JPS60261510A - Manufacture of laminated hollow yarn - Google Patents

Manufacture of laminated hollow yarn

Info

Publication number
JPS60261510A
JPS60261510A JP11810884A JP11810884A JPS60261510A JP S60261510 A JPS60261510 A JP S60261510A JP 11810884 A JP11810884 A JP 11810884A JP 11810884 A JP11810884 A JP 11810884A JP S60261510 A JPS60261510 A JP S60261510A
Authority
JP
Japan
Prior art keywords
hollow fiber
laminated
membrane
spinning
polymeric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11810884A
Other languages
Japanese (ja)
Inventor
Masatoshi Onoda
真稔 小野田
Kenji Kondo
憲司 近藤
Toshikuni Miyazaki
宮崎 利邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Nippon Soken Inc
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, NipponDenso Co Ltd filed Critical Nippon Soken Inc
Priority to JP11810884A priority Critical patent/JPS60261510A/en
Publication of JPS60261510A publication Critical patent/JPS60261510A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Abstract

PURPOSE:To manufacture easily and economically the titled laminated hollow yarn capable of separating a gas efficiently and selectively by applying a melt- spinning system to a biconstituent thermoplastic crystalline high molecular material. CONSTITUTION:The manufacture consists of three steps. Namely, one component of a biconstituent thermoplastic crystalline high molecular material is firstly spinned to a hollow yarn, and the outer periphery of the hollow yarn is secondly coated with the other component of the high molecular material while spinning before the hollow yarn is wound up. Thirdly, fine pores are formed in the hollow yarn obtained by using a high molecular material for porous membranes or in its coated layer. Either the homogeneous layer or the porous membrane layer can be formed on each other.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は効率よく気体を選択的に分離することができる
積層型中空糸の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a laminated hollow fiber that can efficiently and selectively separate gases.

〈従来の技術〉 気体混合物より特定の気体成分を分離するために半透膜
を用いる方法が知られている。この半透膜を用いる気体
分離方法には大別して下記2つの方法がある。すなわち
その1つの方法は、膜内部に空孔がほとんどない緻密な
均質膜を用い、気体が均質膜中へ溶解・拡散して膜の一
方から他方へ移動する性質を利用して、各種気体の膜中
への溶解度、拡散速度の相異によって混合気体を分離さ
せる方法である。もう1つの方法は、多孔質膜を用いる
方法で、気体分子が膜中の微細空孔を拡散する過程でそ
の気1体分子の平均自由行程の差によって分離が起こる
性質を利用する方法である。前記均質膜は気体の選択透
過能力は高いが単独で用いられた場合には強度上ある程
度の厚さに形成されるため気体の透過速度が遅いという
欠点を有する。一方多孔質膜は気体の透過速度は早いが
、気・1 体の選択透過能力が低いという欠点を有する
。そこで前記均質膜と多孔質膜との長所を併せ有するよ
うに、多孔質膜の片面に緻密な均質膜を形成させて積層
型の半透膜を作シ、気体分離に用いる方法が提案されて
いる。
<Prior Art> A method is known in which a semipermeable membrane is used to separate a specific gas component from a gas mixture. Gas separation methods using semipermeable membranes can be broadly classified into the following two methods. One method is to use a dense homogeneous membrane with almost no pores inside the membrane, and utilize the property that gases dissolve and diffuse into the homogeneous membrane and move from one side of the membrane to the other. This is a method of separating mixed gases based on differences in solubility and diffusion rate in membranes. Another method is to use a porous membrane, which takes advantage of the property that separation occurs due to the difference in mean free path of gas molecules as they diffuse through micropores in the membrane. . The homogeneous membrane has a high gas selective permeability, but when used alone, it has the disadvantage that the gas permeation rate is slow because it is formed to a certain thickness for strength reasons. On the other hand, porous membranes have a high gas permeation rate, but have a drawback of low selective permeation ability for gas and 1 body. Therefore, in order to combine the advantages of the homogeneous membrane and porous membrane, a method has been proposed in which a dense homogeneous membrane is formed on one side of a porous membrane to create a laminated semipermeable membrane, which is used for gas separation. There is.

しかし従来公知の前記積層型の半透膜は通常多孔質膜を
中空糸として作シ、その上に均質膜を設けるという製造
方法によって作られている。そして均質膜は湿式法ある
いはプラズム重合法等を用いて作られている。湿式法に
よる均質膜の製造梓乾燥が必要であるために工程が複雑
になるという欠点を有する。一方ゾラプマ重合法による
均質膜の製造はその装置が大型且つ高価なものと々シ、
その結果経済的に積層構造の中空糸形態の半透膜を製造
することができない。
However, the conventionally known laminated semipermeable membranes are usually produced by a manufacturing method in which a porous membrane is formed as a hollow fiber and a homogeneous membrane is provided thereon. The homogeneous membrane is produced using a wet method, a plasma polymerization method, or the like. The production of a homogeneous membrane by a wet method has the disadvantage that the process becomes complicated because drying is required. On the other hand, the production of homogeneous membranes using the ZoraPuma polymerization method requires large and expensive equipment.
As a result, it is not possible to economically produce a semipermeable membrane in the form of hollow fibers with a laminated structure.

