JP2001157827A - Polyethylene hollow-fiber porous membrane - Google Patents

Polyethylene hollow-fiber porous membrane

Info

Publication number
JP2001157827A
JP2001157827A JP2000068853A JP2000068853A JP2001157827A JP 2001157827 A JP2001157827 A JP 2001157827A JP 2000068853 A JP2000068853 A JP 2000068853A JP 2000068853 A JP2000068853 A JP 2000068853A JP 2001157827 A JP2001157827 A JP 2001157827A
Authority
JP
Japan
Prior art keywords
polyethylene
liquid
membrane
pore size
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000068853A
Other languages
Japanese (ja)
Inventor
Noboru Kubota
昇 久保田
Hiroshi Hatayama
博司 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2000068853A priority Critical patent/JP2001157827A/en
Publication of JP2001157827A publication Critical patent/JP2001157827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic polyethylene hollow-fiber porous membrane suitable for a filtering use adapted to the removal of turbidity or the like and having both of dense pores and high water transmitting capacity. SOLUTION: A polyethylene hollow-fiber porous membrane has an outer surface dense type sponge-like anisotropic structure having a minimum pore size layer in its outer surface portion and the outer surface pore size of the porous membrane is below 1 μm, the inner surface pore size thereof is 1 μm or more and the void ratio thereof is 50-below 95%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、除濁等の濾過用途
に好適な、緻密な細孔と高い透水性能を持つポリエチレ
ン製中空糸状多孔膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyethylene hollow fiber porous membrane having fine pores and high water permeability, which is suitable for filtration such as turbidity.

【0002】[0002]

【従来の技術】精密濾過膜や限外濾過膜等の多孔膜によ
る濾過操作は、自動車産業(電着塗料回収再利用システ
ム)、半導体産業(超純水製造)、医薬食品産業(除
菌、酵素精製)などの多方面にわたって実用化されてい
る。特に近年は河川水等を除濁して飲料水や工業用水を
製造するための手法としても多用されつつある。膜の素
材としては、セルロース系、ポリアクリロニトリル系、
ポリオレフィン系等多種多様のものが用いられている。
中でもポリオレフィン系重合体(ポリエチレン、ポリプ
ロピレン、ポリフッ化ビニリデン等)は、疎水性のため
に耐水性が高いため水系濾過膜の素材として適してお
り、多用されている。これらポリオレフィン系重合体の
中でも、廃棄時に問題となるハロゲン元素を含まず、か
つ化学反応性の高い3級炭素が少ないために膜洗浄時の
薬品劣化が起こりにくく長期使用耐性が期待でき、かつ
安価であるポリエチレンが、今後特に有望と考えられ
る。
2. Description of the Related Art Filtration operations using porous membranes such as microfiltration membranes and ultrafiltration membranes are carried out in the automobile industry (electrodeposition paint recovery and reuse system), the semiconductor industry (ultra pure water production), the pharmaceutical food industry (sterilization, It has been put to practical use in many fields such as enzyme purification. Particularly in recent years, it has been widely used as a method for producing drinking water and industrial water by turbidizing river water and the like. Materials for the membrane include cellulose, polyacrylonitrile,
A wide variety of materials such as polyolefins are used.
Among them, polyolefin-based polymers (polyethylene, polypropylene, polyvinylidene fluoride, etc.) are suitable as a material for aqueous filtration membranes because of their high water resistance due to their hydrophobicity and are widely used. Among these polyolefin polymers, they do not contain halogen elements, which are problematic at the time of disposal, and have a low level of highly reactive tertiary carbon. Is particularly promising in the future.

【0003】ポリエチレン膜としては、特開平3−42
025号公報に開示されているような、均一な3次元の
多孔構造(上記公報第3頁右上欄10−11行目)の膜
が従来より知れられている。この均一な3次元の多孔構
造とは、膜断面方向に孔径変化がほとんどなく、膜断面
部分の任意の2点部分どうしでの孔径(および孔径分
布)がほぼ等しい構造を意味する。
As a polyethylene film, Japanese Patent Application Laid-Open No. 3-42
A film having a uniform three-dimensional porous structure (page 3, upper right column, lines 10-11) as disclosed in Japanese Patent No. 025 is conventionally known. The uniform three-dimensional porous structure means a structure in which there is almost no change in the pore diameter in the membrane cross-sectional direction, and the pore diameters (and the pore diameter distribution) at any two points in the membrane cross-section are almost equal.

【0004】[0004]

【発明が解決しようとする課題】本発明は、除濁等の濾
過用途に好適な、緻密な細孔と高い透水性能を持つポリ
エチレン製中空糸状多孔膜を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a polyethylene hollow fiber membrane having fine pores and high water permeability, which is suitable for filtration such as turbidity.

【0005】[0005]

【課題を解決するための手段】本発明は、(1)外表面
部に最小孔径層を持ち、外表面孔径が1μm未満であり
内表面孔径が1μm以上である、平均孔径1μm未満、
空孔率50%以上95%以下の外面緻密型異方性スポン
ジ構造ポリエチレン中空糸状多孔膜、(2)外表面孔径
が0.03μm以上0.8μm以下であり、平均孔径が
0.03μm以上0.8μm以下である、上記(1)記
載の外面緻密型異方性スポンジ構造ポリエチレン中空糸
状多孔膜、(3)外表面孔径が0.05μm以上0.6
μm以下であり、平均孔径が0.05μm以上0.6μ
m以下である、上記(1)記載の外面緻密型異方性スポ
ンジ構造ポリエチレン中空糸状多孔膜、(4)中空糸内
径が0.4mm以上3mm以下でかつ膜厚が0.05m
m以上1mm以下である、上記(1)から(3)に記載
の外面緻密型異方性スポンジ構造ポリエチレン中空糸状
多孔膜、に関する。
According to the present invention, there is provided (1) a layer having a minimum pore size on an outer surface portion, wherein the outer surface pore size is less than 1 μm and the inner surface pore size is 1 μm or more, the average pore size is less than 1 μm,
An external dense anisotropic sponge structure polyethylene hollow fiber porous membrane having a porosity of 50% or more and 95% or less, (2) an outer surface pore diameter of 0.03 μm or more and 0.8 μm or less, and an average pore diameter of 0.03 μm or more and 0 μm or less. (1) an outer surface dense anisotropic sponge-structured polyethylene hollow fiber-like porous membrane according to the above (1), which has an outer surface pore diameter of 0.05 μm to 0.6.
μm or less, and the average pore diameter is 0.05 μm or more and 0.6 μm.
m or less, the outer surface dense anisotropic sponge-structured polyethylene hollow fiber porous membrane according to the above (1), and (4) the hollow fiber inner diameter is 0.4 mm or more and 3 mm or less and the film thickness is 0.05 m.
The present invention relates to the above-mentioned (1) to (3), an outer surface dense anisotropic sponge-structured polyethylene hollow fiber-like porous membrane according to the above (1) to (3).

【0006】以下、本発明の詳細について記述する。本
発明膜は、ポリエチレンからなる。ポリエチレンは前述
のように、1)化学反応性に富む3級炭素含量が少ない
ため、3級炭素含量の多いポリプロピレン等に比べて薬
品洗浄等による化学劣化が少ない、即ち長期耐久性が期
待できる、2)廃棄時に問題となるハロゲン元素を含ま
ない、3)安価である、といった利点を持つ。ポリエチ
レンには高密度ポリエチレンと低密度ポリエチレンがあ
るが、膜強度の点から高密度ポリエチレンが好ましい。
また、ポリエチレンには種々の分子量のものが存在する
が、膜強度の点から粘度平均分子量10万以上、さらに
は20万以上が好適である。ポリエチレンの粘度平均分
子量(Mv)は、135℃におけるデカリン溶液の固有
粘度([η])を測定して、下記式より求めることがで
きる(J.Brandrup and E.H.Imm
ergut(Editors)、Polymer Ha
ndbook(2nd Ed.)、IV−7頁、Joh
n Wiley & Sons、New York、1
975年、あるいは、岡叡太郎等編、プラスチック材料
講座4ポリエチレン樹脂、48頁表3・4のd、日刊工
業新聞社、1969年)。 [η]=6.8×10-4×(Mv)0.67
Hereinafter, the present invention will be described in detail. The film of the present invention is made of polyethylene. As described above, polyethylene has 1) a low tertiary carbon content, which is rich in chemical reactivity, and therefore less chemical degradation due to chemical washing and the like than polypropylene and the like having a high tertiary carbon content, that is, long-term durability can be expected. It has the advantages of 2) not containing halogen element which is a problem at the time of disposal, and 3) being inexpensive. Polyethylene includes high-density polyethylene and low-density polyethylene, and high-density polyethylene is preferable from the viewpoint of film strength.
Further, polyethylene has various molecular weights, and from the viewpoint of film strength, the viscosity average molecular weight is preferably 100,000 or more, and more preferably 200,000 or more. The viscosity average molecular weight (Mv) of polyethylene can be determined from the following equation by measuring the intrinsic viscosity ([η]) of the decalin solution at 135 ° C. (J. Brandrup and E.H.Imm)
ergut (Editors), Polymer Ha
ndbook (2nd Ed.), page IV-7, Joh
n Wiley & Sons, New York, 1
975, or edited by Eitaro Oka et al., Plastic Materials Course 4 Polyethylene resin, p. 48, Table 3.4 d, Nikkan Kogyo Shimbun, 1969). [Η] = 6.8 × 10 −4 × (Mv) 0.67

【0007】なお、ポリエチレンは、必要に応じて少量
の酸化防止剤、紫外線吸収剤等の安定剤を含んでいても
よい。本発明膜の断面構造は、スポンジ構造である。ス
ポンジ構造とは、膜断面に膜厚の10%を超えるような
径(円形近似直径)の粗大孔(マクロボイド)を実質的
に持たない構造を指す。マクロボイドが膜断面に存在す
ると、膜強度が低下して好ましくない。
[0007] The polyethylene may contain a small amount of a stabilizer such as an antioxidant or an ultraviolet absorber, if necessary. The cross-sectional structure of the film of the present invention is a sponge structure. The sponge structure refers to a structure having substantially no coarse pores (macrovoids) having a diameter (circular approximate diameter) exceeding 10% of the film thickness in the film cross section. When macrovoids exist in the cross section of the film, the film strength is undesirably reduced.

【0008】本発明膜の形状は、中空糸状である。中空
糸膜は、実際に濾過に使用する形態(モジュール)にす
る場合、平膜(シート状膜)に比べて単位体積当たりの
充填膜面積が多くでき、体積当たりの濾過処理能力を高
くできる点で有利である。中空糸膜の内径は、小さすぎ
ると中空糸管内を流れるの液の抵抗(管内厚損)が大き
くなるため不利であり、逆に大きすぎると単位体積当た
りの充填膜面積が低下するため不利である。中空糸膜の
内径は、0.4mm以上3mm以下が好適である。ま
た、中空糸膜の膜厚は、小さすぎると膜強度が低下して
不利であり、逆に大きすぎると濾過抵抗が大きくなって
透水性能が低下するため不利である。中空糸膜の膜厚
は、0.05mm以上1mm以下が好適である。
[0008] The shape of the membrane of the present invention is a hollow fiber. When the hollow fiber membrane is formed into a form (module) that is actually used for filtration, the packed membrane area per unit volume can be increased as compared with a flat membrane (sheet membrane), and the filtration capacity per volume can be increased. Is advantageous. If the inner diameter of the hollow fiber membrane is too small, it is disadvantageous because the resistance of the liquid flowing through the hollow fiber tube (thickness loss in the pipe) increases, and if it is too large, the packed membrane area per unit volume decreases, which is disadvantageous. is there. The inner diameter of the hollow fiber membrane is preferably 0.4 mm or more and 3 mm or less. On the other hand, if the thickness of the hollow fiber membrane is too small, the membrane strength is reduced, which is disadvantageous. On the other hand, if it is too large, the filtration resistance is increased, and the water permeability is reduced, which is disadvantageous. The thickness of the hollow fiber membrane is preferably 0.05 mm or more and 1 mm or less.

【0009】本発明膜は、外表面部に最小孔径層を持つ
外面緻密型の異方性構造をとることを大きな特徴として
有する。異方性構造とは、膜断面方向(膜厚方向)にお
いて孔径が一様(均一)ではなく変化する構造を指す。
本発明膜では、外表面部から内表面部に向けて孔径が連
続的に変化し、その基本的な変化の方向は、外表面部か
ら内表面部に向かって孔径が増大する方向である。膜の
濾過抵抗(透水性能)は、最小孔径層(最も緻密な層)
の厚みに支配される。最小孔径層が厚いほど膜全体の濾
過抵抗は大きくなり、透水性能は低下する。特開平3−
42025号公報に開示されているような均一な3次元
の多孔構造では、いわば膜断面全体が最小孔径層である
に等しくなり、濾過抵抗が高くなって(透水性能が下が
って)不利である。
The film of the present invention is characterized in that it has an external dense anisotropic structure having a minimum pore size layer on the external surface. The anisotropic structure refers to a structure in which the pore diameter changes rather than being uniform (uniform) in the film cross-sectional direction (film thickness direction).
In the membrane of the present invention, the pore diameter changes continuously from the outer surface to the inner surface, and the fundamental direction of the change is the direction in which the pore diameter increases from the outer surface to the inner surface. The filtration resistance (permeability) of the membrane is the smallest pore size layer (the most dense layer)
Is governed by the thickness of the As the minimum pore diameter layer is thicker, the filtration resistance of the entire membrane increases, and the water permeability decreases. JP-A-3-
In a uniform three-dimensional porous structure as disclosed in Japanese Patent No. 42025, the whole membrane cross section is equivalent to the minimum pore diameter layer, and filtration resistance is increased (water permeability is reduced), which is disadvantageous.

【0010】一方、本発明膜のように、膜断面全体では
なく外表面部内のみに最小孔径層を配置し、最小孔径層
以外の膜断面部分は最小孔径層よりも大孔径にして濾過
抵抗を極力増やさない工夫をすることで、緻密な細孔と
高い透水性能を持つポリエチレン製中空糸状多孔膜の提
供が可能になる。この場合、膜の濾過(篩い分け)機能
は外表面部内の最小孔径層(緻密な細孔)が受け持ち、
最小孔径層より内表面側の層は、膜の濾過抵抗増大には
極力寄与せずに膜の形態、強度維持のための支持層的機
能を受け持つことになる。本発明のような外面緻密型膜
の場合、外圧式濾過(膜の濾過方向が外表面から内表
面)において特にその性能が発揮される。
On the other hand, as in the case of the membrane of the present invention, the minimum pore size layer is disposed only in the outer surface portion, not in the entire membrane cross section, and the membrane cross section other than the minimum pore size layer has a larger pore size than the minimum pore size layer to reduce the filtration resistance. By minimizing the increase as much as possible, it becomes possible to provide a polyethylene hollow fiber porous membrane having dense pores and high water permeability. In this case, the filtration (sieving) function of the membrane is performed by the smallest pore diameter layer (dense pores) in the outer surface portion,
The layer on the inner surface side from the minimum pore size layer does not contribute as much as possible to increase the filtration resistance of the membrane, and functions as a support layer for maintaining the form and strength of the membrane. In the case of a dense outer surface membrane as in the present invention, its performance is particularly exhibited in external pressure filtration (the filtration direction of the membrane is from the outer surface to the inner surface).

【0011】なお、本発明にいう外表面部とは、外表面
そのものと外表面から膜厚の10分の1厚みまでの膜断
面部分を指す。最小孔径層の存在位置および異方性構造
の確認は、膜断面の電子顕微鏡観察によって実施するこ
とができる。本発明膜の外表面の孔径は1μm未満、好
ましくは0.03μm以上0.8μm以下、より好まし
くは0.05μm以上0.6μm以下である。膜の平均
孔径は1μm未満、好ましくは0.03μm以上0.8
μm以下、より好ましくは0.05μm以上0.6μm
以下である。膜の平均孔径は、ASTM:F316−8
6記載の方法(別称:ハーフドライ法)に従って決定で
きる。なお、このハーフドライ法によって決定されるの
は、膜の最小孔径層の平均孔径である。本発明において
ハーフドライ法による平均孔径の測定は、約10cm長
の中空糸膜に対し、使用液体にエタノールを用い、25
℃、昇圧速度0.01atm/秒での測定を標準測定条
件とした。平均孔径[μm]は、下記式より求める。
The outer surface portion referred to in the present invention refers to the outer surface itself and a film cross-sectional portion from the outer surface to one-tenth of the film thickness. Confirmation of the existence position and the anisotropic structure of the minimum pore size layer can be performed by observing the cross section of the membrane with an electron microscope. The pore diameter of the outer surface of the membrane of the present invention is less than 1 μm, preferably 0.03 μm or more and 0.8 μm or less, more preferably 0.05 μm or more and 0.6 μm or less. The average pore size of the membrane is less than 1 μm, preferably 0.03 μm or more and 0.8
μm or less, more preferably 0.05 μm or more and 0.6 μm
It is as follows. The average pore size of the membrane is ASTM: F316-8
6 (also called the half-dry method). What is determined by the half-dry method is the average pore size of the minimum pore size layer of the membrane. In the present invention, the measurement of the average pore diameter by the half-dry method is performed by using ethanol as a liquid to be used for a hollow fiber membrane having a length of about 10 cm,
The measurement at a temperature of ° C. and a pressure increase rate of 0.01 atm / sec was set as a standard measurement condition. The average pore diameter [μm] is determined by the following equation.

【0012】[0012]

【数1】 (Equation 1)

【0013】エタノールの25℃における表面張力は2
1.97dynes/cmである(日本化学会編、化学
便覧基礎編改訂3版、II−82頁、丸善(株)、19
84年)ので、本発明における標準測定条件の場合は、 平均孔径[μm]=62834/(ハーフドライ空気圧
力[Pa]) にて求めることができる。ハーフドライ法により求める
膜の平均孔径(膜の最小孔径層の平均孔径)が大きい
と、透過を阻止したい物質、例えば濁質等の透過の阻止
性が低下してしまうため有効な濾過分離ができない。逆
に膜の平均孔径が小さすぎると透水性能が低下して濾過
処理速度が低下するため、この場合も有効な濾過分離が
できない。膜の平均孔径は、1μm未満、好ましくは
0.03μm以上0.8μm以下、より好ましくは0.
05μm以上0.6μm以下が好適である。
The surface tension of ethanol at 25 ° C. is 2
1.97 dynes / cm (Chemical Handbook Basic Edition, 3rd revised edition, edited by The Chemical Society of Japan, page II-82, Maruzen Co., Ltd., 19)
1984), the average pore diameter [μm] = 62834 / (half dry air pressure [Pa]) in the case of the standard measurement conditions in the present invention. If the average pore size of the membrane determined by the half-dry method (the average pore size of the minimum pore size layer of the membrane) is large, the ability to prevent permeation of a substance to be prevented from permeating, for example, a turbid substance, is reduced, so that effective filtration and separation cannot be performed. . Conversely, if the average pore size of the membrane is too small, the water permeability will decrease and the filtration rate will decrease, and in this case also, effective filtration and separation will not be possible. The average pore size of the membrane is less than 1 μm, preferably 0.03 μm or more and 0.8 μm or less, more preferably 0.1 μm or less.
The thickness is preferably from 05 μm to 0.6 μm.

【0014】なお、外表面の孔径は、外表面の電子顕微
鏡観察像において、外表面に観察される(存在する)孔
の孔面積比重50%に相当する孔径で表現する。孔面積
比重50%に相当する孔径とは、表面に観察される(存
在する)各孔に対し、孔径の小さい方から、または大き
い方から順に各孔の孔面積を和してゆき、その和した値
が、各孔の孔面積の総和の50%に達するところの孔の
孔径を指す。観察される孔が円形でない場合(楕円形
等)の孔径は、円形近似した場合の直径(その孔の孔面
積と同面積の円の直径)を用いる。
The pore size of the outer surface is represented by a pore size corresponding to a pore area specific gravity of 50% of pores observed (existing) on the outer surface in an electron microscope observation image of the outer surface. The pore diameter corresponding to the pore area specific gravity of 50% is defined as the sum of the pore areas of the pores observed (existing) on the surface in order from the smaller pore diameter or the larger pore diameter in order from the larger pore. The obtained value indicates the hole diameter of the hole at which 50% of the total of the hole area of each hole is reached. When the hole to be observed is not circular (such as an elliptical shape), the diameter in the case of circular approximation (diameter of a circle having the same area as the hole area of the hole) is used.

【0015】本発明膜の内表面の孔径は、1μm以上で
ある。1μm未満では最小孔径層を持たない内表面側の
濾過抵抗が不必要に大きくなり、膜全体の濾過抵抗が増
大し透水性能が低下して好ましくない。内表面の孔径
は、外表面の場合と同様に、内表面の電子顕微鏡観察像
における、内表面に観察される(存在する)孔の孔面積
比重50%に相当する孔径で表現する。観察される孔が
円形でない場合(楕円形等)は、円形近似した場合の直
径を用いる。なお、内表面孔径が大きすぎると膜強度の
低下を招きやすいため、内表面孔径は10μm以下が好
ましい。
The pore diameter on the inner surface of the film of the present invention is 1 μm or more. If it is less than 1 μm, the filtration resistance on the inner surface side having no minimum pore size layer becomes unnecessarily large, and the filtration resistance of the whole membrane increases, and the water permeability is undesirably reduced. The pore diameter of the inner surface is represented by a pore diameter corresponding to a pore area specific gravity of 50% of pores observed (existing) on the inner surface in an electron microscope observation image of the inner surface, as in the case of the outer surface. If the hole to be observed is not circular (e.g., elliptical), the diameter in the case of circular approximation is used. If the pore diameter of the inner surface is too large, the film strength tends to be reduced.

【0016】本発明膜の空孔率は50%以上95%以
下、好ましくは60%以上90%以下である。空孔率が
小さいと透水性能が低くなって不利であり、逆に大きす
ぎると膜強度が低くなって不利である。空孔率は、以下
の式より決定できる。
The porosity of the film of the present invention is 50% or more and 95% or less, preferably 60% or more and 90% or less. If the porosity is small, the water permeability is low, which is disadvantageous. If the porosity is too large, the film strength is low, which is disadvantageous. The porosity can be determined by the following equation.

【0017】[0017]

【数2】 (Equation 2)

【0018】ここに、湿潤膜とは、孔内は水が満たされ
ているが中空部内は水が入っていない状態の膜を指し、
具体的には、10〜20cm長のサンプル膜をエタノー
ル中に浸漬して孔内をエタノールで満たした後に水浸漬
を4〜5回繰り返して孔内を充分に水で置換し、しかる
後に中空糸の一端を手で持って5回程よく振り、さらに
他端に手を持ちかえてまた5回程よく振って中空部内の
水を除去することで得ることができる。乾燥膜は、前記
湿潤膜の重量測定後にオーブン中で例えば80℃で恒量
になるまで乾燥させて得ることができる。膜体積は、 膜体積[cm3]=π{(外径[cm]/2)2−(内径
[cm]/2)2}(膜長[cm]) より求めることができる。膜1本では重量が小さすぎて
重量測定の誤差が大きくなる場合は、複数本の膜を用い
ることができる。
Here, the term “wet membrane” refers to a membrane in which water is filled in the pores but not in the hollow part.
Specifically, a sample membrane having a length of 10 to 20 cm is immersed in ethanol to fill the hole with ethanol, and then repeatedly immersed in water 4 to 5 times to sufficiently replace the inside of the hole with water. Can be obtained by holding one end of the hand and shaking it about five times, holding the other end of the hand and shaking it about five times again to remove water in the hollow portion. The dry film can be obtained by drying the wet film in an oven at, for example, 80 ° C. until the weight becomes constant after measuring the weight of the wet film. The film volume can be determined from the film volume [cm 3 ] = π {(outer diameter [cm] / 2) 2 − (inner diameter [cm] / 2) 2 } (film length [cm]). If the weight of one film is too small and the error in weight measurement is large, a plurality of films can be used.

【0019】次に、本発明膜の好適な製造方法例を述べ
る。本発明膜の好適な製造方法例としては、ポリエチレ
ンと有機液体とを高温にて相溶した後、該相溶物を中空
糸成形用紡口から中空部内に中空糸形成流体を注入しつ
つ中空糸状に空気中を経て水浴中に押し出し冷却するこ
とで該相溶物に液液相分離を生起させ孔構造を発生させ
て固化、構造固定し、しかる後に該有機液体を抽出除去
してポリエチレン中空糸状多孔膜を得る方法において、
1)中空部形成流体が、高温にてポリエチレンと液液相
分離する能力を持つ液体であり、かつ2)押し出し物が
空気中を走行する時間が0から1秒の間(ただし0は含
まない)であることを特徴とする方法がある。このよう
な製膜フローの一例の概念図を図1に示した。
Next, an example of a preferred method for producing the film of the present invention will be described. As a preferred example of the production method of the membrane of the present invention, after the polyethylene and the organic liquid are compatible at a high temperature, the compatible material is hollowed out by injecting a hollow fiber forming fluid into the hollow portion from a hollow fiber forming spout. By extruding into a water bath through the air in a thread form and cooling, a liquid-liquid phase separation occurs in the compatible substance to generate a pore structure, solidify and fix the structure, and then the organic liquid is extracted and removed to remove polyethylene hollow. In a method for obtaining a fibrous porous membrane,
1) The hollow part forming fluid is a liquid capable of separating liquid and liquid phases from polyethylene at a high temperature, and 2) The time required for the extrudate to travel in air is between 0 and 1 second (however, 0 is not included). ). A conceptual diagram of an example of such a film forming flow is shown in FIG.

【0020】ここで用いる有機液体は、ポリエチレンと
混合した際に一定の温度およびポリエチレン濃度範囲に
おいて液液相分離状態(ポリエチレン濃厚相液滴/ポリ
エチレン希薄相即ち有機液体濃厚相液滴の2相共存状
態)をとることができ、かつ沸点が液液相分離温度域の
上限温度以上である液体である。単一液体でなく混合液
体であってもよい。このような有機液体とポリエチレン
とを液液相分離の起こる濃度範囲にて混合した場合、温
度をその混合組成において液液相分離状態をとる上限温
度以上に高温にすると、ポリエチレンと有機液体とが均
一に溶解した相溶物を得ることができる。該相溶物を冷
却すると、液液2相(ポリエチレン濃厚相液滴と有機液
体濃厚相液滴)の共存状態(液液相分離状態)が現れて
孔構造が発生し、さらにポリエチレンが固化する温度
(通常100〜150℃)まで冷却することで孔構造が
固定される。
The organic liquid used here is in a liquid-liquid phase separation state at a certain temperature and in a range of polyethylene concentration when mixed with polyethylene (two-phase coexistence of polyethylene concentrated phase droplet / polyethylene diluted phase, ie, organic liquid concentrated phase droplet). Is a liquid whose boiling point is not lower than the upper limit temperature of the liquid-liquid phase separation temperature range. It may be a mixed liquid instead of a single liquid. When such an organic liquid and polyethylene are mixed in a concentration range in which liquid-liquid phase separation occurs, if the temperature is raised to a temperature higher than the upper limit temperature at which a liquid-liquid phase separation state is obtained in the mixed composition, polyethylene and the organic liquid are mixed. A homogeneously dissolved compatible substance can be obtained. When the compatibilized material is cooled, a coexistence state (liquid-liquid phase separation state) of two liquid-liquid phases (polyethylene concentrated phase droplets and organic liquid concentrated phase droplets) appears, a pore structure is generated, and the polyethylene is further solidified. The pore structure is fixed by cooling to a temperature (usually 100 to 150 ° C.).

【0021】この相図の例を図2に示した。図2におい
て、ポリエチレン濃度は、ポリエチレン重量と有機液体
重量の和に対するポリエチレンの重量の割合である。ま
た、液1相領域はポリエチレンと有機液体との相溶領域
を、液液2相領域はポリエチレン濃厚相(液状)とポリ
エチレン希薄相(液体)との共存領域を、固化領域はポ
リエチレンが固化する領域(固体ポリエチレンと有機液
体との共存領域)をそれぞれ示す。孔構造が固定された
のち、膜より有機液体を除去することで中空糸状多孔体
が得られる。このとき、液液相分離時のポリエチレン濃
厚相部分が冷却固化されて多孔構造(多孔体骨格)を形
成し、ポリエチレン希薄相(有機液体濃厚相)部分が孔
部分となる。
FIG. 2 shows an example of this phase diagram. In FIG. 2, the polyethylene concentration is a ratio of the weight of the polyethylene to the sum of the weight of the polyethylene and the weight of the organic liquid. The liquid 1 phase region is a region where polyethylene and an organic liquid are compatible, the liquid and liquid 2 phase region is a region where a polyethylene rich phase (liquid) and a polyethylene dilute phase (liquid) coexist, and the solidified region is where polyethylene is solidified. The region (region where solid polyethylene and organic liquid coexist) is shown. After the pore structure is fixed, a hollow fiber-like porous body is obtained by removing the organic liquid from the membrane. At this time, the polyethylene rich phase portion at the time of liquid-liquid phase separation is cooled and solidified to form a porous structure (porous skeleton), and the polyethylene dilute phase (organic liquid rich phase) portion becomes a pore portion.

【0022】このような有機液体の例として、フタル酸
ジブチル、フタル酸ジヘプチル、フタル酸ジオクチル、
フタル酸ジ(2−エチルヘキシル)、フタル酸ジイソデ
シル、フタル酸ジトリデシル等のフタル酸エステル類、
セバシン酸ジブチル等のセバシン酸エステル類、アジピ
ン酸ジオクチル等のアジピン酸エステル類、マレイン酸
ジオクチル等のマレイン酸エステル類、トリメリット酸
トリオクチル等のトリメリット酸エステル類、リン酸ト
リブチル、リン酸トリオクチル等のリン酸エステル類、
プロピレングリコールジカプレート、プロピレングリコ
ールジオレエート等のグリコールエステル類、グリセリ
ントリオレエート等のグリセリンエステル類などの単独
あるいは2種以上の混合物を挙げることができる。
Examples of such organic liquids are dibutyl phthalate, diheptyl phthalate, dioctyl phthalate,
Phthalic acid esters such as di (2-ethylhexyl) phthalate, diisodecyl phthalate, ditridecyl phthalate,
Sebacic esters such as dibutyl sebacate, adipic esters such as dioctyl adipate, maleic esters such as dioctyl maleate, trimellitic esters such as trioctyl trimellitate, tributyl phosphate, trioctyl phosphate and the like Phosphoric esters,
Examples thereof include propylene glycol dicaprate, glycol esters such as propylene glycol dioleate, glycerin esters such as glycerin trioleate, and the like, alone or in combination of two or more.

