JPH04265132A - Production of porous hollow fiber membrane - Google Patents

Production of porous hollow fiber membrane

Info

Publication number
JPH04265132A
JPH04265132A JP4887191A JP4887191A JPH04265132A JP H04265132 A JPH04265132 A JP H04265132A JP 4887191 A JP4887191 A JP 4887191A JP 4887191 A JP4887191 A JP 4887191A JP H04265132 A JPH04265132 A JP H04265132A
Authority
JP
Japan
Prior art keywords
hollow fiber
porous
layer
fiber membrane
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4887191A
Other languages
Japanese (ja)
Inventor
Yasushi Shimomura
下村 泰志
Masahiko Yamaguchi
正彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP4887191A priority Critical patent/JPH04265132A/en
Publication of JPH04265132A publication Critical patent/JPH04265132A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To produce a porous hollow fiber membrane preferably usable as a gas exchange membrane for an artificial lung preventing a leak of serum even after use for a long time and a gas separation membrane for oxygen enrichment. CONSTITUTION:A double-layered structure composed of thermoplastic resins of the same kind different from each other in mol.wt. is used to undrawn hollow fibers, and these fibers are drawn to produce a porous hollow fiber membrane having a double-layered structure composed of porous and dense layers.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はガス交換、ガス分離のた
めの多孔質中空糸膜の製法に係り、更に詳しくは、人工
肺等に用いるガス交換膜、または酸素富化等に用いるガ
ス分離膜に好適に用いることができる多孔質中空糸膜の
製法に関する。
[Industrial Application Field] The present invention relates to a method for producing porous hollow fiber membranes for gas exchange and gas separation, and more specifically to gas exchange membranes used in oxygenators, gas separation membranes used in oxygen enrichment, etc. The present invention relates to a method for producing a porous hollow fiber membrane that can be suitably used for membranes.

【0002】0002

【従来の技術】中空糸に多数の微細孔が形成された構成
を有する熱可塑性樹脂製多孔質中空糸膜は、例えば、水
処理等に使用する濾過膜、または血漿分離等に使用する
分離膜、あるいは人工肺として使用するガス交換膜など
として各種分野で利用されている。
[Prior Art] A porous hollow fiber membrane made of thermoplastic resin having a structure in which a large number of micropores are formed in a hollow fiber is, for example, a filtration membrane used for water treatment, or a separation membrane used for plasma separation, etc. It is also used in various fields as gas exchange membranes used as artificial lungs.

【0003】このような熱可塑性樹脂製多孔質中空糸膜
の製法としては、たとえば、易溶解性物質を混合分散さ
せた熱可塑性樹脂材料を中空糸に成形した後、この易溶
解性物質を溶媒により溶解除去して中空糸に多数の微細
孔を形成する方法などが知られている。
[0003] As a method for producing such a porous hollow fiber membrane made of thermoplastic resin, for example, a thermoplastic resin material in which an easily soluble substance is mixed and dispersed is formed into hollow fibers, and then this easily soluble substance is mixed and dispersed in a solvent. A method is known in which a large number of micropores are formed in a hollow fiber by dissolving and removing it.

【0004】また、熱可塑性の結晶性高分子材料を中空
糸として成形した後、これを熱処理し、次いで延伸する
ことにより、中空糸に微細孔を発生させる方法を利用し
て多孔質体とする方法もまた一般的になっている。
[0004] Furthermore, after forming a thermoplastic crystalline polymer material into hollow fibers, this is heat-treated and then stretched to create a porous body using a method of generating micropores in the hollow fibers. The method is also becoming popular.

【0005】このようにして得られ、人工肺用のガス交
換膜として使用されている多孔質中空糸膜は、その有す
る微細孔が透過すべき気体分子に比べて著しく大きいた
め、体積流として微細孔を通過する。例えば、多孔質ポ
リプロピレン膜等の多孔質中空糸膜を利用した人工肺が
種々提案されている。
The porous hollow fiber membrane obtained in this way and used as a gas exchange membrane for oxygenators has fine pores that are significantly larger than the gas molecules to be permeated, so that the volume flow is fine. pass through the hole. For example, various artificial lungs using porous hollow fiber membranes such as porous polypropylene membranes have been proposed.

【0006】また、人工肺用のガス交換膜としては均質
膜も知られており、この場合、透過する気体分子が膜に
溶解し、拡散することによってガスの移動が行われる。 この代表的なものにポリジメチルシロキサンゴムがあり
、製品化されている。また、膜素材のもつ気体(ガス)
の種類による分離度の差を利用したガス分離膜は、複雑
な湿式紡糸法により製造されている。
[0006] Homogeneous membranes are also known as gas exchange membranes for oxygenators, and in this case, gas molecules passing through the membrane dissolve in the membrane and diffuse, thereby causing gas movement. A typical example of this is polydimethylsiloxane rubber, which has been commercialized. In addition, the gas contained in the membrane material
Gas separation membranes that take advantage of the differences in the degree of separation depending on the type of gas separation membrane are manufactured using a complicated wet spinning method.

【0007】[0007]

【発明が解決しようとする課題】開心術の際等に応用さ
れる人工肺として、中空糸膜を用いた膜型人工肺が広く
普及している。従来の多孔質中空糸膜を用いた人工肺は
、開心術の際のように比較的短時間の使用では問題なく
使用されている。しかし、肺不全の治療のように人工肺
の使用時間が長期にわたる場合には、従来の多孔質中空
糸膜を用いた人工肺ではシーラム(血漿)が孔から漏洩
するという問題が生じる場合があった。
[Problems to be Solved by the Invention] Membrane type oxygenators using hollow fiber membranes are widely used as oxygenators used in open heart surgery and the like. Artificial lungs using conventional porous hollow fiber membranes have been used without problems for relatively short periods of time, such as during open heart surgery. However, when the oxygenator is used for a long period of time, such as in the treatment of lung failure, conventional oxygenators using porous hollow fiber membranes may have the problem of leakage of serum (plasma) from the pores. Ta.

【0008】また、膜素材のもつ気体(ガス)の種類に
よる分離度の差を利用したガス分離膜は、その効率を上
げるためにガス分離を行う層をできるだけ薄くする必要
があり、且つ機械的強度を保持させるために多孔質層(
コアー層)と緻密層(スキン層)が必要となっており、
従来、このような膜構造は複雑な湿式紡糸法により製造
されている。また、中空糸膜として多孔質層と緻密層を
共に形成するためには多くの製造条件を制御する必要が
あり、工程的にも複雑なものとなっている。
[0008] In addition, gas separation membranes that utilize the difference in separation degree depending on the type of gas possessed by the membrane material require the layer for gas separation to be as thin as possible in order to increase its efficiency, and mechanical Porous layer (
A core layer) and a dense layer (skin layer) are required.
Traditionally, such membrane structures have been produced by complex wet spinning methods. Furthermore, in order to form both a porous layer and a dense layer as a hollow fiber membrane, it is necessary to control many manufacturing conditions, making the process complicated.

【0009】従って本発明の目的は、長時間の使用でも
シーラム(血漿)が孔から漏洩しない人工肺のためのガ
ス交換膜、あるいは膜素材の有する気体(ガス)の種類
による分離度の差を利用したガス分離膜に好ましく使用
することができる多孔質中空糸膜の製法を提供すること
にある。
Therefore, the object of the present invention is to provide a gas exchange membrane for an oxygenator in which serum (plasma) does not leak from the pores even after long-term use, or to eliminate the difference in separation degree depending on the type of gas contained in the membrane material. It is an object of the present invention to provide a method for producing a porous hollow fiber membrane that can be preferably used in the gas separation membrane.

【0010】0010

【課題を解決するための手段】即ち、本発明によれば、
熱可塑性樹脂製中空糸を延伸することにより多数の微細
孔を形成する工程を含む多孔質中空糸膜を製造する方法
において、未延伸の原中空糸を互いに分子量の異なる同
種熱可塑性樹脂からなる複層構造とし、次いでこの原中
空糸を延伸することにより、多孔質中空糸膜に無孔また
は極めて孔の存在が少ないか、あるいはその他の多孔質
層に比して小さい孔径の孔が存在する層(緻密層)を少
なくとも一層存在せしめたことを特徴とする多孔質中空
糸膜の製法、が提供される。
[Means for Solving the Problems] That is, according to the present invention,
In a method for producing a porous hollow fiber membrane that includes a step of forming a large number of micropores by drawing hollow fibers made of thermoplastic resin, undrawn raw hollow fibers are mixed with a plurality of thermoplastic resins of the same type having different molecular weights. By creating a layered structure and then stretching this raw hollow fiber, the porous hollow fiber membrane has no pores, very few pores, or a layer in which pores with a smaller pore size than other porous layers exist. Provided is a method for producing a porous hollow fiber membrane characterized by the presence of at least one (dense layer).

【0011】以下、本発明を詳細に説明する。本発明者
は、多孔質中空糸膜を製造する場合、原中空糸の分子量
により、その後の延伸工程で同一延伸条件てあっても異
なる平均孔径の多孔質膜が得られることを発明者等は見
出し、先に出願している(特開昭62−79806号公
報)。即ち、延伸による多孔質化によって分子量の大き
い熱可塑性樹脂は分子量の小さい熱可塑性樹脂に比し、
より小さい平均孔径を有する多孔質膜となる。
The present invention will be explained in detail below. The inventors have discovered that when manufacturing porous hollow fiber membranes, porous membranes with different average pore diameters can be obtained in the subsequent stretching process even under the same stretching conditions, depending on the molecular weight of the raw hollow fibers. Heading: Previously filed (Japanese Unexamined Patent Publication No. 79806/1983). In other words, thermoplastic resins with larger molecular weights are made porous by stretching, compared to thermoplastic resins with smaller molecular weights.
This results in a porous membrane with a smaller average pore size.

【0012】また、多孔質中空糸膜を製造する方法にお
いて、延伸工程を所定(110℃及至155℃)の温度
範囲で、延伸歪速度または延伸倍率により、孔径が変化
することを発明者等は見出し、先に出願している(特願
昭59−268410号)。
[0012] In addition, in the method for producing a porous hollow fiber membrane, the inventors have discovered that the pore diameter changes depending on the stretching strain rate or stretching ratio when the stretching step is carried out at a predetermined temperature range (110°C to 155°C). Heading: Previously filed (Japanese Patent Application No. 59-268410).

【0013】本発明者はこれらの知見を基礎にして、さ
らに実験・検討を進めたところ、未延伸の原中空糸を分
子量の異なる同種熱可塑性樹脂にて複層化し、この複層
中空糸の延伸工程を所定(110℃及至155℃)の温
度範囲で、延伸歪速度、延伸倍率を制御することにより
、分子量の小さい熱可塑性樹脂からなる層は多孔質化し
ている(多孔質層)が、分子量の大きい熱可塑性樹脂か
らなる層は無孔であるか、または開孔していても孔の数
も少なく、小さいもの(緻密層)であることを見出し、
本発明に到達したのである。
[0013] Based on these findings, the present inventor conducted further experiments and studies, and found that the undrawn raw hollow fiber was multilayered with the same type of thermoplastic resin with different molecular weights, and the By controlling the stretching strain rate and stretching ratio during the stretching process within a predetermined temperature range (110°C to 155°C), the layer made of a thermoplastic resin with a small molecular weight becomes porous (porous layer). We discovered that a layer made of a thermoplastic resin with a large molecular weight is either non-porous or has small pores (dense layer) with only a small number of pores.
The present invention has been achieved.

【0014】本発明において使用する熱可塑性樹脂は特
に制限されるものではないが、例えばポリプロピレン、
ポリエチレン、ポリ(4−メチル−ペンテン−1)等の
ポリオレフィン、ポリフッ化ビニリデン、エチレンテト
ラフルオロエチレン共重合体等の熱可塑性樹脂が挙げら
れる。
The thermoplastic resin used in the present invention is not particularly limited, but includes, for example, polypropylene,
Examples include polyolefins such as polyethylene and poly(4-methyl-pentene-1), and thermoplastic resins such as polyvinylidene fluoride and ethylenetetrafluoroethylene copolymers.

【0015】また、使用する熱可塑性樹脂の分子量を溶
融粘度で表した場合、その溶融粘度{メルトフローイン
デックス(MFI)あるいはメルトインデックス(MI
)}は中空糸の紡糸可能な範囲であれば、特に限定を必
要とするものではない。例えば、ポリプロピレンを使用
する場合、原中空糸の紡糸の効率、生産性を考慮すると
、0.5から40g /10分のものを用いることが好
ましい。
Furthermore, when the molecular weight of the thermoplastic resin used is expressed in terms of melt viscosity, its melt viscosity {melt flow index (MFI) or melt index (MI
)} does not need to be particularly limited as long as it is within a range that allows spinning of hollow fibers. For example, when polypropylene is used, it is preferable to use polypropylene of 0.5 to 40 g/10 min in consideration of spinning efficiency and productivity of raw hollow fibers.

【0016】かかる溶融粘度を有する熱可塑性樹脂の中
から、本発明では互いに溶融粘度の異なる(即ち、分子
量の異なる)ものを組み合わせて使用するのである。こ
の場合、分子量(溶融粘度)が同程度のものの組み合せ
では、所期の目的を達成できないため、例えば熱可塑性
樹脂としてポリプロピレンを使用する場合には、MFI
で1〜35の差がある組み合せを用いることが好ましい
Among thermoplastic resins having such melt viscosities, thermoplastic resins having different melt viscosities (that is, different molecular weights) are used in combination in the present invention. In this case, the desired purpose cannot be achieved with a combination of materials with similar molecular weights (melt viscosity), so for example, when using polypropylene as the thermoplastic resin, MFI
It is preferable to use a combination with a difference of 1 to 35.

【0017】本発明においては、まず上記のような熱可
塑性樹脂を多層中空糸ノズルを用いて紡糸し、複層構造
の未延伸熱可塑性樹脂中空糸とする。複層構造としては
2層あるいはそれ以上の層からなる構造であり、層数は
その目的、適応分野に応じて決めることができる。また
その層比(層の厚さの比)も目的、適応分野等に応じて
決めることができ、少なくとも一つの層が、成形不可能
になる程薄い場合を除いて、あらゆる組み合せを取るこ
とができる。
In the present invention, first, the above thermoplastic resin is spun using a multilayer hollow fiber nozzle to obtain an undrawn thermoplastic resin hollow fiber having a multilayer structure. A multilayer structure is a structure consisting of two or more layers, and the number of layers can be determined depending on the purpose and field of application. The layer ratio (ratio of layer thickness) can also be determined depending on the purpose, field of application, etc., and all combinations can be used, except when at least one layer is so thin that it cannot be molded. can.

【0018】本発明においては、上記のように、予め複
層構造を中空原糸の段階で完全に制御することができる
ので、延伸後得られる中空糸膜の複層構造を完全に制御
することができる。
In the present invention, as described above, since the multilayer structure can be completely controlled in advance at the stage of the hollow fiber, the multilayer structure of the hollow fiber membrane obtained after stretching can be completely controlled. Can be done.

【0019】本発明においてポリプロピレン中空糸を用
いる場合、まず上記のようなポリプロピレンを公知の中
空糸製造法に従って紡糸し、未延伸ポリプロピレン中空
糸とする。例えば、紡糸温度は使用する熱可塑性樹脂を
吐出することのできる温度以上であって、熱可塑性樹脂
の熱分解温度以下の範囲内の温度で行うことができる。 熱可塑性樹脂としてポリプロピレンを使用する場合には
、その紡糸温度は、例えば、ポリプロピレンを吐出する
ことのできる温度以上であって、ポリプロピレンの熱分
解温度以下であればよく、通常では170〜300℃、
好ましくは190〜270℃である。
When polypropylene hollow fibers are used in the present invention, the above-mentioned polypropylene is first spun into undrawn polypropylene hollow fibers according to a known method for producing hollow fibers. For example, the spinning temperature may be higher than the temperature at which the thermoplastic resin used can be discharged and lower than the thermal decomposition temperature of the thermoplastic resin. When polypropylene is used as the thermoplastic resin, the spinning temperature may be, for example, higher than the temperature at which polypropylene can be discharged and lower than the thermal decomposition temperature of polypropylene, and is usually 170 to 300°C.
Preferably it is 190-270°C.

【0020】また、高密度ポリエチレンを使用する場合
には、通常では150〜300℃、好ましくは160〜
270℃である。ポリ(4−メチル−ペンテン−1)を
使用する場合には、通常では260〜330℃、好まし
くは270〜300℃である。ポリフッ化ビニリデンを
使用する場合には、通常では190〜300℃、好まし
くは190〜280℃である。エチレンテトラフルオロ
エチレン共重合体を使用する場合には、通常では290
〜350℃、好ましくは190〜280℃である。
[0020] When high-density polyethylene is used, the temperature is usually 150 to 300°C, preferably 160 to 300°C.
The temperature is 270°C. When poly(4-methyl-pentene-1) is used, the temperature is usually 260 to 330°C, preferably 270 to 300°C. When polyvinylidene fluoride is used, the temperature is usually 190 to 300°C, preferably 190 to 280°C. When using ethylenetetrafluoroethylene copolymer, usually 290
-350°C, preferably 190-280°C.

【0021】次に本発明の延伸工程は、公知の方法を使
用すればよく、特定の温度範囲で一段または多段で延伸
する方法、例えば室温近傍で延伸した後、140〜15
0℃の温度範囲で更に延伸する方法、特定温度範囲で、
特定延伸歪速度で延伸する方法や窒素、酸素、アルゴン
、一酸化炭素、メタン及びエタンからなる群より選ばれ
た媒体中で延伸温度が−100℃以下の温度であって、
且つ該媒体の沸点より50℃高い温度以下の範囲で延伸
を行う方法等、特定温度範囲及び/または特定媒体中で
、あるいは特定温度範囲及び/または特定延伸歪速度で
延伸して複層構造の熱可塑性樹脂を得る方法が適宜採用
される。
[0021] Next, the stretching step of the present invention may be carried out using a known method, such as a method of stretching in a specific temperature range in one stage or in multiple stages, for example, after stretching at around room temperature,
A method of further stretching in a temperature range of 0°C, a specific temperature range,
A method of stretching at a specific stretching strain rate or a stretching temperature of −100° C. or lower in a medium selected from the group consisting of nitrogen, oxygen, argon, carbon monoxide, methane and ethane,
In addition, a multilayer structure can be obtained by stretching in a specific temperature range and/or specific medium, or at a specific temperature range and/or specific stretching strain rate, such as a method of stretching at a temperature 50°C higher than the boiling point of the medium or less. A method for obtaining a thermoplastic resin is adopted as appropriate.

【0022】尚、この延伸工程は、少なくとも一層が無
孔あるいは極めて孔の存在が少ないか、あるいはその他
の多孔質層に比して小さい孔径の孔が存在する層(緻密
層)を少なくとも一層存在せしめるためのものであり、
その他の層は多孔質層を形成するように行うものである
から、延伸に際してはそのための条件を設定して行うこ
とが必要である。そのため、たとえば特定温度範囲で、
特定延伸歪速度で延伸する方法を採用する場合、延伸温
度、延伸倍率および延伸歪速度を、一層における孔の有
無、孔の数、孔の大きさ、および他の多孔質層の平均孔
径や空隙率を所定通りとするために、適宜設定する必要
がある。
[0022] In this drawing step, at least one layer is non-porous, has very few pores, or has at least one layer (dense layer) in which pores have a smaller pore size than other porous layers. It is meant to encourage
Since the other layers are formed to form porous layers, it is necessary to set appropriate conditions for stretching. Therefore, for example, within a certain temperature range,
When adopting a method of stretching at a specific stretching strain rate, the stretching temperature, stretching ratio, and stretching strain rate are determined by the presence or absence of pores in one layer, the number of pores, the size of pores, and the average pore diameter and voids of other porous layers. In order to keep the rate as specified, it is necessary to set it appropriately.

【0023】例えばポリプロピレンの場合、延伸の温度
は100〜155℃が好ましい。また、多孔質層の空隙
率を上げることは、ガス交換、ガス分離の効率を良好と
するために重要である。延伸倍率としては、空隙率はあ
る範囲内で延伸倍率が大きいほど大きくなり、初期の値
に対して50〜400%、好ましくは200〜300%
である。空隙率としては、30〜80%、好ましくは6
0〜75%である。延伸倍率400%を超えて延伸する
と中空糸径が細くなったり、孔径がむしろ小さくなった
りするため好ましくない。
For example, in the case of polypropylene, the stretching temperature is preferably 100 to 155°C. Furthermore, it is important to increase the porosity of the porous layer in order to improve the efficiency of gas exchange and gas separation. As for the stretching ratio, the porosity increases as the stretching ratio increases within a certain range, and is 50 to 400%, preferably 200 to 300% of the initial value.
It is. The porosity is 30 to 80%, preferably 6
It is 0-75%. Stretching at a stretching ratio exceeding 400% is not preferable because the hollow fiber diameter becomes thinner or the pore diameter becomes smaller.

【0024】延伸歪速度は20%/分未満、好ましくは
15%/分未満、更に好ましくは12%/分未満である
。なお、本発明においては、延伸工程にかける前に、例
えばポリプロピレンの場合、原中空糸を100〜155
℃の範囲の温度で熱処理を行うことは、原中空糸の配向
結晶化をより成長させるため好ましい。
[0024] The stretching strain rate is less than 20%/min, preferably less than 15%/min, more preferably less than 12%/min. In addition, in the present invention, for example, in the case of polypropylene, the raw hollow fiber is heated to 100 to 155
It is preferable to perform the heat treatment at a temperature in the range of 0.degree. C. in order to further grow the oriented crystallization of the original hollow fiber.

【0025】また延伸工程にかけた後に、例えばポリプ
ロピレンの場合、延伸中空糸を張力を掛けたまま100
〜155℃の範囲の温度で熱固定処理を行うことは、延
伸中空糸の熱収縮防止になるため好ましい。
In addition, after the stretching process, for example in the case of polypropylene, the stretched hollow fibers are stretched at 100°C with tension applied.
It is preferable to perform the heat setting treatment at a temperature in the range of 155° C. to 155° C. since this prevents the drawn hollow fibers from shrinking due to heat.

【0026】上記のようにして得られた多層構造の多孔
質中空糸膜は、分子量のより小さい(即ち、MFIまた
はMIがより大きい)層が多孔質層になり、分子量のよ
り大きい(即ち、MFIまたはMIがより小さい)層が
無孔または極めて孔の存在が少ないか、あるいはその他
の多孔質層に比して小さい孔径の孔が存在する層(緻密
層)となり、両者の組み合せからなる複層構造を呈する
。また、その層比は未延伸熱可塑性樹脂の紡糸の際の複
層構造における層比により完全に制御される。このため
極めて薄い無孔または極めて孔の存在が少ないか、ある
いはあるいはその他の多孔質層に比して小さい孔径の孔
が存在する層を少なくとも一層存在させることができる
In the porous hollow fiber membrane having a multilayer structure obtained as described above, the layer having a smaller molecular weight (that is, having a larger MFI or MI) becomes a porous layer, and the layer having a larger molecular weight (that is, having a larger MFI or MI) becomes a porous layer. A layer with a smaller MFI or MI is either non-porous or has very few pores, or a layer with pores smaller in diameter than other porous layers (a dense layer), and a composite layer consisting of a combination of the two. Exhibits a layered structure. Further, the layer ratio is completely controlled by the layer ratio in the multilayer structure during spinning of the unstretched thermoplastic resin. Therefore, at least one layer that is extremely thin, has no pores, has very few pores, or has pores with a smaller pore size than other porous layers can be present.

【0027】本発明で得られる多孔質中空糸膜は、これ
を人工肺用として使用する場合には、少なくとも一層は
無孔にしても良いが、ガス交換能とシーラムの漏洩との
兼合いから必ずしも無孔にする必要はなく、極めて孔の
存在が少ない状態でも、あるいは他の層に比して小さい
孔径の存在する状態としても良い。
When the porous hollow fiber membrane obtained by the present invention is used for an oxygenator, at least one layer may be made non-porous; It is not necessarily necessary to make the layer non-porous, and the layer may have very few pores or may have pores smaller in diameter than other layers.

【0028】また、中空糸膜をガス分離用に使用する場
合には、多層のうちの少なくとも一層が無孔になってい
ることが好ましい。少なくとも一層が無孔の場合にはそ
の層の厚さは可能な限り薄いことが望ましく、0.1μ
mから20μmの範囲、好ましくは0.1μmから10
μmの範囲である。
[0028] When the hollow fiber membrane is used for gas separation, it is preferable that at least one of the multiple layers is non-porous. When at least one layer is non-porous, it is desirable that the thickness of that layer be as thin as possible, 0.1 μm.
m to 20 μm, preferably 0.1 μm to 10
It is in the μm range.

【0029】[0029]

【実施例】以下、本発明を実施例に基いて更に説明する
が、本発明はこれらの実施例に限られるものではない。
EXAMPLES The present invention will be further explained below based on Examples, but the present invention is not limited to these Examples.

【0030】(実施例1)直径33mm、内径27mm
の気体供給管を備えた中空糸製造用2層ノズルを使用し
、MFIが30g/分のポリプロピレン(商品名:UB
E−PP−J130G、宇部興産(株)製)を内層に、
MFIが9g/分のポリプロピレン(商品名:UBE−
PP−F109  宇部興産(株)製)を外層にし、外
層と内層の層比(層の厚さの比)を9対1(樹脂の押出
し量により制御)として、紡糸温度200℃、引き取り
速度116m/分の条件で紡糸し、内径230μm、外
径350μmの複層構造の原中空糸を得た。次に、この
原中空糸を163℃の空気加熱槽中で1分間処理を行っ
て原中空糸の外表面を部分溶融し、冷却後、135℃の
温度で初期長さに対して延伸倍率200%、歪速度11
.8%/分で延伸し、延伸状態を保ったまま150℃の
加熱空気槽内で2分間熱処理をして中空糸膜を製造した
。得られた中空糸膜の外表面は完全に無孔化されており
、中空糸内径部の表面は全面が均一に多孔化されていた
(Example 1) Diameter 33mm, inner diameter 27mm
Polypropylene (product name: UB) with MFI of 30 g/min is used.
E-PP-J130G (manufactured by Ube Industries, Ltd.) as the inner layer,
Polypropylene with MFI of 9 g/min (product name: UBE-
PP-F109 (manufactured by Ube Industries, Ltd.) was used as the outer layer, the layer ratio (layer thickness ratio) between the outer layer and the inner layer was 9:1 (controlled by the amount of resin extrusion), the spinning temperature was 200°C, and the take-up speed was 116 m. The fibers were spun under the conditions of 1/2 min to obtain raw hollow fibers with a multilayer structure having an inner diameter of 230 μm and an outer diameter of 350 μm. Next, this raw hollow fiber was treated in an air heating tank at 163°C for 1 minute to partially melt the outer surface of the raw hollow fiber, and after cooling, it was drawn at a temperature of 135°C at a stretching ratio of 200 to the initial length. %, strain rate 11
.. A hollow fiber membrane was produced by stretching at 8%/min and heat-treating in a heated air bath at 150° C. for 2 minutes while maintaining the stretched state. The outer surface of the obtained hollow fiber membrane was completely non-porous, and the entire surface of the inner diameter portion of the hollow fiber was uniformly porous.

【0031】(実施例2)直径33mm、内径27mm
の気体供給管を備えた中空糸製造用2層ノズルを使用し
、MFIが30g/分のポリプロピレン(商品名:UB
E−PP−J130G、宇部興産(株)製)を内層に、
MFIが9g/分のポリプロピレン(商品名UBE−P
P−F109、宇部興産(株)製)を外層にし、外層と
内層の層比を9対1(樹脂の押出し量により制御)とし
て、紡糸温度200℃、引き取り速度116m/分の条
件で紡糸し、内径230μm、外径350μmの原中空
糸を得た。次に、この原中空糸を163℃の空気加熱槽
中で1分間処理を行って原中空糸の外表面を部分溶融し
、冷却後、135℃の温度で初期長さに対して延伸倍率
350%、歪速度10.3%/分で延伸し、延伸状態を
保ったまま150℃の加熱空気槽内で2分間熱処理をし
て中空糸膜を製造した。得られた中空糸膜の外表面は小
さい孔径の孔が数少なく存在し、一方中空糸内径部の表
面は全面が均一に多孔化されていた。
(Example 2) Diameter 33mm, inner diameter 27mm
Polypropylene (product name: UB) with MFI of 30 g/min is used.
E-PP-J130G (manufactured by Ube Industries, Ltd.) as the inner layer,
Polypropylene with MFI of 9g/min (product name: UBE-P
P-F109 (manufactured by Ube Industries, Ltd.) was used as the outer layer, and the layer ratio between the outer layer and the inner layer was 9:1 (controlled by the amount of resin extrusion), and spinning was performed at a spinning temperature of 200°C and a take-up speed of 116 m/min. A raw hollow fiber having an inner diameter of 230 μm and an outer diameter of 350 μm was obtained. Next, this raw hollow fiber was treated in an air heating tank at 163°C for 1 minute to partially melt the outer surface of the raw hollow fiber, and after cooling, it was drawn at a temperature of 135°C at a stretching ratio of 350 to the initial length. %, and a strain rate of 10.3%/min, and heat-treated in a heated air bath at 150° C. for 2 minutes while maintaining the stretched state to produce a hollow fiber membrane. The outer surface of the obtained hollow fiber membrane had a few small pores, while the entire surface of the inner diameter portion of the hollow fiber was uniformly porous.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
長時間の使用でもシーラム(血漿)が孔から漏洩せず、
かつ多孔質層と緻密層の複層構造からなる機械的強度の
優れた多孔質中空糸膜を、効率的に製造することができ
る。
[Effects of the Invention] As explained above, according to the present invention,
Serum (plasma) does not leak from the pores even after long-term use.
In addition, a porous hollow fiber membrane having a multilayer structure of a porous layer and a dense layer and having excellent mechanical strength can be efficiently produced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  熱可塑性樹脂製中空糸を延伸すること
により多数の微細孔を形成する工程を含む多孔質中空糸
膜を製造する方法において、未延伸の原中空糸を互いに
分子量の異なる同種熱可塑性樹脂からなる複層構造とし
、次いでこの原中空糸を延伸することにより、多孔質中
空糸膜に無孔または極めて孔の存在が少ないか、あるい
はその他の多孔質層に比して小さい孔径の孔が存在する
層を少なくとも一層存在せしめたことを特徴とする多孔
質中空糸膜の製法。
Claim 1. A method for producing a porous hollow fiber membrane, which includes a step of forming a large number of micropores by drawing hollow fibers made of thermoplastic resin, in which undrawn raw hollow fibers are subjected to homogeneous heat treatment with different molecular weights. By creating a multilayer structure made of plastic resin and then stretching this raw hollow fiber, the porous hollow fiber membrane can be made to have no pores, very few pores, or a pore size smaller than that of other porous layers. 1. A method for producing a porous hollow fiber membrane, comprising at least one layer having pores.
JP4887191A 1991-02-21 1991-02-21 Production of porous hollow fiber membrane Pending JPH04265132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4887191A JPH04265132A (en) 1991-02-21 1991-02-21 Production of porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4887191A JPH04265132A (en) 1991-02-21 1991-02-21 Production of porous hollow fiber membrane

Publications (1)

Publication Number Publication Date
JPH04265132A true JPH04265132A (en) 1992-09-21

Family

ID=12815353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4887191A Pending JPH04265132A (en) 1991-02-21 1991-02-21 Production of porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JPH04265132A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081109A1 (en) * 2003-03-13 2004-09-23 Kureha Chemical Industry Company Limited Porous membrane of vinylidene fluoride resin and process for producing the same
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
US8999454B2 (en) 2012-03-22 2015-04-07 General Electric Company Device and process for producing a reinforced hollow fibre membrane
US9022229B2 (en) 2012-03-09 2015-05-05 General Electric Company Composite membrane with compatible support filaments
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9132390B2 (en) 2009-03-26 2015-09-15 Bl Technologies Inc. Non-braided reinforced holow fibre membrane
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
US9227362B2 (en) 2012-08-23 2016-01-05 General Electric Company Braid welding
US9321014B2 (en) 2011-12-16 2016-04-26 Bl Technologies, Inc. Hollow fiber membrane with compatible reinforcements
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279806A (en) * 1985-10-02 1987-04-13 Ube Ind Ltd Porous separation membrane and its production
JPS62269706A (en) * 1986-05-16 1987-11-24 Mitsubishi Rayon Co Ltd Composite membrane of porous hollow polyolefin yarn and its production
JPH01119304A (en) * 1987-11-02 1989-05-11 Mitsubishi Rayon Co Ltd Modified polyolefin porous hollow yarn membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279806A (en) * 1985-10-02 1987-04-13 Ube Ind Ltd Porous separation membrane and its production
JPS62269706A (en) * 1986-05-16 1987-11-24 Mitsubishi Rayon Co Ltd Composite membrane of porous hollow polyolefin yarn and its production
JPH01119304A (en) * 1987-11-02 1989-05-11 Mitsubishi Rayon Co Ltd Modified polyolefin porous hollow yarn membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
WO2004081109A1 (en) * 2003-03-13 2004-09-23 Kureha Chemical Industry Company Limited Porous membrane of vinylidene fluoride resin and process for producing the same
US7351338B2 (en) 2003-03-13 2008-04-01 Kureha Corporation Porous membrane of vinylidene fluoride resin and process for producing the same
AU2004220187B2 (en) * 2003-03-13 2009-09-24 Kureha Corporation Porous membrane of vinylidene fluoride resin and process for producing the same
US9132390B2 (en) 2009-03-26 2015-09-15 Bl Technologies Inc. Non-braided reinforced holow fibre membrane
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
US9321014B2 (en) 2011-12-16 2016-04-26 Bl Technologies, Inc. Hollow fiber membrane with compatible reinforcements
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9022229B2 (en) 2012-03-09 2015-05-05 General Electric Company Composite membrane with compatible support filaments
US8999454B2 (en) 2012-03-22 2015-04-07 General Electric Company Device and process for producing a reinforced hollow fibre membrane
US9227362B2 (en) 2012-08-23 2016-01-05 General Electric Company Braid welding

Similar Documents

Publication Publication Date Title
US4741829A (en) Composite hollow fibers and method of making same
US4664681A (en) Heterogeneous membrane and process for production thereof
JPH0526528B2 (en)
JPH0344811B2 (en)
JPS6279806A (en) Porous separation membrane and its production
JPH04265132A (en) Production of porous hollow fiber membrane
JPS60139815A (en) Conjugate hollow yarn and production thereof
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JPS61146811A (en) Production of porous hollow fiber of thermoplastic resin
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JP2622629B2 (en) Manufacturing method of hollow fiber membrane
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JP4522600B2 (en) Method for producing hollow fiber membrane
JPS6320339A (en) Production of porous membrane
JPH0398624A (en) Carbon fiber-based porous hollow fiber membrane and its preparation
JPH01270907A (en) Production of porous polypropylene hollow fiber or film
JP2553248B2 (en) Method for producing porous hollow fiber membrane
JPH0763505B2 (en) Method for producing porous hollow fiber for artificial lung
JPS60261510A (en) Manufacture of laminated hollow yarn
JPS6297980A (en) Composite hollow fiber membrane
JPS62117811A (en) Production of conjugated hollow fiber membrane
JPS6186239A (en) Manufacture of porous thermoplastic film
JPH04277023A (en) Production of heat-resistant porous hollow fiber membrane

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970107