又積層型中空糸を用いて気体混合物よシ特定の気体成分
を分離する場合に、減圧タイプ、すなわち分離される側
の気体を負圧にする方が効率がよいていわれる。この減
圧タイプを用いる場合には中空糸の内側な負圧にするこ
とが好ましく、そのためには内側に均質膜がある積層型
中空糸(後述の第2b図に示した構造の積層型中空糸)
が必要となる。しかしながら従来公知の積層型中空糸の
(3) 製造法では前述のように外側に均質膜がある積層型中空
糸(後述の第2畠図に示した構造の積層型中空糸)しか
作れない。したがって効率の良い減圧タイプの分離を行
いたくても、それに適合する積層型中空糸が得られ力い
のが現状である。
Furthermore, when separating a specific gas component from a gas mixture using a laminated hollow fiber, it is said to be more efficient to use a reduced pressure type, that is, to apply a negative pressure to the gas to be separated. When using this reduced pressure type, it is preferable to create a negative pressure inside the hollow fiber, and for that purpose, a laminated hollow fiber with a homogeneous membrane inside (a laminated hollow fiber with the structure shown in Figure 2b described later)
Is required. However, the conventionally known manufacturing method (3) for laminated hollow fibers can only produce a laminated hollow fiber with a homogeneous membrane on the outside (a laminated hollow fiber having the structure shown in the second diagram below). Therefore, even if it is desired to carry out efficient vacuum type separation, it is currently difficult to obtain a laminated hollow fiber that is suitable for this purpose.

〈発明が解決しようとする問題点〉 以上から明らかなように、従来から公知の積層型の中空
糸の製造方法は複雑な工程あるいは高価な装置を用いざ
るを得す、その結果その製造コストも高くなる問題、さ
らに均質膜の製造が常に外側に限定されるという問題を
有する。本発明はこのような問題点を解決して積層型の
中空糸を容易且つ経済的に製造でき、且つ必要に応じて
均質膜を多孔質膜の中空糸の外側又は内側の何れにも形
成することができる製造方法を提供することを目的とす
る。
<Problems to be Solved by the Invention> As is clear from the above, the conventionally known manufacturing method of laminated hollow fibers has no choice but to use complicated processes or expensive equipment, resulting in high manufacturing costs. The problem is that the production of homogeneous membranes is always limited to the outside. The present invention solves these problems, allows laminated hollow fibers to be manufactured easily and economically, and forms a homogeneous membrane either on the outside or inside of the hollow fibers of a porous membrane as required. The purpose is to provide a manufacturing method that can.

〈問題点を解決するための手段〉 本発明者吟は、前述の問題点を解決すべく鋭意研究の結
果、多孔質膜および均質膜形成用の拐料として熱可塑性
高分子材料を用い、これを特定の(4) 工程の溶融紡糸方式を採用することにより連続的に積層
型の中空糸を製造できることを見出し、本発明に到達し
た。
<Means for Solving the Problems> As a result of intensive research to solve the above-mentioned problems, the present inventor, Gin, used a thermoplastic polymer material as a coating material for forming porous membranes and homogeneous membranes. The inventors have discovered that it is possible to continuously produce laminated hollow fibers by employing the melt spinning method of the specific step (4), and have arrived at the present invention.

すなわち本発明の目的は、二成分の熱可塑性の結晶性高
分子材料を溶融紡糸方式を用いて多孔質膜と均質膜とか
ら成る積層型中空糸を製造する方法であって、前記二成
分の何れか一方の成分の高分子材料を中空糸を製造する
ように紡糸するステップと、その中空糸を巻取る前に他
の成分の高分子材料を前記中空糸の外周を被覆するよう
に紡糸するステップと、多孔質膜用高分子材料が用いら
れている中空糸又は被覆層に微小孔を形成させるステッ
プとを含んで成ることを特徴とする溶融紡糸方式による
積層型中空糸の製造方法によって達成される。ここでい
う成分とは例えばポリプロピレンあるいはポリエチレン
という単一な種類の成分だけを表すのでは々く、例えば
ポリプロピレンとポリエチレンの共重合体やぼりプロピ
レンとポリスチレンの混合物のような2種以上が混合さ
れた熱可塑性高分子材料を含んでも良い。
That is, an object of the present invention is to provide a method for producing a laminated hollow fiber comprising a porous membrane and a homogeneous membrane using a two-component thermoplastic crystalline polymer material using a melt-spinning method, the method comprising: A step of spinning one of the components of the polymeric material to produce a hollow fiber, and before winding the hollow fiber, spinning the other component of the polymeric material to cover the outer periphery of the hollow fiber. This is achieved by a method for manufacturing a laminated hollow fiber using a melt spinning method, which is characterized by comprising the steps of: forming micropores in the hollow fiber or coating layer in which the polymeric material for porous membrane is used. be done. The term "component" here does not mean only a single type of component, such as polypropylene or polyethylene, but rather a mixture of two or more types, such as a copolymer of polypropylene and polyethylene, or a mixture of propylene and polystyrene. Thermoplastic polymeric materials may also be included.

前記製造方法において最初に紡糸されて形成される中空
糸用の高分子材料は多孔質膜用又は均質膜用の何れであ
ってもよい。前者の場合には外側に均質膜が形成され、
後者の場合には内側に均質膜が形成された積層型の中空
糸が製造されることになる。
The polymer material for the hollow fibers that is first spun and formed in the manufacturing method may be for porous membranes or for homogeneous membranes. In the former case, a homogeneous film is formed on the outside;
In the latter case, a laminated hollow fiber with a homogeneous membrane formed inside is manufactured.

本発明の製造方法を用いれば一方の成分を溶融紡糸して
中空糸を製造後その中空糸を巻取る前に他の成分が溶融
紡糸されf前記中空糸を被覆するので1つの紡糸ステー
ションで連続して積層型の中空糸を製造することができ
る。
If the manufacturing method of the present invention is used, one component is melt-spun to produce a hollow fiber, and before the hollow fiber is wound, the other component is melt-spun to cover the hollow fiber, so it is continuous at one spinning station. A laminated hollow fiber can be manufactured by doing this.