【0023】さらに、単独ではポリエチレンと高温にて
も相溶しない液体や、流動パラフィンのように単独では
高温でポリエチレンと相溶するものの相溶性が高すぎて
液液2相の相分離状態をとらない液体を、有機液体の定
義(ポリエチレンと混合した際に一定の温度およびポリ
エチレン濃度範囲において液液相分離状態をとることが
できかつ沸点が液液相分離温度域の上限温度以上の液
体)を逸しない範囲内で前記有機液体例(フタル酸エス
テル類等)と混合した混合液体も有機液体の例として挙
げることができる。
Further, a liquid which is incompatible with polyethylene at high temperature alone or a liquid such as liquid paraffin which is compatible with polyethylene at high temperature alone is too high in compatibility to obtain a liquid-liquid two phase separation state. The definition of an organic liquid (a liquid that can take a liquid-liquid phase separation state at a certain temperature and polyethylene concentration range when mixed with polyethylene and has a boiling point higher than the upper limit of the liquid-liquid phase separation temperature range) A mixed liquid mixed with the above-mentioned organic liquid examples (phthalates and the like) within a range not to be missed can also be mentioned as an example of the organic liquid.

【0024】ポリエチレンと上記有機液体とは、例えば
2軸押し出し機を用いて所定の混合比にてその混合比に
おける液液相分離温度域の上限温度以上の温度にて混
合、相溶させることができる。ポリエチレンと有機液体
との混合比は、ポリエチレンの比が小さすぎると得られ
る膜の強度が低くなりすぎて不利であり、逆にポリエチ
レンの比が大きすぎると得られる膜の透水性能が低くな
りすぎて不利である。ポリエチレンと有機液体との混合
比は、ポリエチレン/有機液体の重量比で10/90か
ら40/60、好ましくは15/85から30/70で
ある。
Polyethylene and the above-mentioned organic liquid can be mixed and dissolved at a predetermined mixing ratio at a temperature not lower than the upper limit temperature of the liquid-liquid phase separation temperature range at the mixing ratio by using, for example, a twin screw extruder. it can. The mixing ratio of polyethylene and the organic liquid is disadvantageous because if the ratio of polyethylene is too small, the strength of the obtained membrane is too low, and conversely, if the ratio of polyethylene is too large, the water permeability of the obtained membrane is too low. Disadvantageous. The mixing ratio of the polyethylene and the organic liquid is 10/90 to 40/60, preferably 15/85 to 30/70, by weight of the polyethylene / organic liquid.

【0025】相溶物(溶融物)は、押し出し機先端のヘ
ッドと呼ばれる部分に導かれ、押し出される。このヘッ
ド内の押し出し口に、相溶物を所定の形状に押し出すた
めの口金を装着することで所定の形状に相溶物を成形し
て押し出すことができる。本発明の場合は、中空糸状に
成形するための口金(中空糸成形用紡口)をヘッドの押
し出し口に装着する。中空糸成形用紡口は、相溶物を中
空状(円環状)に押し出すための円環状の穴と、押し出
された中空状物の中空部が閉じて円柱状になってしまわ
ないために押し出された中空状物の中空部に注入してお
く中空部形成流体を吐出するための穴(上記円環状穴の
内側に存在する;形状は円形穴)とを押し出し側の面に
持つ紡口ノズルである。ポリエチレンと有機液体との相
溶物は、上記中空糸成形用紡口の円環穴より、円環穴の
内側の穴から中空部形成流体の注入を中空部内に受けつ
つ空気中(窒素等の不活性ガス中でもよい)に押し出さ
れる。
The compatible material (melt) is guided to a portion called a head at the tip of the extruder and extruded. By mounting a die for extruding the compatible material into a predetermined shape at the extrusion port in the head, the compatible material can be formed into a predetermined shape and extruded. In the case of the present invention, a spinneret for forming into a hollow fiber (hollow fiber forming spinneret) is attached to the extrusion port of the head. The hollow fiber forming spinneret has an annular hole for extruding the compatible material into a hollow shape (annular shape) and an extruded hole for preventing the hollow portion of the extruded hollow material from closing to form a column. Spouting nozzle having a hole (existing inside the above-mentioned annular hole; the shape is a circular hole) for discharging a hollow part forming fluid to be injected into the hollow part of the hollow material formed on the extrusion side surface It is. The miscible material of polyethylene and the organic liquid is injected into the hollow portion of the hollow fiber through a hole formed inside the hole through the hole inside the hole for forming the hollow fiber through the hole of the above-described hole for forming a hollow fiber. (Even in an inert gas).

【0026】中空部形成流体としては、高温でポリエチ
レンと液液相分離する能力を持つ液体、即ちポリエチレ
ンと混合した際に一定の温度およびポリエチレン濃度範
囲において液液相分離状態(ポリエチレン濃厚相液滴/
ポリエチレン希薄相即ち有機液体濃厚相液滴の2相共存
状態)をとることができる液体を用いる。ただし、中空
糸成形用紡口から吐出されるときの中空部形成流体の温
度は必ずしもポリエチレンと液液相分離状態となる温度
である必要はなく、液液相分離状態をとる温度域より高
くてもよいし、低くてもよい。このような中空部形成用
流体の例としては、前記の有機液体の例と同じ例を挙げ
ることができる。なお、中空部形成流体の沸点は、前記
の有機液体とは異なり、紡口温度以上であれば液液相分
離温度域の上限温度以下であってもよい。中空部形成流
体としてこのようにポリエチレンと液液相分離状態をと
ることができる液体を用いることで、内表面側を本発明
の好適な構造にすることができる。
The fluid forming the hollow portion is a liquid capable of liquid-liquid phase separation with polyethylene at a high temperature, that is, a liquid-liquid phase separated state (polyethylene concentrated phase droplet) at a certain temperature and polyethylene concentration range when mixed with polyethylene. /
A liquid capable of forming a polyethylene dilute phase, that is, a two-phase coexistence state of an organic liquid concentrated phase droplet is used. However, the temperature of the hollow part forming fluid when discharged from the spinning nozzle for forming a hollow fiber is not necessarily required to be a temperature at which the polyethylene and the liquid-liquid phase separation state are obtained, and is higher than a temperature range at which the liquid-liquid phase separation state is obtained. Or lower. Examples of such a fluid for forming a hollow portion include the same examples as those of the above-described organic liquid. The boiling point of the hollow part forming fluid is different from the above-mentioned organic liquid, and may be equal to or lower than the upper limit temperature of the liquid-liquid phase separation temperature range as long as it is equal to or higher than the spinning temperature. By using a liquid capable of forming a liquid-liquid phase separation state with polyethylene as the hollow portion forming fluid, the inner surface side can have a suitable structure of the present invention.

【0027】空気中に押し出された相溶物は、次いで水
浴(実質的に水より成る液浴)に導かれ、押し出し物中
のポリエチレンが固化する温度まで冷却される。水浴の
温度は、押し出し物中のポリエチレンの固化温度以下に
設定する。こうして紡口から押し出された相溶物は、紡
口出口から水浴中通過の間に冷却されることで液液相分
離が生起されて孔構造が発生し、次いで固化し、孔構造
が固定される。紡口から空気中に押し出された相溶物が
水浴に入るまでの時間、即ち空中走行時間は、ゼロから
1秒までの間(ただしゼロは含まない)である。空中走
行時間がゼロの場合は、紡口の押し出し面が水浴の水面
と接している状態になる。
[0027] The compatible material extruded into the air is then led to a water bath (a liquid bath consisting essentially of water) and cooled to a temperature at which the polyethylene in the extrudate solidifies. The temperature of the water bath is set below the solidification temperature of the polyethylene in the extrudate. The compatibilized material extruded from the spinneret is cooled while passing through the water bath from the spinneret outlet, thereby causing a liquid-liquid phase separation to occur, a pore structure is generated, and then solidified, and the pore structure is fixed. You. The time required for the compatible material extruded from the spinneret into the air to enter the water bath, that is, the air travel time, is from zero to one second (but not including zero). When the air traveling time is zero, the extruded surface of the spinneret comes into contact with the water surface of the water bath.

【0028】紡口温度はポリエチレンと有機液体の相溶
温度、即ちその混合比における液液相分離温度域以上の
温度に設定するため(通常は150〜300℃程度)、
押し出し物中のポリエチレンが固化する温度以下に設定
されている水浴の温度より必ず高い温度である。従って
空中走行時間がゼロの場合は、紡口が水浴の水で常時冷
却されて紡口の温度調節が不安定になるため、適さな
い。一方で空中走行時間が長くなりすぎると外表面の開
孔性が低下し、膜の透水性能が低下して好ましくない。
The spinning temperature is set to a temperature higher than the temperature at which the polyethylene and the organic liquid are compatible with each other, that is, the liquid-liquid phase separation temperature range in the mixing ratio (usually about 150 to 300 ° C.).
The temperature is always higher than the water bath temperature set below the temperature at which the polyethylene in the extrudate solidifies. Therefore, when the air traveling time is zero, the spinneret is constantly cooled by the water in the water bath, and the temperature control of the spinneret becomes unstable, which is not suitable. On the other hand, if the air traveling time is too long, the porosity of the outer surface decreases, and the water permeability of the membrane decreases, which is not preferable.

【0029】空中走行時間は、好ましくはゼロから0.
5秒の間(ただし0は含まない)、さらに好ましくはゼ
ロから0.25秒の間(ただし0は含まない)である。
空中走行時間の測定は、水浴出口で中空糸を張力をかけ
ない状態で巻き取った場合には、巻き取り速度と空中走
行距離(紡口面と水浴面との距離)から、下記式で求め
ることができる。
The air travel time is preferably between zero and 0.5.
It is between 5 seconds (but not including 0), and more preferably between 0 and 0.25 seconds (but not including 0).
In the measurement of the aerial traveling time, when the hollow fiber is wound without tension at the outlet of the water bath, it is obtained from the winding speed and the aerial traveling distance (the distance between the spout surface and the water bath surface) according to the following formula. be able to.

【0030】[0030]

【数3】 (Equation 3)

【0031】このように、紡口から出た相溶物をある特
定の空走時間の後に水浴に導くことで、外表面側を本発
明の好適な構造にすることができる。 このように、中
空部形成流体としてポリエチレンと液液相分離状態をと
ることができる液体を用い、かつ紡口から出た相溶物を
ある特定の空走時間の後に水浴に導くことで、膜構造全
体を、本発明で開示する好適な外面緻密型異方性構造に
することができる。水浴から出てきた中空糸状物は、冷
却途中で生起した液液相分離時のポリエチレン濃厚相部
分が冷却固化されて多孔構造(多孔体骨格)を形成し、
液液相分離時のポリエチレン希薄相(有機液体濃厚相)
部分が有機液体の詰まった孔部分となっている。この孔
部分に詰まっている有機液体を除去すれば、本発明開示
の多孔膜が得られる。
As described above, the outer surface side can be made to have a preferable structure of the present invention by guiding the compatible substance discharged from the spinneret to the water bath after a specific idle running time. Thus, by using a liquid capable of forming a liquid-liquid phase separation state with polyethylene as the hollow part forming fluid, and guiding the compatible substance discharged from the spout to a water bath after a specific idle running time, the membrane is formed. The entire structure can be a suitable external dense anisotropic structure disclosed in the present invention. In the hollow fiber-like material coming out of the water bath, the polyethylene thick phase portion generated during the liquid-liquid phase separation generated during cooling is solidified by cooling to form a porous structure (porous skeleton),
Polyethylene dilute phase during liquid-liquid phase separation (organic liquid rich phase)
The portion is a hole filled with organic liquid. By removing the organic liquid clogging the pores, the porous membrane disclosed in the present invention can be obtained.

【0032】膜中の有機液体の除去は、ポリエチレンを
溶解または劣化させずかつ除去したい有機液体を溶解す
る揮発性液体で抽出除去し、その後乾燥して膜中に残存
する上記揮発性液体を揮発除去することで実施できる。
このような有機液体抽出用の揮発性液体の例としては、
ヘキサン、ヘプタン等の炭化水素、塩化メチレン、四塩
化炭素等の塩素化炭化水素、メチルエチルケトンなどを
挙げることができる。
The organic liquid in the film is removed by extracting and removing the organic liquid to be removed without dissolving or deteriorating the polyethylene with a volatile liquid that dissolves the polyethylene, and then drying and evaporating the volatile liquid remaining in the film. It can be implemented by removing.
Examples of such volatile liquids for organic liquid extraction include:
Examples thereof include hydrocarbons such as hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, and methyl ethyl ketone.

【0033】[0033]

【発明の実施の形態】以下に本発明の実施例を示すが、
本発明はこれに限定されるものではない。なお、純水透
水率、破断強度および破断伸度は以下の測定方法より決
定した。また、外表面および内表面の孔径は、倍率50
00倍あるいは10000倍にて撮影した後、縦横それ
ぞれ2倍に拡大した外表面および内表面の電子顕微鏡写
真コピーの上に透明シートを重ねて置き、表面に存在す
る孔部分を透明シート上に黒く塗りつぶして黒白2値化
した後(孔部分が黒)、CCDカメラを用いてコンピュ
ーターに取り込み、Leica社製画像解析ソフトQu
antimet500を用いることで得た各孔の孔面積
値および孔径値(円形近似直径値)に基づいて決定し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
The present invention is not limited to this. The pure water permeability, breaking strength and breaking elongation were determined by the following measuring methods. Further, the pore diameters of the outer surface and the inner surface are 50 magnifications.
After photographing at 00x or 10000x, the transparent sheet is placed on the electron micrograph copy of the outer and inner surfaces, which is enlarged twice in length and width, respectively, and the transparent sheet is placed on the transparent sheet. After black-and-white binarization by painting (holes are black), the images were taken into a computer using a CCD camera, and image analysis software Qu manufactured by Leica was used.
It was determined based on the pore area value and pore diameter value (circular approximate diameter value) of each pore obtained by using antimet500.

【0034】純水透水率:エタノール浸漬したのち数回
純水浸漬を繰り返した約10cm長の湿潤中空糸膜の一
端を封止し、他端の中空部内へ注射針を入れ、25℃の
環境下にて注射針から0.1MPaの圧力にて25℃の
純水を中空部内へ注入し、外表面から透過してくる純水
の透過水量を測定し、以下の式より純水透水率を決定し
た。
Pure water permeability: One end of a wet hollow fiber membrane having a length of about 10 cm, which was immersed in ethanol and then immersed in pure water several times, was sealed at one end, and an injection needle was inserted into the hollow at the other end. Under the injection needle, pure water at 25 ° C. is injected into the hollow portion at a pressure of 0.1 MPa, and the amount of pure water permeating from the outer surface is measured, and the pure water permeability is calculated from the following equation. Were determined.

【0035】[0035]

【数4】 (Equation 4)

【0036】ここに膜有効長とは、注射針が挿入されて
いる部分を除いた、正味の膜長を指す。 破断強度および破断伸度:引っ張り試験機(島津製作所
製オートグラフAG−A型)を用い、中空糸をチャック
間距離50mm、引っ張り速度200mm/分にて引っ
張り、破断時の荷重と変位から、以下の式により破断強
度および破断伸度を決定した。
Here, the effective membrane length refers to the net membrane length excluding the portion where the injection needle is inserted. Breaking strength and breaking elongation: Using a tensile tester (Autograph AG-A type manufactured by Shimadzu Corporation), the hollow fiber was pulled at a distance between chucks of 50 mm and a pulling speed of 200 mm / min. The breaking strength and the breaking elongation were determined by the following equations.

【0037】[0037]

【数5】 (Equation 5)

【0038】ここに、 膜断面積[cm2]=π{(外径[cm]/2)2−(内
径[cm]/2)2} である。 破断伸度[%]=100(破断時変位[mm])/50
Here, the film cross-sectional area [cm 2 ] = π {(outer diameter [cm] / 2) 2 − (inner diameter [cm] / 2) 2 }. Elongation at break [%] = 100 (displacement at break [mm]) / 50

【0039】[0039]

【実施例1】高密度ポリエチレン(三井化学製:ハイゼ
ックスミリオン030S、粘度平均分子量:45万)2
0重量部と、フタル酸ジイソデシル(DIDP)とフタ
ル酸ジ(2−エチルヘキシル)(DOP)との重量比に
て3対1(DIDP/DOP=3/1)の混合有機液体
80重量部とを、2軸混練押し出し機(東芝機械製TE
M−35B−10/1V)で加熱混練して相溶させ(2
30℃)、押し出し機先端のヘッド(230℃)内の押
し出し口に装着した中空糸成形用紡口の押し出し面にあ
る外径1.58mm/内径0.83mmの相溶物押し出
し用の円環穴から上記相溶物を押し出し、そして相溶物
押し出し用円環穴の内側にある0.6mmφの中空部形
成流体吐出用の円形穴から中空部形成流体としてDOP
を吐出させ、中空糸状押し出し物の中空部内に注入し
た。
Example 1 High-density polyethylene (manufactured by Mitsui Chemicals, Hyzex Million 030S, viscosity average molecular weight: 450,000) 2
0 parts by weight and 80 parts by weight of a mixed organic liquid having a weight ratio of diisodecyl phthalate (DIDP) to di (2-ethylhexyl) phthalate (DOP) of 3 to 1 (DIDP / DOP = 3/1). , Twin screw extruder (TE manufactured by Toshiba Machine Co., Ltd.)
(M-35B-10 / 1V) and mixed by heating.
30 ° C.), a ring for extruding a compatible material with an outer diameter of 1.58 mm / inner diameter of 0.83 mm on the extrusion surface of the spinning hole for hollow fiber molding attached to the extrusion opening in the head (230 ° C.) at the tip of the extruder. The above-mentioned compatible material is extruded from the hole, and DOP is formed as a hollow-portion forming fluid from the circular hole for discharging the hollow-portion forming fluid having a diameter of 0.6 mm inside the annular hole for extruding the compatible material.
Was discharged and injected into the hollow portion of the hollow fiber extrudate.

【0040】紡口から空気中に押し出した中空糸状押し
出し物を、1.5cmの空中走行距離を経て39℃の水
浴中に入れ、約2m水中を通過させて冷却固化させた
後、中空糸状物に張力をかけることなく16m/分の速
度で水浴中から水浴外へ巻き取った。このときの空中走
行時間は、空中走行距離と巻き取り速度から0.06秒
と決定される。
The hollow fiber extruded material extruded from the spinneret into the air is placed in a 39 ° C. water bath through an air traveling distance of 1.5 cm, passed through about 2 m of water, solidified by cooling, and then cooled. Was wound out of the water bath at a speed of 16 m / min without applying tension. The air travel time at this time is determined as 0.06 seconds based on the air travel distance and the winding speed.

【0041】次いで、得られた中空糸状物を室温の塩化
メチレン中で30分間の浸漬を5回繰り返して、中空糸
状物内のDIDPとDOPを抽出除去し、次いで50℃
にて半日乾燥させて残存塩化メチレンを揮発除去させる
ことにより、ポリエチレン中空糸状多孔膜を得た。得ら
れた膜の断面を電子顕微鏡で観察したところ、外表面部
に最小孔径層を有する異方性の膜であった。また、膜の
諸物性(外表面孔径、内表面孔径、平均孔径、空孔率、
糸径、純水透水率、破断強度、破断伸度)を表1に示
す。
Next, the obtained hollow fiber was repeatedly immersed in methylene chloride at room temperature for 30 minutes five times to extract and remove DIDP and DOP from the hollow fiber.
For half a day to remove the remaining methylene chloride by volatilization to obtain a polyethylene hollow fiber-like porous membrane. When the cross section of the obtained film was observed with an electron microscope, it was an anisotropic film having a minimum pore size layer on the outer surface. In addition, various physical properties of the membrane (outer surface pore size, inner surface pore size, average pore size, porosity,
Table 1 shows the yarn diameter, pure water permeability, breaking strength, and breaking elongation.

【0042】[0042]

【実施例2】ポリエチレンとして旭化成工業製の高密度
ポリエチレン(サンテックSH800、粘度平均分子量
25万)を18重量部、有機液体としてDIDPとDO
Pとの重量比にて3対1(DIDP/DOP=3/1)
の混合物を82重量部用い、空中走行距離を4.5cm
とした以外は実施例1と同様にしてポリエチレン中空糸
状多孔膜を得た。このときの空中走行時間は0.17秒
である。得られた膜の諸物性(外表面孔径、内表面孔
径、平均孔径、空孔率、糸径、純水透水率、破断強度、
破断伸度)を表1に、電子顕微鏡写真を図3に示す。
Example 2 18 parts by weight of high-density polyethylene (Suntech SH800, viscosity average molecular weight 250,000) manufactured by Asahi Kasei Corporation as polyethylene, and DIDP and DO as organic liquids
3: 1 in weight ratio with P (DIDP / DOP = 3/1)
Using 82 parts by weight of a mixture of
A polyethylene hollow fiber-like porous membrane was obtained in the same manner as in Example 1 except that the above conditions were used. The air travel time at this time is 0.17 seconds. Various physical properties of the obtained membrane (outer surface pore size, inner surface pore size, average pore size, porosity, yarn diameter, pure water permeability, breaking strength,
Elongation at break) is shown in Table 1, and an electron micrograph is shown in FIG.

【0043】[0043]

【比較例1】特開平3−42025号公報明細書実施例
2に準拠して(SH800/疎水性シリカ/DOPの容
量比を27/14/59にした以外は同様にして)、ポ
リエチレンとして実施例2と同じサンテックSH800
を用いて中空糸状多孔膜を得た。得られた膜の諸物性
(外表面孔径、内表面孔径、平均孔径、空孔率、糸径、
純水透水率、破断強度、破断伸度)を表1に、電子顕微
鏡写真を図4に示す。得られた膜は、異方性を持たない
均一な3次元の多孔構造を有していた。当比較例膜は実
施例2膜に比べて、同等の平均孔径でありながら純水透
水率が低く、濾過膜としての性能が低くなっている。
[Comparative Example 1] As polyethylene, according to Example 2 of JP-A-3-42025 (same as above except that the volume ratio of SH800 / hydrophobic silica / DOP was 27/14/59). Suntech SH800 same as Example 2
Was used to obtain a hollow fiber porous membrane. Various physical properties of the obtained membrane (outer surface pore size, inner surface pore size, average pore size, porosity, yarn diameter,
Pure water permeability, breaking strength, breaking elongation) are shown in Table 1, and an electron micrograph is shown in FIG. The obtained film had a uniform three-dimensional porous structure without anisotropy. Compared with the membrane of Example 2, the membrane of this comparative example has the same average pore diameter, but low pure water permeability, and low performance as a filtration membrane.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明により、除濁等の濾過用途に好適
な、緻密な細孔と高い透水性能を併せ持つポリエチレン
製中空糸状多孔膜の提供が可能になった。
According to the present invention, it has become possible to provide a polyethylene hollow fiber-like porous membrane having both fine pores and high water permeability, which is suitable for filtration applications such as turbidity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明膜を製造するための製膜フローの一例を
示す概念図である。
FIG. 1 is a conceptual diagram showing an example of a film forming flow for manufacturing a film of the present invention.

【図2】ポリエチレンと有機液体との相図の概念図であ
る。
FIG. 2 is a conceptual diagram of a phase diagram of polyethylene and an organic liquid.

【図3】実施例2にて得られた膜の電子顕微鏡写真印刷
である。
FIG. 3 is an electron micrograph print of the film obtained in Example 2.

【図4】比較例1にて得られた膜の電子顕微鏡写真印刷
である。
FIG. 4 is an electron micrograph print of the film obtained in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 ・・・ ポリエチレンホッパー 2 ・・・ ポリエチレン供給口 3 ・・・ 有機液体供給流路 4 ・・・ 有機液体供給口 5 ・・・ 2軸混練押出機 6 ・・・ 導管 7 ・・・ ヘッド 8 ・・・ 定量ギアポンプ駆動部 9 ・・・ 定量ギアポンプ 10・・・ 中空糸成形用紡口 11・・・ 中空部形成流体供給流路 12・・・ ポリエチレンと有機液体の混合押し出し物 13・・・ 中空部形成流体 14・・・ 空中走行部分 15・・・ 水浴 16・・・ ロール 17・・・ 巻き取りロール イ ・・・ 紡口吐出時点の相溶物 ロ ・・・ 空中走行部および液浴中での冷却過程 ハ ・・・ 液浴出の固化物 DESCRIPTION OF SYMBOLS 1 ... Polyethylene hopper 2 ... Polyethylene supply port 3 ... Organic liquid supply flow path 4 ... Organic liquid supply port 5 ... Biaxial kneading extruder 6 ... Conduit 7 ... Head 8 ... Constant-quantity gear pump driving unit 9 ... Constant-quantity gear pump 10 ... Spout for forming hollow fiber 11 ... Hollow part forming fluid supply channel 12 ... Mixed extrudate of polyethylene and organic liquid 13 ... Hollow part forming fluid 14 ・ ・ ・ Aerial traveling part 15 ・ ・ ・ Water bath 16 ・ ・ ・ Roll 17 ・ ・ ・ Winding roll i ・ ・ ・ Compatible material at the time of spout discharge b ・ ・ ・ Air traveling part and liquid bath Cooling process inside

フロントページの続き Fターム(参考) 4D006 GA06 GA07 HA19 MA01 MA22 MA24 MA25 MA33 MA34 MB02 MB16 MC22X MC88 NA21 NA23 NA54 NA68 NA75 PA01 PB04 4L035 AA05 AA09 BB31 BB57 CC20 DD03 DD07 EE08 EE20 FF01 HH01 HH05 JJ15 KK05 MA01Continued on the front page F-term (reference) 4D006 GA06 GA07 HA19 MA01 MA22 MA24 MA25 MA33 MA34 MB02 MB16 MC22X MC88 NA21 NA23 NA54 NA68 NA75 PA01 PB04 4L035 AA05 AA09 BB31 BB57 CC20 DD03 DD07 EE08 EE20 FF01 HH05 HJ05 JJ15 KK

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外表面部に最小孔径層を持ち、外表面孔
径が1μm未満であり内表面孔径が1μm以上である、
平均孔径1μm未満、空孔率50%以上95%未満の外
面緻密型異方性スポンジ構造ポリエチレン中空糸状多孔
膜。
An outer surface portion having a minimum pore size layer, wherein the outer surface pore size is less than 1 μm and the inner surface pore size is 1 μm or more;
An external dense anisotropic sponge-structured polyethylene hollow fiber-like porous membrane having an average pore diameter of less than 1 μm and a porosity of 50% or more and less than 95%.
JP2000068853A 1999-09-21 2000-03-13 Polyethylene hollow-fiber porous membrane Pending JP2001157827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068853A JP2001157827A (en) 1999-09-21 2000-03-13 Polyethylene hollow-fiber porous membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26730499 1999-09-21
JP11-267304 1999-09-21
JP2000068853A JP2001157827A (en) 1999-09-21 2000-03-13 Polyethylene hollow-fiber porous membrane

Publications (1)

Publication Number Publication Date
JP2001157827A true JP2001157827A (en) 2001-06-12

Family

ID=26547807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068853A Pending JP2001157827A (en) 1999-09-21 2000-03-13 Polyethylene hollow-fiber porous membrane

Country Status (1)

Country Link
JP (1) JP2001157827A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026779A1 (en) * 2001-08-01 2003-04-03 Asahi Kasei Kabushiki Kaisha Multilayer microporous film
JP2005511074A (en) * 2001-12-10 2005-04-28 イーメンブレン インコーポレーティッド Functionalized materials and their libraries
WO2007135994A1 (en) * 2006-05-19 2007-11-29 Fujifilm Corporation Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
US7635513B1 (en) 1999-10-22 2009-12-22 Asahi Kasei Medical Co., Ltd. Heat resistant microporous film
CN113272050A (en) * 2019-01-11 2021-08-17 恩特格里斯公司 Porous polymer hollow filtration membrane
JP2022506431A (en) * 2018-11-01 2022-01-17 インテグリス・インコーポレーテッド Porous polyethylene filter membranes with asymmetric pore structure and related filters and methods

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635513B1 (en) 1999-10-22 2009-12-22 Asahi Kasei Medical Co., Ltd. Heat resistant microporous film
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
WO2003026779A1 (en) * 2001-08-01 2003-04-03 Asahi Kasei Kabushiki Kaisha Multilayer microporous film
KR100805977B1 (en) * 2001-08-01 2008-02-25 아사히 가세이 메디컬 가부시키가이샤 Multilayer Microporous Film
JP2005511074A (en) * 2001-12-10 2005-04-28 イーメンブレン インコーポレーティッド Functionalized materials and their libraries
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
WO2007135994A1 (en) * 2006-05-19 2007-11-29 Fujifilm Corporation Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
JP2007332342A (en) * 2006-05-19 2007-12-27 Fujifilm Corp Microporous membrane of crystalline polymer, its manufacturing method and filter for filtration
CN101448564B (en) * 2006-05-19 2011-12-07 富士胶片株式会社 Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
US8153041B2 (en) 2006-05-19 2012-04-10 Fujifilm Corporation Crystalline polymer microporous membrane, method for producing same, and filter for filtration
KR101424830B1 (en) 2006-05-19 2014-08-01 후지필름 가부시키가이샤 Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
JP2022506431A (en) * 2018-11-01 2022-01-17 インテグリス・インコーポレーテッド Porous polyethylene filter membranes with asymmetric pore structure and related filters and methods
JP7402871B2 (en) 2018-11-01 2023-12-21 インテグリス・インコーポレーテッド Porous polyethylene filter membrane with asymmetric pore structure and related filters and methods
CN113272050A (en) * 2019-01-11 2021-08-17 恩特格里斯公司 Porous polymer hollow filtration membrane
JP2022516757A (en) * 2019-01-11 2022-03-02 インテグリス・インコーポレーテッド Porous polymer hollow filter membrane

Similar Documents

Publication Publication Date Title
JP5717987B2 (en) Porous multilayer hollow fiber membrane
JP5893093B2 (en) Amorphous porous hollow fiber membrane, method for producing a shaped porous hollow fiber membrane, module using the shaped porous hollow fiber membrane, filtration device, and water treatment method
JP5546992B2 (en) Method for producing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filtration device using porous hollow fiber membrane, and water treatment method using porous hollow fiber membrane
US11654400B2 (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP3781679B2 (en) Suspension water membrane purification method
JP2013173139A (en) Manufacturing method of porous hollow fiber membrane
JP2024107332A (en) Porous membrane
JP2001157827A (en) Polyethylene hollow-fiber porous membrane
JP5546993B2 (en) Manufacturing method of irregular porous hollow fiber membrane, irregular porous hollow fiber membrane, module using irregular porous hollow fiber membrane, filtration device using irregular porous hollow fiber membrane, and filtration using irregular porous hollow fiber membrane Method
JP4775984B2 (en) Method for melting and forming hollow fiber porous membrane
JP6097818B2 (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP2008093503A (en) Manufacturing method of porous hollow fiber membrane
JP2001190940A (en) Method of manufacturing polyethylene hollow fiber porous membrane
JP2001157826A (en) Anisotropic polyethylene hollow-fiber porous membrane
JP2001087636A (en) Method for production of hollow fiber porous membrane made of polyethylene
JP4623780B2 (en) Melt casting method
JP4605840B2 (en) Method for forming hollow fiber porous membrane
JP2001190939A (en) Method of manufacturing polyethylene hollow fiber porous membrane