JP4775984B2 - Method for melting and forming hollow fiber porous membrane - Google Patents

Method for melting and forming hollow fiber porous membrane Download PDF

Info

Publication number
JP4775984B2
JP4775984B2 JP26779499A JP26779499A JP4775984B2 JP 4775984 B2 JP4775984 B2 JP 4775984B2 JP 26779499 A JP26779499 A JP 26779499A JP 26779499 A JP26779499 A JP 26779499A JP 4775984 B2 JP4775984 B2 JP 4775984B2
Authority
JP
Japan
Prior art keywords
liquid
hollow fiber
polyethylene
hollow
organic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26779499A
Other languages
Japanese (ja)
Other versions
JP2001087633A (en
Inventor
昇 久保田
博司 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP26779499A priority Critical patent/JP4775984B2/en
Publication of JP2001087633A publication Critical patent/JP2001087633A/en
Application granted granted Critical
Publication of JP4775984B2 publication Critical patent/JP4775984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、除濁等の濾過用途に好適な、緻密な細孔と高い透水性能を持つ、熱可塑性樹脂よりなる中空糸状多孔膜の製膜方法、および中空糸状多孔膜の製膜方法に好適に用いられる特殊な形状を持つ紡口に関する。
【0002】
【従来の技術】
精密濾過膜や限外濾過膜等の多孔膜による濾過操作は、自動車産業(電着塗料回収再利用システム)、半導体産業(超純水製造)、医薬食品産業(除菌、酵素精製)などの多方面にわたって実用化されている。特に近年は河川水等を除濁して飲料水や工業用水を製造するための手法としても多用されつつある。中でも中空糸状の多孔膜は、単位体積当たりに充填できる膜面積が大きくでき、単位空間占有体積当たりの濾過処理能力を高くできるため、特に多く利用されている。
【0003】
多孔膜の製法としては、相分離(相転換)を利用した方法が多用されている(滝澤章、膜、p367−418、(株)アイピーシー、1992年、あるいは吉川正和ら監修、膜技術第2版、p77−107、(株)アイピーシー、1997年、など)。中でも高分子を高温で溶剤と溶融した後に冷却して相分離させる熱誘起型相分離法(熱転相法、本明細書では溶融法と呼ぶ)は、基本的には熱可塑性高分子でさえあれば、常温付近での適当な溶剤がなくて他の相分離法がとれない高分子化合物にも広く適用が可能である優れた製膜方法である(滝澤章、膜、p404、(株)アイピーシー、1992年)。特に他の相分離法が取れないが安価でかつ機械的化学的強度に優れるポリオレフィン系高分子化合物(ポリプロピレン、ポリエチレン等)に適用できることは溶融法の大きな利点である。
【0004】
溶融法により製膜する場合のプロセスは、1)熱可塑性樹脂と溶剤とを押出機等で高温にて均一に溶融し、2)この溶融物を紡口より空気中を経て液浴中に押し出して冷却することにより相分離(高分子濃厚相と高分子希薄相の2相)を生起させた後固化(凝固)させ、3)固化物中の溶剤を除去する(このとき相分離時の高分子濃厚相部分が多孔膜骨格となり、相分離時の高分子希薄相部分が孔となる)方法が代表例の1つである(特開昭55−60537号公報、特開昭55−22398号公報など)。しかしながら溶融法において、積極的に紡口の形状を工夫することで膜性能の向上を図る検討はほとんど為されておらず、用いられる紡口の中空状物吐出孔の細孔長径比は、つくりやすさ等の理由からゼロに近いものが用いられている。
【0005】
【発明が解決しようとする課題】
本発明は、除濁等の濾過用途に好適な、緻密な細孔と高い透水性能を持つ、ポリエチレンよりなる中空糸状多孔膜の製膜方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、
(1)ポリエチレンと有機液体とを高温にて溶融した後、該溶融物を中空糸成型用紡口から、中空部内に中空部形成流体を注入しつつ中空糸状に空気中を経て液浴中に押し出して冷却固化し、しかる後に該有機液体を抽出除去して中空糸状多孔膜を得る方法であって、前記中空糸成型用紡口の中空状物吐出孔の細孔長径比が1以上であり、該押し出し物が空気中を走行する時間が0から0.5秒の間(ただし0は含まない)であり、かつ該中空部形成流体が紡口温度以上の沸点を持ち、かつポリエチレンと混合した際に一定の温度及びポリエチレン濃度範囲においてポリエチレン濃厚相液滴とポリエチレンが希薄な有機液体濃厚相液滴との2相共存状態を形成する有機液体であることを特徴とするポリエチレンより成る中空糸状多孔膜の溶融製膜方法、
(2)中空糸状押し出し物が空気中を走行する時間が0から0.2秒の間(ただし0は含まない)であることを特徴とする上記(1)記載の中空糸状多孔膜の溶融製膜方法、
【0007】
)液浴が実質的に水より成る上記(1)又は(2)に記載の中空糸状多孔膜の溶融製膜方法、
【0008】
以下、本発明について詳細に記述する。
まず、本発明による特殊形状の紡口について記述する。
基本的に、中空糸状物の押し出し成形用の紡口は、溶融物を中空状(円環状)に押し出すための円環状の孔と、押し出された中空状物の中空部が閉じて円柱状になってしまわないために押し出された中空状物の中空部に注入しておく中空部形成流体を吐出するための孔(上記円環状孔の内側に存在する;形状は円形孔)とを押し出し側の面に持つ紡口ノズルである。溶融物は、上記円環孔より、円環孔の内側の孔から中空部形成流体の注入を中空部内に受けつつ押し出される。このような中空糸状物の押し出し成形用の紡口の基本形の1例の概略図を図1に示した。
【0009】
図1において、Dは溶融物を押し出すための円環孔の外径であり、dはその円環孔の内径であり、Lはその円環孔の紡口断面におけるストレート部分(円環孔の外径および内径がそれぞれDとdのまま一定である部分)の長さであり、rは中空部形成流体吐出用孔の直径である。これらのうちの[L/D]、即ち溶融物を押し出し吐出するための円環孔ストレート部分の[(長さ)/(外径)]の比が本発明に言う細孔長径比である。
【0010】
溶融法により中空糸状多孔膜を押し出し成形する場合、細孔長径比が大きい紡口を用いると、得られる膜の性能が向上する(より緻密でより透水性能の高い中空糸状多孔膜が得られる)傾向にあることを見い出した。細孔長径比は1以上、好ましくは3以上、より好ましくは5以上である。細孔長径比の大きい中空糸状物押し出し成形用の紡口の例の概略図(図1のA−A’断面図に相当する図)を図2に示した。
【0011】
次いで、上記の本発明による特殊紡口を用いた熱可塑性樹脂より成る中空糸状多孔膜の溶融製膜方法について記述する。
熱可塑性樹脂(熱可塑性高分子)は、常温では変形しにくく弾性を有し塑性を示さないが、適当な加熱により塑性を現し、成形が可能になり、冷却して温度が下がると再びもとの弾性体に戻る可逆的変化を行い、その間に分子構造など化学的変化を生じない性質を持つ樹脂(高分子)である(化学大辞典編修委員会編集、化学大辞典6縮刷版、共立出版、860および867頁、1963年)。
【0012】
例として、12695の化学商品、化学工業日報社、1995年の熱可塑性プラスチックの項(829−882頁)記載の樹脂や、日本化学会編、化学便覧応用編改訂3版、丸善、1980年の809−810頁記載の樹脂等を挙げることができる。具体例名を挙げれば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、エチレンビニルアルコールコポリマー、ポリアミド、ポリエーテルイミド、ポリスチレン、ポリサルホン、ポリビニルアルコール、ポリフェニレンエーテル、ポリフェニレンサルファイド、酢酸セルロース、ポリアクリロニトリルなどである。中でもポリオレフィン系重合体(ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン等)は、疎水性のために耐水性が高いため水系濾過膜の素材として適しており、好適である。さらに、これらポリオレフィン系重合体の中でも、廃棄時に問題となるハロゲン元素を含まず、かつ化学反応性の高い3級炭素が少ないために膜洗浄時の薬品劣化が起こりにくく長期使用耐性が期待でき、かつ安価であるポリエチレンが、特に好適である。
