JP2001190940A - Method of manufacturing polyethylene hollow fiber porous membrane - Google Patents

Method of manufacturing polyethylene hollow fiber porous membrane

Info

Publication number
JP2001190940A
JP2001190940A JP2000002247A JP2000002247A JP2001190940A JP 2001190940 A JP2001190940 A JP 2001190940A JP 2000002247 A JP2000002247 A JP 2000002247A JP 2000002247 A JP2000002247 A JP 2000002247A JP 2001190940 A JP2001190940 A JP 2001190940A
Authority
JP
Japan
Prior art keywords
liquid
polyethylene
hollow fiber
hollow
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000002247A
Other languages
Japanese (ja)
Inventor
Noboru Kubota
昇 久保田
Hiroshi Hatayama
博司 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2000002247A priority Critical patent/JP2001190940A/en
Publication of JP2001190940A publication Critical patent/JP2001190940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a polyethylene hollow fiber porous membrane simultaneously having dense micropores and water permeability, which is suited for the use in turbidity removal by the filtration. SOLUTION: In the method for obtaining a polyethylene hollow fiber porous membrane by fusing a polyethylene and an organic liquid at a high temperature, extruding the fused liquid into a liquid bath to solidify the fused liquid by cooling through the aie so to constitute hollow fibrous state and then extracting and removing said organic liquid, (1) the time period when said extrudate is running in the air between 0 to 1 second (not including 0), (2) the hollow part forming fluid is a liquid having a boiling point of a spinning nozzle temperature or more and (3) the hollow fibrous material is elongated so that the elongation retention becomes from 5% or more to 150% or less prior to or after the organic liquid after the solidifying by cooling procedure is extracted and removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、除濁等の濾過用途
に好適な、緻密な細孔と高い透水能力を持つポリエチレ
ン中空糸状多孔膜の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a polyethylene hollow fiber porous membrane having fine pores and high water permeability, which is suitable for filtration applications such as turbidity.

【0002】[0002]

【従来の技術】精密濾過膜や限外濾過膜等の多孔膜によ
る濾過操作は、自動車産業(電着塗料回収再利用システ
ム)、半導体産業(超純水製造)、医薬食品産業(除
菌、酵素精製)などの多方面にわたって実用化されてい
る。特に近年は、河川水等を除濁して飲料水や工業用水
を製造するための手法としても多用されつつある。膜の
素材としては、セルロース系、ポリアクリロニトリル
系、ポリオレフィン系等多種多様のものが用いられてい
る。中でもポリオレフィン系重合体(ポリエチレン、ポ
リプロピレン、ポリフッ化ビニリデン等)は、疎水性の
ために耐水性が高いので水系濾過膜の素材として適して
おり、多用されている。これらポリオレフィン系重合体
の中でも、廃棄時に問題となるハロゲン元素を含まず、
かつ化学反応性の高い3級炭素が少ないために膜洗浄時
の薬品劣化が起こりにくく長期使用耐性が期待でき、か
つ安価であるポリエチレンが、今後特に有望と考えられ
る。
2. Description of the Related Art Filtration operations using porous membranes such as microfiltration membranes and ultrafiltration membranes are carried out in the automobile industry (electrodeposition paint recovery and reuse system), the semiconductor industry (ultra pure water production), the pharmaceutical food industry (sterilization, It has been put to practical use in many fields such as enzyme purification. In particular, in recent years, it has been widely used as a method for producing drinking water and industrial water by turbidizing river water and the like. As the material of the membrane, various materials such as cellulose, polyacrylonitrile, and polyolefin are used. Among them, polyolefin-based polymers (polyethylene, polypropylene, polyvinylidene fluoride, etc.) are suitable for use as a material for aqueous filtration membranes because of their high water resistance due to their hydrophobicity, and are widely used. Among these polyolefin polymers, they do not contain halogen elements that pose a problem at the time of disposal,
Polyethylene, which is less prone to chemical deterioration during membrane cleaning due to less tertiary carbon with high chemical reactivity, is expected to have long-term use resistance, and is inexpensive, is considered to be particularly promising in the future.

【0003】ポリエチレン膜としては、特開平3−42
025号公報に開示されているような、均一な3次元の
多孔構造(上記公報第3頁右上欄10−11行目)の膜
が従来より知られている。この均一な3次元の多孔構造
とは、膜断面方向に孔径変化がほとんどなく、膜断面の
任意の2点部分どうしでの孔径(および孔径分布)がほ
ぼ等しい構造を意味する。このような膜断面方向の構造
が均一な膜では、膜断面全体の透過抵抗が大きくなり、
高い透水性能を得ようとすれば孔径を大きくせざるをえ
ず、緻密な細孔(小さな孔径)を持ちながら高い透水性
能を持つ膜を得ることは困難であった。
As a polyethylene film, Japanese Patent Application Laid-Open No. 3-42
A membrane having a uniform three-dimensional porous structure (page 3, upper right column, lines 10-11) as disclosed in Japanese Patent Publication No. 025 is conventionally known. This uniform three-dimensional porous structure means a structure in which there is almost no change in the pore diameter in the membrane cross-sectional direction, and the pore diameters (and pore diameter distributions) at any two points in the membrane cross-section are almost equal. In such a film having a uniform structure in the film cross section direction, the transmission resistance of the entire film cross section is increased,
In order to obtain high water permeability, it was necessary to increase the pore diameter, and it was difficult to obtain a membrane having high water permeability while having fine pores (small pore diameter).

【0004】[0004]

【発明が解決しようとする課題】本発明は、除濁等の濾
過用途に好適な、緻密な細孔と高い透水能力を持つポリ
エチレン中空糸状多孔膜の製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a polyethylene hollow fiber porous membrane having dense pores and high water permeability, which is suitable for filtration applications such as turbidity.

【0005】[0005]

