JPH07116483A - Manufacture of hollow fiber dual membrane - Google Patents

Manufacture of hollow fiber dual membrane

Info

Publication number
JPH07116483A
JPH07116483A JP26716193A JP26716193A JPH07116483A JP H07116483 A JPH07116483 A JP H07116483A JP 26716193 A JP26716193 A JP 26716193A JP 26716193 A JP26716193 A JP 26716193A JP H07116483 A JPH07116483 A JP H07116483A
Authority
JP
Japan
Prior art keywords
polymer
layer
porous
hollow fiber
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26716193A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP26716193A priority Critical patent/JPH07116483A/en
Publication of JPH07116483A publication Critical patent/JPH07116483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To form a thin nonporous layer free from pinhole, crack, or break by a method wherein a crystalline thermoplastic polymer A and a polymer B having the capability of being thermally bonded to the polymer A are disposed in two layers and subjected to melt conjugate spinning using a multiple cylindrical spinning nozzle, which layers are then stretched to make only the layer comprising the polymer A porous. CONSTITUTION:A crystalline thermoplastic polymer A and a polymer B having the capability of being thermally bonded to the polymer A are disposed in two layers so as to be subjected to melt conjugate spinning using a multiple cylindrical spinning nozzle, which is then stretched to make only the layer comprising the polymer A porous. And the polymer B is comprised of the same monomer, as a principal constituent element, as the polymer A and the polymer B has a lower degree of attainable crystallization than the polymer A. Further the polymer A and the polymer B are 4-methylpentene-1 based polymers. And the polymer A is disposed on the inner side. A hollow fiber dual membrane thus obtained serves as a degassing membrane for liquid. As a result, a thin nonporous layer free from pinhole, crack, or break can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体分離、パーベ−パ
レ−ション、液体からの脱気、液体への気体溶解などの
用に供せられる、非多孔質層と多孔質層とから成る中空
糸複合膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a non-porous layer and a porous layer which are used for gas separation, pervaporation, degassing from liquid, dissolving gas in liquid and the like. The present invention relates to a method for manufacturing a hollow fiber composite membrane.

【0002】[0002]

【従来の技術】非多孔質層と多孔質層とから成る膜の製
造方法としては、湿式法(ポリマーを溶剤に溶かして中
空糸状に押し出し、ポリマーを溶かせない非溶剤と接触
させることによりポリマーを凝固させるもの)や溶融法
(結晶性ポリマーを溶融押出し製膜後、延伸により多孔
質化するもの)で一段で該構造を成形する方法と、多孔
質膜の上にコ−ティングなどの方法により非多孔質層を
形成する方法とがあり、またその他に、溶融共押し出し
により、例えば非多孔層が多孔質層でサンドイッチ状に
形成された3層構造の膜の製造方法も知られていた(特
開昭63−274433)。これらの方法にて製造され
る膜のうち、非多孔質層と多孔質層が同一の素材で構成
されているものは不均質膜、異種の素材で構成されてい
るものは複合膜と呼ばれる。
2. Description of the Related Art As a method for producing a membrane composed of a non-porous layer and a porous layer, a wet method (a polymer is dissolved in a solvent and extruded into a hollow fiber shape, and the polymer is brought into contact with a non-solvent which does not dissolve the polymer Solidification) or a melting method (a crystalline polymer is melt-extruded to form a film and then made porous by stretching), a method of forming the structure in one step, and a method such as coating on the porous film. There is also a method for forming a non-porous layer, and in addition, a method for producing a membrane having a three-layer structure in which, for example, a non-porous layer is sandwiched between porous layers by melt co-extrusion has been known ( JP-A-63-274433). Among the membranes produced by these methods, those in which the non-porous layer and the porous layer are made of the same material are called heterogeneous membranes, and those made of different materials are called composite membranes.

【0003】[0003]

【発明が解決すべき課題】しかし一段成形法で得られる
不均質膜については、湿式法では溶剤に溶解する素材し
か使用できないため、脱気や人工肺に適するポリオレフ
ィン製の膜は成形不能であり、溶融法では非多孔質層を
薄く形成することが困難であった。例えば概表面に非多
孔質層を有するポリ−4−メチルペンテン−1不均質膜
の、工業的に安定して生産できる酸素透過速度の値は、
外形が200μm程度の中空糸膜の場合、せいぜい1.
5×10-5[cm3(STP)/cm2,s,cmHg]
であった。また非多孔質層を膜の内側に有する中空糸膜
を作成することが難しいという欠点を有している。また
複合膜は製造工程が長く複雑なため製造コストの上昇を
招く上、取扱い時に非多孔層が損傷しやすく、多孔質層
と非多孔質層との結合力がそれ程強く無いために多孔質
側を高圧で加圧する使用方法でしばしば非多孔質層が剥
離する場合があった。また、3層構造の複合膜は非多孔
層が表面に無いが故の欠点を有していた。即ち、例えば
液体の脱気など、膜が液体、特に界面活性剤含有水や有
機溶剤水溶液と接する用途では、多孔質部に液体が入り
込み、性能の重大な低下が生じるなど、使用上の制約が
あり、また気体分離膜として使用する場合にも、中空糸
膜の充填体積当りの非多孔質の膜面積が小さくなった
り、非多孔質層に化学処理(例えばプラズマ処理)を施
して分離係数を向上させることが困難であるるという欠
点があった。
However, with respect to the heterogeneous membrane obtained by the one-step molding method, only a material soluble in a solvent can be used in the wet method, so that a polyolefin membrane suitable for deaeration and artificial lung cannot be molded. It was difficult to form a thin non-porous layer by the melting method. For example, the value of oxygen permeation rate that can be industrially stably produced for a poly-4-methylpentene-1 heterogeneous membrane having a non-porous layer on the approximate surface is:
In the case of a hollow fiber membrane having an outer shape of about 200 μm, at most 1.
5 × 10 −5 [cm 3 (STP) / cm 2 , s, cmHg]
Met. Further, it has a drawback that it is difficult to produce a hollow fiber membrane having a non-porous layer inside the membrane. In addition, since the manufacturing process of the composite membrane is long and complicated, it causes an increase in manufacturing cost, the non-porous layer is easily damaged during handling, and the bonding force between the porous layer and the non-porous layer is not so strong, so that the porous side In many cases, the non-porous layer was peeled off by the method of applying high pressure. In addition, the composite film having a three-layer structure has a drawback because there is no non-porous layer on the surface. That is, in applications where the membrane is in contact with a liquid, such as water containing a surfactant or an aqueous solution of an organic solvent, such as deaeration of the liquid, there are restrictions on use such as the liquid entering the porous portion and causing a significant decrease in performance. Also, when used as a gas separation membrane, the non-porous membrane area per packed volume of the hollow fiber membrane becomes smaller, or the non-porous layer is chemically treated (for example, plasma treated) to increase the separation coefficient. There was a drawback that it was difficult to improve.

【0004】[0004]

【課題を解決するための手段】本発明の要旨は、多重円
筒型紡糸ノズルを用いて、結晶性の熱可塑性重合体
(A)と、重合体(A)と融着性を有する重合体(B)
とを2層に配して溶融複合紡糸し、次いで延伸して重合
体(A)から成る層のみを多孔質化することを特徴とす
る、多孔質層と非多孔質層の2層からなる中空糸複合膜
の製造方法にあり、特に、重合体(B)が、重合体
(A)と同じモノマ−を主要な構成要素とする重合体
で、かつ重合体(A)より到達結晶化度が低い重合体で
ある上記製造方法にある。なお、本発明の製造方法によ
り製造される膜において、多孔質層と非多孔質層が同じ
モノマ−を主要な構成成分とする重合体で構成されてい
るものは不均質膜に分類されるべきかもしれないが、本
発明では、独立した2種の重合体を使用することから、
複合膜と呼ぶことにする。以下本発明をさらに詳細に説
明する。
Means for Solving the Problems The gist of the present invention is to use a multi-cylindrical spinning nozzle to form a crystalline thermoplastic polymer (A) and a polymer (A) which has a fusion property with the polymer (A). B)
And 2 are arranged in two layers, subjected to melt-composite spinning, and then stretched to make only the layer made of the polymer (A) porous, which is composed of two layers of a porous layer and a non-porous layer. In the method for producing a hollow fiber composite membrane, in particular, the polymer (B) is a polymer whose main constituent is the same monomer as the polymer (A), and the degree of crystallinity reached from the polymer (A). In the above production method, the polymer is a low polymer. Incidentally, in the membrane produced by the production method of the present invention, those in which the porous layer and the non-porous layer are composed of a polymer having the same monomer as a main constituent component should be classified as a heterogeneous membrane. However, since the present invention uses two independent polymers,
We will call it a composite membrane. The present invention will be described in more detail below.

【0005】本発明で製造される中空糸複合膜は、多孔
質層と非多孔質層からなる分離膜である。特に好ましく
は液体脱気の用途に適した分離膜である。ここでいう多
孔質層とは液体を通過させる連通細孔を有する層であ
り、孔径は0.001〜10μm程度のものである。非
多孔質層とは0.001μm以上の孔がなく、液体を通
過させない層のことを言う。本発明の中空糸複合膜は、
非多孔質層が内側に配されていても外側に配されていて
も何れでも良い。
The hollow fiber composite membrane produced by the present invention is a separation membrane composed of a porous layer and a non-porous layer. Particularly preferred is a separation membrane suitable for liquid deaeration. The term "porous layer" as used herein means a layer having communicating pores that allow liquid to pass therethrough, and has a pore diameter of about 0.001 to 10 µm. The non-porous layer is a layer having no pores of 0.001 μm or more and impermeable to liquid. The hollow fiber composite membrane of the present invention is
The non-porous layer may be arranged inside or outside.

【0006】重合体(A)は、溶融後温度低下により固
化する際に結晶状になる、結晶性の熱可塑性重合体であ
る。重合体(A)の例としては、ポリエチレン、ポリプ
ロピレン、ポリ−4−メチルペンテン−1、ポリ−3−
メチルブテン−1などのポリオレフィン、ポリアセタ−
ル、ポリオキシエチレンポリフェニレンオキサイドなど
のポリエ−テル、ポリメチレンサルファイド、ポリエチ
レンサルファイド、ポリフェニレンサルファイドなどの
ポリチオエーテル、ポリ塩化ビニリデンなどの塩素含有
ポリマー、ポリフッ化ビニリデンなどのフッ素含有ポリ
マー、ナイロン6、ナイロン66などのポリアミド、ポ
リエチレンテレフタレ−トなどのポリエステル、ポリス
チレン、ポリエ−テルエ−テルケトンなどを挙げること
ができる。重合体(A)はこれら単独の重合体であって
も良いし、勿論これらの共重合体であってもよい。これ
らの中でポリ−4−メチルペンテン−1、および4−メ
チルペンテン−1を主要な成分とする共重合体が、気体
透過速度が高くかつ酸素/窒素の分離係数も高いため好
ましい。4−メチルペンテン−1を主要な成分とする共
重合体の好ましい共重合成分の例としては、エチレン、
プロピレン、ブテン−1、イソブチレン、ペンテン類、
ヘキセン類、その他のαオレフィンなどのオレフィン類
が挙げられる。
The polymer (A) is a crystalline thermoplastic polymer which becomes crystalline when solidified by lowering the temperature after melting. Examples of the polymer (A) include polyethylene, polypropylene, poly-4-methylpentene-1, poly-3-.
Polyolefin such as methylbutene-1 and polyacetate
Polyether such as polyoxyethylene polyphenylene oxide, polymethylene sulfide, polyethylene sulfide, polythioether such as polyphenylene sulfide, chlorine-containing polymer such as polyvinylidene chloride, fluorine-containing polymer such as polyvinylidene fluoride, nylon 6, nylon 66 And the like, polyester such as polyethylene terephthalate, polystyrene, and polyether ether ketone. The polymer (A) may be a homopolymer of these or, of course, a copolymer of these. Among these, poly-4-methylpentene-1 and a copolymer containing 4-methylpentene-1 as a main component are preferable because they have a high gas permeation rate and a high oxygen / nitrogen separation coefficient. Examples of preferred copolymerization components of the copolymer having 4-methylpentene-1 as a main component include ethylene,
Propylene, butene-1, isobutylene, pentenes,
Examples of olefins include hexenes and other α-olefins.

【0007】延伸の際重合体(A)からなる層が多孔質
化し易いように、重合体(A)に核剤や相分離剤とし
て、シリコンオイルや高沸点溶剤などの液体、脂肪酸エ
ステルなどの溶融性固体、炭酸カルシウムなどの固体粉
末などを混合してもよい。核剤や相分離剤は、溶融状態
で重合体(A)と混合していても相分離状態にあっても
よいが、冷却後および/または熱処理後は相分離する物
質である。さらに、冷却後も重合体(A)と相溶してい
るような物質、例えば酸化防止剤などを混合することも
可能である。
In order to facilitate the porous layer of the polymer (A) during stretching, the polymer (A) may be used as a nucleating agent or a phase separating agent such as a liquid such as silicone oil or a high boiling point solvent, or a fatty acid ester. You may mix meltable solid, solid powder, such as calcium carbonate. The nucleating agent and the phase-separating agent may be mixed with the polymer (A) in a molten state or in a phase-separated state, but are substances that phase-separate after cooling and / or heat treatment. Furthermore, it is also possible to mix a substance that is compatible with the polymer (A) even after cooling, such as an antioxidant.

【0008】重合体(B)は、重合体(A)と融着性を
有する重合体であればいかなるものっでも良い。「融着
性を有する」とは通常の用語通り、溶融状態で二者を接
触させたまま冷却固化したとき、二者が接着されている
ことを言う。即ち重合体(A)と同じでも異なっていて
も良く、結晶性の熱可塑性重合体であっても、非結晶性
の熱可塑性重合体であっても良い。例えば重合体(A)
と同様のポリマーを単独またはこれらの共重合体を使用
することが出来る。
The polymer (B) may be any polymer as long as it has a fusible property with the polymer (A). The term “having a fusion property” means that the two are bonded to each other when they are cooled and solidified in a molten state while they are in contact with each other. That is, it may be the same as or different from the polymer (A), and may be a crystalline thermoplastic polymer or an amorphous thermoplastic polymer. For example, polymer (A)
Polymers similar to the above can be used alone or copolymers thereof can be used.

【0009】重合体(B)は、重合体(A)より到達結
晶化度が低い(非晶性であることも含む)か、結晶化速
度が低いか、結晶欠陥が多いか、結晶の凝集力が小さい
かのいずれかの性質またはこれらの複数の性質を有する
ことが好ましい。即ち重合体(A)よりも多孔質化しに
くいことが好ましい。なかでも、重合体(A)と同じモ
ノマ−を主要な構成要素とする、即ち50モル%以上含
有する重合体であり、かつ重合体(A)より到達結晶化
度が低い重合体であることが好ましい。重合体を構成す
るモノマー単位の構成比は、例えば赤外吸収スペクトル
測定により測定できる。
The polymer (B) has a lower degree of crystallinity (including non-crystallinity) than the polymer (A), a low crystallization rate, many crystal defects, or crystal agglomeration. It is preferable to have any property of low force or a plurality of these properties. That is, it is preferable that it is less likely to be porous than the polymer (A). Among them, a polymer having the same monomer as the polymer (A) as a main constituent, that is, containing 50 mol% or more, and having a lower degree of crystallinity than the polymer (A). Is preferred. The constituent ratio of the monomer units constituting the polymer can be measured by, for example, infrared absorption spectrum measurement.

【0010】「重合体(B)が重合体(A)より到達結
晶化度が低い」とは、重合体(B)を重合体(A)と同
一条件で溶融成形し、同一条件で十分に熱処理したと
き、その結晶化度が重合体(A)より低いことを意味す
る。同じモノマーを主要な構成要素としながら重合体の
到達結晶化度を下げる方法としては、重合触媒の選定や
重合法の選定よる重合体の立体規則性の低下、共重合体
化や共重合組成の調節、共重合モノマーの選定、重合条
件の調節や多官能モノマーの添加などによる重合体の枝
分かれの増加、分子量の調節などの方法により実施でき
る。到達結晶化度の差は10%以上あることが好まし
い。結晶化度はX線回折、赤外吸収スペクトル、密度、
DSCなどにより測定することができる。
"The polymer (B) has a lower degree of crystallinity than the polymer (A)" means that the polymer (B) is melt-molded under the same conditions as those of the polymer (A), When heat-treated, it means that its crystallinity is lower than that of the polymer (A). As a method of lowering the ultimate crystallinity of the polymer while using the same monomer as the main constituent, the stereoregularity of the polymer is lowered by the selection of the polymerization catalyst and the polymerization method, and the copolymerization and the copolymerization composition It can be carried out by methods such as adjustment, selection of copolymerization monomer, adjustment of polymerization conditions, increase of branching of the polymer by addition of polyfunctional monomer, adjustment of molecular weight and the like. The difference in ultimate crystallinity is preferably 10% or more. The crystallinity is X-ray diffraction, infrared absorption spectrum, density,
It can be measured by DSC or the like.

【0011】また、重合体(B)層は、分離性能の向上
の点から薄いことが好ましいので、薄く成形するため
に、重合体(B)の溶融粘度は重合体(A)のそれより
低いことが好ましい。重合体の溶融粘度は、共重合組成
などによっても調節できるが、分子量または分子量分布
を調節する方法が最も効果的である。
Further, since the polymer (B) layer is preferably thin from the viewpoint of improving the separation performance, the melt viscosity of the polymer (B) is lower than that of the polymer (A) in order to make it thin. It is preferable. The melt viscosity of the polymer can be adjusted by the copolymerization composition and the like, but the method of adjusting the molecular weight or the molecular weight distribution is most effective.

【0012】重合体(B)には、核剤や相分離剤などの
重合体(B)を多孔質化し易くする物質を添加しないこ
とが好ましいが、逆に、多孔質化を妨げるような、冷却
後に重合体(B)と相溶しているような溶剤を混合する
ことは可能である。重合体(B)にもまた、酸化防止
剤、分離すべきガスのキャリアなどを混合することも可
能である。
It is preferable to add no substance such as a nucleating agent or a phase separating agent to the polymer (B) for facilitating the porosity of the polymer (B). It is possible to mix a solvent that is compatible with the polymer (B) after cooling. It is also possible to mix the polymer (B) with an antioxidant, a carrier of a gas to be separated, and the like.

【0013】重合体(A)および重合体(B)を用いて
中空糸複合膜を成形するには、先ず、多重円筒型紡糸ノ
ズルを用いて、重合体(A)と重合体(B)の一方を内
側に、他方を外側にし2層に配して溶融複合紡糸(溶解
した重合体をノズルから押し出し、糸状にすること)す
る。溶融複合紡糸の条件は、結晶性の熱可塑性重合体を
用いて溶融成形法にて中空糸多孔質膜を製造する条件と
同様である。即ち、溶融押出し温度は重合体(A)の結
晶融点(Tm)以上の温度、好ましくは(Tm+10)
℃〜(Tm+50)℃であり、ドラフト比は50〜10
000、好ましくは200〜2000である。冷却は気
体中での冷却が好ましく、冷却気体の温度や風速は、押
出された中空糸の固化点が、好ましくはノズルから5〜
100mm、さらに好ましくは10〜50mmになる様
に調節する。冷却気体の温度は重合体(A)のガラス転
移温度(Tg)以下であることが好ましい。
To form a hollow fiber composite membrane using the polymer (A) and the polymer (B), first, a multi-cylindrical spinning nozzle is used to separate the polymer (A) and the polymer (B). Two layers are arranged with one side on the inside and the other on the outside, and melt-composite spinning is performed (the melted polymer is extruded from a nozzle to form a filament). The conditions for melt-composite spinning are the same as the conditions for producing a hollow fiber porous membrane by a melt molding method using a crystalline thermoplastic polymer. That is, the melt extrusion temperature is higher than the crystal melting point (Tm) of the polymer (A), preferably (Tm + 10).
℃ ~ (Tm + 50) ℃, the draft ratio is 50 ~ 10
000, preferably 200 to 2000. Cooling is preferably performed in a gas, and the temperature and wind speed of the cooling gas are such that the solidification point of the extruded hollow fiber is preferably 5 to 5 from the nozzle.
It is adjusted to 100 mm, more preferably 10 to 50 mm. The temperature of the cooling gas is preferably equal to or lower than the glass transition temperature (Tg) of the polymer (A).

【0014】重合体(B)としては、これらの紡糸条件
で溶融複合紡糸が可能な物を選択する。即ち重合体
(B)が結晶性である場合には、そのTmは溶融押出し
温度以下である必要があるし、重合体(B)が非結晶性
である場合には、溶融押出し温度において粘度が100
0000センチポアズ(cps)以下である必要があ
る。
As the polymer (B), a polymer capable of melt composite spinning under these spinning conditions is selected. That is, when the polymer (B) is crystalline, its Tm needs to be below the melt extrusion temperature, and when the polymer (B) is amorphous, the viscosity at the melt extrusion temperature is 100
It should be 0000 centipoise (cps) or less.

【0015】重合体(A)と重合体(B)のどちらを外
側に配するかは形成される膜の用途目的に応じて任意に
決めることができる。例えば、中空糸膜の内側に界面活
性剤溶液を流し、外側を減圧して脱気する用途に使用す
る膜を製造する場合には、ノズルから押し出す際に中空
糸の内側に重合体(B)を配することにより、内側非多
孔質の膜を形成できるし、気体分離膜を製造する場合に
は、逆に外側に重合体(B)を配し、非多孔質層の表面
積の大きい膜を形成することができる。
Which of the polymer (A) and the polymer (B) is provided on the outside can be arbitrarily determined according to the intended purpose of the film to be formed. For example, in the case of producing a membrane used for degassing by depressurizing the outside by pouring a surfactant solution into the inside of the hollow fiber membrane, the polymer (B) is put inside the hollow fiber when extruding from the nozzle. By disposing, the non-porous membrane can be formed on the inside, and in the case of producing a gas separation membrane, on the contrary, the polymer (B) is arranged on the outside to form a membrane having a large surface area in the non-porous layer. Can be formed.

【0016】重合体(A)層と重合体(B)層の厚みの
比は溶融押し出し速度の比で決定することができる。通
常、非多孔質層ができるだけ薄い膜が好ましいため、重
合体(B)層は、ピンホールや亀裂などの生じない範囲
で薄くすることが好ましい。重合体(B)層の厚みは重
合体(A)層の厚みの0.1〜5%程度が好ましい。
The thickness ratio of the polymer (A) layer and the polymer (B) layer can be determined by the ratio of melt extrusion rates. Usually, since the non-porous layer is preferably as thin as possible, the polymer (B) layer is preferably thin as far as pinholes and cracks do not occur. The thickness of the polymer (B) layer is preferably about 0.1 to 5% of the thickness of the polymer (A) layer.

【0017】溶融紡糸された2層中空糸は、必要に応じ
て熱処理される。熱処理温度は重合体(A)のTg(ガ
ラス転移点)以上、Tm(結晶融点)以下である。熱処
理を施すことにより重合体(A)の結晶化度の増加や結
晶欠陥の減少を計り、重合体(A)層を多孔質化し易く
することができる。
The melt-spun two-layer hollow fiber is optionally heat treated. The heat treatment temperature is not lower than Tg (glass transition point) and not higher than Tm (crystal melting point) of the polymer (A). By performing the heat treatment, the crystallinity of the polymer (A) can be increased and the crystal defects can be reduced, and the polymer (A) layer can be easily made porous.

【0018】溶融紡糸されたまたは熱処理された2層中
空糸は、延伸することにより重合体(A)層が連通細孔
を有するようになり多孔質化される。重合体(A)層が
多孔質化される機構は種々あり、例えば、溶融押し出し
した中空糸を、ドラフトによる適当な張力下、かつ適当
な温度勾配下で冷却することにより、繊維軸に直角な面
内に積層ラメラ結晶を発達させ、延伸により結晶間を開
裂させる方法(特開昭59−199808)や、溶融状
態で相溶するまたは相溶しない物質(ポリマー、固体、
液体などであり得る)と混合して溶融紡糸し、固化後、
延伸することにより、混合物とポリマーの界面を剥離さ
せ多孔質化する方法、およびこれらの中間の状態を経る
方法など、既知の多孔質化方法が利用できる。延伸の延
伸温度、延伸倍率、延伸速度などは特に限定する必要は
なく、重合体(A)層が多孔質化される機構に応じて適
当な値を選ぶことができる。例えば、延伸温度は(Tm
−20)℃以下であることが好ましく、(Tg+50)
℃以下であることが好ましい。延伸温度の下限は特に設
ける必要はなく、液体窒素温度(マイナス196℃)で
も可能である。延伸倍率は1.3〜6が好ましく、2〜
4がさらに好ましい。延伸温度が高いほど延伸倍率を高
くすることが好ましい。
The melt-spun or heat-treated two-layer hollow fiber is made porous by stretching so that the polymer (A) layer has communicating pores. There are various mechanisms by which the polymer (A) layer is made porous. For example, by melting the melt-extruded hollow fiber under an appropriate tension by a draft and under an appropriate temperature gradient, it is possible to form a layer perpendicular to the fiber axis. A method of developing a laminated lamella crystal in a plane and cleaving the crystals by stretching (Japanese Patent Laid-Open No. 59-199808), or a substance that is compatible or incompatible in the molten state (polymer, solid,
It may be a liquid etc.), melt-spun, and after solidification,
Known porosification methods such as a method of exfoliating the interface between the mixture and the polymer to make it porous by stretching and a method of passing through an intermediate state between these can be used. The stretching temperature, the stretching ratio, the stretching speed, etc. of the stretching are not particularly limited, and an appropriate value can be selected according to the mechanism by which the polymer (A) layer is made porous. For example, the stretching temperature is (Tm
-20) ° C. or lower is preferable, and (Tg + 50)
It is preferably at most ° C. It is not necessary to set the lower limit of the stretching temperature, and the liquid nitrogen temperature (minus 196 ° C.) is also possible. The draw ratio is preferably 1.3 to 6, and 2 to
4 is more preferable. It is preferable to increase the draw ratio as the drawing temperature increases.

【0019】延伸は多段延伸であってよく、温度を順次
上昇させた多段延伸であることが好ましい。多段延伸の
場合には、延伸温度が(Tg+50)℃以下での延伸を
含むことが好ましい。多段延伸の場合には、各段の延伸
倍率は1.1倍以上であることが好ましく、かつトータ
ルの延伸倍率が1.3〜6であることが好ましく、2〜
4がさらに好ましい。延伸温度の高い段ほど、その段の
延伸倍率を高くすることが好ましい。
The stretching may be multi-stage stretching, preferably multi-stage stretching in which the temperature is successively increased. In the case of multi-stage stretching, it is preferable that the stretching temperature includes (Tg + 50) ° C. or less. In the case of multi-stage stretching, the stretching ratio of each stage is preferably 1.1 times or more, and the total stretching ratio is preferably 1.3 to 6,
4 is more preferable. The higher the drawing temperature, the higher the draw ratio of that step.

【0020】この延伸により重合体(B)層は多孔質化
しない。重合体(A)層が積層ラメラ結晶の開裂により
多孔質化する方法の場合、紡糸された中空糸中の重合体
(B)層は、重合体(A)層より結晶化度を低くする
(非晶状態であることも含む)、結晶に欠陥を多くす
る、結晶の凝集力が小さい重合体を選ぶ、多孔質化を促
進する物質が添加しない、などの方法により、延伸によ
っても開裂しない製造条件を見つけることができる。即
ち、例えば重合体(B)として到達結晶化度が非常に低
いもの、最も好ましくは非晶性のものを選択すると、ど
のような紡糸条件、熱処理条件、延伸条件でも重合体
(B)層が多孔質化することはない。重合体(A)を多
孔質化しながら重合体(B)層を多孔質化しない方法と
しては、重合体(A)および重合体(B)の選択のほ
か、紡糸条件、熱処理条件、および延伸条件でコントロ
ールすることができる。例えば、熱処理の程度を順次高
める実験を行うと、重合体(A)層が多孔質化し、まだ
重合体(B)層が多孔質化しない熱処理条件を見つける
ことができ、また例えば、延伸倍率を順次高める実験を
行なうと、重合体(A)層が多孔質化し、まだ重合体
(B)層が多孔質化しない延伸条件を見つけることがで
きる。このように、重合体(A)層のみが多孔質化し、
重合体(B)層は非多孔質である製造条件が存在し、実
験により求めることができる。重合体(A)が相分離界
面の剥離により多孔質化する方法の場合、重合体(B)
には相分離剤を添加しないことで多孔質化を防ぐことが
できる。
The polymer (B) layer is not made porous by this stretching. In the case of the method in which the polymer (A) layer is made porous by the cleavage of laminated lamella crystals, the polymer (B) layer in the spun hollow fiber has a lower crystallinity than the polymer (A) layer ( Manufacturing that does not cleave even when stretched by such methods as increasing the number of defects in crystals, selecting polymers with low crystal cohesion, and not adding substances that promote porosity. You can find the conditions. That is, for example, when a polymer (B) having a very low crystallinity, most preferably an amorphous one is selected, the polymer (B) layer will be formed under any spinning condition, heat treatment condition, and stretching condition. It does not become porous. As a method of making the polymer (A) porous while not making the polymer (B) layer porous, in addition to selecting the polymer (A) and the polymer (B), spinning conditions, heat treatment conditions, and stretching conditions Can be controlled with. For example, by conducting an experiment in which the degree of heat treatment is sequentially increased, it is possible to find a heat treatment condition in which the polymer (A) layer becomes porous and the polymer (B) layer does not yet become porous. By conducting an experiment in which the layers are successively increased, it is possible to find a stretching condition in which the polymer (A) layer is porous and the polymer (B) layer is not yet porous. Thus, only the polymer (A) layer becomes porous,
The polymer (B) layer has a non-porous manufacturing condition, and can be determined by an experiment. When the polymer (A) is made porous by peeling at the phase separation interface, the polymer (B)
It is possible to prevent the formation of porosity by not adding a phase separation agent.

【0021】延伸された中空糸膜は熱固定を施すことに
より寸法安定性と耐熱性を付与することが好ましい。熱
処理温度は重合体(A)のTg以上Tm以下でありかつ
延伸温度より高い温度である。延伸に先だって熱処理を
行う場合には、熱処理温度より30℃以上低くないこと
が好ましい。
The stretched hollow fiber membrane is preferably heat-fixed to impart dimensional stability and heat resistance. The heat treatment temperature is not lower than Tg and not higher than Tm of the polymer (A) and higher than the stretching temperature. When heat treatment is performed prior to stretching, it is preferably not lower than the heat treatment temperature by 30 ° C. or more.

【0022】このようにして形成された中空糸複合膜に
おいては、重合体(A)層と重合体(B)層は完全に融
着しているため、紡糸時、熱処理時、延伸時、あるいは
熱固定時に、ピンホールや層の破断が生じることなく層
を薄くすることができ、形成された複合膜はハンドリン
グによっても、また多孔質側から圧力を掛けても、層間
剥離することはない。
In the hollow fiber composite membrane thus formed, since the polymer (A) layer and the polymer (B) layer are completely fused, during spinning, heat treatment, stretching, or The layer can be thinned without causing pinholes and layer breakage during heat setting, and the formed composite film is not delaminated by handling or by applying pressure from the porous side.

【0023】形成された複合膜の寸法は任意であるが、
外径0.1〜3mm、多孔質層の厚み0.01〜1m
m、非多孔質層の厚み0.05〜5μm、多孔質層にお
ける細孔の平均孔径0.01〜10μmであることが好
ましい。
The dimensions of the composite membrane formed are arbitrary,
Outer diameter 0.1 to 3 mm, porous layer thickness 0.01 to 1 m
m, the thickness of the non-porous layer is 0.05 to 5 μm, and the average pore size of the pores in the porous layer is preferably 0.01 to 10 μm.

【0024】[0024]

【実施例】以下実施例により本発明をさらに具体的に説
明するが、これにより本発明が制約されるものではな
い。 [実施例1] <複合膜の製造>重合体(A)としてポリ−4−メチル
ペンテン−1(三井石油化学工業(株)製、TPX−R
T−18)、重合体(B)として同じくポリ−4−メチ
ルペンテン−1(三井石油化学工業(株)製、TPX−
MX−001)を使用し、6ホ−ルの2重円筒型紡糸ノ
ズルを用いて、紡糸温度275℃にて複合溶融紡糸し
た。この時、外径6mmの2重円筒型紡糸ノズルの外周
から重合体(B)を0.6g/分で、また内周から重合
体(A)を12.0g/分で押し出し、ノズルの中心孔
から中空糸内部に窒素ガスを導入して、1050m/分
で引き取りつつ、空気気流で冷却して巻き取った。得ら
れた中空糸中間体は外径287μm、内径253.5μ
m、厚み33.5μmであり、(A)、(B)層の境界
は不明瞭であり、全体が非多孔質であった。
EXAMPLES The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the present invention. [Example 1] <Production of composite membrane> As a polymer (A), poly-4-methylpentene-1 (manufactured by Mitsui Petrochemical Industry Co., Ltd., TPX-R) was used.
T-18), the same polymer (B) as poly-4-methylpentene-1 (manufactured by Mitsui Petrochemical Industry Co., Ltd., TPX-
MX-001) was used to perform a composite melt spinning at a spinning temperature of 275 ° C. using a 6-hole double-cylindrical spinning nozzle. At this time, the polymer (B) was extruded at 0.6 g / min from the outer periphery of the double cylindrical spinning nozzle having an outer diameter of 6 mm, and the polymer (A) was extruded at 12.0 g / min from the inner periphery, and the center of the nozzle was extruded. Nitrogen gas was introduced into the hollow fiber through the holes, and while being taken at 1050 m / min, it was cooled by an air stream and wound. The obtained hollow fiber intermediate has an outer diameter of 287 μm and an inner diameter of 253.5 μm.
m, the thickness was 33.5 μm, the boundary between the layers (A) and (B) was unclear, and the whole was non-porous.

【0025】この中空糸中間体を190℃の空気浴中で
3分間熱処理したのち、25℃にて延伸倍率1.4、次
いで130℃にて延伸倍率1.4だけ延伸し、その後2
00℃の空気浴中に1分間滞留させることにより熱固定
を行った。
This hollow fiber intermediate was heat treated in an air bath at 190 ° C. for 3 minutes, then stretched at 25 ° C. by a draw ratio of 1.4 and then at 130 ° C. by a draw ratio of 1.4, and then 2
Heat setting was carried out by allowing it to stay in an air bath at 00 ° C for 1 minute.

【0026】得られた中空糸膜の寸法は、外径約245
μm、外側に配された重合体(B)層の厚みが0.8μ
m、内側に配された重合体(A)層の厚みが28μmで
あった。走査型電子顕微鏡(SEM)にて観察したとこ
ろ、外側の重合体(B)層には細孔は全く認められず、
内側の重合体(A)層は全体に孔径約0.05μmの細
孔から成る多孔質であった。
The hollow fiber membrane thus obtained has an outer diameter of about 245.
μm, the thickness of the polymer (B) layer disposed on the outside is 0.8 μm
The thickness of the polymer (A) layer disposed inside was 28 μm. Observation with a scanning electron microscope (SEM) revealed no pores in the outer polymer (B) layer,
The inner polymer (A) layer was porous with pores having a pore size of about 0.05 μm throughout.

【0027】この中空糸膜の気体透過特性をASTM、
D−1434圧力法に基づいて測定したところ、酸素透
過速度が2.0×10-5[cm3(STP)/cm2
s,cmHg]、窒素透過速度が5.6×10-6[cm
3(STP)/cm2,s,cmHg]、酸素/窒素分離
係数が3.6であった。
The gas permeability of this hollow fiber membrane is determined by ASTM,
When measured by the D-1434 pressure method, the oxygen permeation rate was 2.0 × 10 −5 [cm 3 (STP) / cm 2 ,
s, cmHg], and a nitrogen permeation rate of 5.6 × 10 -6 [cm
3 (STP) / cm 2 , s, cmHg], and the oxygen / nitrogen separation coefficient was 3.6.

【0028】なお、重合体(A)(TPX−RT−1
8)および重合体(B)(TPX−MX−001)につ
いて、290℃で作製した溶融プレスフィルムを190
℃にて30分熱処理したサンプルの、X線回折法により
測定された結晶化度は、重合体(A)が約55%、重合
体(B)が約35%であった。 <脱気試験>この中空糸複合膜10000本を束状にし
て筒型ハウジングに装填し、中空糸両端を樹脂封止し
て、膜面積(中空糸内表面積)3.0m2の膜モジュー
ルを作成した。このモジュールの中空糸膜外部を水流ア
スピレ−タで約30torrに減圧しつつ、中空糸膜内
側に溶存酸素濃度8重量ppmの水道水を100l/h
rで流したところ、モジュールから流出する水の溶存酸
素濃度は0.49重量ppmであった。
The polymer (A) (TPX-RT-1)
8) and polymer (B) (TPX-MX-001) were melt-pressed films produced at 290 ° C.
The crystallinity of the sample heat-treated at 30 ° C. for 30 minutes was about 55% for the polymer (A) and about 35% for the polymer (B), as measured by the X-ray diffraction method. <Deaeration Test> 10,000 hollow fiber composite membranes were bundled and loaded into a cylindrical housing, and both ends of the hollow fibers were sealed with a resin to obtain a membrane module having a membrane area (hollow fiber inner surface area) of 3.0 m 2. Created. The outside of the hollow fiber membrane of this module was depressurized to about 30 torr with a water flow aspirator, and 100 l / h of tap water with a dissolved oxygen concentration of 8 ppm by weight was placed inside the hollow fiber membrane.
When flowing at r, the dissolved oxygen concentration of the water flowing out from the module was 0.49 weight ppm.

【0029】水道水の代わりに、溶存酸素濃度7.8重
量ppmの、25重量%エタノール水溶液を使用したこ
と以外は同様の脱気試験を行ったところ、流出溶液の溶
存酸素濃度は1.36重量ppmにとどまった。
A similar degassing test was conducted except that a 25 wt% aqueous ethanol solution having a dissolved oxygen concentration of 7.8 ppm by weight was used instead of tap water, and the dissolved oxygen concentration of the outflow solution was 1.36. It remained in ppm by weight.

【0030】[実施例2] <複合膜の製造>2重円筒型紡糸ノズルの外周から重合
体(A)を、また内周から重合体(B)を押し出したこ
と以外は実施例1と同様にして中空糸複合膜を作製し
た。
[Example 2] <Production of composite membrane> The same as Example 1 except that the polymer (A) was extruded from the outer circumference of the double cylindrical spinning nozzle and the polymer (B) was extruded from the inner circumference. Then, a hollow fiber composite membrane was produced.

【0031】得られた中空糸膜の寸法は、外径約245
μm、外側に配された重合体(A)層の厚みが28μ
m、内側に配された重合体(B)層の厚みが1μmであ
った。SEMにて観察したところ、外側の重合体(A)
層は全体に孔径約0.05μmの細孔から成る多孔質で
あり、内側の重合体(B)層には細孔は全く認められな
かった。この膜の酸素透過速度は1.6×10-5[cm
3(STP)/cm2,s,cmHg]、窒素透過速度は
4.4×10-6[cm3(STP)/cm2,s,cmH
g]、酸素/窒素分離係数は3.6であった。 <脱気試験>実施例1と同様の脱気試験を行ったとこ
ろ、流出液の溶存酸素濃度は、水道水の場合が0.49
重量ppm、25重量%エタノール水溶液の場合が0.
45重量ppmであった。エタノ−ル水溶液でも脱気性
能が低下しないことが分かる。
The size of the obtained hollow fiber membrane has an outer diameter of about 245.
μm, the thickness of the polymer (A) layer disposed outside is 28 μm
The thickness of the polymer (B) layer disposed inside was 1 μm. The polymer (A) on the outside was observed by SEM.
The layer was porous with pores having a pore size of about 0.05 μm as a whole, and no pores were observed in the inner polymer (B) layer. The oxygen permeation rate of this membrane is 1.6 × 10 -5 [cm
3 (STP) / cm 2 , s, cmHg], and the nitrogen permeation rate is 4.4 × 10 −6 [cm 3 (STP) / cm 2 , s, cmHg.
g], and the oxygen / nitrogen separation coefficient was 3.6. <Deaeration test> When the same deaeration test as in Example 1 was performed, the dissolved oxygen concentration of the effluent was 0.49 in the case of tap water.
In the case of a 25 ppm by weight aqueous solution of ethanol and a weight ppm of 0.
It was 45 ppm by weight. It can be seen that the degassing performance does not decrease even with an aqueous ethanol solution.

【0032】[0032]

【効果】非多孔層を構成する重合体として、多孔質層を
構成する重合体と融着するものを使用するため、ピンホ
ール、亀裂、破断などがなく薄い非多孔質層を形成でき
る。非多孔層と多孔質層が融着しているため層間剥離が
生じず、ハンドリングが容易な上、多孔質側を高圧とす
る使用方法も可能である。工程が単純な1段成形で複合
膜が成形できる。中空糸膜の外側、内側の任意の側に非
多孔層を形成できる。また、例えば液体の脱気などの、
膜が液体と接する用途に於て、多孔質部に液体が入り込
むことがないため、長期間安定して使用出来、界面活性
剤含有水や有機溶剤(およびその水溶液)と接する用途
でも高性能が発揮できる。さらに、同一外寸のサンドイ
ッチ型3層膜に比べて非多孔層の面積を大きくできる
上、製造装置や技術が単純である。
[Effect] As the polymer forming the non-porous layer, a polymer that is fused with the polymer forming the porous layer is used, so that a thin non-porous layer can be formed without pinholes, cracks, breaks or the like. Since the non-porous layer and the porous layer are fused to each other, delamination does not occur, handling is easy, and a method of using high pressure on the porous side is also possible. A composite membrane can be formed by a single-step molding process that is simple. A non-porous layer can be formed on any of the outside and inside of the hollow fiber membrane. Also, for example, for degassing of liquids,
When the membrane is in contact with a liquid, the liquid does not enter the porous part, so it can be used stably for a long period of time, and it has high performance even in the case of contact with water containing a surfactant or an organic solvent (and its aqueous solution). Can be demonstrated. Further, the area of the non-porous layer can be increased as compared with the sandwich type three-layer film having the same outer size, and the manufacturing apparatus and technology are simple.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多重円筒型紡糸ノズルを用いて、結晶性
の熱可塑性重合体(A)と、重合体(A)と融着性を有
する重合体(B)とを2層に配して溶融複合紡糸し、次
いで延伸して重合体(A)から成る層のみを多孔質化す
ることを特徴とする、多孔質層と非多孔質層の2層から
なる中空糸複合膜の製造方法。
1. A crystalline thermoplastic polymer (A) and a polymer (A) and a fusible polymer (B) are arranged in two layers using a multi-cylinder spinning nozzle. A method for producing a hollow fiber composite membrane comprising two layers, a porous layer and a non-porous layer, which comprises melt-compound spinning and then stretching to make only the layer comprising the polymer (A) porous.
【請求項2】 重合体(B)が、重合体(A)と同じモ
ノマ−を主要な構成要素とする重合体で、かつ重合体
(A)より到達結晶化度が低い重合体である請求項1記
載の製造方法。
2. The polymer (B) is a polymer whose main constituent is the same monomer as the polymer (A), and which has a lower degree of crystallinity than the polymer (A). Item 2. The manufacturing method according to Item 1.
【請求項3】 重合体(A)および重合体(B)が4−
メチルペンテン−1系重合体である請求項2記載の製造
方法。
3. The polymer (A) and the polymer (B) are 4-
The method according to claim 2, which is a methylpentene-1 type polymer.
【請求項4】 重合体(A)を内側に配する請求項1、
2または3記載の製造方法。
4. The polymer (A) is placed inside,
The manufacturing method according to 2 or 3.
【請求項5】 中空糸複合膜が液体の脱気膜である請求
項1、2または3記載の製造方法。
5. The method according to claim 1, 2 or 3, wherein the hollow fiber composite membrane is a liquid degassing membrane.
JP26716193A 1993-10-26 1993-10-26 Manufacture of hollow fiber dual membrane Pending JPH07116483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26716193A JPH07116483A (en) 1993-10-26 1993-10-26 Manufacture of hollow fiber dual membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26716193A JPH07116483A (en) 1993-10-26 1993-10-26 Manufacture of hollow fiber dual membrane

Publications (1)

Publication Number Publication Date
JPH07116483A true JPH07116483A (en) 1995-05-09

Family

ID=17440947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26716193A Pending JPH07116483A (en) 1993-10-26 1993-10-26 Manufacture of hollow fiber dual membrane

Country Status (1)

Country Link
JP (1) JPH07116483A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033245A (en) * 1998-05-11 2000-02-02 Sumitomo Electric Ind Ltd Fluororesin composite membrane and its production
JP2002370006A (en) * 2001-06-15 2002-12-24 Mitsubishi Rayon Co Ltd Liquid treatment apparatus and treatment method using the same
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
JP2008272696A (en) * 2007-05-02 2008-11-13 Mitsubishi Rayon Eng Co Ltd Degassing composite hollow fiber membrane and its manufacturing method
WO2013147186A1 (en) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module
KR101443491B1 (en) * 2013-01-24 2014-09-24 주식회사 효성 Method for preparing hollow fiber membrane and hollow fiber membrane prepared thereby
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9132390B2 (en) 2009-03-26 2015-09-15 Bl Technologies Inc. Non-braided reinforced holow fibre membrane
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
JP2017516652A (en) * 2014-03-13 2017-06-22 スリーエム イノベイティブ プロパティズ カンパニー Asymmetric membranes and related methods
WO2017104638A1 (en) * 2015-12-14 2017-06-22 Dic株式会社 Alcohol production method and alcohol deaeration method
JP2017112900A (en) * 2015-12-24 2017-06-29 Dic株式会社 Natural pigment-containing beverage and production method thereof
WO2020136560A1 (en) * 2018-12-27 2020-07-02 3M Innovative Properties Company Asymmetric hollow fiber membranes and methods of making and using the same
WO2020136568A1 (en) * 2018-12-27 2020-07-02 3M Innovative Properties Company Hollow fiber membranes with nucleating agent and methods of making and using the same
WO2023027052A1 (en) 2021-08-23 2023-03-02 東レ株式会社 Hollow fiber microporous membrane, and gas separation membrane module with same built thereinto
WO2024052816A1 (en) * 2022-09-09 2024-03-14 Solventum Intellectual Properties Company Asymmetric hollow fiber membrane

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033245A (en) * 1998-05-11 2000-02-02 Sumitomo Electric Ind Ltd Fluororesin composite membrane and its production
JP2002370006A (en) * 2001-06-15 2002-12-24 Mitsubishi Rayon Co Ltd Liquid treatment apparatus and treatment method using the same
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
JP2008272696A (en) * 2007-05-02 2008-11-13 Mitsubishi Rayon Eng Co Ltd Degassing composite hollow fiber membrane and its manufacturing method
US9132390B2 (en) 2009-03-26 2015-09-15 Bl Technologies Inc. Non-braided reinforced holow fibre membrane
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9694326B2 (en) 2012-03-30 2017-07-04 Mitsubishi Rayon Co., Ltd. Composite hollow fiber membrane and hollow fiber membrane module
JPWO2013147186A1 (en) * 2012-03-30 2015-12-14 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module
WO2013147186A1 (en) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module
KR101443491B1 (en) * 2013-01-24 2014-09-24 주식회사 효성 Method for preparing hollow fiber membrane and hollow fiber membrane prepared thereby
JP2017516652A (en) * 2014-03-13 2017-06-22 スリーエム イノベイティブ プロパティズ カンパニー Asymmetric membranes and related methods
WO2017104638A1 (en) * 2015-12-14 2017-06-22 Dic株式会社 Alcohol production method and alcohol deaeration method
JPWO2017104638A1 (en) * 2015-12-14 2018-08-09 Dic株式会社 Liquor production method and liquor degassing method
JP2017112900A (en) * 2015-12-24 2017-06-29 Dic株式会社 Natural pigment-containing beverage and production method thereof
WO2020136560A1 (en) * 2018-12-27 2020-07-02 3M Innovative Properties Company Asymmetric hollow fiber membranes and methods of making and using the same
WO2020136568A1 (en) * 2018-12-27 2020-07-02 3M Innovative Properties Company Hollow fiber membranes with nucleating agent and methods of making and using the same
CN113226525A (en) * 2018-12-27 2021-08-06 3M创新有限公司 Asymmetric hollow fiber membranes and methods of making and using the same
CN113226526A (en) * 2018-12-27 2021-08-06 3M创新有限公司 Hollow fiber membranes with nucleating agents and methods of making and using the same
US11883777B2 (en) 2018-12-27 2024-01-30 3M Innovative Properties Company Asymmetric hollow fiber membranes and methods of making and using the same
CN113226526B (en) * 2018-12-27 2024-05-14 舒万诺知识产权公司 Hollow fiber membranes with nucleating agents and methods of making and using the same
US11986777B2 (en) 2018-12-27 2024-05-21 3M Innovative Properties Company Hollow fiber membranes with nucleating agent and methods of making and using the same
WO2023027052A1 (en) 2021-08-23 2023-03-02 東レ株式会社 Hollow fiber microporous membrane, and gas separation membrane module with same built thereinto
WO2024052816A1 (en) * 2022-09-09 2024-03-14 Solventum Intellectual Properties Company Asymmetric hollow fiber membrane

Similar Documents

Publication Publication Date Title
EP0206354B1 (en) Multilayer composite hollow fibers and method of making same
JPH07116483A (en) Manufacture of hollow fiber dual membrane
JP3347854B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and filter using the same
CA2058182C (en) Microporous membranes from poly(etheretherketone)-type polymers and low melting point crystallizable polymers, and a process for making the same
JP4139456B2 (en) Deaeration membrane
TWI425045B (en) Multi-layer microporous polyolefin membrane, its production method, and a battery separator made therefrom
KR101408473B1 (en) Microporous membranes having a relatively large average pore size and methods of making the same
EP0124028B1 (en) Heterogeneous membrane and process for production thereof
US5181940A (en) Hollow fiber membranes
KR101151189B1 (en) gas separation membrane
TWI355962B (en)
JP5068168B2 (en) Vinylidene fluoride resin hollow fiber porous membrane
JP4987471B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
US20070100012A1 (en) Production of high porosity open-cell membranes
US20180272290A1 (en) Asymmetric membranes and related methods
JPH07507237A (en) supported microporous membrane
JPH0211619B2 (en)
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPS6245318A (en) Preparation of gas separation membrane
KR20070102011A (en) Porous poly(vinylidene fluoride) hollow fiber membranes for high water permeance and methods to make membranes
JPH0445830A (en) Production of conjugate hollow-fiber membrane
JPH07155568A (en) Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane
JPH0450053B2 (en)
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
RU2422276C2 (en) Method of producing multilayer microporous polyolefin membrane