【0013】
本発明で用いる有機液体は、熱可塑性高分子と混合した際に一定の温度および熱可塑性高分子濃度範囲において液液相分離状態(熱可塑性高分子濃厚相液滴/熱可塑性高分子希薄相即ち有機液体濃厚相液滴の2相共存状態)をとることができ、かつ沸点が液液相分離温度域の上限温度以上である液体である。単一液体でなく混合液体であってもよい。
このような有機液体と熱可塑性高分子とを液液相分離の起こる濃度範囲にて混合した場合、温度をその混合組成において液液相分離状態をとる上限温度以上に高温にすると熱可塑性高分子と有機液体とが均一に溶解した相溶物を得ることができる。該相溶物を冷却すると、液液2相(熱可塑性高分子濃厚相液滴と有機液体濃厚相液滴)の共存状態(液液相分離状態)が現れて孔構造が発生し、さらに熱可塑性高分子が固化する温度まで冷却することで孔構造が固定される。
【0014】
この相図の例を図3に示した。図3において、熱可塑性高分子濃度は、熱可塑性高分子重量と有機液体重量の和に対する熱可塑性高分子の重量の割合である。また、液1相領域は熱可塑性高分子と有機液体との相溶領域を、液液2相領域は熱可塑性高分子濃厚相(液状)と熱可塑性高分子希薄相(液体)との共存領域を、固化領域は熱可塑性高分子が固化する領域(固体熱可塑性高分子と有機液体との共存領域)をそれぞれ示す。
【0015】
孔構造が固定されたのち、膜より有機液体を除去することで中空糸状多孔体が得られる。このとき、液液相分離時の熱可塑性高分子濃厚相部分が冷却固化されて多孔構造(多孔体骨格)を形成し、熱可塑性高分子希薄相(有機液体濃厚相)部分が孔部分となる。従って、本発明に言う有機液体とは、高温では熱可塑性高分子の溶剤であるが、低温(例えば常温付近)では非溶剤である液体である。
例えば熱可塑性高分子がポリエチレンの場合、このような有機液体の例として、フタル酸ジブチル、フタル酸ジヘプチル、フタル酸ジオクチル、フタル酸ジ(2−エチルヘキシル)、フタル酸ジイソデシル、フタル酸ジトリデシル等のフタル酸エステル類、セバシン酸ジブチル等のセバシン酸エステル類、アジピン酸ジオクチル等のアジピン酸エステル類、マレイン酸ジオクチル等のマレイン酸エステル類、トリメリット酸トリオクチル等のトリメリット酸エステル類、リン酸トリブチル、リン酸トリオクチル等のリン酸エステル類、プロピレングリコールジカプレート、プロピレングリコールジオレエート等のグリコールエステル類、グリセリントリオレエート等のグリセリンエステル類などの単独あるいは2種以上の混合物を挙げることができる。さらに、単独ではポリエチレンと高温にても相溶しない液体や、流動パラフィンのように単独では高温でポリエチレンと相溶するものの相溶性が高すぎて液液2相の相分離状態をとらない液体を、有機液体の定義(ポリエチレンと混合した際に一定の温度およびポリエチレン濃度範囲において液液相分離状態をとることができかつ沸点が液液相分離温度域の上限温度以上の液体)を逸しない範囲内で前記有機液体例(フタル酸エステル類等)と混合した混合液体も有機液体の例として挙げることができる。
【0016】
熱可塑性高分子と上記有機液体とは、例えば2軸押し出し機を用いて所定の混合比にてその混合比における液液相分離温度域の上限温度以上の温度にて混合、相溶させることができる。熱可塑性高分子と有機液体との混合比は、熱可塑性高分子の比が小さすぎると得られる膜の強度が低くなりすぎて不利であり、逆に熱可塑性高分子の比が大きすぎると得られる膜の透水性能が低くなりすぎて不利である。熱可塑性高分子と有機液体との好ましい混合比は、熱可塑性高分子/有機液体の重量比で10/90から50/50である。
【0017】
相溶物(溶融物)は、押し出し機先端のヘッドと呼ばれる部分に導かれ、押し出される。このヘッド内の押し出し口に、相溶物を所定の形状に押し出すための口金を装着することで所定の形状に相溶物を成形して押し出すことができる。本発明の場合は、中空糸状に成形するための口金(中空糸成形用紡口)として、前述の本発明による特殊紡口を使用する。用いる特殊紡口の中空糸状物吐出孔の細孔長径比は1以上、好ましくは3以上、より好ましくは5以上である。細孔長径比が大きい紡口を用いると、得られる膜の性能が向上する(より緻密でより透水性能の高い中空糸状多孔膜が得られる)。熱可塑性高分子と有機液体との相溶物は、上記特殊紡口の円環孔より、円環孔の内側の孔から中空部形成流体の注入を中空部内に受けつつ空気中(窒素等の不活性ガス中でもよい)に押し出される。
【0018】
中空部形成流体は、押し出し物(熱可塑性高分子および有機液体)とは非反応性の気体(窒素ガス等)または液体を用いることができる。ただし、中空部形成流体が気体の場合、紡口から押し出された後の中空状物の断面形状の真円性を保つことは難しくなるため、中空部形成流体は液体であることが好ましい。中空部形成流体は紡口内から吐出されるため、吐出時にも液体であることを確保するためには、沸点が紡口温度以上であることが必要である。
【0019】
中空部形成流体の特性として、沸点が紡口温度以上であることに加えて、高温で熱可塑性高分子と液液相分離する能力を持つ液体、即ち熱可塑性高分子と混合した際に一定の温度および熱可塑性高分子濃度範囲において液液相分離状態(熱可塑性高分子濃厚相液滴/熱可塑性高分子希薄相即ち有機液体濃厚相液滴の2相共存状態)をとることができる液体を用いることで、得られる多孔膜の透水性能をさらに向上させることができる。この場合、中空糸成形用紡口(特殊紡口)から吐出されるときの中空部形成流体の温度は必ずしも熱可塑性高分子と液液相分離状態となる温度である必要はなく、液液相分離状態をとる温度域より高くてもよいし、低くてもよい。このような中空部形成用流体の例としては、前記の有機液体の例と同じ例を挙げることができる。なお、中空部形成流体の沸点は、紡口温度以上であれば、前記の有機液体とは異なり、液液相分離温度域の上限温度以下であってもよい。
【0020】
空気中に押し出された相溶物は、液浴に導かれ、押し出し物中の熱可塑性高分子が固化する温度まで冷却される。こうして紡口から押し出された相溶物は、紡口出口から液浴中通過の間に冷却されることで液液相分離が生起されて孔構造が発生し、次いで固化し、孔構造が固定される。液浴の組成は、押し出し物(熱可塑性高分子および有機液体)と反応性を有さない液体であれば特に限定はされず、押し出し物中の有機液体と同じであっても良い。ただし、温度は、その押し出し物組成での熱可塑性高分子の固化温度以下である必要がある。液浴の重要な機能は押し出し物の冷却機能であるので、冷却能力が高い、即ち熱容量が大きい液体である水が、液浴の組成物としては好ましい。
【0021】
紡口から空気中に押し出された相溶物が液浴に入るまでの時間、即ち空中走行時間は、ゼロから0.5秒までの間(ただしゼロは含まない)であることが好ましい。空中走行時間がゼロの場合は、紡口の押し出し面が液浴の液面と接している状態になる。紡口温度は熱可塑性高分子と有機液体の相溶温度、すなわち液液相分離温度域以上の温度に設定するため、熱可塑性高分子の固化温度以下に設定されている液浴より必然的に高い温度になる。したがって空中走行時間がゼロの場合は、紡口が液浴の液で常時冷却されて紡口の温度調節が不安定になるため、適さない。一方で空中走行時間が長くなりすぎると外表面の開孔性が低下し、膜の透水性能が低下して好ましくない。空中走行時間は、さらに好ましくはゼロから0.2秒の間(ただし0は含まない)である。空中走行時間の測定は、液浴出口で中空糸を張力をかけない状態で巻き取った場合には、巻き取り速度と空中走行距離(紡口面と液浴面との距離)から、下記式で求めることができる。
【0022】
【数1】

Figure 0004775984
【0023】
液浴から出てきた中空糸状物は、冷却途中で生起した液液相分離時の熱可塑性高分子濃厚相部分が冷却固化されて多孔構造(多孔体骨格)を形成し、液液相分離時の熱可塑性高分子希薄相(有機液体濃厚相)部分が有機液体の詰まった孔部分となっている。この孔部分に詰まっている有機液体を除去すれば、本発明開示の多孔膜が得られる。
膜中の有機液体の除去は、熱可塑性高分子を溶解または劣化させずかつ除去したい有機液体を溶解する揮発性液体で抽出除去し、その後乾燥して膜中に残存する上記揮発性液体を揮発除去することで実施できる。
このような有機液体抽出用の揮発性液体の例としては、ヘキサン、ヘプタン等の炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、メチルエチルケトンなどを挙げることができる。
【0024】
【発明の実施の形態】
以下に本発明の実施例を示すが、本発明はこれに限定されるものではない。
なお、平均孔径、空孔率、純水透水率、破断強度および破断伸度、粘度平均分子量は以下の測定方法より決定した。
平均孔径:ASTM:F316−86記載の方法(別称:ハーフドライ法)に従って測定した。使用液体にエタノールを用い、25℃、昇圧速度0.01atm/秒にて測定した。平均孔径[μm]は、下記式より求まる。
【0025】
【数2】
Figure 0004775984
【0026】
エタノールの25℃における表面張力は21.97dynes/cmである(日本化学会編、化学便覧基礎編改訂3版、II−82頁、丸善(株)、1984年
)ので、
平均孔径[μm]=62834/(ハーフドライ空気圧力[Pa])
にて求めることができる。
空孔率:空孔率は、下記式より求めた。
【0027】
【数3】
Figure 0004775984
【0028】
ここに、湿潤膜とは、孔内は水が満たされているが中空部内は水が入っていない状態の膜を指し、具体的には、10〜20cm長のサンプル膜をエタノール中に浸漬して孔内をエタノールで満たした後に水浸漬を4〜5回繰り返して孔内を充分に水で置換し、しかる後に中空糸の一端を手で持って5回程よく振り、さらに他端に手を持ちかえてまた5回程よく振って中空部内の水を除去することで得た。乾燥膜は、前記湿潤膜の重量測定後にオーブン中80℃で恒量になるまで乾燥させて得た。膜体積は、
膜体積[cm3
=π{(外径[cm]/2)2−(内径[cm]/2)2}(膜長[cm])
より求めた。膜1本では重量が小さすぎて重量測定の誤差が大きくなる場合は、複数本の膜を用いた。
【0029】
純水透水率:エタノール浸漬したのち数回純水浸漬を繰り返した約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内へ注射針を入れ、25℃の環境下にて注射針から0.1MPaの圧力にて25℃の純水を中空部内へ注入し、外表面から透過してくる純水の透過水量を測定し、以下の式より純水透水率を決定した。
【0030】
【数4】
Figure 0004775984
【0031】
ここに膜有効長とは、注射針が挿入されている部分を除いた、正味の膜長を指す。
破断強度および破断伸度:引っ張り試験機(島津製作所製オートグラフAG−A型)を用い、中空糸をチャック間距離50mm、引っ張り速度200mm/分にて引っ張り、破断時の荷重と変位から、以下の式により破断強度および破断伸度を決定した。
【0032】
【数5】
Figure 0004775984
【0033】
ここに、
膜断面積[cm2]=π{(外径[cm]/2)2−(内径[cm]/2)2
である。
破断伸度[%]=100(破断時変位[mm])/50
粘度平均分子量:粘度平均分子量(Mv)は、135℃におけるデカリン溶液の固有粘度([η])を測定して、下記式より求めた(J.Brandrup and E.H.Immergut(Editors)、Polymer Handbook(2nd Ed.)、IV−7頁、John Wiley & Sons、New York、1975年)。
【0034】
[η]=6.8×10-4×(Mv)0.67
なお、実施例における製膜フローの概略を図4に示した。
【0035】
【実施例1】
特殊紡口として、図2(b)に示すD=1.58mm、d=0.83mm、r=0.6mm、L=21mm(L/D=13.3)、x=20mm、y=20mmの紡口を用いた。
高密度ポリエチレン(三井化学製:ハイゼックスミリオン030S、粘度平均分子量:45万)20重量部と、フタル酸ジイソデシル(DIDP)とフタル酸ジ(2−エチルヘキシル)(DOP)との重量比にて3対1(DIDP/DOP=3/1)の混合有機液体80重量部とを、2軸混練押し出し機(東芝機械製TEM−35B−10/1V)で加熱混練して相溶させ(230℃)、押し出し機先端のヘッド(230℃)内の押し出し口に装着した上述の特殊紡口の相溶物押し出し用の円環孔から上記相溶物を押し出し、相溶物押し出し用円環孔の内側にある中空部形成流体吐出用の円形孔から中空部形成流体としてDOPを吐出させ、中空糸状押し出し物の中空部内に注入した。
【0036】
紡口から空気中に押し出した中空糸状溶融物を、0.5cmの空中走行距離を経て30℃の水浴中に入れ、約2m水中を通過させて冷却固化させた後、中空糸状物に張力をかけることなく16m/分の速度で水浴中から水浴外へ巻き取った。このときの空中走行時間は、空中走行距離と巻き取り速度から0.02秒と決定される。
次いで得られた中空糸状物を室温の塩化メチレン中で30分間の浸漬を5回繰り返して中空糸状物内のDIDPとDOPを抽出除去し、次いで50℃にて半日乾燥させて残存塩化メチレンを揮発除去した。
得られた膜の諸物性(平均孔径、空孔率、糸径、純水透水率、破断強度、破断伸度)を表1に示す。
【0037】
【実施例2】
空中走行距離を1.5cmにした以外は、実施例1と同様にして製膜を行った(空中走行時間は0.06秒)。
得られた膜の諸物性(平均孔径、空孔率、糸径、純水透水率、破断強度、破断伸度)を表1に示す。
【0038】
【比較例1】
紡口として、図2(b)においてD=1.58mm、d=0.83mm、r=0.6mm、L=1.0mm(L/D=0.6)、y=0mmである紡口を用いた以外は、実施例2と同様にして製膜を行った。
得られた膜の諸物性(平均孔径、空孔率、糸径、純水透水率、破断強度、破断伸度)を表1に示す。
【0039】
【表1】
Figure 0004775984
【0040】
【発明の効果】
本発明により、除濁等の濾過用途に好適な、緻密な細孔と高い透水性能を持つ、熱可塑性樹脂よりなる中空糸状多孔膜を押し出し成形するための好適な形状を持つ紡口およびそれを用いた熱可塑性樹脂より成る中空糸状多孔膜の製膜方法が提供できる。
【図面の簡単な説明】
【図1】中空糸状物の押し出し成形用の紡口の基本形の1例の概略図である。
【図2】細孔長径比の大きい中空糸状物の押し出し成形用の紡口の例の概略図である。(図1のA−A‘断面図に相当する図)
【図3】熱可塑性高分子と有機液体との相図の概念図である。
【図4】実施例における製膜フローの概略図である。
【符号の説明】
イ ・・・ 紡口吐出時点の相溶物
ロ ・・・ 空中走行部および液浴中での冷却過程
ハ ・・・ 液浴出の固化物
1 ・・・ ポリエチレンホッパー
2 ・・・ ポリエチレン供給口
3 ・・・ 有機液体供給流路
4 ・・・ 有機液体供給口
5 ・・・ 2軸混練押出機
6 ・・・ 導管
7 ・・・ ヘッド
8 ・・・ 定量ギアポンプ駆動部
9 ・・・ 定量ギアポンプ
10・・・ 中空糸成形用紡口
11・・・ 中空部形成流体供給流路
12・・・ ポリエチレンと有機液体の混合押し出し物
13・・・ 中空部形成流体
14・・・ 空中走行部分
15・・・ 水浴
16・・・ ロール
17・・・ 巻き取りロール[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for a method for producing a hollow fiber-like porous membrane made of a thermoplastic resin having dense pores and high water permeability, suitable for filtration applications such as turbidity, and a method for producing a hollow fiber-like porous membrane. It relates to a spout with a special shape used in
[0002]
[Prior art]
Filtration with porous membranes such as microfiltration membranes and ultrafiltration membranes is used in the automobile industry (electrodeposition paint recovery and reuse system), semiconductor industry (ultra pure water production), pharmaceutical food industry (sanitization, enzyme purification), etc. It has been put to practical use in many fields. In particular, in recent years, it has been widely used as a method for producing river water and the like to turbidity and to produce drinking water and industrial water. Among these, hollow fiber-like porous membranes are particularly frequently used because the membrane area that can be filled per unit volume can be increased and the filtration capacity per unit space occupied volume can be increased.
[0003]
As a method for producing a porous membrane, a method utilizing phase separation (phase transformation) is widely used (Akira Takizawa, Membrane, p367-418, IPC Co., Ltd., 1992, supervised by Yoshikawa Masakazu et al., Membrane Technology No. 1) 2nd edition, p77-107, IPC Corporation, 1997, etc.). Among them, the heat-induced phase separation method (thermal phase inversion method, referred to as the melting method in this specification) in which a polymer is melted with a solvent at a high temperature and then cooled and phase-separated is basically used even for a thermoplastic polymer. If present, it is an excellent film forming method that can be widely applied to a polymer compound that does not have an appropriate solvent near room temperature and cannot be used for other phase separation methods (Akira Takizawa, Membrane, p404, Inc.) IPC, 1992). In particular, it is a great advantage of the melting method that it can be applied to polyolefin polymer compounds (polypropylene, polyethylene, etc.) that are inexpensive and excellent in mechanical and chemical strength, although other phase separation methods cannot be obtained.
[0004]
The process for forming a film by the melting method is as follows: 1) The thermoplastic resin and the solvent are uniformly melted at a high temperature with an extruder or the like, and 2) This melt is extruded from the spinning port into the liquid bath through the air. And then solidify (solidify) after causing phase separation (two phases of polymer dense phase and polymer dilute phase) by cooling, and 3) remove the solvent in the solidified product (at this time, the high A representative example is a method in which a molecular dense phase portion becomes a porous membrane skeleton and a polymer dilute phase portion becomes pores during phase separation (Japanese Patent Laid-Open Nos. 55-60537 and 55-22398). Gazette). However, in the melting method, few studies have been made to improve the membrane performance by actively devising the shape of the nozzle, and the pore length ratio of the hollow discharge port of the nozzle used is A thing close to zero is used for reasons such as ease.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a hollow fiber-like porous membrane made of polyethylene and having fine pores and high water permeability suitable for filtration such as turbidity.
[0006]
[Means for Solving the Problems]
The present invention
(1) After melting polyethylene and an organic liquid at a high temperature, the melt is injected into the hollow part from the hollow fiber forming nozzle and injected into the hollow part into the hollow part through the air and into the liquid bath. This is a method of extruding and solidifying by cooling, and then extracting and removing the organic liquid to obtain a hollow fiber-like porous membrane, wherein the pore length ratio of the hollow material discharge hole of the hollow fiber molding nozzle is 1 or more The extrudate travels in the air for 0 to 0.5 seconds (excluding 0), and the hollow part forming fluid has a boiling point equal to or higher than the spinneret temperature and is mixed with polyethylene. A hollow fiber shape made of polyethylene, characterized in that it is an organic liquid that forms a two-phase coexistence state between a concentrated polyethylene droplet and a diluted organic liquid concentrated phase droplet at a constant temperature and in a polyethylene concentration range. Melting of porous membrane Film forming method,
(2) The hollow fiber-like porous membrane according to the above (1), wherein the hollow fiber-like extrudate travels in the air for 0 to 0.2 seconds (excluding 0). Membrane method,
[0007]
( 3 ) The melt film-forming method of the hollow fiber-like porous membrane according to the above (1) or (2) , wherein the liquid bath is substantially composed of water,
[0008]
The present invention will be described in detail below.
First, a specially shaped spinning hole according to the present invention will be described.
Basically, the spinneret for extrusion molding of hollow fiber-like materials is formed into a cylindrical shape by closing the annular hole for extruding the melt into a hollow shape (annular shape) and the hollow portion of the extruded hollow shape. Extrusion side with a hole for discharging the hollow part forming fluid to be injected into the hollow part of the extruded hollow object so as not to be formed (existing inside the annular hole; the shape is a circular hole) This is a nozzle with a nozzle. The melt is pushed out from the annular hole while receiving the injection of the hollow portion forming fluid into the hollow portion from the hole inside the annular hole. A schematic diagram of an example of the basic form of a spinning nozzle for extrusion molding of such a hollow fiber-like product is shown in FIG.
[0009]
In FIG. 1, D is the outer diameter of the annular hole for extruding the melt, d is the inner diameter of the annular hole, and L is the straight portion in the cross-sectional area of the annular hole (of the annular hole). The outer diameter and the inner diameter are the same as D and d, respectively, and r is the diameter of the hollow portion forming fluid discharge hole. Of these, [L / D], that is, the ratio of [(length) / (outer diameter)] of the circular hole straight portion for extruding and discharging the melt is the pore major axis ratio referred to in the present invention.
[0010]
When extruding a hollow fiber-like porous membrane by the melting method, the performance of the resulting membrane is improved by using a spout with a large pore length ratio (a hollow fiber-like porous membrane with higher density and higher water permeability can be obtained). I found that it was in a trend. The pore length ratio is 1 or more, preferably 3 or more, more preferably 5 or more. FIG. 2 shows a schematic diagram (a diagram corresponding to the AA ′ cross-sectional view of FIG. 1) of an example of a spinning nozzle for extrusion molding of a hollow fiber material having a large pore length ratio.
[0011]
Next, a method for melting and forming a hollow fiber-like porous membrane made of a thermoplastic resin using the above-described special nozzle according to the present invention will be described.
Thermoplastic resins (thermoplastic polymers) are not easily deformed at room temperature and are elastic and do not show plasticity. However, they exhibit plasticity by appropriate heating and become moldable. It is a resin (polymer) that has a reversible change back to its elastic body and does not produce chemical changes such as molecular structure in the meantime (edited by the Chemistry Dictionary Editorial Committee, Chemistry Dictionary 6 Reprint, Kyoritsu Publishing) 860 and 867, 1963).
[0012]
Examples include 12695 chemical products, Chemical Industry Daily, the resin described in the section of thermoplastics in 1995 (pages 829-882), the Chemical Society of Japan, Chemical Handbook Application 3rd revised edition, Maruzen, 1980 Examples thereof include the resins described on pages 809-810. Specific examples include polyethylene, polypropylene, polyvinylidene fluoride, ethylene vinyl alcohol copolymer, polyamide, polyether imide, polystyrene, polysulfone, polyvinyl alcohol, polyphenylene ether, polyphenylene sulfide, cellulose acetate, polyacrylonitrile, and the like. Among them, polyolefin polymers (polyethylene, polypropylene, polyvinylidene fluoride, etc.) are suitable because they are hydrophobic and have high water resistance and are suitable as materials for aqueous filtration membranes. Furthermore, among these polyolefin-based polymers, it does not contain a halogen element that becomes a problem at the time of disposal, and since there are few tertiary carbons with high chemical reactivity, chemical deterioration during film cleaning hardly occurs and long-term durability can be expected. Polyethylene that is inexpensive and inexpensive is particularly suitable.
[0013]
When the organic liquid used in the present invention is mixed with a thermoplastic polymer, it is in a liquid-liquid phase separation state (thermoplastic polymer dense phase droplet / thermoplastic polymer dilute phase) at a constant temperature and a thermoplastic polymer concentration range. It is a liquid that can take a two-phase coexistence state of organic liquid concentrated phase droplets) and has a boiling point equal to or higher than the upper limit temperature of the liquid-liquid phase separation temperature range. It may be a mixed liquid instead of a single liquid.
When such an organic liquid and a thermoplastic polymer are mixed in a concentration range where liquid-liquid phase separation occurs, the thermoplastic polymer is heated to a temperature higher than the upper limit temperature at which the liquid-liquid phase separation state is obtained in the mixed composition. And a compatible solution in which the organic liquid is uniformly dissolved. When the compatibilized material is cooled, a coexisting state (liquid-liquid phase separation state) of two liquid-liquid phases (thermoplastic polymer concentrated phase droplets and organic liquid concentrated phase droplets) appears, and a pore structure is generated. The pore structure is fixed by cooling to a temperature at which the plastic polymer solidifies.
[0014]
An example of this phase diagram is shown in FIG. In FIG. 3, the thermoplastic polymer concentration is the ratio of the weight of the thermoplastic polymer to the sum of the weight of the thermoplastic polymer and the weight of the organic liquid. The liquid 1 phase region is the compatible region of the thermoplastic polymer and the organic liquid, and the liquid / liquid 2 phase region is the coexistence region of the thermoplastic polymer dense phase (liquid) and the thermoplastic polymer dilute phase (liquid). The solidified region indicates a region where the thermoplastic polymer is solidified (a coexistence region of the solid thermoplastic polymer and the organic liquid).
[0015]
After the pore structure is fixed, the hollow fiber-like porous body is obtained by removing the organic liquid from the membrane. At this time, the thermoplastic polymer rich phase portion at the time of liquid-liquid phase separation is cooled and solidified to form a porous structure (porous body skeleton), and the thermoplastic polymer dilute phase (organic liquid rich phase) portion becomes a pore portion. . Accordingly, the organic liquid referred to in the present invention is a liquid which is a thermoplastic polymer solvent at a high temperature, but is a non-solvent at a low temperature (for example, near room temperature).
For example, when the thermoplastic polymer is polyethylene, examples of such organic liquids include phthalates such as dibutyl phthalate, diheptyl phthalate, dioctyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate, and ditridecyl phthalate. Acid esters, sebacic acid esters such as dibutyl sebacate, adipic acid esters such as dioctyl adipate, maleic acid esters such as dioctyl maleate, trimellitic acid esters such as trioctyl trimellitic acid, tributyl phosphate, List phosphate esters such as trioctyl phosphate, glycol esters such as propylene glycol dicaprate, propylene glycol dioleate, and glycerin esters such as glycerin trioleate, or a mixture of two or more. It can be. In addition, liquids that are not compatible with polyethylene alone at high temperatures, or liquids that are compatible with polyethylene at high temperatures alone, such as liquid paraffin, are too high in compatibility and do not take a liquid-liquid two-phase separation state. The range that does not deviate from the definition of organic liquid (liquid that can be in liquid-liquid phase separation at a certain temperature and polyethylene concentration range when mixed with polyethylene and whose boiling point is higher than the upper limit temperature of the liquid-liquid phase separation temperature range) A mixed liquid mixed with the above organic liquid examples (phthalic acid esters and the like) can also be given as examples of the organic liquid.
[0016]
The thermoplastic polymer and the organic liquid can be mixed and compatible at a temperature equal to or higher than the upper limit temperature of the liquid-liquid phase separation temperature range at a predetermined mixing ratio using, for example, a biaxial extruder. it can. The mixing ratio of the thermoplastic polymer and the organic liquid is disadvantageous if the ratio of the thermoplastic polymer is too small, because the strength of the resulting film becomes too low, and conversely, the ratio of the thermoplastic polymer is too large. The water permeability of the resulting membrane is too low, which is disadvantageous. A preferable mixing ratio of the thermoplastic polymer and the organic liquid is 10/90 to 50/50 in a weight ratio of the thermoplastic polymer / organic liquid.
[0017]
The compatible material (melt) is guided to a portion called a head at the tip of the extruder and extruded. By attaching a die for extruding the compatible material into a predetermined shape at the extrusion port in the head, the compatible material can be molded into a predetermined shape and extruded. In the case of the present invention, the above-described special nozzle according to the present invention is used as a die (hollow fiber forming nozzle) for forming into a hollow fiber shape. The pore diameter ratio of the hollow fiber-like material discharge hole of the special nozzle used is 1 or more, preferably 3 or more, more preferably 5 or more. When a spinneret having a large pore length ratio is used, the performance of the obtained membrane is improved (a hollow fiber-like porous membrane with higher density and higher water permeability can be obtained). The miscible material of the thermoplastic polymer and the organic liquid is in the air (such as nitrogen or the like) while receiving the injection of the fluid for forming the hollow part from the hole inside the annular hole from the annular hole of the special nozzle. Extruded in inert gas).
[0018]
As the hollow portion forming fluid, a gas (such as nitrogen gas) or a liquid that is non-reactive with the extrudate (thermoplastic polymer and organic liquid) can be used. However, when the hollow part forming fluid is a gas, it is difficult to maintain the roundness of the cross-sectional shape of the hollow object after being extruded from the spinning nozzle, and therefore the hollow part forming fluid is preferably a liquid. Since the hollow portion forming fluid is discharged from the inside of the spinning nozzle, it is necessary that the boiling point is equal to or higher than the spinning nozzle temperature in order to ensure that the fluid is liquid even at the time of discharging.
[0019]
As a characteristic of the hollow portion forming fluid, in addition to the boiling point being higher than the spinning temperature, it is constant when mixed with a liquid having the ability to perform liquid-liquid phase separation with a thermoplastic polymer at a high temperature, that is, a thermoplastic polymer. Liquid that can be in a liquid-liquid phase separation state (thermoplastic polymer dense phase droplet / thermoplastic polymer dilute phase, ie, two-phase coexistence state of organic liquid concentrated phase droplet) in the temperature and thermoplastic polymer concentration range By using, the water permeability of the obtained porous membrane can be further improved. In this case, the temperature of the hollow portion forming fluid when discharged from the hollow fiber forming nozzle (special nozzle) does not necessarily have to be in a liquid-liquid phase separated state from the thermoplastic polymer. It may be higher or lower than the temperature range in which the separated state is taken. As an example of such a fluid for forming a hollow part, the same example as the example of the organic liquid can be given. Note that the boiling point of the hollow portion forming fluid may be equal to or lower than the upper limit temperature of the liquid-liquid phase separation temperature region, unlike the organic liquid, as long as it is equal to or higher than the spinning temperature.
[0020]
The compatible material extruded into the air is introduced into a liquid bath and cooled to a temperature at which the thermoplastic polymer in the extruded material is solidified. The compatibilized material thus extruded from the spinneret is cooled while passing through the liquid bath from the spinneret outlet, causing liquid-liquid phase separation to generate a pore structure, and then solidifying to fix the pore structure. Is done. The composition of the liquid bath is not particularly limited as long as it is a liquid that is not reactive with the extrudate (thermoplastic polymer and organic liquid), and may be the same as the organic liquid in the extrudate. However, the temperature needs to be equal to or lower than the solidification temperature of the thermoplastic polymer in the extrudate composition. Since an important function of the liquid bath is a cooling function of the extrudate, water having a high cooling capacity, that is, a liquid having a large heat capacity, is preferable as the composition of the liquid bath.
[0021]
The time required for the compatibilized material extruded from the spinning nozzle to enter the liquid bath, that is, the air travel time, is preferably between zero and 0.5 seconds (however, it does not include zero). When the air travel time is zero, the extrusion surface of the spinning nozzle is in contact with the liquid surface of the liquid bath. The spinneret temperature is set to a temperature higher than the temperature at which the thermoplastic polymer and the organic liquid are compatible, that is, a temperature higher than the liquid-liquid phase separation temperature range. High temperature. Therefore, when the air travel time is zero, the spinning nozzle is always cooled with the liquid in the liquid bath and the temperature control of the spinning nozzle becomes unstable, which is not suitable. On the other hand, if the running time in the air is too long, the openability of the outer surface is lowered, and the water permeability of the membrane is lowered, which is not preferable. The air travel time is more preferably from zero to 0.00. For 2 seconds (but not including 0). The air travel time is measured using the following formula from the winding speed and air travel distance (distance between the nozzle surface and the liquid bath surface) when the hollow fiber is wound without applying tension at the liquid bath outlet. Can be obtained.
[0022]
[Expression 1]
Figure 0004775984
[0023]
The hollow fiber that emerged from the liquid bath is cooled and solidified in the thermoplastic polymer dense phase during liquid-liquid phase separation that occurs during cooling to form a porous structure (porous skeleton). During liquid-liquid phase separation The thermoplastic polymer dilute phase (organic liquid rich phase) is a pore portion filled with organic liquid. By removing the organic liquid clogged in the pores, the porous film disclosed in the present invention can be obtained.
The organic liquid in the film is removed by extracting and removing the volatile liquid that does not dissolve or deteriorate the thermoplastic polymer and dissolves the organic liquid to be removed, and then drying to volatilize the volatile liquid remaining in the film. It can be implemented by removing.
Examples of such volatile liquids for organic liquid extraction include hydrocarbons such as hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, and methyl ethyl ketone.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention are shown below, but the present invention is not limited thereto.
The average pore diameter, porosity, pure water permeability, breaking strength and breaking elongation, and viscosity average molecular weight were determined by the following measuring methods.
Average pore diameter: Measured according to the method described in ASTM: F316-86 (also known as the half dry method). Ethanol was used as the liquid used, and measurement was performed at 25 ° C. and a pressure increase rate of 0.01 atm / second. The average pore diameter [μm] is obtained from the following formula.
[0025]
[Expression 2]
Figure 0004775984
[0026]
Since the surface tension of ethanol at 25 ° C. is 21.97 dynes / cm (Edited by the Chemical Society of Japan, Revised 3rd edition of Chemical Handbook, II-82, Maruzen Co., Ltd., 1984),
Average pore diameter [μm] = 62834 / (half dry air pressure [Pa])
It can ask for.
Porosity: The porosity was determined from the following formula.
[0027]
[Equation 3]
Figure 0004775984
[0028]
Here, the wet membrane refers to a membrane in which the pores are filled with water but the hollow portion is not filled with water. Specifically, a sample membrane having a length of 10 to 20 cm is immersed in ethanol. After filling the hole with ethanol, repeat the water immersion 4-5 times to fully replace the hole with water, then hold the end of the hollow fiber with your hand and shake it well about 5 times, and then put your hand on the other end. It was obtained by shaking again about 5 times to remove the water in the hollow part. The dry film was obtained by measuring the weight of the wet film and drying in an oven at 80 ° C. until a constant weight was obtained. The membrane volume is
Film volume [cm 3 ]
= Π {(outer diameter [cm] / 2) 2 − (inner diameter [cm] / 2) 2 } (film length [cm])
I asked more. When the weight of one film is too small and the error in weight measurement becomes large, a plurality of films are used.
[0029]
Pure water permeability: Sealed at one end of a 10 cm long wet hollow fiber membrane that had been immersed in ethanol and then repeatedly immersed in pure water several times, put an injection needle into the hollow part at the other end, and at 25 ° C. in an environment Pure water at 25 ° C. was injected into the hollow portion from the injection needle at a pressure of 0.1 MPa, the amount of pure water permeated from the outer surface was measured, and the pure water permeability was determined from the following equation.
[0030]
[Expression 4]
Figure 0004775984
[0031]
Here, the effective membrane length refers to the net membrane length excluding the portion where the injection needle is inserted.
Breaking strength and breaking elongation: Using a tensile tester (Autograph AG-A type, manufactured by Shimadzu Corporation), the hollow fiber was pulled at a distance between chucks of 50 mm and a pulling speed of 200 mm / min. The breaking strength and breaking elongation were determined by the following formula.
[0032]
[Equation 5]
Figure 0004775984
[0033]
here,
Membrane cross-sectional area [cm 2 ] = π {(outer diameter [cm] / 2) 2 − (inner diameter [cm] / 2) 2 }
It is.
Elongation at break [%] = 100 (displacement at break [mm]) / 50
Viscosity average molecular weight: The viscosity average molecular weight (Mv) was determined from the following formula by measuring the intrinsic viscosity ([η]) of a decalin solution at 135 ° C. (J. Brandrup and E. H. Immergut (Editors), Polymer) Handbook (2nd Ed.), Page IV-7, John Wiley & Sons, New York, 1975).
[0034]
[Η] = 6.8 × 10 −4 × (Mv) 0.67
In addition, the outline of the film forming flow in an Example was shown in FIG.
[0035]
[Example 1]
As a special nozzle, D = 1.58 mm, d = 0.83 mm, r = 0.6 mm, L = 21 mm (L / D = 13.3), x = 20 mm, y = 20 mm shown in FIG. The spinneret was used.
3 parts by weight ratio of 20 parts by weight of high-density polyethylene (Mitsui Chemicals: Hi-Z Million 030S, viscosity average molecular weight: 450,000) and diisodecyl phthalate (DIDP) and di (2-ethylhexyl) phthalate (DOP) 1 (DIDP / DOP = 3/1) mixed organic liquid 80 parts by weight with a twin-screw kneading extruder (Toshiba Machine TEM-35B-10 / 1V) to make them compatible (230 ° C.) The above-mentioned compatible material is extruded from the annular hole for extruding the compatible material of the above-mentioned special spinning nozzle attached to the extrusion port in the head (230 ° C.) at the tip of the extruder, and inside the annular hole for extruding the compatible material. DOP was discharged as a hollow portion forming fluid from a circular hole for discharging a hollow portion forming fluid and injected into the hollow portion of the hollow fiber-like extrudate.
[0036]
The hollow fiber-like melt extruded into the air from the spinning nozzle is placed in a 30 ° C. water bath through an air travel distance of 0.5 cm, passed through about 2 m of water, cooled and solidified, and then tension is applied to the hollow fiber-like material. The film was wound from the water bath to the outside of the water bath at a speed of 16 m / min. The air travel time at this time is determined to be 0.02 seconds from the air travel distance and the winding speed.
The hollow fiber-like material thus obtained was immersed in methylene chloride at room temperature for 30 minutes five times to extract and remove DIDP and DOP in the hollow fiber-like material, and then dried at 50 ° C. for half a day to volatilize the remaining methylene chloride. Removed.
Table 1 shows various physical properties (average pore diameter, porosity, thread diameter, pure water permeability, breaking strength, breaking elongation) of the obtained film.
[0037]
[Example 2]
A film was formed in the same manner as in Example 1 except that the air travel distance was 1.5 cm (air travel time was 0.06 seconds).
Table 1 shows various physical properties (average pore diameter, porosity, thread diameter, pure water permeability, breaking strength, breaking elongation) of the obtained film.
[0038]
[Comparative Example 1]
As shown in FIG. 2 (b), D = 1.58 mm, d = 0.83 mm, r = 0.6 mm, L = 1.0 mm (L / D = 0.6), and y = 0 mm. A film was formed in the same manner as in Example 2 except that was used.
Table 1 shows various physical properties (average pore diameter, porosity, thread diameter, pure water permeability, breaking strength, breaking elongation) of the obtained film.
[0039]
[Table 1]
Figure 0004775984
[0040]
【The invention's effect】
According to the present invention, a spinneret having a suitable shape for extruding a hollow fiber-like porous membrane made of a thermoplastic resin having fine pores and high water permeability, suitable for filtration applications such as turbidity, and the like A method for forming a hollow fiber porous membrane made of the thermoplastic resin used can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view of an example of a basic form of a spinning nozzle for extrusion molding of a hollow fiber-like product.
FIG. 2 is a schematic view of an example of a spinning nozzle for extrusion molding of a hollow fiber material having a large pore length ratio. (Drawing equivalent to AA 'sectional view of FIG. 1)
FIG. 3 is a conceptual diagram of a phase diagram of a thermoplastic polymer and an organic liquid.
FIG. 4 is a schematic diagram of a film forming flow in an example.
[Explanation of symbols]
B ... Compatibilizer at the time of spinning nozzle discharge ... Cooling process in the aerial traveling section and liquid bath C ... Solidified product from liquid bath 1 ... Polyethylene hopper 2 ... Polyethylene supply port DESCRIPTION OF SYMBOLS 3 ... Organic liquid supply flow path 4 ... Organic liquid supply port 5 ... Biaxial kneading extruder 6 ... Pipe 7 ... Head 8 ... Metering gear pump drive part 9 ... Metering gear pump DESCRIPTION OF SYMBOLS 10 ... Spindle 11 for hollow fiber shaping | molding ... Hollow part formation fluid supply flow path 12 ... Mixture extrudate 13 of polyethylene and organic liquid ... Hollow part formation fluid 14 ... Aerial running part 15 .. Water bath 16 ... Roll 17 ... Winding roll

Claims (3)

ポリエチレンと有機液体とを高温にて溶融した後、該溶融物を中空糸成型用紡口から、中空部内に中空部形成流体を注入しつつ中空糸状に空気中を経て液浴中に押し出して冷却固化し、しかる後に該有機液体を抽出除去して中空糸状多孔膜を得る方法であって、前記中空糸成型用紡口の中空状物吐出孔の細孔長径比が1以上であり、該押し出し物が空気中を走行する時間が0から0.5秒の間(ただし0は含まない)であり、かつ該中空部形成流体が紡口温度以上の沸点を持ち、かつポリエチレンと混合した際に一定の温度及びポリエチレン濃度範囲においてポリエチレン濃厚相液滴とポリエチレンが希薄な有機液体濃厚相液滴との2相共存状態を形成する有機液体であることを特徴とするポリエチレンより成る中空糸状多孔膜の溶融製膜方法。After melting polyethylene and organic liquid at a high temperature, the melt is extruded through a hollow fiber-forming spinneret into a hollow part, extruded into a hollow fiber into the liquid bath, and cooled. A method of solidifying and then extracting and removing the organic liquid to obtain a hollow fiber-like porous membrane, wherein the ratio of pore lengths of the hollow material discharge holes of the hollow fiber molding nozzle is 1 or more, and the extrusion when the object is between the time to travel through the air 0 0.5 second (but 0 is not included), and the hollow section-forming fluid Chi lifting a boiling point above the spinneret temperature, and mixed with polyethylene A hollow fiber-like porous membrane made of polyethylene, characterized in that it is an organic liquid that forms a two-phase coexistence state of a polyethylene dense phase droplet and a polyethylene-thin organic liquid dense phase droplet in a certain temperature and polyethylene concentration range How to melt film . 中空糸状押し出し物が空気中を走行する時間が0から0.2秒の間(ただし0は含まない)であることを特徴とする請求項1に記載の中空糸状多孔膜の溶融製膜方法。  The method for melting and forming a hollow fiber-like porous membrane according to claim 1, wherein the time for the hollow fiber-like extrudate to travel in the air is between 0 and 0.2 seconds (excluding 0). 液浴が実質的に水より成る請求項1又はに記載の中空糸状多孔膜の溶融製膜方法。The method for melting and forming a hollow fiber porous membrane according to claim 1 or 2 , wherein the liquid bath is substantially composed of water.
JP26779499A 1999-09-21 1999-09-21 Method for melting and forming hollow fiber porous membrane Expired - Lifetime JP4775984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26779499A JP4775984B2 (en) 1999-09-21 1999-09-21 Method for melting and forming hollow fiber porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26779499A JP4775984B2 (en) 1999-09-21 1999-09-21 Method for melting and forming hollow fiber porous membrane

Publications (2)

Publication Number Publication Date
JP2001087633A JP2001087633A (en) 2001-04-03
JP4775984B2 true JP4775984B2 (en) 2011-09-21

Family

ID=17449695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26779499A Expired - Lifetime JP4775984B2 (en) 1999-09-21 1999-09-21 Method for melting and forming hollow fiber porous membrane

Country Status (1)

Country Link
JP (1) JP4775984B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001074A (en) * 2001-06-25 2003-01-07 Daicel Chem Ind Ltd Porous cellulose derivative membrane and method of manufacturing the same
CN100438959C (en) * 2003-10-03 2008-12-03 株式会社吴羽 Vinylidene fluoride based resin porous hollow yarn and method for production thereof
JP2006088114A (en) * 2004-09-27 2006-04-06 Asahi Kasei Chemicals Corp Hydrophilic porous membrane
KR101137989B1 (en) * 2007-03-12 2012-04-20 보오드 오브 리젠츠, 더 유니버시티 오브 텍사스 시스템 High selectivity polymer-nano-porous particle membrane structures
JP5961943B2 (en) * 2011-08-17 2016-08-03 東レ株式会社 Porous hollow fiber membrane mainly composed of polyacetal and method for producing the same
JP6490364B2 (en) * 2014-08-27 2019-03-27 有限会社ワンリッチインターナショナル Breast self-examination aid and method for producing resin film used therefor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560537A (en) * 1978-10-30 1980-05-07 Teijin Ltd Preparation of porous membrane
DE3026718A1 (en) * 1980-07-15 1982-02-04 Akzo Gmbh, 5600 Wuppertal HOLLOW FIBER MEMBRANE FOR PLASMA SEPARATION
JPS601406B2 (en) * 1981-11-26 1985-01-14 工業技術院長 Manufacturing method of hollow carbon fiber
JPS6190704A (en) * 1984-10-09 1986-05-08 Terumo Corp Hollow yarn membrane
JPH0753925B2 (en) * 1986-01-09 1995-06-07 旭化成工業株式会社 Manufacturing method of hollow fiber under electric field
JPS6378724A (en) * 1986-09-22 1988-04-08 Asahi Chem Ind Co Ltd Manufacture of hollow polyoxymethylene unstretched body
DE68914156T2 (en) * 1988-11-10 1994-08-25 Memtec Ltd EXTRUSION OF HOLLOW FIBER MEMBRANES.
JPH02241526A (en) * 1989-03-15 1990-09-26 Terumo Corp Hollow yarn membranes and pump oxygenator using the same
JP2835365B2 (en) * 1989-07-10 1998-12-14 旭化成工業株式会社 Method for producing porous polyolefin membrane
JPH07157911A (en) * 1993-12-10 1995-06-20 Toray Ind Inc Production of expanded yarn
IL130129A0 (en) * 1996-12-31 2000-06-01 Althin Medical Inc Polysulfone semipermeable membranes and methods for making the same

Also Published As

Publication number Publication date
JP2001087633A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP5893093B2 (en) Amorphous porous hollow fiber membrane, method for producing a shaped porous hollow fiber membrane, module using the shaped porous hollow fiber membrane, filtration device, and water treatment method
JP5717987B2 (en) Porous multilayer hollow fiber membrane
JP5546992B2 (en) Method for producing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filtration device using porous hollow fiber membrane, and water treatment method using porous hollow fiber membrane
CN109922875B (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP5878288B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
JP2013173139A (en) Manufacturing method of porous hollow fiber membrane
JP4775984B2 (en) Method for melting and forming hollow fiber porous membrane
JP4623780B2 (en) Melt casting method
JP5546993B2 (en) Manufacturing method of irregular porous hollow fiber membrane, irregular porous hollow fiber membrane, module using irregular porous hollow fiber membrane, filtration device using irregular porous hollow fiber membrane, and filtration using irregular porous hollow fiber membrane Method
JP2008093503A (en) Manufacturing method of porous hollow fiber membrane
JP2001157827A (en) Polyethylene hollow-fiber porous membrane
JP2001190940A (en) Method of manufacturing polyethylene hollow fiber porous membrane
JP4605840B2 (en) Method for forming hollow fiber porous membrane
JP6097818B2 (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP2001087636A (en) Method for production of hollow fiber porous membrane made of polyethylene
JP2001157826A (en) Anisotropic polyethylene hollow-fiber porous membrane
JP2024039388A (en) Method for manufacturing hollow fiber porous membrane
JP2010082509A (en) Porous membrane
JP5894687B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
US5507984A (en) Method for preparing poly(phenylene sulfide) membranes
JP2001190939A (en) Method of manufacturing polyethylene hollow fiber porous membrane
JP4312519B2 (en) Method for producing porous membrane
JP2006088114A (en) Hydrophilic porous membrane
JPS6392712A (en) Production of hollow yarn porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Ref document number: 4775984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term