【課題を解決するための手段】本発明者等は、前記課題
を解決するために鋭意検討を行った結果、下記製法によ
り得られるポリエチレン膜が、緻密な細孔を持ちながら
高い透水性能を発現することを見出し、本発明をなすに
至った。すなわち本発明は、(1)ポリエチレンと有機
液体とを高温にて溶融した後、該溶融物を中空糸成形用
紡口から中空部内に中空部形成流体を注入しつつ、中空
糸状に空気中を経て液浴中に押し出して冷却固化し、し
かる後に該有機液体を抽出除去してポリエチレン中空糸
状多孔膜を得る方法において、(a)該押し出し物が空
気中を走行する時間が0から1秒の間(ただし0を含ま
ない)であり、かつ(b)該中空部形成流体が紡口温度
以上の沸点を持つ液体であり、かつ(c)冷却固化後の
有機液体の抽出除去の前あるいは後に、残留伸び率が5
%以上150%以下になるような中空糸状物の延伸を行
うことを特徴とする、ポリエチレン中空糸状多孔膜の製
造方法、(2)中空部形成流体が高温にてポリエチレン
と液液相分離する能力を持つ液体である、上記(1)記
載のポリエチレン中空糸状多孔膜の製造方法、(3)押
し出し物が空気中を走行する時間が0から0.5秒の間
(ただし0は含まない)である、上記(1)及び(2)
記載のポリエチレン中空糸状多孔膜の製造方法、(4)
押し出し物が空気中を走行する時間が0から0.25秒
の間(ただし0は含まない)である、上記(1)及び
(2)記載のポリエチレン中空糸状多孔膜の製造方法、
(5)冷却固化後の有機液体の抽出除去の前あるいは後
に行う延伸による残留伸び率が10%以上100%以下
である、上記(1)−(4)記載のポリエチレン中空糸
状多孔膜の製造方法、(6)液浴が実質的に水より成
る、上記(1)−(5)記載のポリエチレン中空糸状多
孔膜の製造方法、に関する。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the polyethylene membrane obtained by the following production method has high water permeability while having fine pores. To accomplish the present invention. That is, the present invention provides (1) a method in which polyethylene and an organic liquid are melted at a high temperature, and the melt is injected into a hollow portion through a spinning hole for forming a hollow fiber into a hollow portion while flowing the air into a hollow fiber shape. And extruding into a liquid bath to cool and solidify, and then extracting and removing the organic liquid to obtain a polyethylene hollow fiber porous membrane, wherein (a) the extruded material travels in the air for 0 to 1 second. (But not including 0), and (b) the hollow forming fluid is a liquid having a boiling point not lower than the spinning temperature, and (c) before or after extraction and removal of the organic liquid after cooling and solidification. , Residual elongation is 5
% Of a hollow fiber-like material, wherein the hollow fiber-like material is stretched so that the hollow fiber-like material becomes not less than 150% or less, and (2) the ability of the fluid forming the hollow part to separate liquid-liquid phase from the polyethylene at a high temperature. (1) The method for producing a polyethylene hollow fiber-like porous membrane according to the above (1), wherein the extrudate travels in the air for a period of 0 to 0.5 seconds (however, 0 is not included). Some of the above (1) and (2)
(4) The method for producing a polyethylene hollow fiber-like porous membrane according to the above (4).
The method for producing a polyethylene hollow fiber-like porous membrane according to (1) or (2), wherein the extruded material travels in the air for a time of from 0 to 0.25 seconds (excluding 0).
(5) The method for producing a polyethylene hollow fiber-like porous membrane according to the above (1) to (4), wherein the residual elongation by stretching before or after extraction and removal of the organic liquid after cooling and solidification is 10% or more and 100% or less. (6) The method according to (1) to (5), wherein the liquid bath is substantially composed of water.

【0006】上記の製法により作製されるポリエチレン
中空糸状多孔膜は、その膜断面が均一な3次元構造をな
さず、異方性構造をとる。異方性構造とは、膜断面方向
において孔径が一様(均一)ではなく変化する構造を指
す。異方性構造では、膜の分離機能(濾過における阻止
能力)を決定しかつ透過抵抗が大きいために透水能力を
下げる原因にもなっている最小孔径層(最も緻密な層)
が、膜断面部分の1部分しか占めない。すなわち異方性
構造膜の断面構造は、膜の分離機能を決める緻密な細孔
(小孔径の孔)を持ち透過抵抗が大きいものの膜断面部
分の1部分しか占めない最小孔径層と、膜の分離機能に
は直接は関与せず、かつ最小孔径層よりも大孔径の連通
孔より形成されるゆえ膜の透過抵抗の増大にはあまり寄
与しない最小孔径層以外の部分とから成る。
[0006] The polyethylene hollow fiber porous membrane produced by the above-mentioned production method does not have a uniform three-dimensional structure with a uniform cross section, but has an anisotropic structure. The anisotropic structure refers to a structure in which the pore diameter changes rather than being uniform (uniform) in the membrane cross-sectional direction. In the anisotropic structure, the minimum pore size layer (the densest layer) that determines the separation function (blocking ability in filtration) of the membrane and causes a decrease in water permeability due to high permeation resistance
Occupies only one portion of the membrane cross section. In other words, the cross-sectional structure of the anisotropic structure membrane has a minimum pore diameter layer which has dense pores (pores of small pore diameter) that determine the separation function of the membrane and has a high permeation resistance but occupies only one part of the membrane cross-section, It consists of portions other than the minimum pore size layer which are not directly involved in the separation function and which are formed by communicating holes having a larger pore size than the minimum pore size layer and therefore do not contribute much to the increase in the permeation resistance of the membrane.

【0007】このような異方性構造の形成により、緻密
な細孔の存在と高い透水能力の発現とを両立できるポリ
エチレン多孔膜を形成できる。特に、液浴が実質的に水
より成る場合は、外表面部(外表面そのものと外表面か
ら膜厚の10分の1厚みまでの断面部分)に最小孔径層
を持ち、内表面の孔径が外表面の孔径よりも大きい、外
面緻密型の異方性構造が形成される。この構造の場合、
外表面部から内表面部にかけて孔径が連続的に変化し、
その基本的な変化の方向は、外表面部から内表面部にか
けて孔径が増大する方向である。
By forming such an anisotropic structure, it is possible to form a polyethylene porous membrane capable of satisfying both the existence of dense pores and the development of high water permeability. In particular, when the liquid bath is substantially composed of water, the outer surface portion (the outer surface itself and a cross-sectional portion from the outer surface to one-tenth of the film thickness) has a minimum pore size layer, and the pore size of the inner surface is A dense outer surface anisotropic structure larger than the pore diameter of the outer surface is formed. With this structure,
The pore diameter changes continuously from the outer surface to the inner surface,
The basic direction of the change is a direction in which the pore diameter increases from the outer surface to the inner surface.

【0008】このような外面緻密型の異方性構造は、外
表面側から内表面側に向かって濾過を行う、外圧式濾過
用の膜として好適である。中空糸膜を用いて除濁等を行
う場合、膜面積の大きい外表面側から濾過を行う(外圧
式濾過)ことが、単位膜面積当たりの汚染物(濁質物等
の阻止すべき物質)負荷量を小さくでき、効率の良い濾
過処理が行えて有利である。なお、特開平3−4202
5号公報に開示されているような、従来型の均一な(非
異方性の)3次元の多孔構造では、いわば膜断面全体が
最小孔径層であるに等しくなり、緻密な細孔の存在と高
い透水能力の発現との両立は困難である。膜断面構造が
異方性か均一かの判断は、膜断面の電子顕微鏡観察によ
り行うことができる。
Such an anisotropic structure having a dense outer surface is suitable as an external pressure filtration membrane for performing filtration from the outer surface side to the inner surface side. When performing turbidity or the like using a hollow fiber membrane, filtration from the outer surface side having a large membrane area (external pressure filtration) requires a load of contaminants (substances to be prevented such as turbid substances) per unit membrane area. This is advantageous because the amount can be reduced and efficient filtration can be performed. Note that Japanese Patent Application Laid-Open No. 3-4202
In the conventional uniform (non-anisotropic) three-dimensional porous structure as disclosed in Japanese Patent Application Publication No. 5 (1999), the entire membrane cross section is equivalent to the minimum pore diameter layer, and the existence of dense pores It is difficult to achieve a balance between high water permeability and high water permeability. Whether the film cross-sectional structure is anisotropic or uniform can be determined by observing the film cross section with an electron microscope.

【0009】以下、本発明の製造方法の詳細について説
明する。ポリエチレンは、(1)安価で良好な機械的強
度物性を持つことに加え、(2)化学反応性に富む3級
炭素量が少ないため、3級炭素含量の多い同類ポリオレ
フィンのポリプロピレン等に比べて薬品洗浄等による化
学劣化が少なく長期耐久性が期待できる、(3)廃棄時
に問題になるハロゲン元素を含まない、といった利点を
持つ。ポリエチレンには高密度ポリエチレンと低密度ポ
リエチレンがあるが、得られる膜の強度の点から高密度
ポリエチレンが好ましい。また、ポリエチレンには種々
の分子量のものが存在するが、得られる膜の強度の点か
ら、粘度平均分子量10万以上、好ましくは20万以上
が好適である。また、成形加工性の点からは粘度平均分
子量100万以下が好ましい。ポリエチレンの粘度平均
分子量(Mv)は、135℃におけるデカリン溶液の固
有粘度([η])を測定して、下記式より求めることが
できる((J.Brandrup and E.H.I
mmergut(Editors),Polymer
Handbook(2nd Ed.),IV−7頁,J
ohn&Sons,New York,1975年)。 [η]=6.8×10-4×(Mv)0.67 なお、ポリエチレンは、必要に応じて少量の酸化防止
剤、紫外線吸収剤等の安定剤を含んでいても良い。
The details of the manufacturing method of the present invention will be described below. Polyethylene is (1) inexpensive and has good mechanical strength properties, and (2) has a small amount of tertiary carbon, which is rich in chemical reactivity. It has the advantages of being able to expect long-term durability with little chemical deterioration due to chemical cleaning and the like, and (3) not containing a halogen element which is a problem at the time of disposal. Polyethylene includes high-density polyethylene and low-density polyethylene, and high-density polyethylene is preferable in view of the strength of the obtained film. Further, polyethylene has various molecular weights, and from the viewpoint of the strength of the obtained film, the viscosity average molecular weight is preferably 100,000 or more, preferably 200,000 or more. Further, from the viewpoint of moldability, the viscosity average molecular weight is preferably 1,000,000 or less. The viscosity average molecular weight (Mv) of polyethylene can be determined from the following equation by measuring the intrinsic viscosity ([η]) of a decalin solution at 135 ° C. ((J. Brandrup and EHI)
mergut (Editors), Polymer
Handbook (2nd Ed.), Page IV-7, J.
ohn & Sons, New York, 1975). [Η] = 6.8 × 10 −4 × (Mv) 0.67 The polyethylene may contain a small amount of a stabilizer such as an antioxidant or an ultraviolet absorber, if necessary.

【0010】本発明で用いる有機液体は、ポリエチレン
と混合した際に、一定の温度およびポリエチレン濃度範
囲において液液相分離状態(ポリエチレン濃厚相液滴/
ポリエチレン希薄相即ち有機液体濃厚相液滴の2相共存
状態)をとることができ、かつ沸点が液液相分離温度域
の上限温度以上である液体である。単一液体でなく、混
合液体であってもよい。このような有機液体とポリエチ
レンとを液液相分離の起こる濃度範囲にて混合した場
合、温度をその混合組成において液液相分離状態をとる
上限温度以上に高温にすると、ポリエチレンと有機液体
とが均一に溶解した溶融相溶物を得ることができる。該
溶融物を冷却すると、液液2相(ポリエチレン濃厚相液
滴と有機液体濃厚相液滴)の共存状態(液液相分離状
態)が現れて孔構造が発生し、さらにポリエチレンが固
化する温度(通常100−150℃)まで冷却すること
で孔構造が固定され、さらに有機液体を除去することで
多孔体が得られる。このとき、液液相分離時のポリエチ
レン濃厚相部分が冷却固化されて多孔構造(多孔体骨
格)を形成し、ポリエチレン希薄相(有機液体濃厚相)
部分が孔部分となる。
The organic liquid used in the present invention, when mixed with polyethylene, is in a liquid-liquid phase separated state (polyethylene concentrated phase droplet /
The liquid is a liquid which can take a polyethylene dilute phase, that is, a two-phase coexistence state of an organic liquid concentrated phase droplet, and has a boiling point not lower than the upper limit temperature of the liquid-liquid phase separation temperature range. Instead of a single liquid, it may be a mixed liquid. When such an organic liquid and polyethylene are mixed in a concentration range in which liquid-liquid phase separation occurs, if the temperature is raised to a temperature higher than the upper limit temperature at which a liquid-liquid phase separation state is obtained in the mixed composition, polyethylene and the organic liquid are mixed. It is possible to obtain a uniformly dissolved molten phase. When the melt is cooled, a coexistence state (liquid-liquid phase separation state) of two liquid-liquid phases (polyethylene concentrated phase droplets and organic liquid concentrated phase droplets) appears, a pore structure is generated, and a temperature at which the polyethylene solidifies. The pore structure is fixed by cooling to (usually 100 to 150 ° C.), and a porous body is obtained by removing the organic liquid. At this time, the polyethylene rich phase portion at the time of liquid-liquid phase separation is cooled and solidified to form a porous structure (porous skeleton), and the polyethylene dilute phase (organic liquid rich phase)
The portion becomes the hole portion.

【0011】このような有機液体の例として、フタル酸
ジブチル、フタル酸ジヘプチル、フタル酸ジオクチル、
フタル酸ジ(2−エチルヘキシル)、フタル酸ジイソデ
シル、フタル酸ジトリデシル等のフタル酸エステル類、
セバシン酸ジブチル等のセバシン酸エステル類、アジピ
ン酸ジオクチル等のアジピン酸エステル類、マレイン酸
ジオクチル等のマレイン酸エステル類、トリメリット酸
トリオクチル等のトリメリット酸エステル類、リン酸ト
リブチル、リン酸トリオクチル等のリン酸エステル類、
プロピレングリコールジカプレート、プロピレングリコ
ールジオレエート等のグリコールエステル類、グリセリ
ントリオレエート等のグリセリンエステル類などの単独
あるいは2種以上の混合物を挙げることができる。
Examples of such organic liquids include dibutyl phthalate, diheptyl phthalate, dioctyl phthalate,
Phthalic acid esters such as di (2-ethylhexyl) phthalate, diisodecyl phthalate, ditridecyl phthalate,
Sebacic esters such as dibutyl sebacate, adipic esters such as dioctyl adipate, maleic esters such as dioctyl maleate, trimellitic esters such as trioctyl trimellitate, tributyl phosphate, trioctyl phosphate and the like Phosphoric esters,
Examples thereof include propylene glycol dicaprate, glycol esters such as propylene glycol dioleate, glycerin esters such as glycerin trioleate, and the like, alone or in combination of two or more.

【0012】さらに、単独ではポリエチレンと高温にて
も相溶しない液体や、流動パラフィンのように単独では
高温でポリエチレンと相溶するものの、相溶性が高すぎ
て液液2相の相分離状態をとらない液体を、有機液体の
定義(ポリエチレンと混合した際に一定の温度およびポ
リエチレン濃度範囲において液液相分離状態をとること
ができかつ沸点が液液相分離温度域の上限温度以上の液
体)を逸しない範囲内で前記有機液体例(フタル酸エス
テル類等)と混合した混合液体も有機液体の例として挙
げることができる。
Further, a liquid which is incompatible with polyethylene alone at high temperatures or a liquid such as liquid paraffin which is compatible with polyethylene at high temperatures alone, is too high in compatibility to change the phase separation state of two liquid-liquid phases. Definition of organic liquids that cannot be taken (liquids that can be in a liquid-liquid phase separation state at a certain temperature and polyethylene concentration range when mixed with polyethylene and have a boiling point higher than the upper limit of the liquid-liquid phase separation temperature range) A liquid mixture mixed with the above-mentioned organic liquid examples (phthalic acid esters and the like) within a range that does not deviate from the above can also be mentioned as examples of the organic liquid.

【0013】ポリエチレンと上記有機液体とは、例えば
2軸押し出し機を用いて所定の混合比にてその混合比に
おける液液相分離温度域の上限温度以上の温度にて混
合、溶融相溶させることができる。ポリエチレンと有機
液体との混合比は、ポリエチレンの比が小さすぎると得
られる膜の強度が低くなりすぎて不利であり、逆にポリ
エチレンの比が大きすぎると得られる膜の透水性能が低
くなりすぎて不利である。ポリエチレンと有機液体との
混合比は、ポリエチレン/有機液体の重量比で10/9
0から40/60、好ましくは15/85から30/7
0である。
The polyethylene and the above-mentioned organic liquid are mixed and melt-mixed at a temperature higher than the upper limit temperature of the liquid-liquid phase separation temperature range at the predetermined mixing ratio by using, for example, a twin screw extruder. Can be. The mixing ratio of polyethylene and the organic liquid is disadvantageous because if the ratio of polyethylene is too small, the strength of the obtained membrane is too low, and conversely, if the ratio of polyethylene is too large, the water permeability of the obtained membrane is too low. Disadvantageous. The mixing ratio between polyethylene and organic liquid is 10/9 by weight of polyethylene / organic liquid.
0 to 40/60, preferably 15/85 to 30/7
0.

【0014】溶融物は、押し出し機先端のヘッドと呼ば
れる部分に導かれ、押し出される。このヘッド内の押し
出し口に、溶融物を所定の形状に押し出すための口金を
装着することで所定の形状に溶融物を成形して押し出す
ことができる。本発明の場合、中空糸状に成形するため
の口金(中空糸成形用紡口)をヘッドの押し出し口に装
着する。中空糸成形用紡口は、溶融物を中空状(円環
状)に押し出すための円環状の穴と、押し出された中空
状物の中空部が閉じて円柱状になってしまわないため
に、押し出された中空状物の中空部に注入しておく中空
部形成流体を吐出するための穴(上記円環状穴の内側に
存在し形状は円形穴)とを押し出し側の面に持つ紡口ノ
ズルである。ポリエチレンと有機液体との溶融物は、上
記中空糸成形用紡口の円環穴より、円環穴の内側の穴か
ら中空部形成流体の注入を中空部内に受けつつ空気中
(窒素等の不活性ガス中でもよい)に押し出される。
The melt is guided and extruded to a portion called the head at the tip of the extruder. By mounting a die for extruding the melt into a predetermined shape at the extrusion opening in the head, the melt can be formed into a predetermined shape and extruded. In the case of the present invention, a spinneret for forming into a hollow fiber shape (spinner for forming a hollow fiber) is attached to the extrusion opening of the head. The hollow fiber forming spinneret is provided with an annular hole for extruding the molten material into a hollow shape (annular shape) and an extruded hole for preventing the hollow portion of the extruded hollow material from closing and becoming a cylindrical shape. A spout nozzle having a hole (existing inside the above-mentioned annular hole and having a circular hole shape) for discharging a hollow part forming fluid to be injected into the hollow part of the hollow material formed on the extrusion side surface. is there. The melt of the polyethylene and the organic liquid is injected into the hollow portion through the hole inside the annular hole from the annular hole of the above-mentioned hollow fiber forming spinneret while the hollow portion forming fluid is injected into the hollow portion. Activated gas).

【0015】中空部形成流体は、押し出し物(ポリエチ
レンおよび有機液体)とは非反応性であることはもちろ
んのことであるが、加えて、紡口から吐出される際に液
体であることが、押し出される中空状物の断面形状の真
円性を維持するために必要である。中空部形成流体が気
体(例えば窒素ガスや空気)の場合、紡口から押し出さ
れた後の中空状物の断面形状の真円性を保つことは難し
くなる。中空部形成流体は紡口内から吐出されるため、
吐出時にも液体であるためには、沸点が紡口温度以上の
液体を中空部形成流体として用いることが必要である。
The hollow part forming fluid is, of course, non-reactive with the extrudate (polyethylene and organic liquid). It is necessary to maintain the roundness of the cross-sectional shape of the extruded hollow object. When the hollow part forming fluid is a gas (for example, nitrogen gas or air), it is difficult to maintain the roundness of the cross-sectional shape of the hollow object after being extruded from the spinneret. Since the hollow part forming fluid is discharged from the spinneret,
In order to be a liquid at the time of ejection, it is necessary to use a liquid having a boiling point equal to or higher than the spinning temperature as a hollow portion forming fluid.

【0016】中空部形成流体の特性として、沸点が紡口
温度以上であることに加えて、高温でポリエチレンと液
液相分離する能力を持つ液体を用いることが、得られる
膜の透水性能を向上させる点で好ましい。ただしこの場
合、中空糸成形用紡口から吐出されるときの中空部形成
流体の温度は必ずしもポリエチレンと液液相分離状態と
なる温度である必要はなく、液液相分離状態をとる温度
域よりも高くてもよいし、低くてもよい。このような中
空部形成流体の例としては、前記の有機液体の例と同じ
例を挙げることができる。
As a characteristic of the fluid forming the hollow portion, in addition to the boiling point being higher than the spinning temperature, the use of a liquid capable of liquid-liquid phase separation with polyethylene at a high temperature improves the water permeability of the obtained membrane. It is preferable in that it is performed. However, in this case, the temperature of the hollow part forming fluid when discharged from the spinning nozzle for forming a hollow fiber is not necessarily required to be a temperature at which the liquid and liquid phase are separated from the polyethylene, but rather than a temperature range at which the liquid and liquid phase is separated. May be higher or lower. Examples of such a fluid for forming a hollow portion include the same examples as those of the above-described organic liquid.

【0017】空気中に押し出された溶融物は、液浴に導
かれ、押し出し物中のポリエチレンが固化する温度まで
冷却される。こうして紡口から押し出された溶融物は、
紡口出口から液浴中通過の間に冷却されることで液液相
分離が生起されて孔構造が発生し、次いで固化されて孔
構造が固定される。液浴の組成は、押し出し物(ポリエ
チレンと有機液体)と反応性を有さない液体であれば特
に限定はされず、押し出し物中の有機液体と同じであっ
てもよい。ただし、温度は、その押し出し組成でのポリ
エチレンの固化温度以下である必要がある。液浴の重要
な機能は、押し出し物の冷却機能であるので、冷却能力
が高い、即ち熱容量が大きい液体である水が、液浴の組
成としては好ましい。
The melt extruded into the air is guided to a liquid bath and cooled to a temperature at which the polyethylene in the extrudate solidifies. The melt extruded from the spinneret in this way
By cooling during passage from the spinneret outlet into the liquid bath, liquid-liquid phase separation occurs to generate a pore structure, which is then solidified to fix the pore structure. The composition of the liquid bath is not particularly limited as long as the liquid does not have reactivity with the extrudate (polyethylene and organic liquid), and may be the same as the organic liquid in the extrudate. However, the temperature must be equal to or lower than the solidification temperature of polyethylene in the extruded composition. Since the important function of the liquid bath is the function of cooling the extrudate, water having a high cooling capacity, that is, water, which has a large heat capacity, is preferable as the composition of the liquid bath.

【0018】紡口から空気中に押し出された溶融物が液
浴に入るまでの時間、即ち空中走行時間は、ゼロから1
秒までの間である(ただしゼロは含まない)。空中走行
時間がゼロの場合は、紡口の押し出し面が液浴の液面と
接している状態になる。紡口温度はポリエチレンと有機
液体との相溶温度、即ちその混合組成における液液相分
離温度域の上限温度以上に設定するため、ポリエチレン
の固化温度以下に設定されている液浴より必然的に高い
温度になる。従って、空中走行時間がゼロの場合は、紡
口が液浴で常時冷却されて紡口の温度調節が不安定にな
るため、適さない。一方で空中走行時間が長くなりすぎ
ると外表面の開孔性が低下し、得られる膜の透水性能が
低下して好ましくない。空中走行時間は、好ましくはゼ
ロから0.5秒の間(ただしゼロは含まない)、さらに
好ましくはゼロから0.25秒の間(ただしゼロは含ま
ない)である。空中走行時間の測定は、液浴出口で中空
糸を張力をかけない状態で巻き取った場合には、巻き取
り速度と空中走行距離(紡口吐出面と液浴面との距離)
から、下式にて求めることができる。 空中走行時間[秒]=(空中走行距離[cm])/(巻
き取り速度[cm/秒])
The time required for the melt extruded from the spinneret into the air to enter the liquid bath, that is, the air travel time, is from zero to one.
Up to seconds (but not including zero). When the air travel time is zero, the extruded surface of the spinneret comes into contact with the liquid surface of the liquid bath. The spinning temperature is set to be higher than the compatibility temperature of polyethylene and the organic liquid, that is, the upper limit temperature of the liquid-liquid phase separation temperature range in the mixed composition, so that the liquid bath is necessarily set to be lower than the solidification temperature of polyethylene. High temperature. Therefore, when the air traveling time is zero, the spinneret is always cooled by the liquid bath, and the temperature control of the spinneret becomes unstable, which is not suitable. On the other hand, if the air traveling time is too long, the porosity of the outer surface decreases, and the water permeability of the obtained membrane decreases, which is not preferable. The air travel time is preferably between zero and 0.5 seconds (but not including zero), and more preferably between zero and 0.25 seconds (but not including zero). The air travel time is measured by measuring the winding speed and the air travel distance (the distance between the spout discharge surface and the liquid bath surface) when the hollow fiber is wound without tension at the liquid bath outlet.
From the following equation. Air travel time [sec] = (air travel distance [cm]) / (winding speed [cm / sec])

【0019】液浴から出てきた中空糸状物は、冷却途中
で生起した液液相分離時のポリエチレン濃厚相部分が冷
却固化されて多孔構造(多孔体骨格)を形成し、液液相
分離時のポリエチレン希薄相(有機液体濃厚相)部分が
有機液体の詰まった孔部分となっている。この孔部分に
詰まっている有機液体を除去することで多孔膜を得るこ
とができる。中空状物中の有機液体の除去は、ポリエチ
レンを溶解または、劣化させずかつ除去すべき有機液体
を溶解する揮発性液体で抽出除去し、その後乾燥して残
存する上記揮発性液体を揮発除去することで実施でき
る。このような有機液体抽出用の揮発性液体の例として
は、ヘキサン、ヘプタン等の炭化水素、塩化メチレン、
四塩化炭素等の塩素化炭化水素、メチルエチルケトン等
を挙げることができる。
In the hollow fiber-like material coming out of the liquid bath, the polyethylene thick phase portion generated during liquid-liquid phase separation during cooling is solidified by cooling to form a porous structure (porous skeleton). The polyethylene dilute phase (organic liquid rich phase) portion is a pore portion filled with the organic liquid. A porous membrane can be obtained by removing the organic liquid clogging the hole. The removal of the organic liquid in the hollow material does not dissolve or degrade the polyethylene and removes the organic liquid to be removed by extraction with a volatile liquid that dissolves, and then, after drying, volatilizes and removes the remaining volatile liquid. Can be implemented. Examples of such volatile liquids for organic liquid extraction include hydrocarbons such as hexane and heptane, methylene chloride,
Chlorinated hydrocarbons such as carbon tetrachloride, methyl ethyl ketone and the like can be mentioned.

【0020】本発明においては、液浴を出て冷却固化後
の中空状物に対し、有機液体の抽出除去前あるいは抽出
除去後に、残留伸び率が5%以上150%以下になるよ
うな延伸操作を行う。残留伸び率は、中空糸状物の軸方
向に張力をかけて延伸を行った後に張力を開放する延伸
操作を行うに際し、張力開放後(緩和後)の糸長と延伸
前の糸長から、下式により定義される。 残留伸び率[%]=100{(緩和後糸長)−(延伸前
糸長)}/(延伸前糸長) ポリエチレンには弾性があるため、張力の開放により一
般にはある程度糸長は縮み、張力をかけた状態での伸び
率よりも残留伸び率は小さくなる。ただし、張力をかけ
た状態で熱処理等をした場合には、張力の開放による糸
長の縮みは小さくなる。このように、液浴を出て冷却固
化後の中空状物に対し、有機液体の抽出除去前あるいは
抽出除去後に、延伸操作を行うことで、得られる膜の透
水性能を向上させることができる。残留伸び率が5%未
満では透水性能向上の効果が小さく、好ましくない。逆
に、残留伸び率が150%を超えると、得られる膜の孔
径が大きくなってしまい、また、伸度も低下してしま
い、好ましくない。残留伸び率は、10%以上100%
以下が特に好ましい。
In the present invention, a stretching operation is performed such that the residual elongation becomes 5% or more and 150% or less before or after extraction and removal of the organic liquid from the hollow material after cooling and solidifying after leaving the liquid bath. I do. Residual elongation is determined by the following: when performing a stretching operation to release tension after stretching by applying tension in the axial direction of the hollow fiber-like material, the yarn length after tension release (after relaxation) and the yarn length before stretching. Defined by an expression. Residual elongation [%] = 100 {(yarn length after relaxation)-(yarn length before stretching)} / (yarn length before stretching) Since polyethylene has elasticity, the yarn length generally shrinks to some extent by release of tension. The residual elongation becomes smaller than the elongation under tension. However, when heat treatment or the like is performed under tension, the yarn length shrinks due to release of the tension is reduced. As described above, the hollow material after cooling and solidifying after leaving the liquid bath is subjected to a stretching operation before or after the extraction and removal of the organic liquid, whereby the water permeability of the obtained membrane can be improved. When the residual elongation is less than 5%, the effect of improving the water permeability is small, which is not preferable. Conversely, if the residual elongation exceeds 150%, the pore size of the obtained film increases, and the elongation also decreases, which is not preferable. Residual elongation is 10% or more and 100%
The following are particularly preferred.

【0021】[0021]

【発明の実施の形態】以下に本発明の実施例を示すが、
本発明はこれに限定されるものではない。なお、平均孔
径、純水透水率、破断強度および破断伸度は以下の測定
方法により決定した。また、延伸操作は、室温(25
℃)にて約1.4cm/秒の速度にて張力をかけて所定
の長さまで延伸したのち30秒保持し、その後張力を開
放することで行った。張力解放後の糸長(緩和後糸長)
としては、張力開放後の中空糸膜を約1日室温にて放置
して充分緩和させた後の糸長を用い、残留伸び率の決定
に用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
The present invention is not limited to this. The average pore size, pure water permeability, breaking strength and breaking elongation were determined by the following measuring methods. The stretching operation is performed at room temperature (25
C.), the film was stretched to a predetermined length by applying tension at a speed of about 1.4 cm / sec, held for 30 seconds, and then the tension was released. Thread length after tension release (thread length after relaxation)
Was used to determine the residual elongation by using the fiber length after the tension was released and the hollow fiber membrane was allowed to stand at room temperature for about one day to sufficiently relax.

【0022】平均孔径;ASTM:F316−86記載
の方法(別称ハーフドライ法)に従って測定した。使用
液体にエタノールを用い、25℃、昇圧速度0.01a
tm/秒にて測定した。平均孔径[μm]は、使用液体
の表面張力[dynes/cm]とハーフドライ空気圧
力[Pa]より、下式にて求まる。 平均孔径=2860(表面張力)/(ハーフドライ空気
圧力) エタノールの25℃における表面張力は21.97dy
nes/cmである(日本化学会編、化学便覧基礎編改
訂3版、II−82頁、丸善(株)、1984年)の
で、平均孔径は下式より算出した。
Average pore diameter: measured according to the method described in ASTM: F316-86 (also known as half-dry method). Using ethanol as the liquid used, 25 ° C, pressure increase rate 0.01a
It was measured at tm / sec. The average pore diameter [μm] is determined by the following equation from the surface tension [dynes / cm] of the liquid used and the half dry air pressure [Pa]. Average pore diameter = 2860 (surface tension) / (half dry air pressure) The surface tension of ethanol at 25 ° C. is 21.97 dy.
nes / cm (edited by The Chemical Society of Japan, 3rd edition of Basic Handbook of Chemical Handbook, II-82, Maruzen Co., Ltd., 1984), the average pore diameter was calculated by the following equation.

【0023】平均孔径[μm]=62834/(ハーフ
ドライ空気圧力[Pa]) なお、このハーフドライ法にて求まる平均孔径は、膜断
面内の最小孔径層の平均孔径である。 純水透水率;エタノール浸漬した後、数回純水浸漬を繰
り返した約10cm長の湿潤中空糸膜の一端を封止し、
他端の中空部内へ注射針を入れ、25℃の環境下にて注
射針から0.1MPaの圧力にて25℃の純水を中空部
内へ注入し、外表面から透過してくる純水の透過水量
[L]を測定し、下式より膜内表面積[m 2]当たりの
純水透水率[L/m2/h]を算出した。 純水透水率=60(透過水量)/(膜内表面積)/(測
定時間[分]) なお、膜内表面積[m2]は、下式より算出した。 膜内表面積=π(膜内径[m])×(膜有効長[m]) ここに膜有効長とは、注射針が挿入されている部分を除
いた、正味の膜長を指す。
Average pore diameter [μm] = 62834 / (half
(Dry air pressure [Pa]) The average pore size obtained by this half dry method is
This is the average pore size of the smallest pore size layer in the plane. Pure water permeability: After immersion in ethanol, immersion in pure water several times
Seal one end of the returned wet hollow fiber membrane of about 10 cm length,
Insert the injection needle into the hollow at the other end and inject at 25 ° C.
Pure water at 25 ° C at a pressure of 0.1 MPa from the shooting needle
Permeate volume of pure water injected into and permeating from the outer surface
[L] was measured, and the inner surface area [m Two]
Pure water permeability [L / mTwo/ H] was calculated. Pure water permeability = 60 (permeated water amount) / (membrane surface area) / (measurement
(Constant time [min]) In addition, surface area [mTwo] Was calculated from the following equation. Intramembrane surface area = π (membrane inner diameter [m]) x (membrane effective length [m]) Here, the effective membrane length excludes the part where the injection needle is inserted.
Refers to the net film length.

【0024】破断強度および破断伸度;引っ張り試験機
(島津製作所製オートグラフAG−A型)を用い、中空
糸をチャック間距離50mm、引っ張り速度200mm
/分、25℃にて引っ張り、破断時の荷重[kgf]と
変位[mm]から、以下の式により破断強度および破断
伸度を求めた。 破断強度[kgf/cm2]=(破断時荷重)/(膜断
面積[cm2]) 破断伸度[%]=100(破断時変位)/50 なお、膜断面積[cm2]は、膜の円環断面部分の面積
である。
Breaking strength and breaking elongation: Using a tensile tester (Autograph AG-A type, manufactured by Shimadzu Corporation), the hollow fiber was pulled at a distance between chucks of 50 mm and a pulling speed of 200 mm.
The tensile strength at break and the elongation at break were determined from the load [kgf] and the displacement [mm] at break by the following formulas. Breaking strength [kgf / cm 2] = (load at break) / (Makudan area [cm 2]) elongation at break [%] = 100 (at break displacement) / 50 Here, Makudan area [cm 2] is This is the area of the annular cross section of the membrane.

【0025】[0025]

【実施例1】高密度ポリエチレン(三井化学製:ハイゼ
ックスミリオン030S、粘度平均分子量45万)20
重量部と、フタル酸ジイソデシル(DIDP)とフタル
酸ジ(2−エチルヘキシル)(DOP)との重量比にて
3対1(DIDP/DOP=3/1)の混合有機液体8
0重量部とを、2軸混練押し出し機(東芝機械製TEM
−35B−10/1V)で加熱混練して溶融させ(23
0℃)、押し出し機先端のヘッド(230℃)内の押し
出し口に装着した中空糸成形用紡口の吐出面にある外径
1.58mm、内径0.83mmの溶融物押し出し用の
円環穴から上記溶融物を押し出し、そして溶融物押し出
し用円環穴の内側にある0.6mmφの中空部形成流体
吐出用の円環穴から中空部形成流体としてDOPを吐出
させ、中空糸状押し出し物の中空部内に注入した。
Example 1 High-density polyethylene (manufactured by Mitsui Chemicals, Hyzex Million 030S, viscosity average molecular weight 450,000) 20
3 parts by weight (DIDP / DOP = 3/1) of a mixed organic liquid 8 by weight of diisodecyl phthalate (DIDP) and di (2-ethylhexyl) phthalate (DOP)
0 parts by weight and a twin screw extruder (TEM manufactured by Toshiba Machine Co., Ltd.)
-35B-10 / 1V) and melted by heating and kneading (23
0 ° C), an annular hole for extruding a melt having an outer diameter of 1.58 mm and an inner diameter of 0.83 mm on the discharge surface of the spinning hole for hollow fiber molding attached to the extrusion port in the head (230 ° C) at the tip of the extruder. The above melt is extruded from the above, and DOP is discharged as a hollow part forming fluid from the annular hole for discharging the hollow part forming fluid of 0.6 mmφ inside the annular hole for extruding the melt, and the hollow of the hollow fiber extrudate is discharged. It was injected into the part.

【0026】紡口から空気中に押し出した中空糸状物
を、0.5cmの空中走行距離を経て25℃の水浴中に
入れ、約2m水中を通過させて冷却固化させた後、中空
糸状物に張力をかけることなく16m/分の速度で水浴
中から水浴外へ巻き取った。このときの空中走行時間
は、空中走行距離と巻き取り速度から、0.02秒であ
る。次いで得られた中空糸状物を、室温の塩化メチレン
中で30分の浸漬を5回繰り返して中空糸状物内のDI
DPとDOPを抽出除去し、次いで50℃にて半日乾燥
させて残存塩化メチレンを揮発除去させた。
The hollow fiber extruded from the spinneret into the air is placed in a water bath at 25 ° C. through an air traveling distance of 0.5 cm, passed through about 2 m of water, solidified by cooling, and then formed into a hollow fiber. The film was wound out of the water bath at a speed of 16 m / min without applying tension. The air travel time at this time is 0.02 seconds based on the air travel distance and the winding speed. Next, the hollow fiber obtained was repeatedly immersed in methylene chloride at room temperature for 30 minutes five times to obtain DI in the hollow fiber.
The DP and DOP were extracted and removed, and then dried at 50 ° C. for half a day to volatilize and remove the remaining methylene chloride.

【0027】こうして得られたポリエチレン中空糸状多
孔膜20cm長に張力をかけて40cm長まで伸ばした
後、張力を開放し、延伸操作とした。張力解放後の糸長
は27.6cmであり、残留伸び率は38%であった。
得られた延伸操作後の膜の諸物性(平均孔径、純水透水
率、破断強度、破断伸度、糸径)を表1に、電子顕微鏡
写真を図1に示す。得られた膜の断面構造は、外表面部
に最小孔径層を持ち、断面中央部分および内表面側部分
が大孔径である、外面緻密型の異方性構造であった。
The polyethylene hollow fiber porous membrane thus obtained was stretched to a length of 40 cm by applying tension to the length of 20 cm, and then the tension was released to perform a stretching operation. The yarn length after releasing the tension was 27.6 cm, and the residual elongation was 38%.
Various physical properties (average pore size, pure water permeability, breaking strength, breaking elongation, yarn diameter) of the obtained membrane after the stretching operation are shown in Table 1, and an electron micrograph is shown in FIG. The cross-sectional structure of the obtained film was an external dense anisotropic structure having a minimum pore size layer on the outer surface and having a large pore diameter at the center and inner surface side of the cross section.

【0028】[0028]

【比較例1】特開平3−42025号公報明細書実施例
2に準拠して(ポリエチレン/シリカ/DOPの容量比
を27/14/59にした以外は同様にして)、ポリエ
チレン中空糸状多孔膜を得た。得られた膜の諸物性(平
均孔径、純水透水率、破断強度、破断伸度、糸径)を表
1に、電子顕微鏡写真を図2に示す。得られた膜の断面
構造は、外表面部、断面中央部、内表面部いずれもがほ
ぼ同等の孔径である、異方性を持たない均一な3次元多
孔構造であった。
Comparative Example 1 A polyethylene hollow fiber porous membrane was prepared according to Example 2 of JP-A-3-42025 (except that the volume ratio of polyethylene / silica / DOP was 27/14/59). I got The physical properties (average pore diameter, pure water permeability, breaking strength, breaking elongation, yarn diameter) of the obtained membrane are shown in Table 1, and an electron micrograph is shown in FIG. The cross-sectional structure of the obtained film was a uniform three-dimensional porous structure having no anisotropy in which the outer surface portion, the center portion of the cross section, and the inner surface portion had substantially the same pore diameter.

【0029】[0029]

【比較例2】水浴の温度を32℃とし、延伸操作を行わ
ないこと以外は、実施例1と同様にしてポリエチレン中
空糸状多孔膜を得た。得られた膜の諸物性(平均孔径、
純水透水率、破断強度、破断伸度、糸径)を表1に示
す。なお、この膜の断面の電子顕微鏡観察を行ったとこ
ろ、実施例1と類似した外面緻密型の異方性構造であっ
た。
Comparative Example 2 A polyethylene hollow fiber-like porous membrane was obtained in the same manner as in Example 1, except that the temperature of the water bath was set at 32 ° C. and the stretching operation was not performed. Various physical properties (average pore size,
Table 1 shows pure water permeability, breaking strength, breaking elongation, and yarn diameter). In addition, when the cross section of this film was observed with an electron microscope, it was found that the outer surface had a dense anisotropic structure similar to that of Example 1.

【0030】[0030]

【実施例2】比較例2にて得られたポリエチレン中空糸
状多孔膜20cm長に張力をかけて34cm長まで伸ば
した後、張力を開放し、延伸操作を行った。張力解放後
の糸長は24.8cmであり、残留伸び率は24%であ
った。得られた延伸操作後の膜の諸物性(平均孔径、純
水透水率、破断強度、破断伸度、糸径)を表1に示す。
なお、この膜の断面の電子顕微鏡観察を行ったところ、
実施例1と類似した外面緻密型の異方性構造であった。
Example 2 A tension was applied to a 20 cm length of the polyethylene hollow fiber porous membrane obtained in Comparative Example 2 to extend it to a length of 34 cm, then the tension was released and a stretching operation was performed. The yarn length after releasing the tension was 24.8 cm, and the residual elongation was 24%. Table 1 shows various physical properties (average pore diameter, pure water permeability, breaking strength, breaking elongation, and yarn diameter) of the obtained membrane after the stretching operation.
In addition, when the cross section of this film was observed with an electron microscope,
The outer surface had a dense anisotropic structure similar to that of Example 1.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【実施例3】比較例2にて得られたポリエチレン中空糸
状多孔膜20cm長に張力をかけて50cm長まで伸ば
した後、張力を開放し、延伸操作を行った。張力解放後
の糸長は33.6cmであり、残留伸び率は68%であ
った。得られた延伸操作後の膜の諸物性(平均孔径、純
水透水率、破断強度、破断伸度、糸径)を表1に示す。
なお、この膜の断面の電子顕微鏡観察を行ったところ、
実施例1と類似した外面緻密型の異方性構造であった。
Example 3 A tension was applied to a 20 cm length of the polyethylene hollow fiber porous membrane obtained in Comparative Example 2 to extend it to a length of 50 cm, then the tension was released and a stretching operation was performed. The yarn length after releasing the tension was 33.6 cm, and the residual elongation was 68%. Table 1 shows various physical properties (average pore diameter, pure water permeability, breaking strength, breaking elongation, and yarn diameter) of the obtained membrane after the stretching operation.
In addition, when the cross section of this film was observed with an electron microscope,
The outer surface had a dense anisotropic structure similar to that of Example 1.

【0033】[0033]

【発明の効果】本発明により、除濁等の濾過用途に好適
な、緻密な細孔と高い透水性能を併せ持つポリエチレン
中空糸状多孔膜の製造が可能になった。
According to the present invention, it has become possible to produce a polyethylene hollow fiber-like porous membrane having both fine pores and high water permeability, which is suitable for filtration applications such as turbidity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1にて得られた膜の電子顕微鏡写真印刷
である。
FIG. 1 is an electron micrograph print of a film obtained in Example 1.

【図2】比較例1にて得られた膜の電子顕微鏡写真印刷
である。
FIG. 2 is an electron micrograph print of the film obtained in Comparative Example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレンと有機液体との混合溶融物
を中空部内に中空部形成流体を注入しつつ、中空糸状に
中空糸成形用紡口から空気中を経て液浴中に押し出して
冷却固化し、しかる後に該有機液体を抽出除去して、ポ
リエチレン中空糸状多孔膜を得る方法において、(1)
該押し出し物が空気中を走行する時間が0から1秒の間
(ただし0を含まない)であり、(2)該中空部形成流
体が紡口温度以上の沸点を持つ液体であり、かつ(3)
冷却固化後の有機液体の抽出除去の前あるいは後に残留
伸び率が5%以上150%以下になるように中空糸状物
の延伸を行うことを特徴とする、ポリエチレン中空糸状
多孔膜の製造方法。
1. A mixed melt of polyethylene and an organic liquid is extruded into a liquid bath through a hollow fiber forming spout through air into a liquid bath while a hollow forming fluid is injected into the hollow, and solidified by cooling. Then, the organic liquid is extracted and removed to obtain a polyethylene hollow fiber-like porous membrane.
The extrudate travels in the air for a time of 0 to 1 second (not including 0), (2) the hollow forming fluid is a liquid having a boiling point not lower than the spinning temperature, and ( 3)
A method for producing a polyethylene hollow fiber-like porous membrane, characterized in that the hollow fiber is stretched so that the residual elongation is 5% or more and 150% or less before or after extraction and removal of the organic liquid after cooling and solidification.
JP2000002247A 2000-01-11 2000-01-11 Method of manufacturing polyethylene hollow fiber porous membrane Pending JP2001190940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002247A JP2001190940A (en) 2000-01-11 2000-01-11 Method of manufacturing polyethylene hollow fiber porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002247A JP2001190940A (en) 2000-01-11 2000-01-11 Method of manufacturing polyethylene hollow fiber porous membrane

Publications (1)

Publication Number Publication Date
JP2001190940A true JP2001190940A (en) 2001-07-17

Family

ID=18531380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002247A Pending JP2001190940A (en) 2000-01-11 2000-01-11 Method of manufacturing polyethylene hollow fiber porous membrane

Country Status (1)

Country Link
JP (1) JP2001190940A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026779A1 (en) * 2001-08-01 2003-04-03 Asahi Kasei Kabushiki Kaisha Multilayer microporous film
JP2005511074A (en) * 2001-12-10 2005-04-28 イーメンブレン インコーポレーティッド Functionalized materials and their libraries
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
US7635513B1 (en) 1999-10-22 2009-12-22 Asahi Kasei Medical Co., Ltd. Heat resistant microporous film
JP2010227932A (en) * 2005-10-13 2010-10-14 Asahi Kasei Chemicals Corp Porous multilayered hollow-fiber membrane and process for producing the same
KR20210053352A (en) * 2018-11-01 2021-05-11 엔테그리스, 아이엔씨. Porous polyethylene filter membrane having an asymmetric pore structure, and related filters and methods
JP2022516757A (en) * 2019-01-11 2022-03-02 インテグリス・インコーポレーテッド Porous polymer hollow filter membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635513B1 (en) 1999-10-22 2009-12-22 Asahi Kasei Medical Co., Ltd. Heat resistant microporous film
WO2003026779A1 (en) * 2001-08-01 2003-04-03 Asahi Kasei Kabushiki Kaisha Multilayer microporous film
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
KR100805977B1 (en) * 2001-08-01 2008-02-25 아사히 가세이 메디컬 가부시키가이샤 Multilayer Microporous Film
JP2005511074A (en) * 2001-12-10 2005-04-28 イーメンブレン インコーポレーティッド Functionalized materials and their libraries
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
JP2010227932A (en) * 2005-10-13 2010-10-14 Asahi Kasei Chemicals Corp Porous multilayered hollow-fiber membrane and process for producing the same
KR20210053352A (en) * 2018-11-01 2021-05-11 엔테그리스, 아이엔씨. Porous polyethylene filter membrane having an asymmetric pore structure, and related filters and methods
JP2022506431A (en) * 2018-11-01 2022-01-17 インテグリス・インコーポレーテッド Porous polyethylene filter membranes with asymmetric pore structure and related filters and methods
JP7402871B2 (en) 2018-11-01 2023-12-21 インテグリス・インコーポレーテッド Porous polyethylene filter membrane with asymmetric pore structure and related filters and methods
KR102617741B1 (en) * 2018-11-01 2023-12-27 엔테그리스, 아이엔씨. Porous polyethylene filter membrane with asymmetric pore structure, and related filters and methods
JP2022516757A (en) * 2019-01-11 2022-03-02 インテグリス・インコーポレーテッド Porous polymer hollow filter membrane

Similar Documents

Publication Publication Date Title
JP5305296B2 (en) Polyamide hollow fiber membrane and method for producing the same
JP5893093B2 (en) Amorphous porous hollow fiber membrane, method for producing a shaped porous hollow fiber membrane, module using the shaped porous hollow fiber membrane, filtration device, and water treatment method
JP5717987B2 (en) Porous multilayer hollow fiber membrane
KR101699296B1 (en) Hydrophobic ozone-stable membrane made of polyvinylidene fluoride
JP5546992B2 (en) Method for producing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filtration device using porous hollow fiber membrane, and water treatment method using porous hollow fiber membrane
JP6824284B2 (en) Method for manufacturing porous hollow fiber membrane and porous hollow fiber membrane
JP5878288B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
JP2013173139A (en) Manufacturing method of porous hollow fiber membrane
CN113893702A (en) Porous hollow fiber membrane, method for producing same, and water purification method
JP2001190940A (en) Method of manufacturing polyethylene hollow fiber porous membrane
JP4775984B2 (en) Method for melting and forming hollow fiber porous membrane
JP6097818B2 (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP2001157827A (en) Polyethylene hollow-fiber porous membrane
JP2008093503A (en) Manufacturing method of porous hollow fiber membrane
JP2001087636A (en) Method for production of hollow fiber porous membrane made of polyethylene
JP4623780B2 (en) Melt casting method
JP2001190939A (en) Method of manufacturing polyethylene hollow fiber porous membrane
JP5894687B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
JP4605840B2 (en) Method for forming hollow fiber porous membrane
JP2001157826A (en) Anisotropic polyethylene hollow-fiber porous membrane
JP2015512784A (en) Porous membrane and method for producing the same
JPH07155568A (en) Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane