JPH08332359A - Production of hollow yarn porous membrane - Google Patents

Production of hollow yarn porous membrane

Info

Publication number
JPH08332359A
JPH08332359A JP14052695A JP14052695A JPH08332359A JP H08332359 A JPH08332359 A JP H08332359A JP 14052695 A JP14052695 A JP 14052695A JP 14052695 A JP14052695 A JP 14052695A JP H08332359 A JPH08332359 A JP H08332359A
Authority
JP
Japan
Prior art keywords
gas
hollow fiber
thermoplastic polymer
discharge port
crystalline thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14052695A
Other languages
Japanese (ja)
Inventor
Yasushi Tomita
康司 富田
Toshio Kanbe
利夫 神戸
Kazumi Oi
和美 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP14052695A priority Critical patent/JPH08332359A/en
Publication of JPH08332359A publication Critical patent/JPH08332359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE: To produce a porous membrane not locally having parts reduced in the number of pores and having high fluid transmission velocity by bringing gas into contact with the inner and outer surfaces of a hollow yarn precursor in a molten state extruded from a hollow yarn nozzle using the gas as a core agent. CONSTITUTION: At first, according to a known melt spinning method, gas is used as a core agent to extrude a crystalline thermoplastic polymer, for example, poly-4-methylpentene-1 from a hollow nozzle in a hollow yarn shape. Next, the gas is brought into contact with the inner and outer surfaces of the hollow yarn precursor in a molten state immediately after extruded from the hollow yarn nozzle by emitting gas (a) from the gas emitting orifice 1 provided to the inside of a thermoplastic polymer emitting orifice 2. By bringing the gas into contact with the outer surface of the hollow yarn, gas (b) is emitted from the gas emitting orifice 3 provided to the outside of the thermoplastic polymer emitting orifice 2. At this time, the gases (a), (b) are composed of gases not reacting with the thermoplastic polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶性熱可塑性重合体
を中空糸状に溶融紡糸し、次いで延伸することによる
(以下溶融法と称する)中空糸多孔膜の製造方法に関す
るものである。本発明により製造される中空糸多孔膜
は、精密濾過膜、限外濾過膜、膜型人工肺、人工腎臓用
透析膜等の医療分野、ボイラ用水、半導体製造用超純水
等からの溶存酸素の除去等の液体からの脱気、液体への
気体溶解、複合膜の支持体等の分野で利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hollow fiber porous membrane by melt-spinning a crystalline thermoplastic polymer into a hollow fiber and then stretching (hereinafter referred to as a melting method). The hollow fiber porous membrane produced by the present invention is a dissolved oxygen from the medical field such as microfiltration membrane, ultrafiltration membrane, membrane oxygenator, dialysis membrane for artificial kidney, boiler water, ultrapure water for semiconductor production, etc. It is used in the fields of degassing from liquids such as the removal of substances, dissolving gas in liquids, and supporting composite membranes.

【0002】[0002]

【従来の技術】溶融法による中空糸多孔膜の製法として
は、例えば特開昭59−199808等が知られてい
る。これらの方法の溶融紡糸工程においては、ノズルか
ら押し出された溶融樹脂を冷却固化する際の冷却用気体
として通常空気が用いられており、その冷却用気体を、
単に溶融樹脂の周りに送風するだけであった。また、気
体を芯剤としてノズルから溶融押し出しすることによ
り、安定的に中空糸状が維持されるのであるが、この芯
剤気体としては、空気や窒素が使用されてきた。従来技
術においては、これらの気体の選択は任意であり、気体
の種類等による膜構造への影響については言及されてい
ない。
2. Description of the Related Art As a method for manufacturing a hollow fiber porous membrane by a melting method, for example, JP-A-59-199808 is known. In the melt spinning step of these methods, air is usually used as a cooling gas when cooling and solidifying the molten resin extruded from the nozzle, and the cooling gas is
It simply blows air around the molten resin. Further, the hollow fiber shape is stably maintained by melting and extruding a gas as a core agent from a nozzle, and air or nitrogen has been used as the core agent gas. In the prior art, the selection of these gases is arbitrary, and there is no mention of the effect of the type of gas on the membrane structure.

【0003】[0003]

【発明が解決しようとする課題】中空糸多孔膜とは、中
空糸の片側の表面から他の表面に連通した細孔を多数有
する膜であり、高い流体透過速度を得るためには、細孔
が均一に形成されて、局部的に細孔の数が少ない部分が
存在しないように成形されなければならない。しかしな
がら、従来技術において鋭意検討された条件で製造され
た多孔質膜について電子顕微鏡で観察すると、細孔の数
が少ない部分が確認される等、製造技術的に不十分なも
のであった。そこで、本発明が解決しようとする課題
は、局部的に細孔の数が少ない部分が無く、高い流体透
過速度を有する多孔質膜を製造することにある。
A hollow fiber porous membrane is a membrane having a large number of pores communicating from one surface of the hollow fiber to the other surface, and in order to obtain a high fluid permeation rate, Must be formed uniformly so that there are no locally small numbers of pores. However, when observing the porous membrane manufactured under the conditions that have been earnestly studied in the prior art with an electron microscope, it was insufficient in terms of manufacturing technology such as the confirmation of a portion having a small number of pores. Therefore, the problem to be solved by the present invention is to produce a porous membrane having a high fluid permeation rate without locally having a small number of pores.

【0004】[0004]

【課題を解決するための手段】本発明者等は、溶融法に
よる中空糸多孔質膜の形成機構について鋭意検討を行っ
た結果、ノズルから押し出された直後の溶融状態にある
中空糸前駆体の表面が酸素等の酸化性気体と接触する
と、酸化されることにより細孔の数が少ない部分が形成
されてしまうことを見い出し、本発明を完成させるに至
った。
Means for Solving the Problems As a result of intensive investigations by the present inventors on the formation mechanism of a hollow fiber porous membrane by the melting method, it was found that a hollow fiber precursor in a molten state immediately after being extruded from a nozzle was melted. It has been found that when the surface comes into contact with an oxidizing gas such as oxygen, it is oxidized to form a portion having a small number of pores, and the present invention has been completed.

【0005】即ち、溶融状態にある中空糸前駆体の内表
面及び外表面に、中空糸前駆体と非反応性の気体を均
一、且つ、安定的に接触せしめることが本発明の骨子で
あり、本発明の要旨は、気体を芯剤として中空糸ノズル
から結晶性熱可塑性重合体を中空糸状に押し出す溶融紡
糸の後、延伸することにより、中空糸多孔質膜を製造す
る方法であって、結晶性熱可塑性重合体の吐出口の内側
に設けた気体吐出口(A)から気体(a)を、結晶性熱
可塑性重合体の吐出口の外側に設けた気体吐出口(B)
から気体(b)を吐出させ、押し出された溶融状態にあ
る中空糸前駆体の内表面に気体(a)を、外表面に気体
(b)を接触させ、且つ、気体(a)及び気体(b)が
結晶性熱可塑性重合体と非反応性の気体であることを特
徴とする、中空糸多孔質膜の製造方法にある。
That is, the essence of the present invention is to bring the hollow fiber precursor in a molten state into a uniform and stable contact with the inner and outer surfaces of the hollow fiber precursor and a non-reactive gas. The gist of the present invention is a method for producing a hollow fiber porous membrane by melt spinning, in which a crystalline thermoplastic polymer is extruded into a hollow fiber shape from a hollow fiber nozzle using a gas as a core agent, and then stretched to form a hollow fiber porous membrane. Gas (a) from a gas discharge port (A) provided inside the discharge port of the crystalline thermoplastic polymer, and a gas discharge port (B) provided outside the discharge port of the crystalline thermoplastic polymer
The gas (b) is discharged from the above, the gas (a) is brought into contact with the inner surface and the gas (b) is brought into contact with the outer surface of the extruded hollow fiber precursor in a molten state, and the gas (a) and the gas ( A method for producing a hollow fiber porous membrane is characterized in that b) is a gas that is non-reactive with the crystalline thermoplastic polymer.

【0006】本発明を以下さらに詳細に説明する。本発
明の製造方法により得られる中空糸多孔質膜とは、中空
糸の片側の表面から他の表面に連通した細孔を有する中
空糸膜である。
The present invention will be described in more detail below. The hollow fiber porous membrane obtained by the production method of the present invention is a hollow fiber membrane having pores communicating from one surface of the hollow fiber to the other surface.

【0007】本発明で使用される結晶性熱可塑性重合体
は、到達結晶化度が30%以上のものであることが、優
れた性能の多孔膜を製造する上で好ましい。また、本発
明に使用される結晶性熱可塑性重合体が、結晶融点が高
いものや、酸素による酸化分解性を示すものの場合に、
本発明がより効果的である。
The crystalline thermoplastic polymer used in the present invention preferably has an ultimate crystallinity of 30% or more in order to produce a porous film having excellent performance. Further, in the case where the crystalline thermoplastic polymer used in the present invention has a high crystal melting point or shows oxidative decomposition by oxygen,
The present invention is more effective.

【0008】結晶性熱可塑性重合体の例としては、ポリ
エチレン、ポリプロピレン、ポリ−4−メチルペンテン
−1、ポリ−3−メチルブテン−1等のポリオレフィ
ン、ポリ塩化ビニリデン等の塩素含有ポリマ−、ポリフ
ッ化ビニリデン等のフッ素含有ポリマ−、ポリアセタ−
ル、ポリオキシエチレン、ポリフェニレンオキサイド等
のポリエ−テル、ポリメチレンサルファイド、ポリエチ
レンサルファイド等のポリチオエ−テル、ナイロン6、
ナイロン66等のポリアミド、ポリエチレンテレフタレ
−ト等のポリエステル、ポリスチレン、等を挙げること
ができる。勿論これらの共重合体であってもよい。
Examples of crystalline thermoplastic polymers include polyolefins such as polyethylene, polypropylene, poly-4-methylpentene-1 and poly-3-methylbutene-1, chlorine-containing polymers such as polyvinylidene chloride, and polyfluorinated polymers. Fluorine-containing polymers such as vinylidene, polyacetators
, Polyoxyethylene, polyphenylene oxide and other polyethers, polymethylene sulfide, polyethylene sulfide and other polythioethers, nylon 6,
Examples thereof include polyamide such as nylon 66, polyester such as polyethylene terephthalate, polystyrene, and the like. Of course, these copolymers may be used.

【0009】これらの中でポリ−4−メチルペンテン−
1の単独重合体、及び4−メチルペンテン−1を50重
量%以上含む共重合体等のポリ−4−メチルペンテン−
1系重合体が、到達結晶化度が高く、さらに、酸素より
酸化され易いため好ましい。4−メチルペンテン−1を
50重量%以上含む共重合体の好ましい共重合成分の例
としては、エチレン、プロピレン、ブテン−1、イソブ
チレン、ペンテン類、ヘキセン類、その他のαオレフィ
ン類が挙げられる。
Among these, poly-4-methylpentene-
Homopolymer of 1 and poly-4-methylpentene-such as a copolymer containing 50% by weight or more of 4-methylpentene-1.
The 1-based polymer is preferable because it has a high ultimate crystallinity and is more easily oxidized than oxygen. Examples of preferred copolymerization components of the copolymer containing 50% by weight or more of 4-methylpentene-1 include ethylene, propylene, butene-1, isobutylene, pentenes, hexenes, and other α-olefins.

【0010】本発明の中空糸多孔質膜の製造方法は、ま
ず、公知の溶融紡糸法に従い、気体を芯剤として、中空
糸ノズルから上述のような結晶性熱可塑性重合体を中空
糸状に押し出す。次にこの中空糸ノズルから押し出され
た直後の溶融状態にある中空糸前駆体の内表面及び外表
面に気体を接触させる。本発明において、中空糸の内表
面の気体を接触させることは、結晶性熱可塑性重合体の
吐出口の内側に設けた気体吐出口(A)から気体(a)
を吐出させることにより行う。また中空糸の外表面に気
体を接触させることは、結晶性熱可塑性重合体の吐出口
の外側に設けた気体吐出口(B)から気体(b)を吐出
させることにより行う。この時、気体(a)及び気体
(b)が結晶性熱可塑性重合体と非反応性の気体である
必要がある。
In the method for producing a hollow fiber porous membrane of the present invention, first, a crystalline thermoplastic polymer as described above is extruded into a hollow fiber form from a hollow fiber nozzle by using a gas as a core agent according to a known melt spinning method. . Next, gas is brought into contact with the inner surface and outer surface of the molten hollow fiber precursor immediately after being extruded from the hollow fiber nozzle. In the present invention, contacting the gas on the inner surface of the hollow fiber means that the gas (a) is discharged from the gas discharge port (A) provided inside the discharge port of the crystalline thermoplastic polymer.
Is discharged. The contact of the gas with the outer surface of the hollow fiber is performed by discharging the gas (b) from the gas discharge port (B) provided outside the discharge port of the crystalline thermoplastic polymer. At this time, the gas (a) and the gas (b) need to be gases that are non-reactive with the crystalline thermoplastic polymer.

【0011】気体吐出口(A)の位置は、結晶性熱可塑
性重合体の吐出口の内側に設けられたものであれば良
く、形状は限定されるものではないが、例えば、結晶性
熱可塑性重合体の吐出口の内側に同心円状に沿ったスリ
ット状の形状が挙げられる。また、気体吐出口(A)か
ら吐出される気体(a)を溶融紡糸の際の芯剤と兼ねる
ことも可能であり、この場合、中空糸ノズルの芯剤気体
の吐出口が気体吐出口(A)になり、中空糸ノズルの構
造が単純化できるため、より好ましい。
The position of the gas discharge port (A) is not limited as long as it is provided inside the discharge port of the crystalline thermoplastic polymer, and the shape is not limited. A slit-like shape along a concentric circle may be mentioned inside the polymer discharge port. Further, the gas (a) discharged from the gas discharge port (A) can also serve as the core agent in the melt spinning, and in this case, the core agent gas discharge port of the hollow fiber nozzle is the gas discharge port ( It is more preferable because it becomes A) and the structure of the hollow fiber nozzle can be simplified.

【0012】気体吐出口(B)の設置位置は、結晶性熱
可塑性重合体の吐出口の外側に設けられており、中空糸
の繊維方向に対して、溶融状態にある中空糸前駆体外表
面の溶融部分全体に気体(b)を均一に接触せしめる位
置であれば特に限定されるものではないが、気体(b)
の使用量等の経済性も考慮すると、溶融状態の中空糸前
駆体が固化する点、即ち、固化点にからノズルの間の溶
融部分にのみに気体(b)を接触せしめる位置に設置さ
れていることが好ましい。
The gas discharge port (B) is installed outside the discharge port of the crystalline thermoplastic polymer, and is located on the outer surface of the hollow fiber precursor in a molten state with respect to the fiber direction of the hollow fiber. The position is not particularly limited as long as the gas (b) is brought into uniform contact with the entire melted portion, but the gas (b)
In consideration of economic efficiency such as the amount of use of the gas, it is installed at a point where the hollow fiber precursor in a molten state solidifies, that is, a position where the gas (b) is brought into contact only with the molten portion between the nozzle and the solidification point. Is preferred.

【0013】また気体吐出口(B)は、中空糸円周方向
に対して結晶性熱可塑性重合体の吐出口の近傍に設ける
ことが好ましく、より均一かつ確実に気体(b)を中空
糸前駆体の外表面に接触せしめるためには結晶性熱可塑
性重合体の最も外側の吐出口から50mm以内の位置が
好ましく、10mm以内であることがさらに好ましい。
気体吐出口(B)は中空糸前駆体の外表面に気体
(b)を均一に接触せしめるものであれば中空糸ノズル
と一体化していてもしていなくてもよい。ノズルと一体
化していない例としては、円形に設けられた結晶性熱可
塑性重合体の吐出口の同心円上に中空糸前駆体の外表面
に向けた吐出口を設けた気体吐出部(第1図)を中空糸
ノズルの直下に設置し、その吐出口を気体吐出口(B)
として気体(b)を吐出する例等が挙げられる。ここ
で、気体吐出口(B)の形状は、例えば、スリット状、
多孔状等でよく、特に限定されるものではない。
Further, the gas discharge port (B) is preferably provided in the vicinity of the discharge port of the crystalline thermoplastic polymer in the circumferential direction of the hollow fiber, so that the gas (b) can be more uniformly and surely supplied. In order to bring it into contact with the outer surface of the body, the position within 50 mm from the outermost discharge port of the crystalline thermoplastic polymer is preferable, and more preferably within 10 mm.
The gas outlet (B) may or may not be integrated with the hollow fiber nozzle as long as the gas (b) can be brought into uniform contact with the outer surface of the hollow fiber precursor. As an example which is not integrated with the nozzle, a gas discharge part having a discharge port toward the outer surface of the hollow fiber precursor is provided on the concentric circle of the discharge port of the crystalline thermoplastic polymer provided in a circular shape (see FIG. 1). ) Is installed directly below the hollow fiber nozzle, and its discharge port is a gas discharge port (B).
As an example, an example in which the gas (b) is discharged is given. Here, the shape of the gas discharge port (B) is, for example, a slit shape,
It may be porous or the like and is not particularly limited.

【0014】気体吐出口(B)を、中空糸円周方向に対
して結晶性熱可塑性重合体の吐出口に近づけて設置する
ためには、気体吐出口(B)が中空糸ノズルと一体化し
ていることが好ましい。また、一個の中空糸ノズルに複
数個の結晶性熱可塑性重合体の吐出口を設ける場合に
は、位置合わせ等の必要がない、気体吐出口(B)を一
体化した中空糸ノズルを用いることが好ましい。中空糸
ノズルに一体化する気体吐出口(B)としては例えば、
気体吐出口(A)(芯剤吐出口も兼ねる)及び結晶性熱
可塑性重合体の吐出口が円形である中空糸ノズルにおい
て、結晶性熱可塑性重合体の吐出口の外側(結晶性熱可
塑性重合体の吐出口が二重以上の複数層ある場合は最も
外側の吐出口の外側)の同心円上に設けた円形のスリッ
トを気体吐出口(B)とすることができる。以下このよ
うなノズルを三重以上の多重円環ノズルと称する。
In order to install the gas discharge port (B) close to the discharge port of the crystalline thermoplastic polymer in the circumferential direction of the hollow fiber, the gas discharge port (B) is integrated with the hollow fiber nozzle. Preferably. When a plurality of crystalline thermoplastic polymer discharge ports are provided in one hollow fiber nozzle, use of a hollow fiber nozzle integrated with a gas discharge port (B) that does not require alignment or the like. Is preferred. As the gas discharge port (B) integrated with the hollow fiber nozzle, for example,
In the hollow fiber nozzle in which the gas discharge port (A) (also serving as the core discharge port) and the discharge port of the crystalline thermoplastic polymer are circular, the outside of the discharge port of the crystalline thermoplastic polymer (the crystalline thermoplastic polymer) is used. In the case where the combined ejection ports have a plurality of layers of two or more layers, a circular slit provided on a concentric circle of the outermost ejection port) can be used as the gas ejection port (B). Hereinafter, such a nozzle will be referred to as a triple or more multi-annular nozzle.

【0015】三重以上の多重円環ノズルにおける気体吐
出口(B)の形状は特に限定されるものではないが、例
えば、全ての吐出口をノズル面に面一に合わせて設置す
る形状(第2図)、吐出口の外周部をノズル面から突起
させ、溶融状態の中空糸前駆体の全部又は一部を覆う形
状(第3図)、気体吐出口(B)が結晶性熱可塑性樹剛
体吐出口の周囲に不連続的に設置されている形状(第4
図)(第5図)等が挙げられる。
The shape of the gas outlets (B) in the triple or more multi-annular nozzles is not particularly limited, but for example, a shape in which all the outlets are installed flush with the nozzle surface (second) (Fig.) A shape in which the outer peripheral portion of the discharge port is projected from the nozzle surface to cover all or part of the hollow fiber precursor in a molten state (Fig. 3), and the gas discharge port (B) is a crystalline thermoplastic resin rigid body discharge. The shape installed discontinuously around the exit (4th
(Fig. 5) and the like.

【0016】本発明において、気体吐出口(A)から吐
出される気体(a)及び気体吐出口(B)から吐出され
る気体(b)は、結晶性熱可塑性重合体と非反応性の気
体である必要がある。結晶性熱可塑性重合体と非反応性
の気体としては、結晶性熱可塑性重合体を酸化させるよ
うな、酸素、オゾン等の酸化性の気体でなければどのよ
うな物でも良く、例えば、窒素、炭酸ガス、アルゴン等
の非酸素ガスが挙げられる。これらの気体の混合物であ
っても良い。ここでいう非酸素ガスとは、溶融紡糸条件
で、結晶性熱可塑性重合体を酸化させないものであれば
良く、重合体や、酸化性気体の種類等により異なるが、
酸素等の酸化性気体の濃度が1モル%以下のものが好ま
しい。本発明において、非酸素ガスとしてはコスト面か
ら窒素が最も好ましい。
In the present invention, the gas (a) discharged from the gas discharge port (A) and the gas (b) discharged from the gas discharge port (B) are gases that are non-reactive with the crystalline thermoplastic polymer. Must be The gas that is non-reactive with the crystalline thermoplastic polymer may be any substance that does not oxidize the crystalline thermoplastic polymer, such as oxygen and ozone, unless it is an oxidizing gas, for example, nitrogen, Non-oxygen gas such as carbon dioxide and argon can be used. It may be a mixture of these gases. The non-oxygen gas as used herein may be any one that does not oxidize the crystalline thermoplastic polymer under melt spinning conditions, and varies depending on the polymer, the type of oxidizing gas, and the like.
It is preferable that the concentration of the oxidizing gas such as oxygen is 1 mol% or less. In the present invention, nitrogen is the most preferable non-oxygen gas from the viewpoint of cost.

【0017】本発明における溶融紡糸工程は、結晶性熱
可塑性重合体の吐出口の内側に設けた気体吐出口(A)
から気体(a)を、結晶性熱可塑性重合体の吐出口の外
側に設けた気体吐出口(B)から気体(b)を吐出さ
せ、押し出された溶融状態にある中空糸前駆体の内表面
に気体(a)を、外表面に気体(b)を接触させ、且
つ、気体(a)及び気体(b)が結晶性熱可塑性重合体
と非反応性の気体であること以外は、公知の中空糸多孔
質膜製造方法の溶融紡糸工程と同様であり、目的にあっ
た最適条件を選ぶことができる。
In the melt spinning step in the present invention, the gas discharge port (A) provided inside the discharge port of the crystalline thermoplastic polymer.
(A) and the gas (b) from the gas discharge port (B) provided outside the discharge port of the crystalline thermoplastic polymer, and the inner surface of the extruded hollow fiber precursor in a molten state. To a gas (a), the outer surface is contacted with the gas (b), and the gases (a) and (b) are gases that are non-reactive with the crystalline thermoplastic polymer. This is the same as the melt spinning step of the method for producing a hollow fiber porous membrane, and the optimum conditions suitable for the purpose can be selected.

【0018】溶融紡糸条件としては、溶融押し出しの温
度は結晶性熱可塑性重合体の結晶融点(Tm)以上の温
度、好ましくは(Tm+20)℃〜(Tm+200)℃
であり、ドラフトは50〜10000、好ましくは20
0〜1500である。この時中空糸内側に気体(a)を
流しながら、溶融紡糸を行う。
As melt spinning conditions, the temperature of melt extrusion is not lower than the crystal melting point (Tm) of the crystalline thermoplastic polymer, preferably (Tm + 20) ° C. to (Tm + 200) ° C.
And the draft is 50 to 10,000, preferably 20.
It is 0-1500. At this time, melt spinning is performed while flowing the gas (a) inside the hollow fiber.

【0019】溶融紡糸後の中空糸の冷却は気体中で行
う。固化点に至るまでの溶融状態の中空糸前駆体の冷却
は、結晶性熱可塑性重合体の吐出口の外側に設けた気体
吐出口(B)から吐出された気体(b)により行われ
る。固化後の冷却は、公知の溶融紡糸法と同様の方法で
冷却風を当てることにより行われる。冷却条件は、押し
出された中空糸の固化点がノズルから5〜200mm、
好ましくは10〜50mmになるように調整する。冷却
風としては、空気を使用することが経済面から最も好ま
しい。
The hollow fiber after melt spinning is cooled in a gas. Cooling of the molten hollow fiber precursor until reaching the solidification point is performed by the gas (b) discharged from the gas discharge port (B) provided outside the discharge port of the crystalline thermoplastic polymer. Cooling after solidification is performed by applying cooling air in the same manner as the known melt spinning method. The cooling condition is that the solidification point of the extruded hollow fiber is 5 to 200 mm from the nozzle,
It is preferably adjusted to 10 to 50 mm. From the economical viewpoint, it is most preferable to use air as the cooling air.

【0020】気体(a)及び気体(b)の吐出速度は、
用いる気体の種類、製造する中空糸膜の大きさ、用いる
重合体の種類等によって、適宜調製すればよい。本発明
における溶融紡糸後の多孔質膜製造工程は、公知の溶融
法多孔質膜の製造方法の場合と同様である。
The discharge rates of the gas (a) and the gas (b) are
It may be appropriately prepared depending on the type of gas used, the size of the hollow fiber membrane to be produced, the type of polymer used, and the like. The process for producing a porous membrane after melt spinning in the present invention is the same as in the case of a known method for producing a melt-processed porous membrane.

【0021】溶融紡糸された中空糸は、結晶性熱可塑性
重合体の結晶化度の増加や結晶欠陥の減少のために、必
要に応じて熱処理が施される。熱処理温度は結晶性熱可
塑性重合体のガラス転移点(Tg)以上、結晶性熱可塑
性重合体の結晶融点(Tm)以下である。
The melt-spun hollow fiber is optionally heat-treated in order to increase the crystallinity of the crystalline thermoplastic polymer and reduce crystal defects. The heat treatment temperature is not less than the glass transition point (Tg) of the crystalline thermoplastic polymer and not more than the crystalline melting point (Tm) of the crystalline thermoplastic polymer.

【0022】溶融紡糸された中空糸又は溶融紡糸後熱処
理された中空糸を多孔質化するために延伸が施される。
溶融紡糸により中空糸の繊維方向に直角に成長した板状
結晶が規則正しく積層している。これを延伸することに
より、積層した板状結晶間が開裂し、多孔質体となる。
The melt-spun hollow fibers or the melt-spun and heat-treated hollow fibers are stretched to make them porous.
Plate crystals grown by melt spinning at right angles to the fiber direction of the hollow fiber are regularly stacked. By stretching this, the laminated plate crystals are cleaved to form a porous body.

【0023】延伸条件は特に限定されるものでなく、目
的に合った最適条件を選ぶことができる。例えば、延伸
温度は(Tm−10)℃以下であれば目的に応じて任意
に設定でき、延伸倍率は1.3〜6倍が好ましく、2〜
4倍がさらに好ましい。さらに、延伸は多段延伸であっ
てもよく、この場合には、各段での延伸倍率が1.1倍
以上であることが好ましく、且つ、ト−タルでの延伸倍
率が1.3〜6倍が好ましく、2〜4倍がさらに好まし
い。
The stretching conditions are not particularly limited, and optimum conditions suitable for the purpose can be selected. For example, if the stretching temperature is (Tm-10) ° C or lower, it can be arbitrarily set according to the purpose, and the stretching ratio is preferably 1.3 to 6 times,
4 times is more preferable. Further, the stretching may be multi-stage stretching. In this case, the stretching ratio in each stage is preferably 1.1 times or more, and the stretching ratio in total is 1.3 to 6. It is preferably double and more preferably 2 to 4 times.

【0024】延伸後の中空糸多孔質膜は、寸法安定性と
耐熱性を付与するために熱固定を施すことが好ましい。
熱固定温度は結晶性熱可塑性重合体のTg以上Tm以下
であり、且つ、延伸温度より高い温度であることが好ま
しく、弛緩倍率は1倍より低いほうが好ましく、0.7
5〜0.95倍がさらに好ましい。
The hollow fiber porous membrane after stretching is preferably heat-set in order to impart dimensional stability and heat resistance.
The heat setting temperature is preferably Tg or more and Tm or less of the crystalline thermoplastic polymer and higher than the stretching temperature, and the relaxation ratio is preferably lower than 1 time, and 0.7
It is more preferably 5 to 0.95 times.

【0025】形成された中空糸多孔質膜の寸法は特に限
定されるものではないが、外径が0.1〜3mm、厚み
0.01〜1mmであることが好ましい。いずれの多孔
質膜に於いても、細孔の平均孔径は0.01〜10μm
であることが好ましい。
The dimension of the formed hollow fiber porous membrane is not particularly limited, but it is preferable that the outer diameter is 0.1 to 3 mm and the thickness is 0.01 to 1 mm. In any of the porous membranes, the average pore diameter is 0.01 to 10 μm.
It is preferred that

【0026】[0026]

【実施例】以下実施例により本発明を更に具体的に説明
する。ただし、これにより本発明が制約されるものでは
ない。 [実施例1]結晶性熱可塑性重合体としてポリ−4−メ
チルペンテン−1(三井石油化学工業(株)製、TP
X)を使用し、中心に直径1mmの芯剤吐出口(気体吐
出口(A))を有し、その外側同心円上に外径6mm、
内径3mmのスリット状の結晶性熱可塑性重合体の吐出
口を有し、さらに、その外側同心円上に外径10mm、
内径8mmのスリット状で、その外周部がノズル面から
20mm突起し、溶融状態の中空糸前駆体の外表面に向
けて気体を吐出し、接触せしめることが可能な気体吐出
口(B)を有する三重円環ノズル(第3図)を用いて、
紡糸温度270℃、ドラフト700にて溶融紡糸を行っ
た。この時、芯剤吐出口よ純り度99.99%以上の窒
素を1ml/分で導入し、気体吐出口(B)より、純度
99.99%以上の窒素を0.1m/秒の気流で吐出さ
せ、さらに、これより下部に冷却風として空気を0.1
m/秒の気流で供給した。この溶融紡糸された中空糸
を、連続して200℃の空気雰囲気中で約5秒間熱処理
した後、延伸倍率2倍に延伸し、次いで0.8倍に弛緩
しながら200℃の空気雰囲気中で約2秒間熱固定を行
うことにより中空糸多孔膜を製造した。
The present invention will be described in more detail with reference to the following examples. However, this does not limit the present invention. [Example 1] As a crystalline thermoplastic polymer, poly-4-methylpentene-1 (TP manufactured by Mitsui Petrochemical Industry Co., Ltd., TP)
X) is used, and a core agent discharge port (gas discharge port (A)) having a diameter of 1 mm is provided at the center, and an outer diameter of 6 mm is provided on the outer concentric circle.
It has a slit-shaped crystalline thermoplastic polymer outlet having an inner diameter of 3 mm, and further has an outer diameter of 10 mm on the outer concentric circle.
It has a slit shape with an inner diameter of 8 mm, the outer peripheral portion of which protrudes 20 mm from the nozzle surface, and has a gas discharge port (B) through which gas can be discharged and brought into contact with the outer surface of the molten hollow fiber precursor. Using a triple annular nozzle (Fig. 3),
Melt spinning was performed in a draft 700 at a spinning temperature of 270 ° C. At this time, nitrogen having a purity of 99.99% or more was introduced at 1 ml / min from the core agent discharge port, and nitrogen having a purity of 99.99% or more was supplied from the gas discharge port (B) at a flow rate of 0.1 m / sec. The air is discharged as a cooling air below this by 0.1
It was supplied by an air flow of m / sec. This melt-spun hollow fiber was continuously heat-treated in an air atmosphere at 200 ° C. for about 5 seconds, then drawn at a draw ratio of 2 times, and then relaxed to 0.8 times in an air atmosphere at 200 ° C. A hollow fiber porous membrane was produced by heat setting for about 2 seconds.

【0027】得られた中空糸不均質膜は、外径が約25
0μm、内径が約200μmであった。走査型電子顕微
鏡(以下SEMと称する)により観察したところ、内表
面、外表面ともに長径約0.1μm、短径約0.04μ
mの細孔が全面に開口しており、また、中空糸を斜めに
切断した断面には全体に直径0.05μmの細孔が密に
存在した。また、水銀圧入法で測定した孔径分布のピ−
クは0.041μmであった。この中空糸膜の窒素透過
速度は、25℃、圧力差1kgf/cm2 において3
8.5[Nm3 /m2 (外表面積)、Hr]であった。
The obtained hollow fiber heterogeneous membrane has an outer diameter of about 25.
The inner diameter was 0 μm and the inner diameter was about 200 μm. Observation with a scanning electron microscope (hereinafter referred to as SEM) revealed that the inner and outer surfaces had a major axis of about 0.1 μm and a minor axis of about 0.04 μm.
m pores were opened on the entire surface, and pores with a diameter of 0.05 μm were densely present on the entire cross section of the hollow fiber cut obliquely. In addition, the peak of the pore size distribution measured by mercury porosimetry
The thickness was 0.041 μm. The nitrogen permeation rate of this hollow fiber membrane was 3 at a temperature difference of 25 ° C. and a pressure difference of 1 kgf / cm 2 .
It was 8.5 [Nm 3 / m 2 (external surface area), Hr].

【0028】[実施例2]結晶性熱可塑性重合体として
ポリ−4−メチルペンテン−1(三井石油化学工業
(株)製、TPX)を使用し、中心に直径1mmの芯剤
吐出口(気体吐出口(A))を有し、その外側同心円上
に外径6mm、内径3mmのスリット状の結晶性熱可塑
性重合体の吐出口を有する円環ノズルを用い、結晶性熱
可塑性重合体の外表面に向けて直径5.5cm、繊維方
向の厚みが10cmである円筒状の気体吐出口(B)を
有する気体吐出部(第1図)を円環ノズルのスリットと
吐出口が同心円になるようにノズル直下に設置し、紡糸
温度270℃、ドラフト700にて溶融紡糸を行った。
この時、芯剤吐出口より純度99.99%以上の窒素を
1ml/分で導入した。気体吐出口(B)より、純度9
9.99%以上の窒素を0.1m/秒の気流で吐出さ
せ、さらに、これより下部に冷却風として空気を0.1
m/秒の気流で供給した。この溶融紡糸された中空糸
を、連続して200℃の空気雰囲気中で約5秒間熱処理
した後、延伸倍率2倍に延伸し、次いで0.8倍に弛緩
しながら200℃の空気雰囲気中で約2秒間熱固定を行
うことにより中空糸多孔膜を製造した。
[Example 2] Poly-4-methylpentene-1 (TPX, manufactured by Mitsui Petrochemical Co., Ltd.) was used as a crystalline thermoplastic polymer, and a core agent discharge port (gas) having a diameter of 1 mm was used at the center. A circular ring nozzle having a discharge port (A)) and a slit-shaped discharge port of the crystalline thermoplastic polymer having an outer diameter of 6 mm and an inner diameter of 3 mm is formed on the outer concentric circle. A gas discharge part (FIG. 1) having a cylindrical gas discharge port (B) having a diameter of 5.5 cm toward the surface and a thickness in the fiber direction of 10 cm is formed so that the slit of the annular nozzle and the discharge port are concentric. Was installed directly under the nozzle, and melt spinning was performed at a spinning temperature of 270 ° C. and a draft 700.
At this time, nitrogen having a purity of 99.99% or more was introduced at a rate of 1 ml / min from the core agent discharge port. Purity 9 from gas discharge port (B)
Discharge 9.99% or more of nitrogen with an air flow of 0.1 m / sec.
It was supplied by an air flow of m / sec. This melt-spun hollow fiber was continuously heat-treated in an air atmosphere at 200 ° C. for about 5 seconds, then drawn at a draw ratio of 2 times, and then relaxed to 0.8 times in an air atmosphere at 200 ° C. A hollow fiber porous membrane was produced by heat setting for about 2 seconds.

【0029】得られた中空糸不均質膜は、外径が約25
0μm、内径が約200μmであった。走査型電子顕微
鏡(以下SEMと称する)により観察したところ、内表
面、外表面ともに長径約0.1μm、短径約0.04μ
mの細孔が全面に開口しており、また、中空糸を斜めに
切断した断面には全体に直径0.06μmの細孔が密に
存在した。また、水銀圧入法で測定した孔径分布のピ−
クは0.051μmであった。この中空糸膜の窒素透過
速度は、25℃、圧力差1kgf/cm2 において4
0.3[Nm3 /m2 (外表面積)、Hr]であった。
The obtained hollow fiber heterogeneous membrane has an outer diameter of about 25.
The inner diameter was 0 μm and the inner diameter was about 200 μm. Observation with a scanning electron microscope (hereinafter referred to as SEM) revealed that the inner and outer surfaces had a major axis of about 0.1 μm and a minor axis of about 0.04 μm.
m pores were opened on the entire surface, and pores with a diameter of 0.06 μm were densely present on the whole cross section of the hollow fiber cut obliquely. In addition, the peak of the pore size distribution measured by mercury porosimetry
The thickness was 0.051 μm. The nitrogen permeation rate of this hollow fiber membrane was 4 at 25 ° C. and a pressure difference of 1 kgf / cm 2 .
It was 0.3 [Nm 3 / m 2 (external surface area), Hr].

【0030】[比較例1]中心に直径1mmの芯剤吐出
口を有し、その外側同心円上に外径6mm、内径3mm
のスリット状の結晶性熱可塑性重合体の吐出口を有する
ノズルを使用し、芯剤吐出口より純度99.99%以上
の窒素を1ml/分で導入し、冷却風として空気を中空
糸及び中空糸前駆体の周囲に送風した以外は実施例1と
同様にして中空糸不均質膜を製造した。
[Comparative Example 1] A core material discharge port having a diameter of 1 mm is provided at the center, and an outer diameter of 6 mm and an inner diameter of 3 mm are provided on the outer concentric circles.
Nozzle having a slit-shaped crystalline thermoplastic polymer discharge port is used, nitrogen with a purity of 99.99% or more is introduced at 1 ml / min from the core agent discharge port, and air is used as cooling air for hollow fibers and hollow fibers. A hollow fiber heterogeneous membrane was produced in the same manner as in Example 1 except that air was blown around the yarn precursor.

【0031】得られた中空糸不均質膜は、外径が約25
0μm、内径が約200μmであった。走査型電子顕微
鏡(以下SEMと称する)により観察したところ、内表
面には長径約0.1μm、短径約0.04μmの細孔が
全面に開口し、外表面には長径約0.15μm、短径
0.05μmの細孔が多数存在したが、部分的に細孔が
全く存在しない部分が観察された。また、中空糸を斜め
に切断した断面には全体に直径0.05μmの細孔が密
に存在した。この中空糸膜の窒素透過速度は、25℃、
圧力差1kgf/cm2 において18.4[Nm3 /m
2 (外表面積)、Hr]であった。
The obtained hollow fiber heterogeneous membrane has an outer diameter of about 25.
The inner diameter was 0 μm and the inner diameter was about 200 μm. When observed by a scanning electron microscope (hereinafter referred to as SEM), pores having a major axis of about 0.1 μm and a minor axis of about 0.04 μm are opened on the entire surface, and a major axis of about 0.15 μm is formed on the outer surface. A large number of pores having a minor axis of 0.05 μm were present, but a portion where no pores were present was observed. Moreover, pores having a diameter of 0.05 μm were densely present on the entire cross section of the hollow fiber cut obliquely. The nitrogen permeation rate of this hollow fiber membrane was 25 ° C,
18.4 [Nm 3 / m at a pressure difference of 1 kgf / cm 2
2 (outer surface area), Hr].

【0032】[0032]

【発明の効果】中空糸多孔膜の表面に局部的に形成され
る細孔の数が少ない部分の発生を防止し、流体の透過速
度の高い多孔質膜を安定的に製造できる。
EFFECTS OF THE INVENTION It is possible to prevent the formation of a portion having a small number of locally formed pores on the surface of a hollow fiber porous membrane and to stably produce a porous membrane having a high fluid permeation rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒状の気体吐出口(B)を有する気体吐出部
である。
FIG. 1 shows a gas discharge part having a cylindrical gas discharge port (B).

【図2】気体吐出口(B)がノズル面に面一に合わせて
設置されている三重円環ノズルである。
FIG. 2 is a triple annular nozzle in which a gas discharge port (B) is installed flush with the nozzle surface.

【図3】吐出口の外周部がノズル面から突起している三
重円環ノズルである。
FIG. 3 is a triple annular nozzle in which the outer peripheral portion of the discharge port projects from the nozzle surface.

【図4】気体吐出口(B)が不連続的に設置されている
三重円環ノズルである。
FIG. 4 shows a triple annular nozzle in which gas discharge ports (B) are discontinuously installed.

【図5】気体吐出口(B)が不連続的に設置されている
三重円環ノズルである。
FIG. 5 shows a triple annular nozzle in which gas discharge ports (B) are discontinuously installed.

【符号の説明】[Explanation of symbols]

1 気体吐出口(A) 2 結晶性熱可塑性重合体吐出口 3 気体吐出口(B) 1 Gas Discharge Port (A) 2 Crystalline Thermoplastic Polymer Discharge Port 3 Gas Discharge Port (B)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 気体を芯剤として中空糸ノズルから結晶
性熱可塑性重合体を中空糸状に押し出す溶融紡糸の後、
延伸することにより、中空糸多孔質膜を製造する方法で
あって、結晶性熱可塑性重合体の吐出口の内側に設けた
気体吐出口(A)から気体(a)を、結晶性熱可塑性重
合体の吐出口の外側に設けた気体吐出口(B)から気体
(b)を吐出させ、押し出された溶融状態にある中空糸
前駆体の内表面に気体(a)を、外表面に気体(b)を
接触させ、且つ、気体(a)及び気体(b)が結晶性熱
可塑性重合体と非反応性の気体であることを特徴とす
る、中空糸多孔膜の製造方法。
1. A melt-spinning process in which a crystalline thermoplastic polymer is extruded into a hollow fiber shape from a hollow fiber nozzle using a gas as a core agent,
A method for producing a hollow fiber porous membrane by stretching, comprising supplying a gas (a) from a gas discharge port (A) provided inside a discharge port of a crystalline thermoplastic polymer to a crystalline thermoplastic polymer. The gas (b) is discharged from the gas discharge port (B) provided outside the combined discharge port, and the gas (a) is discharged to the inner surface of the extruded hollow fiber precursor in the molten state and the gas (b) is discharged to the outer surface. b) is brought into contact, and the gas (a) and the gas (b) are gases that are non-reactive with the crystalline thermoplastic polymer.
【請求項2】 気体吐出口(B)が、結晶性熱可塑性重
合体の最も外側の吐出口から50mm以内の位置に設け
られたものである請求項1記載の中空糸多孔質膜の製造
方法。
2. The method for producing a hollow fiber porous membrane according to claim 1, wherein the gas discharge port (B) is provided at a position within 50 mm from the outermost discharge port of the crystalline thermoplastic polymer. .
【請求項3】 結晶性熱可塑性重合体の吐出口と、気体
吐出口(B)が一体化したノズルを用いることを特徴と
する請求項2記載の中空糸多孔質膜の製造方法。
3. The method for producing a hollow fiber porous membrane according to claim 2, wherein a nozzle in which the ejection port for the crystalline thermoplastic polymer and the gas ejection port (B) are integrated is used.
【請求項4】 ノズルが三重以上の多重円環ノズルであ
る請求項3記載の中空糸多孔質膜の製造方法。
4. The method for producing a hollow fiber porous membrane according to claim 3, wherein the nozzle is a triple or more multi-annular nozzle.
【請求項5】 結晶性熱可塑性重合体と非反応性の気体
が窒素である請求項1〜4のいずれか1項に記載の中空
糸多孔質膜の製造方法。
5. The method for producing a hollow fiber porous membrane according to claim 1, wherein the gas that is non-reactive with the crystalline thermoplastic polymer is nitrogen.
【請求項6】 結晶性熱可塑性重合体が4−メチルペン
テン−1系重合体である請求項1〜5のいずれか1項に
記載の中空糸多孔質膜の製造方法。
6. The method for producing a hollow fiber porous membrane according to claim 1, wherein the crystalline thermoplastic polymer is a 4-methylpentene-1 type polymer.
JP14052695A 1995-06-07 1995-06-07 Production of hollow yarn porous membrane Pending JPH08332359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14052695A JPH08332359A (en) 1995-06-07 1995-06-07 Production of hollow yarn porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14052695A JPH08332359A (en) 1995-06-07 1995-06-07 Production of hollow yarn porous membrane

Publications (1)

Publication Number Publication Date
JPH08332359A true JPH08332359A (en) 1996-12-17

Family

ID=15270723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14052695A Pending JPH08332359A (en) 1995-06-07 1995-06-07 Production of hollow yarn porous membrane

Country Status (1)

Country Link
JP (1) JPH08332359A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210954A (en) * 2002-01-24 2003-07-29 Toray Ind Inc Method of manufacturing hollow fiber membrane and hollow fiber membrane
KR101230141B1 (en) * 2011-08-08 2013-02-05 웅진케미칼 주식회사 Manufacturing method of metallic hollow fiber having porosity
KR101230068B1 (en) * 2011-08-08 2013-02-05 웅진케미칼 주식회사 Manufacturing method of metallic hollow fiber preventing bending
CN114438610A (en) * 2021-12-31 2022-05-06 脉通医疗科技(嘉兴)有限公司 Spinneret assembly, multi-cavity hollow fiber tube, preparation method of multi-cavity hollow fiber tube and medical instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210954A (en) * 2002-01-24 2003-07-29 Toray Ind Inc Method of manufacturing hollow fiber membrane and hollow fiber membrane
KR101230141B1 (en) * 2011-08-08 2013-02-05 웅진케미칼 주식회사 Manufacturing method of metallic hollow fiber having porosity
KR101230068B1 (en) * 2011-08-08 2013-02-05 웅진케미칼 주식회사 Manufacturing method of metallic hollow fiber preventing bending
CN114438610A (en) * 2021-12-31 2022-05-06 脉通医疗科技(嘉兴)有限公司 Spinneret assembly, multi-cavity hollow fiber tube, preparation method of multi-cavity hollow fiber tube and medical instrument

Similar Documents

Publication Publication Date Title
EP0124028B1 (en) Heterogeneous membrane and process for production thereof
EP0227832B1 (en) Composite hollow yarn and a process for producing the same
US4802942A (en) Method of making multilayer composite hollow fibers
US5181940A (en) Hollow fiber membranes
US5871680A (en) Method and apparatus for spinning hollow fiber membranes
JPS6335726B2 (en)
JPH0122003B2 (en)
JPH07116483A (en) Manufacture of hollow fiber dual membrane
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JP2000093768A (en) Composite porous hollow fiber membrane
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JPH08332359A (en) Production of hollow yarn porous membrane
JPH06210146A (en) Hollow fiber inhomogeneous membrane and its production
JPS6245318A (en) Preparation of gas separation membrane
JPH08332360A (en) Production of hollow yarn heterogenous membrane
JPH0450053B2 (en)
JPH0254377B2 (en)
JPH0445830A (en) Production of conjugate hollow-fiber membrane
JP3383926B2 (en) Manufacturing method of hollow fiber type heterogeneous membrane
JP3475363B2 (en) Method for producing porous membrane
JPH07155568A (en) Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane
JPS60261510A (en) Manufacture of laminated hollow yarn
JP2004174408A (en) Method and apparatus for manufacturing hollow fiber membrane
JPH02241526A (en) Hollow yarn membranes and pump oxygenator using the same
JPH09296320A (en) Spinneret