なお溶融紡糸方式とは熱可塑性合成繊維の製造に用いら
れる方法であシ、一般的に、熱可塑性合成樹脂材料を溶
融し、その状態でノズルより押出して糸条形態を形成す
る紡糸工程と、さらに所定の最終糸質を得るために延伸
する延伸工程と、糸ノ臂ツケーノ等への巻取シ等の糸の
収集工程とを含1 んでなゐ。ただし特定用途の糸を製
造する場合には前記延伸工程を省く場合もある。本明細
書でいう溶融紡糸方式とは前述の最も広い意味での繊維
製造方法を指すものとする。
The melt-spinning method is a method used to produce thermoplastic synthetic fibers, and generally involves a spinning process in which a thermoplastic synthetic resin material is melted and extruded through a nozzle to form a thread form. Furthermore, it does not include a drawing step of drawing to obtain a predetermined final yarn quality, and a step of collecting the yarn such as winding it onto a yarn arm or the like. However, when producing yarn for a specific purpose, the above-mentioned drawing step may be omitted. The melt spinning method as used herein refers to the fiber manufacturing method in the broadest sense as described above.

前記多孔質膜用高分子材料が用いられている中空糸又は
被覆層に微小孔を形成させるステップとしては各種の態
様を用いることができる。
Various embodiments can be used as the step of forming micropores in the hollow fiber or coating layer in which the porous membrane polymer material is used.

例えば二段階の紡糸工程の後に、二成分の高分子材料が
積層されている状態の糸条を延伸し、それによって多孔
質膜用高分子材料が用いられている中空糸又は被覆層に
微小孔を形成させてもよい。
For example, after a two-step spinning process, the yarn in which the two-component polymeric material is laminated is drawn, thereby creating micropores in the hollow fiber or coating layer in which the porous membrane polymeric material is used. may be formed.

この場合には均質膜用高分子材料としてはここで加えら
れる延伸倍率と同等以上の破断伸度を、積層構造の中空
糸の状態で有するものを用いることが望ましい。ただし
多孔質膜用高分子材料に複数の微小孔が形成された時に
均質膜の方に若干の微小孔、例えば開口率で10q6以
下の複数の微小孔が形成されていても実用上支障がない
In this case, it is desirable to use a polymer material for the homogeneous membrane that has, in the form of hollow fibers in a laminated structure, a breaking elongation equal to or higher than the stretching ratio applied here. However, when multiple micropores are formed in the polymer material for porous membranes, there is no practical problem even if some micropores are formed in the homogeneous membrane, for example, multiple micropores with an aperture ratio of 10q6 or less. .

又多孔質膜用高分子材料に任意の比率で高分子発泡剤を
混入するステップを設け、溶融紡糸中に発泡剤によって
複数の微小孔を形成させてもよい。
Alternatively, a step of mixing a polymeric blowing agent into the polymeric material for the porous membrane at an arbitrary ratio may be provided, and a plurality of micropores may be formed by the blowing agent during melt spinning.

この場合においても通常は多孔質膜用高分子材料を用い
て中空糸が製造されるが、被覆層側に多孔(7) 質膜用高分子材料を用いてもよい。
In this case as well, hollow fibers are usually manufactured using a porous membrane polymer material, but a porous membrane polymer material may also be used on the coating layer side.

さらに又同−の紡糸ステーションで、多孔質膜用高分子
材料で中空糸を製造するように紡糸するステップの後に
、その中空糸を延伸し、それによって複数の微小孔を形
成させ、その後中空糸を巻取る前に均質膜用高分子材料
を前記中空糸の外周を被覆するように紡糸させてもよい
Furthermore, at the same spinning station, after the step of spinning the porous membrane polymeric material to produce hollow fibers, the hollow fibers are drawn, thereby forming a plurality of micropores, and then the hollow fibers are drawn. A homogeneous membrane polymeric material may be spun to cover the outer periphery of the hollow fibers before winding them up.

以下添付図面を参照して本発明をさらに詳細に説明する
The present invention will be described in further detail below with reference to the accompanying drawings.

第2a図に従来公知の積層構造の中空糸1の縦断面図を
示す。すなわちこの積層型中空糸1は中央に中空部分4
を有する多孔質膜から成る中空糸2の外周に均質膜から
成る被覆層3が設けられている0本発明による積層型中
空糸の製造方法によって第2a図に示した構造を有する
積層型中空糸と、第2b図に示した構造すなわち内側に
均質膜から成る中空糸3の外周に多孔質膜から成石被覆
層2が設けられている積層型中空糸の何れのものも製造
することができる。どちらのタイプの積層型中空糸を用
いるかは、これら積層型中空糸が用いら(8) れるや例えば後述の膜モジュール(第5図参照)のタイ
プによって任意に選定すればよい。
FIG. 2a shows a longitudinal cross-sectional view of a hollow fiber 1 having a conventionally known laminated structure. That is, this laminated hollow fiber 1 has a hollow part 4 in the center.
A coating layer 3 made of a homogeneous membrane is provided on the outer periphery of a hollow fiber 2 made of a porous membrane having a laminate type hollow fiber having the structure shown in FIG. It is possible to manufacture any of the laminated hollow fibers having the structure shown in FIG. 2b, that is, a hollow fiber 3 made of a homogeneous membrane on the inside, and a grown stone coating layer 2 made of a porous membrane provided on the outer periphery of the hollow fiber 3. . Which type of laminated hollow fibers to use may be arbitrarily selected depending on, for example, the type of membrane module (see FIG. 5) to be described later, once these laminated hollow fibers are used.

第3図に本発明による製造方法によって作られた積層型
中空糸の拡大断面図の一例を示す。第3図に示すように
積層型中空糸では多孔質膜31は中空糸としての物理的
強度を維持するために相対的に厚く且つ複数の微小空孔
32を有し、その微小空孔32に接するように相対的に
薄い均質膜33が多孔質膜31上に配置されている。こ
の場合均質膜33は多孔質膜31に密着していてもよく
、シてなくてもよい。積層型中空糸はこのように構成さ
れているので均質膜によって気体が選択的に透過され、
透過された気体は微小空孔32を経て第3図に示した例
では図の下側に放出されることになる。
FIG. 3 shows an example of an enlarged cross-sectional view of a laminated hollow fiber manufactured by the manufacturing method according to the present invention. As shown in FIG. 3, in the laminated hollow fiber, the porous membrane 31 is relatively thick and has a plurality of micropores 32 in order to maintain the physical strength of the hollow fiber. A relatively thin homogeneous membrane 33 is placed on the porous membrane 31 so as to be in contact with it. In this case, the homogeneous membrane 33 may be in close contact with the porous membrane 31, or may not be in close contact with the porous membrane 31. Because the laminated hollow fiber is constructed in this way, gas is selectively permeated through the homogeneous membrane.
In the example shown in FIG. 3, the permeated gas passes through the micropores 32 and is released toward the bottom of the figure.

本発明による積層型中空糸の製造方法によって作られる
積層型中空糸の原料は基本的には溶融紡糸できる原料で
あればどのような原料を用いてもよい。ただし複数の微
小孔を具備して気体透過速度の大きい多孔質膜を作り、
優れた選択透過機能を有する均質膜を形成するためには
多孔質膜用原料としては例えばポリプロピレン、ポリエ
チレンあるいはポリプロピレンとポリエチレンの共重合
体等を用いると良く、均質膜用原料としては例えばポリ
フッ化ビニリデンやポリ(4−メチルペンテン−1)を
用いるとよい。
The raw material for the laminated hollow fiber produced by the method for producing a laminated hollow fiber according to the present invention may basically be any raw material that can be melt-spun. However, by creating a porous membrane with multiple micropores and a high gas permeation rate,
In order to form a homogeneous membrane with excellent selective permeability, it is preferable to use polypropylene, polyethylene, or a copolymer of polypropylene and polyethylene as raw materials for porous membranes, and to use polyvinylidene fluoride as raw materials for homogeneous membranes. It is preferable to use poly(4-methylpentene-1).

次に本発明の積層型中空糸の製造方法を実施するための
装置について説明する。
Next, an apparatus for carrying out the method for manufacturing a laminated hollow fiber of the present invention will be described.

本発明の製造方法は第1図に1例として示した溶融押出
しノズル5を用いて実施することができる。溶融押出し
ノズル5社中央部に気体供給管6を有し、且つ気体供給
管6に近い方に配置された中空糸用原料供給ロアに連通
した内側ノズル部9と、さらに半径方向外側に配置され
た被覆層用原料供給口に連通した外側ノズル部lOを有
する。
The manufacturing method of the present invention can be carried out using the melt extrusion nozzle 5 shown as an example in FIG. Five melt extrusion nozzles have a gas supply pipe 6 in the center, and an inner nozzle part 9 that communicates with the hollow fiber raw material supply lower arranged near the gas supply pipe 6, and further arranged on the outside in the radial direction. It has an outer nozzle portion 1O that communicates with the raw material supply port for the coating layer.

第1図に示し九溶融押出しノズル5を用いて中空糸用原
料供給ロアに多孔質膜用結晶性高分子材料を供給し、一
方被覆層用原料供給口8に均質膜用j□) 結晶性高分
子材料を供給して溶融紡糸を行えば第2a図に示した構
造を有する積層型中空糸が得られる。もし高分子材料の
供給を逆にすれば第2b図に示した構造を有する積層型
中空糸が得られる。
As shown in FIG. 1, a crystalline polymer material for a porous membrane is supplied to a hollow fiber raw material supply lower using a melt extrusion nozzle 5, and a crystalline polymer material for a homogeneous membrane is supplied to a raw material supply port 8 for a coating layer. By supplying a polymer material and performing melt spinning, a laminated hollow fiber having the structure shown in FIG. 2a can be obtained. If the supply of polymeric materials is reversed, a laminated hollow fiber having the structure shown in FIG. 2b can be obtained.

前記溶融押出しノズル5から積層状態で押出された糸条
は必要に応じて、すなわち多孔質膜に複数の微小孔を形
成させるためおよび/又は所定の太さおよび物性を有す
る中空糸を形成されるために所定の延伸処理が行われ、
糸パツケージ等に巻取られる。
The filaments extruded in a laminated state from the melt extrusion nozzle 5 are optionally formed into a plurality of micropores in the porous membrane and/or into hollow fibers having a predetermined thickness and physical properties. For this purpose, a prescribed stretching process is performed,
It is wound onto a thread cage, etc.

前記溶融押出ノズル5において気体供給管6の径、内側
ノズル部9および外側ノズル部10の径および間隙の大
きさ、さらに中空糸用原料および被覆層用原料の押出量
等は目的とする積層型中空糸の諸元に応じて任意に選定
することができる。
In the melt extrusion nozzle 5, the diameter of the gas supply pipe 6, the diameter and gap size of the inner nozzle section 9 and the outer nozzle section 10, and the extrusion amount of the raw material for the hollow fiber and the raw material for the coating layer, etc. are determined according to the desired lamination type. It can be arbitrarily selected depending on the specifications of the hollow fiber.

本発明の製造方法を実施するだめの溶融押出しノズルの
他の実施例を第4図に示す。第4図に示しだ溶融押出し
ノズル40を用いて第2a図に示した構造を有する積層
型中空糸を製造できる。乙の溶融押出しノズル40は多
孔質膜用高分子材料の押出し部分41と均質膜用高分子
材料押出し部分43との間に押出された多孔質膜用糸条
を延伸することができる部分42が設けられていること
(11) を特徴とする。すなわち多孔質膜用高分子材料は気体供
給管51に連結された第1ノズル部41によって溶融押
出しされ、その直後に第1ノズル部内の冷却管46によ
って通常50〜150℃に冷却される。次に温度調整管
47により延伸するのに好適な温度(20〜100℃)
に温度制御された延伸部42で延伸され、この部分で多
孔質膜用高分子材料から成る中空糸に多数の微小孔が形
成されることになる。延伸部の前後にスリット44゜4
5が設けられ、このスリット44.45によって前記中
空糸の外径が制御されると共にこの区域における延伸倍
率が制御されることになる。前記中空糸は第2ノズル部
43内で均質膜用高分子材料によって被覆される前にさ
らに冷却管48によって十分に冷却され、それによって
中空糸の多孔質膜内部に形成された多数の微小空孔が固
定されることになる。その後中空糸は、均質膜用高分子
材料によって被覆されて積層型中空糸1が形成されるこ
とになる。なお溶融押出しノズル40には冷却管と温度
調整管が設けられており、各部分す(12) なわち第1ノズル部41、延伸部42および第2ノズル
部43においてそれぞれ厳密に温度制御する必要がある
ので第4図に示すように各部分間に例えばセラミックス
製の断熱層を設けるとよい。
Another embodiment of a melt extrusion nozzle for carrying out the manufacturing method of the present invention is shown in FIG. Using the melt extrusion nozzle 40 shown in FIG. 4, a laminated hollow fiber having the structure shown in FIG. 2a can be manufactured. The melt extrusion nozzle 40 of B has a part 42 capable of drawing the extruded porous membrane yarn between the porous membrane polymer material extrusion part 41 and the homogeneous membrane polymer material extrusion part 43. (11). That is, the polymeric material for the porous membrane is melt-extruded by the first nozzle part 41 connected to the gas supply pipe 51, and immediately thereafter cooled to usually 50 to 150°C by the cooling pipe 46 in the first nozzle part. Next, a suitable temperature (20 to 100°C) for stretching is performed using the temperature adjustment tube 47.
The fibers are stretched in a temperature-controlled stretching section 42, and a large number of micropores are formed in the hollow fibers made of the polymeric material for porous membranes in this region. Slits 44°4 on the front and back of the stretching part
5 are provided, and the outer diameter of the hollow fibers is controlled by the slits 44, 45, and the drawing ratio in this area is controlled. The hollow fibers are further cooled sufficiently by the cooling pipe 48 before being coated with the homogeneous membrane polymer material in the second nozzle part 43, whereby a large number of micro cavities formed inside the porous membrane of the hollow fibers. The hole will be fixed. Thereafter, the hollow fibers are coated with a homogeneous membrane-forming polymeric material to form the laminated hollow fibers 1. Note that the melt extrusion nozzle 40 is provided with a cooling pipe and a temperature adjustment pipe, and it is necessary to strictly control the temperature in each part (12), that is, the first nozzle part 41, the stretching part 42, and the second nozzle part 43. Therefore, as shown in FIG. 4, it is preferable to provide a heat insulating layer made of ceramic, for example, between each part.

第4図に示した溶融押出しノズルを用いて積層型中空糸
を製造すれば、多孔質膜に充分に微小孔を確保し、それ
によって気体透過速度がより早い積層型中空糸を得るこ
とができる。
If a laminated hollow fiber is manufactured using the melt extrusion nozzle shown in Fig. 4, sufficient micropores can be secured in the porous membrane, thereby making it possible to obtain a laminated hollow fiber with a faster gas permeation rate. .

本発明の積層型中空糸の製造方法によって得られた積層
型中空糸は、医療用又は自動車等の車室内等の酸素富化
装置、−酸化炭素・二酸化炭素分離装置、除加湿装置等
に応用されて優れた性能を示す。
The laminated hollow fibers obtained by the method for manufacturing laminated hollow fibers of the present invention can be applied to oxygen enrichment devices for medical purposes or the interior of automobiles, carbon oxide/carbon dioxide separation devices, dehumidification devices, etc. has been shown to have excellent performance.

〈実施例〉 以下本発明を実施例をあげて具体的に説明する。<Example> The present invention will be specifically described below with reference to Examples.

実施例1 多孔質膜用高分子材料としてポリプロピレン(メルトイ
ンデックス25)を、均質膜用高分子材料として前記ポ
リプロピレンより破断伸度の大きいチリ(4−メチルペ
ンテン−1)を用い、それぞれ押出し機(スクリュー口
径25 w、L/D =18、圧縮比3.0)で温度2
100で溶融した後に第1図に示した溶融押出しノズル
に供給してポリゾロピレンを内側にして紡糸した。用い
た溶融押出しノズルは吐出口外径30■、スリット幅そ
れぞれ0.5圏の3重円環スリットを有する。吐出量1
011Anan 、ドラフト比350の条件で紡糸した
糸条を巻取速度25rV/rQ1nで巻取った。得られ
た積層型中空糸の外径、すなわちポリ(4−メチルペン
テン−1)の外径は約300μm1その肉厚は約2μm
であシ、内側のポリプロピレンの外径は約295μm1
その肉厚は25μmであった。このようにして得られた
積層型未延伸中空糸を次に第1段の熱処理を行う。この
時の熱処理温度は130℃であシ、乾燥状態の恒温槽で
少なくとも10秒以上の熱処理を行った。なお2対の乾
熱ローラ間を乾熱雰囲気にしその間を通過させる連続工
程で熱:(処理する方法を用いてもよい。
Example 1 Polypropylene (melt index 25) was used as a polymer material for a porous membrane, and chili (4-methylpentene-1), which has a higher elongation at break than the polypropylene, was used as a polymer material for a homogeneous membrane. Screw diameter 25W, L/D = 18, compression ratio 3.0) and temperature 2
After melting at a temperature of 100° C., the material was fed to the melt extrusion nozzle shown in FIG. 1 and spun with polyzolopyrene inside. The melt extrusion nozzle used had a three-fold annular slit with an outer diameter of 30 mm and a slit width of 0.5 mm each. Discharge amount 1
011Anan, the yarn spun under the conditions of a draft ratio of 350 was wound up at a winding speed of 25 rV/rQ1n. The outer diameter of the obtained laminated hollow fiber, that is, the outer diameter of poly(4-methylpentene-1), is approximately 300 μm1 Its wall thickness is approximately 2 μm
The outer diameter of the inner polypropylene is approximately 295μm1
Its wall thickness was 25 μm. The thus obtained laminated undrawn hollow fibers are then subjected to a first heat treatment. The heat treatment temperature at this time was 130° C., and the heat treatment was performed for at least 10 seconds in a constant temperature bath in a dry state. Note that a method may be used in which heat is processed in a continuous process in which a dry heat atmosphere is created between two pairs of dry heat rollers and the heat is passed between them.

第1段の熱処理をした積層型中空糸は未延伸糸の長さに
対して50〜300%の延伸を行ない内側のポリゾロピ
レンの部分に多数の空孔(第3図に示す微小空孔32)
を形成させる。延伸後の積層型中空糸を再び恒温槽中で
145℃の温度で15分間第2段の熱処理を行う。その
結果第3図に示すように、複数の微小空孔32を有する
多孔質膜31に支承された薄い均質膜33を有する積層
型中空糸が得られる。
The laminated hollow fibers subjected to the first heat treatment are stretched by 50 to 300% of the length of the undrawn fibers, resulting in a large number of holes in the inner polyzolopyrene portion (micropores 32 shown in Figure 3).
to form. After stretching, the laminated hollow fibers are again subjected to a second heat treatment at a temperature of 145° C. for 15 minutes in a constant temperature bath. As a result, as shown in FIG. 3, a laminated hollow fiber having a thin homogeneous membrane 33 supported on a porous membrane 31 having a plurality of micropores 32 is obtained.

前記積層型中空糸を集束して第5図に例示する構造を有
し、且つモジュール体積1ノで有効膜面積2〜3mを有
する膜モジュールを試作して本発明による積層型中空糸
の性能を測定した。膜モジュール52は第5図に示すよ
うに、空気流入口53、空気流出口54、透過ガス流出
口55を有する。膜モジユール自体の構造は公知のもの
でおるので、その詳細な詳細は省略する。
The performance of the laminated hollow fibers according to the present invention was tested by bundling the laminated hollow fibers to fabricate a membrane module having the structure illustrated in FIG. 5 and having a module volume of 1 mm and an effective membrane area of 2 to 3 m. It was measured. As shown in FIG. 5, the membrane module 52 has an air inlet 53, an air outlet 54, and a permeate gas outlet 55. Since the structure of the membrane module itself is well known, detailed details thereof will be omitted.

前記試作膜モジュールを用いて空気中の酸素の富化試験
を空気流入口53よ’り 1017m1nの空気を送入
することによって行うと、酸素濃度40q6の気体が毎
分2〜31得られた。
When an oxygen enrichment test in the air was conducted using the prototype membrane module by introducing 1017 m1 of air from the air inlet 53, gas with an oxygen concentration of 40q6 was obtained at 2 to 31 times per minute.

(15) 実施例2 多孔質膜用高分子材料としてポリプロピレン(メルトイ
ンデックス25)100重量部に対して高分子発泡剤ア
ゾジカル?ンアミド(ADCA) 5重量部を混合した
原料を用いる以外は実施例1と同じ溶融押出しノズルで
同一条件で積層型中空糸を紡糸した。こうして得られた
積層中空糸は高分子発泡剤によって溶融紡糸中に多数の
気孔が発生させることによって延伸処理することなく、
ポリプロピレンから成る多孔質膜上に4す(4−メチル
ペンテン−1)から成ゐ均質膜が形成された第3図に示
す構造を有する。この積層型中空糸を用いて実施例1の
場合と同様の構造を有し、且つモジュール体積1ノで有
効膜面積2mを有する膜モジュールを試作して空気中の
酸素の富化試験を行った。す表わち空気流入口53より
101/rrdnの空気を送入すると、酸素濃度40’
Jの気体を毎分2!得ることができた。
(15) Example 2 Polypropylene blowing agent Azodical® was added to 100 parts by weight of polypropylene (melt index 25) as a polymer material for porous membranes. A laminated hollow fiber was spun using the same melt extrusion nozzle as in Example 1 under the same conditions except that a raw material mixed with 5 parts by weight of ADCA was used. The laminated hollow fibers obtained in this way are produced without drawing treatment by generating a large number of pores during melt spinning using a polymeric blowing agent.
It has the structure shown in FIG. 3, in which a homogeneous film made of 4-methylpentene-1 is formed on a porous film made of polypropylene. Using this laminated hollow fiber, a membrane module having the same structure as in Example 1 and having a module volume of 1 mm and an effective membrane area of 2 m was fabricated as a prototype, and an oxygen enrichment test in the air was conducted. . In other words, when air of 101/rrdn is introduced from the air inlet 53, the oxygen concentration is 40'
J gas per minute! I was able to get it.

実施例3 実施例1と同じ原料構成で第4図に示した溶融(16) 押出しノズルを用いて第3図に示した構造を有する積層
型中空糸を紡糸した。ただし冷却管46によって冷却さ
れる温度を80℃、温度調整管47によって制御される
温度を30℃、冷却管48によって冷却される温度を2
0℃に設定した。このようにして得られた積層型中空糸
の外径、すなわちポリ(4−メチルペンテン−1)の外
径は約257μm1その肉厚は約3μmであり、内側の
ポリプロピレンの外径は約250μm1その肉厚は30
μmであった。この積層型中空糸を用いて実施例1の場
合と同様の構造を有し、且つモジュール体積11Jで有
効膜面積2m2を有する膜モジュールを試作し空気中の
酸素の富化試験を行った。すなわち空気流入口53よ1
1101重minの空気を送入すると酸素濃度35Ls
の気体を毎分1.51得ることができた。
Example 3 A laminated hollow fiber having the structure shown in FIG. 3 was spun using the melt (16) extrusion nozzle shown in FIG. 4 using the same raw material composition as in Example 1. However, the temperature cooled by the cooling pipe 46 is 80°C, the temperature controlled by the temperature adjustment pipe 47 is 30°C, and the temperature cooled by the cooling pipe 48 is 20°C.
The temperature was set at 0°C. The outer diameter of the laminated hollow fiber thus obtained, that is, the outer diameter of the poly(4-methylpentene-1), is about 257 μm1 Its wall thickness is about 3 μm, and the outer diameter of the inner polypropylene is about 250 μm1 Wall thickness is 30
It was μm. Using these laminated hollow fibers, a membrane module having the same structure as in Example 1 and having a module volume of 11 J and an effective membrane area of 2 m2 was fabricated as a prototype, and an oxygen enrichment test in the air was conducted. That is, air inlet 53 1
When air of 1101 min is introduced, the oxygen concentration is 35Ls.
of gas could be obtained at a rate of 1.51 per minute.

〈発明の効果〉 本発明による積層型中空糸の製造方法杖、前述の如く構
成されているので、同一の紡糸ステーションでの二成分
の高分子材料の溶融押出しによって太き表気体透過速度
と十分の強度を持った積層型中空糸、すなわち支持体膜
としての十分な強度と気体透過性を有した多孔質膜に非
常に薄くて気体の優れた選択透過性を有する均質膜が配
置された積層型中空糸を得ることができる。又同−の紡
糸ステーションでの紡糸による方法であるので製造工程
の管理が行いやすいという利点を有すると共に本発明の
製造方法を実施するだめの装置は簡単且つ安価な装置で
あるので、経済的に積層型中空糸を製造することができ
る。
<Effects of the Invention> Since the method for manufacturing a laminated hollow fiber according to the present invention is constructed as described above, it is possible to achieve a high surface gas permeation rate and a sufficient surface gas permeation rate by melt extrusion of two-component polymeric materials at the same spinning station. A laminated hollow fiber with a strength of type hollow fibers can be obtained. In addition, since the method uses spinning at the same spinning station, it has the advantage that the manufacturing process can be easily controlled, and the equipment for carrying out the manufacturing method of the present invention is simple and inexpensive, so it is economical. Laminated hollow fibers can be manufactured.

さらに本発明による製造方法を用いることにより、従来
量産が不可能であった内側に均質膜が配置されて減圧下
で用いるのに適した積層型中空糸の製造も行うことがで
きる。
Further, by using the manufacturing method of the present invention, it is possible to manufacture a laminated hollow fiber having a homogeneous membrane arranged inside and suitable for use under reduced pressure, which was previously impossible to mass produce.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の積層型中空糸の製造方法を実施するた
めに用いられる溶融押出しノズルの一実1′) 施例の
部分縦断面図である。第21図および第2b図は本発明
の製造方法によって作られる積層型中空糸の縦断面図で
あって第2a図は均質膜が外側に形成された積層型中空
糸、第2b図は多孔質膜が外側に形成された積層型中空
糸である。第3図は第2&図に示した積層型中空糸の部
分拡大縦断面図である。第4図線本発明の積層型中空糸
の製造方法を実施するために用いられる溶融押出しノズ
ルの他の実施例の縦断面図である。第5図は積層型中空
糸を用いて作られた膜モジュールの縦断面図である。 1・・・積層型中空糸、2.31・・・多孔質膜、3.
33・・・均質膜、4・・・中空部分、5.40・・・
溶融押出しノズル、6.51・・・気体供給管、7・・
・中空糸用原料供給口、8・・・被覆層用原料供給口、
9・・・内側ノズル部、10・・・外側ノズル部、32
・・・微小空孔、41・・・第1ノズル部、42・・・
延伸部、43・・・第2ノズル部。 第1 図 第3図 2 第5図 2 特開昭GO−261510(7) 151
FIG. 1 is a partial vertical cross-sectional view of an example 1' of a melt extrusion nozzle used to carry out the method for manufacturing a laminated hollow fiber of the present invention. FIG. 21 and FIG. 2b are longitudinal cross-sectional views of a laminated hollow fiber produced by the manufacturing method of the present invention, in which FIG. 2a is a laminated hollow fiber with a homogeneous membrane formed on the outside, and FIG. 2b is a porous hollow fiber. It is a laminated hollow fiber with a membrane formed on the outside. FIG. 3 is a partially enlarged longitudinal cross-sectional view of the laminated hollow fiber shown in FIG. FIG. 4 is a longitudinal cross-sectional view of another embodiment of the melt extrusion nozzle used to carry out the method for manufacturing a laminated hollow fiber of the present invention. FIG. 5 is a longitudinal sectional view of a membrane module made using laminated hollow fibers. 1... Laminated hollow fiber, 2.31... Porous membrane, 3.
33... Homogeneous membrane, 4... Hollow part, 5.40...
Melt extrusion nozzle, 6.51... gas supply pipe, 7...
・Hollow fiber raw material supply port, 8...Coating layer raw material supply port,
9...Inner nozzle part, 10...Outer nozzle part, 32
...Micro holes, 41...First nozzle part, 42...
Extension part, 43... second nozzle part. Fig. 1 Fig. 3 Fig. 2 Fig. 5 2 JP-A-Sho GO-261510 (7) 151

Claims (1)

【特許請求の範囲】 1、二成分の熱可塑性の結晶性高分子材料を溶融紡糸方
式を用いて多孔質膜と均質膜とから成る積層型中空糸を
製造する方法であって、前記二成分の何れか一方の成分
の高分子材料を中空糸を製造するように紡糸するステッ
プと、該中空糸を巻取る前に他の成分の高分子材料を前
記中空糸の外周に被覆するように紡糸するステップと、
多孔質膜用高分子材料が用いられている中空糸又は被覆
層に微小孔を形成させるステップとを含んでなることを
特徴とする溶融紡糸方式による積層型中空糸の製造方法
。 2、前記二段階の紡糸工程の後に、二成分の高分子材料
が積層された状態の糸条全延伸し、それによって糸条中
の二成分の高分子材料中の片方に複数の微小孔を形成さ
せることを特徴とする特許請求の範囲第1項記載の積層
型中空糸の製造方法。 3、多孔質膜用高分子材料に任意の比率で高分子発泡剤
を混入するステツノと、核高分子材料を中空糸を製造す
るように紡糸するステツノと、該中空糸を巻取る前に均
質膜用高分子材料金前記中空糸の外周を被覆するように
紡糸するステップとを含んでなシ、前記高分子発泡剤に
よって前記中空糸に複数の微小孔を形成させることを特
徴とする特許請求の範囲第1項記載の積層型中空糸の製
造方法。 4、多孔質膜用高分子材料で中空糸を製造するように紡
糸するステップの後に、該中空糸を延伸し、それによっ
て中空糸に複数の微小孔を形成させ、その後該中空糸の
巻取り前に均質膜用高分子材料を前記中空糸の外周を被
覆するように紡糸させることを特徴とする特許請求の範
囲第1項記載の積層型中空糸の製造方法。
[Scope of Claims] 1. A method for producing a laminated hollow fiber comprising a porous membrane and a homogeneous membrane using a two-component thermoplastic crystalline polymer material using a melt-spinning method, the method comprising: spinning the polymeric material of one of the components to produce a hollow fiber, and spinning the polymeric material of the other component to coat the outer periphery of the hollow fiber before winding the hollow fiber. the step of
1. A method for producing a laminated hollow fiber using a melt spinning method, the method comprising the step of forming micropores in a hollow fiber or a coating layer in which a polymeric material for a porous membrane is used. 2. After the two-step spinning process, the yarn in which the two-component polymeric materials are laminated is fully drawn, thereby creating a plurality of micropores in one of the two-component polymeric materials in the yarn. A method for manufacturing a laminated hollow fiber according to claim 1, which comprises forming a laminate hollow fiber. 3. One method is to mix a polymer foaming agent into the polymeric material for porous membranes in an arbitrary ratio, the other is to spin the core polymeric material to produce hollow fibers, and the other method is to make the hollow fibers homogeneous before winding them up. A polymeric material for membranes comprising: a step of spinning so as to cover the outer periphery of the hollow fiber; and forming a plurality of micropores in the hollow fiber with the polymer foaming agent. A method for producing a laminated hollow fiber according to item 1. 4. After the step of spinning the porous membrane polymeric material to produce hollow fibers, drawing the hollow fibers thereby forming a plurality of micropores in the hollow fibers, and then winding the hollow fibers. 2. The method for manufacturing a laminated hollow fiber according to claim 1, wherein the homogeneous membrane polymer material is first spun to cover the outer periphery of the hollow fiber.
JP11810884A 1984-06-11 1984-06-11 Manufacture of laminated hollow yarn Pending JPS60261510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11810884A JPS60261510A (en) 1984-06-11 1984-06-11 Manufacture of laminated hollow yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11810884A JPS60261510A (en) 1984-06-11 1984-06-11 Manufacture of laminated hollow yarn

Publications (1)

Publication Number Publication Date
JPS60261510A true JPS60261510A (en) 1985-12-24

Family

ID=14728212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11810884A Pending JPS60261510A (en) 1984-06-11 1984-06-11 Manufacture of laminated hollow yarn

Country Status (1)

Country Link
JP (1) JPS60261510A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127521A (en) * 1988-11-01 1990-05-16 Daiwabo Co Ltd Conjugate fiber and production thereof
JPH0465505A (en) * 1990-07-04 1992-03-02 Teijin Ltd Production of conjugate hollow fiber
JPH0760081A (en) * 1991-03-22 1995-03-07 Ube Ind Ltd Production of hollow fiber membrane
WO2020136560A1 (en) * 2018-12-27 2020-07-02 3M Innovative Properties Company Asymmetric hollow fiber membranes and methods of making and using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127521A (en) * 1988-11-01 1990-05-16 Daiwabo Co Ltd Conjugate fiber and production thereof
JPH0465505A (en) * 1990-07-04 1992-03-02 Teijin Ltd Production of conjugate hollow fiber
JPH0760081A (en) * 1991-03-22 1995-03-07 Ube Ind Ltd Production of hollow fiber membrane
WO2020136560A1 (en) * 2018-12-27 2020-07-02 3M Innovative Properties Company Asymmetric hollow fiber membranes and methods of making and using the same
CN113226525A (en) * 2018-12-27 2021-08-06 3M创新有限公司 Asymmetric hollow fiber membranes and methods of making and using the same
US11883777B2 (en) 2018-12-27 2024-01-30 3M Innovative Properties Company Asymmetric hollow fiber membranes and methods of making and using the same

Similar Documents

Publication Publication Date Title
US4664681A (en) Heterogeneous membrane and process for production thereof
US4405688A (en) Microporous hollow fiber and process and apparatus for preparing such fiber
KR100654083B1 (en) A process for producing an integrally asymmetrical hydrophobic membrane, an integrally asymmetrical hydrophobic membrane obtained from the process, and a process for the gas transfer using the membrane
KR100654592B1 (en) Method for producing an integrally asymmetrical polyolefin membrane
US4541981A (en) Method for preparing a uniform polyolefinic microporous hollow fiber
JPS61146308A (en) Preparation of porous polypropylene hollow yarn or film
US4919856A (en) Process for producing membranes for use in gas separation
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JPS60261510A (en) Manufacture of laminated hollow yarn
JPS6149405B2 (en)
JPS6245318A (en) Preparation of gas separation membrane
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JPH0450053B2 (en)
JPS6297980A (en) Composite hollow fiber membrane
JP2622629B2 (en) Manufacturing method of hollow fiber membrane
CN114733363B (en) Preparation process of polyolefin gas exchange membrane
JP3383926B2 (en) Manufacturing method of hollow fiber type heterogeneous membrane
JP4050606B2 (en) Method for producing three-layer composite hollow fiber membrane
JPH08332359A (en) Production of hollow yarn porous membrane
JPH04267934A (en) Method for producing hollow capillary membrane, membrane for supporting gas separating membrane and unsymmetrical perfect gas separating membrane
JPS62117811A (en) Production of conjugated hollow fiber membrane