the heat treatment, a method of staying in a high temperature gas or liquid atmosphere, a method of infrared heating, or the like can be adopted.

【0023】次いで、紡出糸または熱処理を加えた紡出
糸(未延伸糸と称する)に延伸を施す。延伸により膜内
部が多孔質化するため、延伸前には透明であった中空糸
が、延伸により白色化する。本発明の膜を製造するため
には、後工程の熱固定における収縮を可能とするため
に、延伸倍率を比較的大きくする必要がある。必要な延
伸倍率は延伸温度や熱固定条件に依存し一定ではない
が、1.2〜5であり、1.3〜3.5が好ましい。延
伸温度は、Tg〜(Tm−60)℃(但し、Tgは重合
体のガラス転移温度を示す)であり、Tg〜(Tg+1
00)℃が好ましい。
Next, the spun yarn or the heat treated spun yarn (referred to as undrawn yarn) is drawn. Since the inside of the membrane is made porous by the stretching, the hollow fiber which was transparent before the stretching is whitened by the stretching. In order to manufacture the membrane of the present invention, it is necessary to make the stretching ratio relatively large in order to allow shrinkage in the heat setting in the subsequent step. The required stretching ratio depends on the stretching temperature and heat setting conditions and is not constant, but it is 1.2 to 5, and preferably 1.3 to 3.5. The stretching temperature is Tg to (Tm-60) ° C (where Tg represents the glass transition temperature of the polymer), and Tg to (Tg + 1).
00) ° C. is preferred.

【0024】延伸は1段延伸でも多段延伸でもよいが、
多段延伸、なかでも順次温度を上げた多段延伸であるこ
とが、切断することなく必要な延伸倍率を取ることがで
き、優れた性能の膜を得る上で好ましい。多段延伸の場
合には、必要な延伸倍率は、延伸工程における合計の延
伸倍率である。延伸した中空繊維(延伸糸と称する)
は、収縮させつつ比較的低温で熱固定することにより外
表面に凹凸を発生させる。本発明の製造方法における熱
固定方法の第1は、延伸後に、(延伸工程の温度+1
0)℃以下の温度にて15〜40%収縮させる熱固定を
行う方法である。
The stretching may be one-stage stretching or multi-stage stretching,
Multi-stage stretching, especially multi-stage stretching in which the temperature is sequentially increased, is preferable in that a required stretching ratio can be obtained without cutting and a film having excellent performance is obtained. In the case of multi-stage stretching, the necessary stretching ratio is the total stretching ratio in the stretching process. Stretched hollow fiber (referred to as stretched yarn)
Causes unevenness on the outer surface by shrinking and heat fixing at a relatively low temperature. The first of the heat setting methods in the production method of the present invention is, after stretching, (temperature of stretching step + 1
0) It is a method of heat-setting which shrinks by 15-40% at a temperature of 0 ° C or less.

【0025】熱固定温度が(延伸工程の温度+10)℃
より高いと、収縮させても外表面に十分な凹凸は発生し
ない。この方法において、得られた中空繊維膜の寸法安
定性を増すためには、延伸温度および収縮させる温度は
できるだけ高いことが好ましい。熱固定を多段で実施す
ることも可能である。この時、多段式熱固定における全
ての段が上記温度の範囲内である必要がある。熱固定が
多段熱固定である場合には、収縮量はその合計とする。
また、熱固定後、自由長または制限収縮条件でエ−ジン
グすることも行われるが、この場合のエ−ジングも熱固
定の一部と見做す。
The heat setting temperature is (the temperature of the drawing step +10) ° C.
If it is higher, even if it shrinks, sufficient unevenness does not occur on the outer surface. In this method, the stretching temperature and the shrinking temperature are preferably as high as possible in order to increase the dimensional stability of the obtained hollow fiber membrane. It is also possible to carry out heat setting in multiple stages. At this time, it is necessary that all the stages in the multi-stage heat setting are within the above temperature range. When the heat setting is multi-step heat setting, the shrinkage amount is the total.
After heat setting, aging may be performed under free length or limited shrinkage conditions, but aging in this case is also regarded as part of heat setting.

【0026】熱固定は、中空繊維を高温の気体または液
体雰囲気中に滞留させる方法や、赤外線加熱などの方法
を採用することができる。延伸糸を収縮させ、外表面に
凹凸を発生させる第2の熱固定方法は、限定された条件
で2段熱固定を行う方法である。得られた中空繊維膜の
寸法安定性を増すためには、この2段熱固定法が好まし
い。本発明の2段熱固定法は、まず(Tm−50)〜T
m℃の範囲、好ましくは(Tm−30)〜Tm℃の範囲
の温度に1秒以上置く、第1段熱固定を行う。第1段熱
固定温度は、熱処理温度より30℃以上低くないことが
好ましく、15℃以上低くないことがより好ましい。
For the heat fixation, a method of retaining the hollow fibers in a high temperature gas or liquid atmosphere, a method of infrared heating or the like can be adopted. The second heat setting method of shrinking the drawn yarn to generate irregularities on the outer surface is a method of performing two-step heat setting under limited conditions. This two-stage heat setting method is preferable in order to increase the dimensional stability of the obtained hollow fiber membrane. The two-step heat-setting method of the present invention is performed by (Tm-50) to T
The first stage heat setting is carried out by keeping the temperature in the range of m ° C, preferably in the range of (Tm-30) to Tm ° C for 1 second or longer. The first-stage heat setting temperature is preferably 30 ° C. or more lower than the heat treatment temperature, and more preferably 15 ° C. or more lower.

【0027】また第1段熱固定の温度は延伸温度より高
いことが好ましい。第1段熱固定における中空繊維の収
縮量は0〜30%が好ましい。第1段熱固定を多段で実
施することも可能である。多段式第1段熱固定における
全ての段が上記温度範囲である必要はないが、上記温度
範囲の熱固定が含まれている必要がある。第1段熱固定
を行った後、第1段熱固定温度より低い温度で、第1段
熱固定後の中空繊維長の10〜40%、好ましくは12
〜35%、さらに好ましくは15〜30%収縮させつつ
第2段熱固定を行う。
The temperature of the first stage heat setting is preferably higher than the stretching temperature. The shrinkage amount of the hollow fibers in the first stage heat setting is preferably 0 to 30%. It is also possible to carry out the first stage heat setting in multiple stages. Not all stages in the multistage first stage heat setting need to be in the above temperature range, but heat setting in the above temperature range must be included. After the first stage heat setting, at a temperature lower than the first stage heat setting temperature, 10 to 40%, preferably 12% of the hollow fiber length after the first stage heat setting.
Second stage heat setting is performed while shrinking by ~ 35%, more preferably by 15 ~ 30%.

【0028】第2段熱固定を多段で実施することも可能
である。この時、多段式第2段熱固定における全ての段
が上記温度の範囲内である必要がある。第2段熱固定が
多段熱固定である場合には、収縮量はその合計とする。
熱固定は、中空繊維を高温の気体または液体雰囲気中に
滞留させる方法や、赤外線加熱などの方法を採用するこ
とができる。また、熱固定の後、自由長または制限収縮
条件でエ−ジングすることも行われるが、この場合のエ
−ジングも第2段熱固定の一部と見做す。この方法にお
いては、膜の外表面の凹凸は、第2段熱固定工程におい
て形成される。
It is also possible to carry out the second stage heat setting in multiple stages. At this time, it is necessary that all the stages in the multistage second stage heat setting are within the above temperature range. When the second-stage heat setting is multi-stage heat setting, the shrinkage amount is the total thereof.
For the heat fixation, a method of retaining the hollow fibers in a high temperature gas or liquid atmosphere, a method of infrared heating or the like can be adopted. After heat setting, aging may be performed under free length or limited shrinkage conditions, but aging in this case is also regarded as part of the second stage heat setting. In this method, the irregularities on the outer surface of the film are formed in the second heat setting step.

【0029】[0029]

【実施例】以下実施例により、本発明をさらに具体的に
説明するが、本発明がこれにより限定されるものではな
い。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0030】[実施例1]メルトインデックス(AST
M−D−1238、260℃、5kgによる)26のポ
リ(4−メチル−1−ペンテン)(Tm=240℃)を
直径6mmの円環型ノズルから、285℃にて溶融押し
出し、0.2m/秒の横風で冷却し、長さ4mの紡糸筒
を経た後、ノズル下5.5mの位置で引き取り速度12
0m/分、ドラフト350でボビンに巻き取った。この
紡出糸をローラー系にて連続的に、温度210℃の熱風
炉に滞留時間5秒で通すことにより熱処理し、35℃、
延伸倍率1.3の冷延伸、および150℃、延伸倍率
1.4の熱延伸(延伸工程における合計の延伸倍率1.
82)を行った後、210℃の熱風炉を、5%収縮させ
つつ、滞留時間3秒で通過させる第1段熱固定、およ
び、150℃の熱風炉を、第1段熱固定後の長さの15
%を収縮させつつ、滞留時間10秒で通過させる第2段
熱固定を行った。
Example 1 Melt Index (AST
M-D-1238, 260 ° C., 5 kg) 26 poly (4-methyl-1-pentene) (Tm = 240 ° C.) was melt extruded at 285 ° C. from a ring-shaped nozzle having a diameter of 6 mm at 0.2 m. After cooling with a cross wind of 1 / sec and passing through a spinning cylinder with a length of 4 m, the take-up speed is 12 at a position 5.5 m below the nozzle.
It was wound on a bobbin with a draft 350 at 0 m / min. This spun yarn is continuously heat-treated by passing it through a hot air oven having a temperature of 210 ° C. for a residence time of 5 seconds in a roller system, and 35 ° C.
Cold stretching at a draw ratio of 1.3, and hot stretching at 150 ° C. and a draw ratio of 1.4 (total draw ratio in the drawing step 1.
82), the first-stage heat-fixing in which the hot-air stove at 210 ° C. is shrunk by 5% and the residence time is 3 seconds, and the hot-air stove at 150 ° C. Sano 15
The second stage heat setting was carried out, in which the resin was allowed to pass with a residence time of 10 seconds while shrinking%.

【0031】得られた中空糸膜は外径304μm、内径
234μm、膜厚35μmであり、SEMにて観察した
ところ、外表面には細孔は認められず、鱗状の凹凸が観
察された。内表面には、繊維軸方向に垂直に長く伸びた
結晶が繊維方向に積層しており、その積層結晶間をフィ
ブリルがつないでおり、結晶とフィブリルで囲まれた部
分が、繊維軸方向に長い楕円形の細孔として観察され、
細孔の平均直径は約0.05μmであった。また、中空
繊維膜を斜めに切断した断面には、孔径約0.1μmの
多数の細孔が観察された。
The obtained hollow fiber membrane had an outer diameter of 304 μm, an inner diameter of 234 μm and a film thickness of 35 μm, and when observed by SEM, no pores were observed on the outer surface and scale-like irregularities were observed. On the inner surface, crystals that extend long in the fiber axis direction are stacked in the fiber direction, and fibrils are connected between the stacked crystals, and the part surrounded by the crystals and fibrils is long in the fiber axis direction. Observed as elliptical pores,
The average diameter of the pores was about 0.05 μm. In addition, a large number of pores having a pore diameter of about 0.1 μm were observed in the cross section obtained by obliquely cutting the hollow fiber membrane.

【0032】この中空糸膜の外表面を走査型トンネル顕
微鏡(STM)にて測定したところ、外表面の凹凸は、
第1図に示したように、周期約2.5μm、深さ約0.
3μmであることが測定された。得られた不均質中空繊
維膜の気体透過特性は、酸素透過速度が2.2×10-5
[cm3/cm2・sec・cmHg]、酸素/窒素分離
係数が4.1[−]であった。
The outer surface of this hollow fiber membrane was measured by a scanning tunneling microscope (STM).
As shown in FIG. 1, the period is about 2.5 μm and the depth is about 0.
It was measured to be 3 μm. The gas permeation characteristics of the obtained heterogeneous hollow fiber membrane were such that the oxygen permeation rate was 2.2 × 10 −5.
[Cm 3 / cm 2 · sec · cmHg] and the oxygen / nitrogen separation coefficient were 4.1 [−].

【0033】[実施例2]熱延伸の延伸倍率が1.6で
あること、第1段熱固定の処理時間が5秒であること、
第2段熱固定条件が、自由長、70℃、6時間であるこ
と以外は実施例1と同様にして不均質中空繊維膜を作製
した。この時、第2段熱固定において、第1段熱固定後
の中空繊維長に対して17%収縮した。
[Example 2] The draw ratio of heat drawing is 1.6, and the treatment time of the first stage heat setting is 5 seconds.
A heterogeneous hollow fiber membrane was produced in the same manner as in Example 1 except that the second stage heat setting conditions were free length, 70 ° C., and 6 hours. At this time, in the second stage heat setting, the shrinkage was 17% with respect to the hollow fiber length after the first stage heat setting.

【0034】得られた膜をSEMにより観察すると、外
表面に少数の、孔径約0.05μmの細孔が観察された
ほかは、寸法、外表面形状、内表面形状、断面形状とも
に実施例1とほぼ同様であった。また、この不均質中空
繊維膜の気体透過特性は、酸素透過速度が1.8×10
-5[cm3/cm2・sec・cmHg]、酸素/窒素分
離係数が4.1[−]であった。
When the obtained film was observed by SEM, a small number of pores having a pore size of about 0.05 μm were observed on the outer surface, and the size, outer surface shape, inner surface shape, and cross-sectional shape of Example 1 Was almost the same as. The gas permeation characteristics of this heterogeneous hollow fiber membrane are as follows: oxygen permeation rate of 1.8 × 10
-5 [cm 3 / cm 2 · sec · cmHg], and the oxygen / nitrogen separation coefficient was 4.1 [-].

【0035】[実施例3]熱延伸の延伸倍率が1.5で
あること、熱固定が100℃、28%収縮条件の1段で
あること、およびその後、50℃、24時間のエ−ジン
グにて6%収縮させたこと以外時は実施例1と同様の方
法にて不均質中空繊維膜を作製した。得られた膜の外表
面には皴状の凹凸と少数の孔径約0.05μmの細孔が
観察された。膜内部および内表面は実施例1と同様であ
った。STM測定によると、周期約0.7μm、深さ約
0.2μmの凹凸と、周期約10μm、深さ約1.2μ
mの凹凸が重なった構造であった。また、この不均質中
空繊維膜の気体透過特性は、酸素透過速度が5.9×1
-4[cm3/cm2・sec・cmHg]、酸素/窒素
分離係数が0.961[−]であった。
[Example 3] The draw ratio of the heat drawing is 1.5, the heat setting is one stage under the conditions of 100 ° C and 28% shrinkage, and then the aging is carried out at 50 ° C for 24 hours. A heterogeneous hollow fiber membrane was produced in the same manner as in Example 1 except that the film was shrunk by 6%. On the outer surface of the obtained film, wrinkle-like irregularities and a small number of pores having a diameter of about 0.05 μm were observed. The inside and the inside surface of the film were the same as in Example 1. According to STM measurement, irregularities with a period of about 0.7 μm and a depth of about 0.2 μm, and a period of about 10 μm and a depth of about 1.2 μm
It had a structure in which irregularities of m were overlapped. The gas permeation characteristic of this heterogeneous hollow fiber membrane is that the oxygen permeation rate is 5.9 × 1.
It was 0 −4 [cm 3 / cm 2 · sec · cmHg] and the oxygen / nitrogen separation coefficient was 0.961 [−].

【0036】[実施例4]紡糸温度が300℃であるこ
と、冷延伸を行わなかったこと、熱延伸の延伸倍率が
2.1であること、熱固定が100℃、30%収縮条件
の1段であること、およびその後、70℃、1時間の自
由長エ−ジングにて7%収縮させたこと以外時は実施例
1と同様の方法にて不均質中空繊維膜を作製した。得ら
れた膜の外表面には、皴状の凹凸と少数の孔径約0.5
μmの細孔が観察された。膜内部は多孔質であり、内表
面は孔径約0.3μmの細孔が開口していた。
Example 4 The spinning temperature was 300 ° C., cold drawing was not performed, the draw ratio of hot drawing was 2.1, heat setting was 100 ° C., and 30% shrinkage condition was 1. A heterogeneous hollow fiber membrane was produced in the same manner as in Example 1 except that the step was performed and then the film was shrunk by 7% by free length aging at 70 ° C. for 1 hour. The outer surface of the obtained film has wrinkle-like irregularities and a small number of pores of about 0.5.
Micrometer pores were observed. The inside of the film was porous, and pores having a pore size of about 0.3 μm were opened on the inner surface.

【0037】STMにて測定された膜外表面の凹凸の周
期は約3.2μm、凹凸の深さは約0.7μmであっ
た。また、この不均質中空繊維膜の気体透過特性は、酸
素透過速度が1.2×10-5[cm3/cm2・sec・
cmHg]、酸素/窒素分離係数が3.9[−]であっ
た。
The period of the irregularities on the outer surface of the film measured by STM was about 3.2 μm, and the depth of the irregularities was about 0.7 μm. The gas permeation characteristics of this heterogeneous hollow fiber membrane are that the oxygen permeation rate is 1.2 × 10 −5 [cm 3 / cm 2 · sec ·
cmHg], and the oxygen / nitrogen separation coefficient was 3.9 [-].

【0038】[比較例]熱固定が210℃、10秒、1
5%収縮条件の1段のみであること以外は実施例1と同
様にして不均質中空繊維膜を作製した。この膜をSEM
で観察したところ、外表面には凹凸が観察されずのっぺ
りとしており、膜断面および膜内表面は実施例1で得た
膜と同様であった。STMによる凹凸の測定では、特に
明白な周期は観察されず、深さも約0.03μmであっ
た。得られた不均質中空繊維膜の気体透過特性は、酸素
透過速度が1.3×10-5[cm3/cm2・sec・c
mHg]、酸素/窒素分離係数が4.2[−]であっ
た。
[Comparative Example] Heat setting was 210 ° C., 10 seconds, 1
A heterogeneous hollow fiber membrane was produced in the same manner as in Example 1 except that only one stage of the 5% shrinkage condition was used. This film is SEM
As a result, no irregularities were observed on the outer surface, and it was flat, and the cross section of the film and the inner surface of the film were the same as those of the film obtained in Example 1. In the measurement of unevenness by STM, no obvious period was observed and the depth was about 0.03 μm. The gas permeation characteristics of the obtained inhomogeneous hollow fiber membrane have an oxygen permeation rate of 1.3 × 10 −5 [cm 3 / cm 2 · sec · c].
mHg] and the oxygen / nitrogen separation coefficient were 4.2 [-].

【0039】[0039]

【効果】本発明は、同じ気体分離係数で比較して高い気
体透過速度を有する膜、並びにその製造法を提供する。
即ち、緻密層にピンホールが全く無い場合であれ、多少
のピンホールが存在する場合であれ、計算上、緻密層の
厚みの薄い不均質膜をもたらす。これにより、膜モジュ
ールや装置の小形化、低価格化が計れる。
The present invention provides a membrane having a high gas permeation rate as compared with the same gas separation coefficient, and a method for producing the membrane.
That is, whether the pinch layer has no pinholes or some pinholes exist, the calculation results in a heterogeneous film having a thin pinch layer. As a result, the size and cost of the membrane module and device can be reduced.

【0040】[0040]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施例で製造された不均質中空
繊維膜の走査型トンネル顕微鏡測定で得られた、外表面
の凹凸を示すグラフである。横軸は繊維軸方向の距離、
縦軸は深さ方向の距離を示し、単位はμmである。
FIG. 1 is a graph showing irregularities on the outer surface of a heterogeneous hollow fiber membrane produced in an example of the present invention, which was obtained by measurement with a scanning tunneling microscope. The horizontal axis is the distance in the fiber axis direction,
The vertical axis represents the distance in the depth direction, and the unit is μm.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 結晶性の熱可塑性重合体からなり、表面
に実質的に非多孔質の緻密層を有し、膜内部は連通多孔
質となっている不均質中空繊維膜であって、かつ緻密層
側の表面に、繊維軸方向に0.5〜25μm、深さが
0.1〜5μmの周期性の凹凸を有することを特徴とす
る不均質中空繊維膜。
1. A heterogeneous hollow fiber membrane which is made of a crystalline thermoplastic polymer, has a substantially non-porous dense layer on its surface, and has a continuous porous inside the membrane, and A heterogeneous hollow fiber membrane, characterized in that it has irregularities of 0.5 to 25 [mu] m in the fiber axis direction and a depth of 0.1 to 5 [mu] m on the surface of the dense layer side.
【請求項2】 不均質中空繊維膜が、外表面に実質的に
非多孔質の緻密層を有し、膜内部は連通多孔質となって
おり、内表面には繊維軸にほぼ直角方向に伸びた複数の
板状結晶とその結晶をつなぐ複数のフィブリルとで囲ま
れた細孔が開口している不均質中空繊維膜である請求項
1記載の不均質中空繊維膜。
2. The heterogeneous hollow fiber membrane has a substantially non-porous dense layer on the outer surface, the inside of the membrane is continuous porous, and the inner surface is in a direction substantially perpendicular to the fiber axis. The heterogeneous hollow fiber membrane according to claim 1, which is a heterogeneous hollow fiber membrane in which pores surrounded by a plurality of elongated plate crystals and a plurality of fibrils connecting the crystals are open.
【請求項3】 不均質中空繊維膜が、溶融紡糸法により
得られたものである請求項1または2記載の不均質中空
繊維膜。
3. The heterogeneous hollow fiber membrane according to claim 1, wherein the heterogeneous hollow fiber membrane is obtained by a melt spinning method.
【請求項4】 結晶性の熱可塑性重合体が、ポリオレフ
ィン系重合体である請求項1、2または3記載の不均質
中空繊維膜。
4. The heterogeneous hollow fiber membrane according to claim 1, 2 or 3, wherein the crystalline thermoplastic polymer is a polyolefin polymer.
【請求項5】 ポリオレフィン系重合体が、ポリ(4−
メチル−1−ペンテン)系重合体である請求項4記載の
不均質中空繊維膜。
5. The polyolefin polymer is poly (4-
The heterogeneous hollow fiber membrane according to claim 4, which is a methyl-1-pentene) -based polymer.
【請求項6】 結晶性の熱可塑性重合体を溶融紡糸し、
必要に応じて熱処理し、Tg〜(Tm−60)℃の温度
範囲にて延伸倍率1.2〜5.0だけ延伸した後、(延
伸温度+10)℃以下の温度にて15〜40%収縮させ
つつ熱固定することを特徴とする、緻密層側の表面に、
周期性の凹凸を有する不均質中空繊維膜の製造方法。
6. A crystalline thermoplastic polymer is melt-spun,
Heat-treated as necessary, stretched by a stretch ratio of 1.2 to 5.0 in a temperature range of Tg to (Tm-60) ° C, and then shrunk by 15 to 40% at a temperature of (stretching temperature +10) ° C or lower. On the surface of the dense layer side, which is characterized by heat fixing while
A method for producing a heterogeneous hollow fiber membrane having periodic irregularities.
【請求項7】 結晶性の熱可塑性重合体を溶融紡糸し、
必要に応じて熱処理し、Tg〜(Tm−60)℃の温度
範囲にて延伸倍率1.2〜5.0だけ延伸した後、(T
m−50)〜Tm℃の温度範囲に1秒以上置く第1段熱
固定を行い、その後、第1段熱固定温度より低い温度
で、第1段熱固定後の中空繊維長の10〜40%収縮さ
せつつ第2段熱固定を行う、緻密層側の表面に、周期性
の凹凸を有する不均質中空繊維膜の製造方法。
7. A crystalline thermoplastic polymer is melt-spun,
If necessary, after heat treatment and stretching at a draw ratio of 1.2 to 5.0 in the temperature range of Tg to (Tm-60) ° C, (T
m-50) to Tm ° C. for 1 second or longer to carry out the first stage heat setting, and then at a temperature lower than the first stage heat setting temperature, 10 to 40 of the hollow fiber length after the first stage heat setting. A method for producing a heterogeneous hollow fiber membrane having periodical irregularities on the surface of the dense layer, wherein the second stage heat setting is performed while shrinking by%.
JP3656493A 1993-02-25 1993-02-25 Heterogeneous hollow fiber membrane and its production Pending JPH06246139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3656493A JPH06246139A (en) 1993-02-25 1993-02-25 Heterogeneous hollow fiber membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3656493A JPH06246139A (en) 1993-02-25 1993-02-25 Heterogeneous hollow fiber membrane and its production

Publications (1)

Publication Number Publication Date
JPH06246139A true JPH06246139A (en) 1994-09-06

Family

ID=12473260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3656493A Pending JPH06246139A (en) 1993-02-25 1993-02-25 Heterogeneous hollow fiber membrane and its production

Country Status (1)

Country Link
JP (1) JPH06246139A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369168A1 (en) * 2001-03-06 2003-12-10 Asahi Kasei Kabushiki Kaisha Method for producing hollow yarn film
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
WO2009054495A1 (en) * 2007-10-25 2009-04-30 Toyo Boseki Kabushiki Kaisha Porous polymer film
US8999454B2 (en) 2012-03-22 2015-04-07 General Electric Company Device and process for producing a reinforced hollow fibre membrane
US9022229B2 (en) 2012-03-09 2015-05-05 General Electric Company Composite membrane with compatible support filaments
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9132390B2 (en) 2009-03-26 2015-09-15 Bl Technologies Inc. Non-braided reinforced holow fibre membrane
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
US9227362B2 (en) 2012-08-23 2016-01-05 General Electric Company Braid welding
US9321014B2 (en) 2011-12-16 2016-04-26 Bl Technologies, Inc. Hollow fiber membrane with compatible reinforcements
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
CN115155329A (en) * 2022-07-11 2022-10-11 杭州科百特过滤器材有限公司 Polyolefin hollow fiber membrane for asymmetric degassing and preparation method and application thereof
WO2024043218A1 (en) * 2022-08-26 2024-02-29 東レ株式会社 Separation membrane and method for producing same
WO2024048359A1 (en) * 2022-08-30 2024-03-07 東レ株式会社 Separation membrane and method for manufacturing same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002236221B2 (en) * 2001-03-06 2004-09-23 Asahi Kasei Chemicals Corporation Method for producing hollow yarn film
US7128861B2 (en) 2001-03-06 2006-10-31 Asahi Kasei Chemicals Corporation Method for producing hollow yarn film
EP1369168A1 (en) * 2001-03-06 2003-12-10 Asahi Kasei Kabushiki Kaisha Method for producing hollow yarn film
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
WO2009054495A1 (en) * 2007-10-25 2009-04-30 Toyo Boseki Kabushiki Kaisha Porous polymer film
JP4556150B2 (en) * 2007-10-25 2010-10-06 東洋紡績株式会社 Polymer porous membrane
JPWO2009054495A1 (en) * 2007-10-25 2011-03-10 東洋紡績株式会社 Polymer porous membrane
US9132390B2 (en) 2009-03-26 2015-09-15 Bl Technologies Inc. Non-braided reinforced holow fibre membrane
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
US9321014B2 (en) 2011-12-16 2016-04-26 Bl Technologies, Inc. Hollow fiber membrane with compatible reinforcements
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9022229B2 (en) 2012-03-09 2015-05-05 General Electric Company Composite membrane with compatible support filaments
US8999454B2 (en) 2012-03-22 2015-04-07 General Electric Company Device and process for producing a reinforced hollow fibre membrane
US9227362B2 (en) 2012-08-23 2016-01-05 General Electric Company Braid welding
CN115155329A (en) * 2022-07-11 2022-10-11 杭州科百特过滤器材有限公司 Polyolefin hollow fiber membrane for asymmetric degassing and preparation method and application thereof
WO2024043218A1 (en) * 2022-08-26 2024-02-29 東レ株式会社 Separation membrane and method for producing same
WO2024048359A1 (en) * 2022-08-30 2024-03-07 東レ株式会社 Separation membrane and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4664681A (en) Heterogeneous membrane and process for production thereof
US4405688A (en) Microporous hollow fiber and process and apparatus for preparing such fiber
US5435955A (en) Process of producing porous polypropylene hollow fiber and film
US4802942A (en) Method of making multilayer composite hollow fibers
US4541981A (en) Method for preparing a uniform polyolefinic microporous hollow fiber
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
US4919856A (en) Process for producing membranes for use in gas separation
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JPS6245318A (en) Preparation of gas separation membrane
JPH04265132A (en) Production of porous hollow fiber membrane
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
CN113398779A (en) Preparation method of asymmetric poly 4-methyl-1-pentene hollow fiber
JPH0254377B2 (en)
JP4522600B2 (en) Method for producing hollow fiber membrane
JPH0450053B2 (en)
JPS62269706A (en) Composite membrane of porous hollow polyolefin yarn and its production
JP2934902B2 (en) Manufacturing method of composite hollow fiber membrane
JPH01270907A (en) Production of porous polypropylene hollow fiber or film
JP3475363B2 (en) Method for producing porous membrane
JP3383926B2 (en) Manufacturing method of hollow fiber type heterogeneous membrane
JP2002253940A (en) Method for manufacturing hollow fiber membrane
JPS6137363B2 (en)
JPS6240441B2 (en)
JPH07155568A (en) Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane