JP2001190939A - Method of manufacturing polyethylene hollow fiber porous membrane - Google Patents

Method of manufacturing polyethylene hollow fiber porous membrane

Info

Publication number
JP2001190939A
JP2001190939A JP2000002246A JP2000002246A JP2001190939A JP 2001190939 A JP2001190939 A JP 2001190939A JP 2000002246 A JP2000002246 A JP 2000002246A JP 2000002246 A JP2000002246 A JP 2000002246A JP 2001190939 A JP2001190939 A JP 2001190939A
Authority
JP
Japan
Prior art keywords
liquid
polyethylene
hollow fiber
porous membrane
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000002246A
Other languages
Japanese (ja)
Inventor
Noboru Kubota
昇 久保田
Hiroshi Hatayama
博司 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2000002246A priority Critical patent/JP2001190939A/en
Publication of JP2001190939A publication Critical patent/JP2001190939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a polyethylene hollow fiber porous membrane simultaneously having dense microspores and high water permeability, which is suited for the use in turbidity removal by the filtration. SOLUTION: In the method for obtaining a polyethylene hollow fiber porous membrane by fusing a polyethylene and an organic liquid at a high temperature, extruding the fused liquid into a liquid into a liquid bath to solidify the fused liquid by cooling through the air to constitute hollow fibrous state and then extracting and removing said organic liquid, (1) the liquid bath is constituting of two layers wherein the upper layer part comprises a liquid immiscible with water having an activity to separatee polyethylene in liquid-liquid phase at a high temperature and the lower layer part comprises water, and (2) the hollow fibrous material is elongated so that the elongation retention becomes from 5% or more to 150% or less prior to or after the organic liquid after the solidifying by cooling procedure is extracted and removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、除濁等の濾過用途
に好適な、緻密な細孔と高い透水能力を持つポリエチレ
ン中空糸状多孔膜の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a polyethylene hollow fiber porous membrane having fine pores and high water permeability, which is suitable for filtration applications such as turbidity.

【0002】[0002]

【従来の技術】精密濾過膜や限外濾過膜等の多孔膜によ
る濾過操作は、自動車産業(電着塗料回収再利用システ
ム)、半導体産業(超純水製造)、医薬食品産業(除
菌、酵素精製)などの多方面にわたって実用化されてい
る。特に近年は河川水等を除濁して飲料水や工業用水を
製造するための手法としても多用されつつある。膜の素
材としては、セルロース系、ポリアクリロニトリル系、
ポリオレフィン系等多種多様のものが用いられている。
中でもポリオレフィン系重合体(ポリエチレン、ポリプ
ロピレン、ポリフッ化ビニリデン等)は、疎水性のため
に耐水性が高いので水系濾過膜の素材として適してお
り、多用されている。これらポリオレフィン系重合体の
中でも、廃棄時に問題となるハロゲン元素を含まず、か
つ化学反応性の高い3級炭素が少ないために膜洗浄時の
薬品劣化が起こりにくく長期使用耐性が期待でき、かつ
安価であるポリエチレンが、今後特に有望と考えられ
る。
2. Description of the Related Art Filtration operations using porous membranes such as microfiltration membranes and ultrafiltration membranes are carried out in the automobile industry (electrodeposition paint recovery and reuse system), the semiconductor industry (ultra pure water production), the pharmaceutical food industry (sterilization, It has been put to practical use in many fields such as enzyme purification. Particularly in recent years, it has been widely used as a method for producing drinking water and industrial water by turbidizing river water and the like. Materials for the membrane include cellulose, polyacrylonitrile,
A wide variety of materials such as polyolefins are used.
Among them, polyolefin-based polymers (polyethylene, polypropylene, polyvinylidene fluoride, etc.) are suitable for use as a material for aqueous filtration membranes because of their high water resistance due to their hydrophobicity, and are widely used. Among these polyolefin polymers, they do not contain halogen elements, which are problematic at the time of disposal, and have a low level of highly reactive tertiary carbon. Is particularly promising in the future.

【0003】ポリエチレン膜としては、特開平3−42
025号公報に開示されているような、均一な3次元の
多孔構造(上記公報第3頁右上欄10−11行目)の膜
が従来より知られている。この均一な3次元の多孔構造
とは、膜断面方向に孔径変化がほとんどなく、膜断面の
任意の2点部分どうしでの孔径(および孔径分布)がほ
ぼ等しい構造を意味する。このような膜断面方向の構造
が均一な膜では、膜断面全体の透過抵抗が大きくなり、
高い透水性能を得ようとすれば孔径を大きくせざるをえ
ず、緻密な細孔(小さな孔径)を持ちながら高い透水性
能を持つ膜を得ることは困難であった。
As a polyethylene film, Japanese Patent Application Laid-Open No. 3-42
A membrane having a uniform three-dimensional porous structure (page 3, upper right column, lines 10-11) as disclosed in Japanese Patent Publication No. 025 is conventionally known. This uniform three-dimensional porous structure means a structure in which there is almost no change in the pore diameter in the membrane cross-sectional direction, and the pore diameters (and pore diameter distributions) at any two points in the membrane cross-section are almost equal. In such a film having a uniform structure in the film cross section direction, the transmission resistance of the entire film cross section is increased,
In order to obtain high water permeability, it was necessary to increase the pore diameter, and it was difficult to obtain a membrane having high water permeability while having fine pores (small pore diameter).

【0004】[0004]

【発明が解決しようとする課題】本発明は、除濁等の濾
過用途に好適な、緻密な細孔と高い透水能力を持つポリ
エチレン中空糸状多孔膜の製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a polyethylene hollow fiber porous membrane having dense pores and high water permeability, which is suitable for filtration applications such as turbidity.

【0005】[0005]

【課題を解決するための手段】本発明者等は、前記課題
を解決するために鋭意検討を行った結果、下記製法によ
り得られるポリエチレン膜が、緻密な細孔を持ちながら
高い透水性能を発現することを見出し、本発明をなすに
至った。すなわち本発明は、(1)ポリエチレンと有機
液体とを高温にて溶融した後、該溶融物を中空糸成型用
紡口から中空部内に中空部形成流体を注入しつつ中空糸
状に空気中を経て液浴中に押し出して冷却固化し、しか
る後に該有機液体を抽出除去してポリエチレン中空糸状
多孔膜を得る方法において、(a)該液浴が上層部は高
温にてポリエチレンと液液相分離する能力を持つ水には
非混合性の液から成り下層部は水より成る2層構成の液
浴であり、かつ(b)冷却固化後の有機液体の抽出除去
の前あるいは後に残留伸び率が5%以上150%以下に
なるような中空糸状物の延伸を行うことを特徴とする、
ポリエチレン中空糸状多孔膜の製造方法、(2)上層部
厚みが1mm以上30cm以下である、上記(1)記載
のポリエチレン中空糸状多孔膜の製造方法、(3)上層
部厚みが5mm以上30cm以下である、上記(1)記
載のポリエチレン中空糸状多孔膜の製造方法、(4)上
層部厚みが10cm以下である、上記(2)及び(3)
記載のポリエチレン中空糸状多孔膜の製造方法、(5)
上層部厚みが2cm以下である、上記(2)及び(3)
記載のポリエチレン中空糸状多孔膜の製造方法、(6)
下層部厚みが5cm以上である、上記(1)−(5)記
載のポリエチレン中空糸状多孔膜の製造方法、(7)下
層部厚みが10cm以上である、上記(1)−(5)記
載のポリエチレン中空糸状多孔膜の製造方法、
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the polyethylene membrane obtained by the following production method has high water permeability while having fine pores. To accomplish the present invention. That is, the present invention provides (1) a method in which polyethylene and an organic liquid are melted at a high temperature, and then the melt is injected into a hollow portion from a spinning hole for forming a hollow fiber into a hollow portion while passing through the air into a hollow fiber shape. In a method of extruding into a liquid bath, solidifying by cooling, and then extracting and removing the organic liquid to obtain a polyethylene hollow fiber porous membrane, (a) the liquid bath separates liquid polyethylene and liquid phase at a high temperature in an upper layer portion of the liquid bath. The lower layer is a two-layer liquid bath composed of water which is immiscible with water and having a residual elongation of 5% before or after extraction and removal of the organic liquid after cooling and solidification. % To 150% or less.
A method for producing a polyethylene hollow fiber-like porous membrane, (2) a method for producing a polyethylene hollow fiber-like porous membrane according to the above (1), wherein the upper layer thickness is 1 mm or more and 30 cm or less, and (3) an upper layer thickness of 5 mm or more and 30 cm or less. (1) The method for producing a polyethylene hollow fiber-like porous membrane according to the above (1), (4) the above (2) and (3), wherein the thickness of the upper layer portion is 10 cm or less.
(5) The method for producing a polyethylene hollow fiber-like porous membrane according to the above (5).
(2) and (3) above, wherein the thickness of the upper layer portion is 2 cm or less.
(6) The method for producing a polyethylene hollow fiber-like porous membrane according to the above (6).
(1) The method for producing a polyethylene hollow fiber porous membrane according to (1) to (5), wherein the thickness of the lower layer is 5 cm or more; (7) The method according to (1) to (5), wherein the thickness of the lower layer is 10 cm or more. A method for producing a polyethylene hollow fiber-like porous membrane,

【0006】(8)冷却固化後の有機液体の抽出除去の
前あるいは後に行う延伸による残留伸び率が10%以上
100%以下である、上記(1)−(7)記載のポリエ
チレン中空糸状多孔膜の製造方法、(9)中空部形成流
体が、紡口温度以上の沸点を持つ液体である、上記
(1)−(8)記載のポリエチレン中空糸状多孔膜の製
造方法、(10)中空部形成流体が、紡口温度以上の沸
点を持ち、かつ高温にてポリエチレンと液液相分離する
能力を持つ液体である、上記(1)−(8)記載のポリ
エチレン中空糸状多孔膜の製造方法、に関する。
(8) The polyethylene hollow fiber porous membrane according to the above (1) to (7), wherein the residual elongation by stretching before or after extraction and removal of the organic liquid after cooling and solidification is 10% or more and 100% or less. (9) The method for producing a polyethylene hollow fiber porous membrane according to the above (1) to (8), wherein the hollow part forming fluid is a liquid having a boiling point not lower than the spinning temperature, and (10) forming the hollow part. The method for producing a polyethylene hollow fiber-like porous membrane according to the above (1) to (8), wherein the fluid is a liquid having a boiling point equal to or higher than the spinning temperature and having a capability of performing liquid-liquid phase separation with polyethylene at a high temperature. .

【0007】上記の製法により作製されるポリエチレン
中空糸状多孔膜は、その膜断面が均一な3次元構造をな
さず、異方性構造をとる。異方性構造とは、膜断面方向
において孔径が一様(均一)ではなく変化する構造を指
す。異方性構造では、膜の分離機能(濾過における阻止
能力)を決定しかつ透過抵抗が大きいために透水能力を
下げる原因にもなっている最小孔径層(最も緻密な層)
が、膜断面部分の1部分しか占めない。すなわち異方性
構造膜の断面構造は、膜の分離機能を決める緻密な細孔
(小孔径の孔)を持ち透過抵抗が大きいものの膜断面部
分の1部分しか占めない最小孔径層と、膜の分離機能に
は直接は関与せずかつ最小孔径層よりも大孔径の連通孔
より形成されるゆえ膜の透過抵抗の増大にはあまり寄与
しない最小孔径層以外の部分とから成る。
[0007] The polyethylene hollow fiber-like porous membrane produced by the above-mentioned production method does not have a uniform three-dimensional structure in cross section, but has an anisotropic structure. The anisotropic structure refers to a structure in which the pore diameter changes rather than being uniform (uniform) in the membrane cross-sectional direction. In the anisotropic structure, the minimum pore size layer (the densest layer) that determines the separation function (blocking ability in filtration) of the membrane and causes a decrease in water permeability due to high permeation resistance
Occupies only one portion of the membrane cross section. In other words, the cross-sectional structure of the anisotropic structure membrane has a minimum pore diameter layer that has dense pores (pores with small pore diameters) that determine the separation function of the membrane and has a high permeation resistance but occupies only one part of the membrane cross-section. It consists of portions other than the minimum pore size layer which are not directly involved in the separation function and are formed of communication holes having a larger pore size than the minimum pore size layer, and therefore do not contribute much to the increase in the permeation resistance of the membrane.

【0008】このような異方性構造の形成により、緻密
な細孔の存在と高い透水能力の発現とを両立できるポリ
エチレン多孔膜を形成できる。特に、中空部形成流体
が、紡口温度以上の沸点を持ち、かつ高温にてポリエチ
レンと液液相分離する能力を持つ液体である場合は、内
外両表面に大きな孔が開口し、最小孔径層が、外表面で
も内表面でもない膜の断面部分内に存在する、膜内部緻
密型の異方性構造が形成される。このような構造の膜の
場合、濾過処理される液は、最小孔径層を通過する前に
最小孔径層よりは孔径の大きい外表面または内表面の孔
をまず通過する。
By forming such an anisotropic structure, it is possible to form a porous polyethylene membrane which can achieve both the existence of dense pores and the development of high water permeability. In particular, when the hollow part forming fluid is a liquid having a boiling point not lower than the spinning temperature and a liquid capable of liquid-liquid phase separation with polyethylene at a high temperature, large pores are opened on both the inner and outer surfaces, and the minimum pore diameter layer is formed. However, a dense anisotropic structure inside the film, which is present in the cross-sectional portion of the film that is neither the outer surface nor the inner surface, is formed. In the case of a membrane having such a structure, the liquid to be filtered first passes through pores on the outer surface or inner surface having a larger pore size than the smallest pore size layer before passing through the smallest pore size layer.

【0009】このときに粗大な粒子や濁質成分は最小孔
径層での濾過分離が行われる前に外表面または内表面に
て除去され、ある程度清澄化された(粗分離が行われ
た)液が最小孔径層に送られ、ここで本来要求される緻
密な分離(小さい孔による分離)が行われる。いわば1
回の膜濾過で2段濾過(前濾過すなわち粗分離と本濾
過)ができることになり、効率の良い濾過処理が可能に
なる。なお、特開平3−42025号公報に開示されて
いるような、従来型の均一な(非異方性の)3次元の多
孔構造では、いわば膜断面全体が最小孔径層であるに等
しくなり、緻密な細孔の存在と高い透水能力の発現との
両立は困難である。膜断面構造が異方性か均一かの判断
は、膜断面の電子顕微鏡観察により行うことができる。
At this time, coarse particles and turbid components are removed on the outer surface or inner surface before filtration and separation in the minimum pore size layer, and the liquid is clarified to some extent (coarse separation is performed). Is sent to the smallest pore diameter layer, where the originally required dense separation (separation by small pores) is performed. 1
Two-stage filtration (pre-filtration, that is, coarse separation and main filtration) can be performed by two times of membrane filtration, and efficient filtration can be performed. In a conventional uniform (non-anisotropic) three-dimensional porous structure as disclosed in Japanese Patent Application Laid-Open No. 3-42025, the entire membrane cross section is equivalent to the minimum pore diameter layer. It is difficult to achieve both the presence of dense pores and the development of high water permeability. Whether the film cross-sectional structure is anisotropic or uniform can be determined by observing the film cross section with an electron microscope.

【0010】以下、本発明の製造方法の詳細について説
明する。ポリエチレンは、(1)安価で良好な機械的強
度物性を持つことに加え、(2)化学反応性に富む3級
炭素量が少ないため、3級炭素含量の多い同類ポリオレ
フィンのポリプロピレン等に比べて薬品洗浄等による化
学劣化が少なく長期耐久性が期待できる、(3)廃棄時
に問題になるハロゲン元素を含まない、といった利点を
持つ。ポリエチレンには高密度ポリエチレンと低密度ポ
リエチレンがあるが、得られる膜の強度の点から高密度
ポリエチレンが好ましい。また、ポリエチレンには種々
の分子量のものが存在するが、得られる膜の強度の点か
ら、粘度平均分子量10万以上、好ましくは20万以上
が好適である。また、成形加工性の点からは粘度平均分
子量100万以下が好ましい。ポリエチレンの粘度平均
分子量(Mv)は、135℃におけるデカリン溶液の固
有粘度([η])を測定して、下記式より求めることが
できる((J.Brandrup and E.H.I
mmergut(Editors),Polymer
Handbook(2nd Ed.),IV−7頁,J
ohn&Sons,New York,1975年)。 [η]=6.8×10-4×(Mv)0.67 なお、ポリエチレンは、必要に応じて少量の酸化防止
剤、紫外線吸収剤等の安定剤を含んでいても良い。
The details of the manufacturing method of the present invention will be described below. Polyethylene is (1) inexpensive and has good mechanical strength properties, and (2) has a small amount of tertiary carbon, which is rich in chemical reactivity. It has the advantages of being able to expect long-term durability with little chemical deterioration due to chemical cleaning and the like, and (3) not containing a halogen element which is a problem at the time of disposal. Polyethylene includes high-density polyethylene and low-density polyethylene, and high-density polyethylene is preferable in view of the strength of the obtained film. Further, polyethylene has various molecular weights, and from the viewpoint of the strength of the obtained film, the viscosity average molecular weight is preferably 100,000 or more, preferably 200,000 or more. Further, from the viewpoint of moldability, the viscosity average molecular weight is preferably 1,000,000 or less. The viscosity average molecular weight (Mv) of polyethylene can be determined from the following equation by measuring the intrinsic viscosity ([η]) of a decalin solution at 135 ° C. ((J. Brandrup and EHI)
mergut (Editors), Polymer
Handbook (2nd Ed.), Page IV-7, J.
ohn & Sons, New York, 1975). [Η] = 6.8 × 10 −4 × (Mv) 0.67 The polyethylene may contain a small amount of a stabilizer such as an antioxidant or an ultraviolet absorber, if necessary.

【0011】本発明で用いる有機液体は、ポリエチレン
と混合した際に、一定の温度およびポリエチレン濃度範
囲において液液相分離状態(ポリエチレン濃厚相液滴/
ポリエチレン希薄相即ち有機液体濃厚相液滴の2相共存
状態)をとることができ、かつ沸点が液液相分離温度域
の上限温度以上である液体である。単一液体でなく、混
合液体であってもよい。このような有機液体とポリエチ
レンとを液液相分離の起こる濃度範囲にて混合した場
合、温度をその混合組成において液液相分離状態をとる
上限温度以上に高温にすると、ポリエチレンと有機液体
とが均一に溶解した溶融相溶物を得ることができる。該
溶融物を冷却すると、液液2相(ポリエチレン濃厚相液
滴と有機液体濃厚相液滴)の共存状態(液液相分離状
態)が現れて孔構造が発生し、さらにポリエチレンが固
化する温度(通常100−150℃)まで冷却すること
で孔構造が固定され、さらに有機液体を除去することで
多孔体が得られる。このとき、液液相分離時のポリエチ
レン濃厚相部分が冷却固化されて多孔構造(多孔体骨
格)を形成し、ポリエチレン希薄相(有機液体濃厚相)
部分が孔部分となる。
The organic liquid used in the present invention, when mixed with polyethylene, is in a liquid-liquid phase separated state (polyethylene concentrated phase droplet /
The liquid is a liquid which can take a polyethylene dilute phase, that is, a two-phase coexistence state of an organic liquid concentrated phase droplet, and has a boiling point not lower than the upper limit temperature of the liquid-liquid phase separation temperature range. Instead of a single liquid, it may be a mixed liquid. When such an organic liquid and polyethylene are mixed in a concentration range in which liquid-liquid phase separation occurs, if the temperature is raised to a temperature higher than the upper limit temperature at which a liquid-liquid phase separation state is obtained in the mixed composition, polyethylene and the organic liquid are mixed. It is possible to obtain a uniformly dissolved molten phase. When the melt is cooled, a coexistence state (liquid-liquid phase separation state) of two liquid-liquid phases (polyethylene concentrated phase droplets and organic liquid concentrated phase droplets) appears, a pore structure is generated, and a temperature at which the polyethylene solidifies. The pore structure is fixed by cooling to (usually 100 to 150 ° C.), and a porous body is obtained by removing the organic liquid. At this time, the polyethylene rich phase portion at the time of liquid-liquid phase separation is cooled and solidified to form a porous structure (porous skeleton), and the polyethylene dilute phase (organic liquid rich phase)
The portion becomes the hole portion.

【0012】このような有機液体の例として、フタル酸
ジブチル、フタル酸ジヘプチル、フタル酸ジオクチル、
フタル酸ジ(2−エチルヘキシル)、フタル酸ジイソデ
シル、フタル酸ジトリデシル等のフタル酸エステル類、
セバシン酸ジブチル等のセバシン酸エステル類、アジピ
ン酸ジオクチル等のアジピン酸エステル類、マレイン酸
ジオクチル等のマレイン酸エステル類、トリメリット酸
トリオクチル等のトリメリット酸エステル類、リン酸ト
リブチル、リン酸トリオクチル等のリン酸エステル類、
プロピレングリコールジカプレート、プロピレングリコ
ールジオレエート等のグリコールエステル類、グリセリ
ントリオレエート等のグリセリンエステル類などの単独
あるいは2種以上の混合物を挙げることができる。
Examples of such organic liquids are dibutyl phthalate, diheptyl phthalate, dioctyl phthalate,
Phthalic acid esters such as di (2-ethylhexyl) phthalate, diisodecyl phthalate, ditridecyl phthalate,
Sebacic esters such as dibutyl sebacate, adipic esters such as dioctyl adipate, maleic esters such as dioctyl maleate, trimellitic esters such as trioctyl trimellitate, tributyl phosphate, trioctyl phosphate and the like Phosphoric esters,
Examples thereof include propylene glycol dicaprate, glycol esters such as propylene glycol dioleate, glycerin esters such as glycerin trioleate, and the like, alone or in combination of two or more.

【0013】さらに、単独ではポリエチレンと高温にて
も相溶しない液体や、流動パラフィンのように単独では
高温でポリエチレンと相溶するものの相溶性が高すぎて
液液2相の相分離状態をとらない液体を、有機液体の定
義(ポリエチレンと混合した際に一定の温度およびポリ
エチレン濃度範囲において液液相分離状態をとることが
できかつ沸点が液液相分離温度域の上限温度以上の液
体)を逸しない範囲内で前記有機液体例(フタル酸エス
テル類等)と混合した混合液体も有機液体の例として挙
げることができる。
[0013] Further, a liquid which is incompatible with polyethylene alone at high temperature even at a high temperature or a liquid such as liquid paraffin which is compatible with polyethylene at a high temperature alone is too high in compatibility to obtain a liquid-liquid two phase separation state. The definition of an organic liquid (a liquid that can take a liquid-liquid phase separation state at a certain temperature and polyethylene concentration range when mixed with polyethylene and has a boiling point higher than the upper limit of the liquid-liquid phase separation temperature range) A mixed liquid mixed with the above-mentioned organic liquid examples (phthalates and the like) within a range not to be missed can also be mentioned as an example of the organic liquid.

【0014】ポリエチレンと上記有機液体とは、例えば
2軸押し出し機を用いて所定の混合比にてその混合比に
おける液液相分離温度域の上限温度以上の温度にて混
合、溶融相溶させることができる。ポリエチレンと有機
液体との混合比は、ポリエチレンの比が小さすぎると得
られる膜の強度が低くなりすぎて不利であり、逆にポリ
エチレンの比が大きすぎると得られる膜の透水性能が低
くなりすぎて不利である。ポリエチレンと有機液体との
混合比は、ポリエチレン/有機液体の重量比で10/9
0から40/60、好ましくは15/85から30/7
0である。
Polyethylene and the above-mentioned organic liquid are mixed and melt-melted at a temperature higher than the upper limit temperature of the liquid-liquid phase separation temperature range at a predetermined mixing ratio by using, for example, a twin screw extruder. Can be. The mixing ratio of polyethylene and the organic liquid is disadvantageous because if the ratio of polyethylene is too small, the strength of the obtained membrane is too low, and conversely, if the ratio of polyethylene is too large, the water permeability of the obtained membrane is too low. Disadvantageous. The mixing ratio between polyethylene and organic liquid is 10/9 by weight of polyethylene / organic liquid.
0 to 40/60, preferably 15/85 to 30/7
0.

【0015】溶融物は、押し出し機先端のヘッドと呼ば
れる部分に導かれ、押し出される。このヘッド内の押し
出し口に、溶融物を所定の形状に押し出すための口金を
装着することで所定の形状に溶融物を成形して押し出す
ことができる。本発明の場合、中空糸状に成形するため
の口金(中空糸成形用紡口)をヘッドの押し出し口に装
着する。中空糸成形用紡口は、溶融物を中空状(円環
状)に押し出すための円環状の穴と、押し出された中空
状物の中空部が閉じて円柱状になってしまわないために
押し出された中空状物の中空部に注入しておく中空部形
成流体を吐出するための穴(上記円環状穴の内側に存在
し形状は円形穴)とを押し出し側の面に持つ紡口ノズル
である。ポリエチレンと有機液体との溶融物は、上記中
空糸成形用紡口の円環穴より、円環穴の内側の穴から中
空部形成流体の注入を中空部内に受けつつ空気中(窒素
等の不活性ガス中でもよい)に押し出される。
The melt is guided and extruded to a portion called a head at the extruder tip. By mounting a die for extruding the melt into a predetermined shape at the extrusion opening in the head, the melt can be formed into a predetermined shape and extruded. In the case of the present invention, a spinneret for forming into a hollow fiber shape (spinner for forming a hollow fiber) is attached to the extrusion opening of the head. The hollow fiber forming spinneret is extruded so that the melted material is extruded into a hollow shape (annular shape) and the hollow part of the extruded hollow material is not closed to form a cylindrical shape. A spout nozzle having a hole (existing inside the above-mentioned annular hole and having a circular shape) for discharging a hollow part forming fluid to be injected into the hollow part of the hollow material on the extrusion side surface. . The melt of the polyethylene and the organic liquid is injected into the hollow portion through the hole inside the annular hole from the annular hole of the above-mentioned hollow fiber forming spinneret while the hollow portion forming fluid is injected into the hollow portion. Activated gas).

【0016】中空部形成流体は、押し出し物(ポリエチ
レンと有機液体)とは非反応性の気体(窒素ガス等)ま
たは液体を用いることができる。ただし、中空部形成流
体が気体の場合、紡口から押し出された後の中空状物の
断面形状の真円性を保つことは難しくなるため、中空部
形成流体は液体であることが好ましい。中空部形成流体
は紡口内から吐出されるため、吐出時にも液体であるこ
とを確保するためには、沸点が紡口温度以上であること
が必要である。
As the hollow part forming fluid, a gas (nitrogen gas or the like) or a liquid which is not reactive with the extrudate (polyethylene and organic liquid) can be used. However, if the hollow part forming fluid is a gas, it is difficult to maintain the roundness of the cross-sectional shape of the hollow material after being extruded from the spinneret, so the hollow part forming fluid is preferably a liquid. Since the hollow part forming fluid is discharged from the spinneret, it is necessary that the boiling point be equal to or higher than the spinning temperature in order to ensure that the fluid is also liquid at the time of discharging.

【0017】中空部形成流体の特性として、沸点が紡口
温度以上であることに加えて、高温でポリエチレンと液
液相分離する能力を持つ液体を用いることが、得られる
膜の透水性能を向上させる点で好ましい。ただしこの場
合、中空糸成形用紡口から吐出されるときの中空部形成
流体の温度は必ずしもポリエチレンと液液相分離状態と
なる温度である必要はなく、液液相分離状態をとる温度
域よりも高くてもよいし、低くてもよい。このような中
空部形成流体の例としては、前記の有機液体の例と同じ
例を挙げることができる。
As a characteristic of the hollow part forming fluid, the use of a liquid having a capability of liquid-liquid phase separation with polyethylene at a high temperature in addition to a boiling point not lower than the spinning temperature improves the water permeability of the obtained membrane. It is preferable in that it is performed. However, in this case, the temperature of the hollow part forming fluid when discharged from the spinning nozzle for forming a hollow fiber is not necessarily required to be a temperature at which the liquid and liquid phase are separated from the polyethylene, but rather than a temperature range at which the liquid and liquid phase is separated. May be higher or lower. Examples of such a fluid for forming a hollow portion include the same examples as those of the above-described organic liquid.

【0018】空気中に押し出された溶融物は、液浴に導
かれ、押し出し物中のポリエチレンが固化する温度まで
冷却される。こうして紡口から押し出された溶融物は、
紡口出口から液浴中通過の間に冷却されることで液液相
分離が生起されて孔構造が発生し、次いで固化されて孔
構造が固定される。液浴は、上層部は高温にてポリエチ
レンと液液相分離する能力を持つ水には非混合性の液か
ら成り、かつ下層部は水より成る2層構成の液浴であ
る。紡口より押し出されてくる押し出し物が最初に触れ
る部分である液浴の上層部は、高温でポリエチレンと液
液相分離する能力を持つ液体を用いることが、得られる
膜の透水性能の向上のために必要である。液浴上層部を
構成する液体は、当然ながら下層部を形成する水よりも
比重が小さくかつ、水と非混合性であることが必要であ
る。このような液浴上層部を構成する組成物の例として
は、前記の有機液体の例と同じ例を挙げることができ
る。
The melt extruded into the air is guided to a liquid bath and cooled to a temperature at which the polyethylene in the extrudate solidifies. The melt extruded from the spinneret in this way
By cooling during passage from the spinneret outlet into the liquid bath, liquid-liquid phase separation occurs to generate a pore structure, which is then solidified to fix the pore structure. The liquid bath is a two-layer liquid bath in which the upper layer is composed of a water-immiscible liquid capable of liquid-liquid phase separation with polyethylene at a high temperature, and the lower layer is composed of water. The upper layer of the liquid bath, which is the part that the extrudate extruded from the spinner touches first, should use a liquid that has the ability to separate liquid and liquid phases from polyethylene at high temperature, which improves the water permeability of the resulting membrane. Is necessary for As a matter of course, the liquid constituting the upper layer portion of the liquid bath needs to have a lower specific gravity than water forming the lower layer portion and be immiscible with water. Examples of the composition constituting such a liquid bath upper layer include the same examples as the examples of the organic liquid described above.

【0019】液浴の下層部は水より成る。上層部を形成
する液体は上述のように通常有機化合物であり、一般に
比熱が小さく冷却能力は低い。液浴の主たる機能の1つ
は押し出し物の冷却である。液浴の冷却能力が低いと、
緻密な細孔を持つ多孔膜は得られにくい。下層部に比熱
が大きく冷却能力の高い水を配置することで、液浴全体
としての冷却能力は確保される。このような2層構造の
液浴において、上層の厚みは、透水性能向上の点から、
1mm以上、好ましくは5mm以上必要であり、同時に
液浴の冷却能力を低下させないために、30cm以下、
好ましくは10cm以下、特に好ましくは2cm以下で
ある。一方、下層(水層)の厚みは、冷却能力確保の点
から5cm以上、好ましくは10cm以上である。この
ような2層構造の液浴を用いた場合の製膜フローの1例
の概略図を図1に示す。
The lower part of the liquid bath consists of water. The liquid forming the upper layer is usually an organic compound as described above, and generally has a low specific heat and a low cooling capacity. One of the main functions of the liquid bath is to cool the extrudate. If the cooling capacity of the liquid bath is low,
It is difficult to obtain a porous membrane having dense pores. By arranging water having a large specific heat and a high cooling capacity in the lower part, the cooling capacity of the entire liquid bath is secured. In such a two-layer liquid bath, the thickness of the upper layer is determined from the viewpoint of improving water permeability.
1 mm or more, preferably 5 mm or more, and at the same time, 30 cm or less, so as not to lower the cooling capacity of the liquid bath;
It is preferably at most 10 cm, particularly preferably at most 2 cm. On the other hand, the thickness of the lower layer (water layer) is at least 5 cm, preferably at least 10 cm, from the viewpoint of securing the cooling capacity. FIG. 1 shows a schematic diagram of an example of a film forming flow when such a two-layer liquid bath is used.

【0020】液浴から出てきた中空糸状物は、冷却途中
で生起した液液相分離時のポリエチレン濃厚相部分が冷
却固化されて多孔構造(多孔体骨格)を形成し、液液相
分離時のポリエチレン希薄相(有機液体濃厚相)部分が
有機液体の詰まった孔部分となっている。この孔部分に
詰まっている有機液体を除去することで多孔膜を得るこ
とができる。中空状物中の有機液体の除去は、ポリエチ
レンを溶解または、劣化させずかつ除去すべき有機液体
を溶解する揮発性液体で抽出除去し、その後乾燥して残
存する上記揮発性液体を揮発除去することで実施でき
る。このような有機液体抽出用の揮発性液体の例として
は、ヘキサン、ヘプタン等の炭化水素、塩化メチレン、
四塩化炭素等の塩素化炭化水素、メチルエチルケトン等
を挙げることができる。
In the hollow fiber-like material coming out of the liquid bath, the polyethylene thick phase portion generated during liquid-liquid phase separation during cooling is solidified by cooling to form a porous structure (porous skeleton). The polyethylene dilute phase (organic liquid rich phase) portion is a pore portion filled with the organic liquid. A porous membrane can be obtained by removing the organic liquid clogging the hole. The removal of the organic liquid in the hollow material does not dissolve or degrade the polyethylene and removes the organic liquid to be removed by extraction with a volatile liquid that dissolves, and then, after drying, volatilizes and removes the remaining volatile liquid. Can be implemented. Examples of such volatile liquids for organic liquid extraction include hydrocarbons such as hexane and heptane, methylene chloride,
Chlorinated hydrocarbons such as carbon tetrachloride, methyl ethyl ketone and the like can be mentioned.

【0021】本発明においては、液浴を出て冷却固化後
の中空状物に対し、有機液体の抽出除去前あるいは抽出
除去後に、残留伸び率が5%以上150%以下になるよ
うな延伸操作を行う。残留伸び率は、中空糸状物の軸方
向に張力をかけて延伸を行った後に張力を開放する延伸
操作を行うに際し、張力開放後(緩和後)の糸長と延伸
前の糸長から、下式により定義される。 残留伸び率[%]=100{(緩和後糸長)−(延伸前
糸長)}/(延伸前糸長) ポリエチレンには弾性があるため、張力の開放により一
般にはある程度糸長は縮み、張力をかけた状態での伸び
率よりも残留伸び率は小さくなる。ただし、張力をかけ
た状態で熱処理等をした場合には、張力の開放による糸
長の縮みは小さくなる。このように、液浴を出て冷却固
化後の中空状物に対し、有機液体の抽出除去前あるいは
抽出除去後に、延伸操作を行うことで、得られる膜の透
水性能を向上させることができる。残留伸び率が5%未
満では透水性能向上の効果が小さく、好ましくない。逆
に、残留伸び率が150%を超えると、得られる膜の孔
径が大きくなってしまい、また、伸度も低下してしま
い、好ましくない。残留伸び率は、10%以上100%
以下が特に好ましい。
In the present invention, a stretching operation is performed such that the residual elongation is 5% or more and 150% or less before and after extraction and removal of the organic liquid, with respect to the hollow material after cooling and solidifying after leaving the liquid bath. I do. Residual elongation is determined by the following: when performing a stretching operation to release tension after stretching by applying tension in the axial direction of the hollow fiber-like material, the yarn length after tension release (after relaxation) and the yarn length before stretching. Defined by an expression. Residual elongation [%] = 100 {(yarn length after relaxation)-(yarn length before stretching)} / (yarn length before stretching) Since polyethylene has elasticity, the yarn length generally shrinks to some extent by release of tension. The residual elongation becomes smaller than the elongation under tension. However, when heat treatment or the like is performed under tension, the yarn length shrinks due to release of the tension is reduced. As described above, the hollow material after cooling and solidifying after leaving the liquid bath is subjected to a stretching operation before or after the extraction and removal of the organic liquid, whereby the water permeability of the obtained membrane can be improved. When the residual elongation is less than 5%, the effect of improving the water permeability is small, which is not preferable. Conversely, if the residual elongation exceeds 150%, the pore size of the obtained film increases, and the elongation also decreases, which is not preferable. Residual elongation is 10% or more and 100%
The following are particularly preferred.

【0022】[0022]

【発明の実施の形態】以下に本発明の実施例を示すが、
本発明はこれに限定されるものではない。なお、平均孔
径、純水透水率、破断強度および破断伸度は以下の測定
方法により決定した。また、延伸操作は、室温(25
℃)にて約1.4cm/秒の速度にて張力をかけて所定
の長さまで延伸したのち30秒保持し、その後張力を開
放することで行った。張力解放後の糸長(緩和後糸長)
としては、張力開放後の中空糸膜を約1日室温にて放置
して充分緩和させた後の糸長を用い、残留伸び率の決定
に用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
The present invention is not limited to this. The average pore size, pure water permeability, breaking strength and breaking elongation were determined by the following measuring methods. The stretching operation is performed at room temperature (25
C.), the film was stretched to a predetermined length by applying tension at a speed of about 1.4 cm / sec, held for 30 seconds, and then the tension was released. Thread length after tension release (thread length after relaxation)
Was used to determine the residual elongation by using the fiber length after the tension was released and the hollow fiber membrane was allowed to stand at room temperature for about one day to sufficiently relax.

【0023】平均孔径;ASTM:F316−86記載
の方法(別称ハーフドライ法)に従って測定した。使用
液体にエタノールを用い、25℃、昇圧速度0.01a
tm/秒にて測定した。平均孔径[μm]は、使用液体
の表面張力[dynes/cm]とハーフドライ空気圧
力[Pa]より、下式にて求まる。 平均孔径=2860(表面張力)/(ハーフドライ空気
圧力) エタノールの25℃における表面張力は21.97dy
nes/cmである(日本化学会編、化学便覧基礎編改
訂3版、II−82頁、丸善(株)、1984年)の
で、平均孔径は下式より算出した。
Average pore diameter: Measured according to the method described in ASTM: F316-86 (also known as half-dry method). Using ethanol as the liquid used, 25 ° C, pressure increase rate 0.01a
It was measured at tm / sec. The average pore diameter [μm] is determined by the following equation from the surface tension [dynes / cm] of the liquid used and the half dry air pressure [Pa]. Average pore diameter = 2860 (surface tension) / (half dry air pressure) The surface tension of ethanol at 25 ° C. is 21.97 dy.
nes / cm (edited by The Chemical Society of Japan, 3rd edition of Basic Handbook of Chemical Handbook, II-82, Maruzen Co., Ltd., 1984), the average pore diameter was calculated by the following equation.

【0024】平均孔径[μm]=62834/(ハーフ
ドライ空気圧力[Pa]) なお、このハーフドライ法にて求まる平均孔径は、膜断
面内の最小孔径層の平均孔径である。 純水透水率;エタノール浸漬した後、数回純水浸漬を繰
り返した約10cm長の湿潤中空糸膜の一端を封止し、
他端の中空部内へ注射針を入れ、25℃の環境下にて注
射針から0.1MPaの圧力にて25℃の純水を中空部
内へ注入し、外表面から透過してくる純水の透過水量
[L]を測定し、下式より膜内表面積[m 2]当たりの
純水透水率[L/m2/h]を算出した。 純水透水率=60(透過水量)/(膜内表面積)/(測
定時間[分]) なお、膜内表面積[m2]は、下式より算出した。 膜内表面積=π(膜内径[m])×(膜有効長[m]) ここに膜有効長とは、注射針が挿入されている部分を除
いた、正味の膜長を指す。
Average pore size [μm] = 62834 / (half
(Dry air pressure [Pa]) The average pore size obtained by this half dry method is
This is the average pore size of the smallest pore size layer in the plane. Pure water permeability: After immersion in ethanol, immersion in pure water several times
Seal one end of the returned wet hollow fiber membrane of about 10 cm length,
Insert the injection needle into the hollow at the other end and inject at 25 ° C.
Pure water at 25 ° C at a pressure of 0.1 MPa from the shooting needle
Permeate volume of pure water injected into and permeating from the outer surface
[L] was measured, and the inner surface area [m Two]
Pure water permeability [L / mTwo/ H] was calculated. Pure water permeability = 60 (permeated water amount) / (membrane surface area) / (measurement
(Constant time [min]) In addition, surface area [mTwo] Was calculated from the following equation. Intramembrane surface area = π (membrane inner diameter [m]) x (membrane effective length [m]) Here, the effective membrane length excludes the part where the injection needle is inserted.
Refers to the net film length.

【0025】破断強度および破断伸度;引っ張り試験機
(島津製作所製オートグラフAG−A型)を用い、中空
糸をチャック間距離50mm、引っ張り速度200mm
/分、25℃にて引っ張り、破断時の荷重[kgf]と
変位[mm]から、以下の式により破断強度および破断
伸度を求めた。 破断強度[kgf/cm2]=(破断時荷重)/(膜断
面積[cm2]) 破断伸度[%]=100(破断時変位)/50 なお、膜断面積[cm2]は、膜の円環断面部分の面積
である。
Breaking strength and breaking elongation: Using a tensile tester (Autograph AG-A type, manufactured by Shimadzu Corporation), the hollow fiber was pulled at a distance between chucks of 50 mm and a pulling speed of 200 mm.
The tensile strength at break and the elongation at break were determined from the load [kgf] and the displacement [mm] at break by the following formulas. Breaking strength [kgf / cm 2] = (load at break) / (Makudan area [cm 2]) elongation at break [%] = 100 (at break displacement) / 50 Here, Makudan area [cm 2] is This is the area of the annular cross section of the membrane.

【0026】[0026]

【実施例1】高密度ポリエチレン(三井化学製:ハイゼ
ックスミリオン030S、粘度平均分子量45万)20
重量部と、フタル酸ジ(2−エチルヘキシル)(DO
P)と流動パラフィン(松村石油研究所製;スモイルP
−350P)との重量比にて7対3(DOP/流動パラ
フィン=7/3)の混合有機液体80重量部とを、2軸
混練押し出し機(東芝機械製TEM−35B−10/1
V)で加熱混練して溶融させ(230℃)、押し出し機
先端のヘッド(230℃)内の押し出し口に装着した中
空糸成形用紡口の吐出面にある外径1.58mm、内径
0.83mmの溶融物押し出し用の円環穴から上記溶融
物を押し出し、そして溶融物押し出し用円環穴の内側に
ある0.6mmφの中空部形成流体吐出用の円環穴から
中空部形成流体としてDOPを吐出させ、中空糸状押し
出し物の中空部内に注入した。
Example 1 High-density polyethylene (manufactured by Mitsui Chemicals, Hyzex Million 030S, viscosity average molecular weight 450,000) 20
Parts by weight of di (2-ethylhexyl) phthalate (DO
P) and liquid paraffin (Matsumura Petroleum Institute; Sumoil P)
80 parts by weight of a mixed organic liquid having a weight ratio of 7 to 3 (DOP / liquid paraffin = 7/3) with respect to a weight ratio of -350P) to a twin screw extruder (TEM-35B-10 / 1 manufactured by Toshiba Machine Co., Ltd.).
V), and the mixture is heated and kneaded to melt (230 ° C.), and the outer diameter is 1.58 mm and the inner diameter is 0.18 mm on the discharge surface of the spinning hole for hollow fiber molding attached to the extrusion port in the head (230 ° C.) at the tip of the extruder. The above-mentioned melt is extruded from an annular hole for extruding a melt of 83 mm, and DOP is formed as a fluid for forming a hollow portion from a circular hole for discharging a hollow portion having a diameter of 0.6 mm inside the annular hole for extruding the melt. Was discharged and injected into the hollow portion of the hollow fiber extrudate.

【0027】紡口から空気中に押し出した中空糸状物
を、1.3cmの空中走行距離を経て、上層がDOP
(1.5cm厚み、35℃)、下層が水(15cm厚
み、27℃)の液浴中に入れ、約2m液浴中を通過させ
て冷却固化させた後、中空糸状物に張力をかけることな
く16m/分の速度で水浴中から水浴外へ巻き取った。
次いで得られた中空糸状物を、室温の塩化メチレン中で
30分の浸漬を5回繰り返して中空糸状物内のDOPと
流動パラフィンを抽出除去し、次いで50℃にて半日乾
燥させて残存塩化メチレンを揮発除去させた。
The hollow fiber extruded from the spinneret into the air passes through an air traveling distance of 1.3 cm, and the upper layer is DOP.
(1.5 cm thick, 35 ° C.), the lower layer is placed in a liquid bath of water (15 cm thick, 27 ° C.), passed through a liquid bath of about 2 m, solidified by cooling, and then tension is applied to the hollow fiber material. And rolled out of the water bath at a speed of 16 m / min.
Next, the obtained hollow fiber material was repeatedly immersed in methylene chloride at room temperature for 30 minutes five times to extract and remove DOP and liquid paraffin in the hollow fiber material, and then dried at 50 ° C. for half a day to remove residual methylene chloride. Was evaporated off.

【0028】こうして得られたポリエチレン中空糸状多
孔膜20cm長に張力をかけて60cm長まで伸ばした
後、張力を開放し、延伸操作とした。張力解放後の糸長
は38cmであり、残留伸び率は90%であった。得ら
れた延伸操作後の膜の諸物性(平均孔径、純水透水率、
破断強度、破断伸度、糸径)を表1に示す。得られた膜
の構造を電子顕微鏡にて観察したところ、外表面および
内表面に1μm〜3μmの粗大な孔を多数持ち、外表面
でも内表面でもない膜断面部に最小孔径層を持つ、膜内
部緻密型の異方性構造であった。
After tension was applied to the thus obtained polyethylene hollow fiber-like porous membrane of 20 cm length to extend it to 60 cm length, the tension was released and a stretching operation was performed. The yarn length after releasing the tension was 38 cm, and the residual elongation was 90%. Various physical properties (average pore diameter, pure water permeability,
Table 1 shows the breaking strength, breaking elongation, and yarn diameter. When the structure of the obtained film was observed with an electron microscope, it was found that the film had a large number of coarse pores of 1 μm to 3 μm on the outer surface and the inner surface, and had a minimum pore diameter layer in the film cross section that was neither the outer surface nor the inner surface. It had an internal dense anisotropic structure.

【0029】[0029]

【比較例1】特開平3−42025号公報明細書実施例
3に準拠して、ポリエチレン中空糸状多孔膜を得た。得
られた膜の諸物性(平均孔径、純水透水率、破断強度、
破断伸度、糸径)を表1に示す。得られた膜の構造を電
子顕微鏡にて観察したところ、外表面部、断面中央部、
内表面部いずれもがほぼ同等の孔径である、異方性を持
たない均一な3次元多孔構造であった。
Comparative Example 1 A polyethylene hollow fiber porous membrane was obtained according to Example 3 of JP-A-3-42025. Various physical properties (average pore size, pure water permeability, breaking strength,
Table 1 shows the breaking elongation and the yarn diameter. When the structure of the obtained film was observed with an electron microscope, the outer surface, the center of the cross section,
Each of the inner surfaces had a uniform three-dimensional porous structure having substantially the same pore size and no anisotropy.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明により、除濁等の濾過用途に好適
な、緻密な細孔と高い透水性能を併せ持つポリエチレン
中空糸状多孔膜の製造が可能になった。
According to the present invention, it has become possible to produce a polyethylene hollow fiber-like porous membrane having both fine pores and high water permeability, which is suitable for filtration applications such as turbidity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による2層構造の液浴を用いた製膜フロ
ーの1例の概略図である。
FIG. 1 is a schematic view of an example of a film forming flow using a two-layer liquid bath according to the present invention.

【符号の説明】[Explanation of symbols]

1 ・・・ ポリエチレンホッパー 2 ・・・ ポリエチレン供給口 3 ・・・ 有機液体供給流路 4 ・・・ 有機液体供給口 5 ・・・ 2軸混練押し出し機 6 ・・・ 導管 7 ・・・ ヘッド 8 ・・・ 定量ギヤポンプ駆動部 9 ・・・ 定量ギヤポンプ 10・・・ 中空糸成形用紡口 11・・・ 中空部形成流体供給流路 12・・・ ポリエチレンと有機液体の混合押し出し物 13・・・ 中空糸形成流体 14・・・ 空中走行部分 15・・・ 液浴上層 16・・・ 液浴下層(水) 17・・・ 液浴上層厚み 18・・・ 液浴下層厚み 19・・・ ロール 20・・・ 巻き取りロール DESCRIPTION OF SYMBOLS 1 ... Polyethylene hopper 2 ... Polyethylene supply port 3 ... Organic liquid supply flow path 4 ... Organic liquid supply port 5 ... Biaxial kneading extruder 6 ... Conduit 7 ... Head 8 ... Constant-quantity gear pump drive unit 9 ... Constant-quantity gear pump 10 ... Spout for forming hollow fiber 11 ... Hollow part forming fluid supply channel 12 ... Mixed extrudate of polyethylene and organic liquid 13 ... Hollow fiber forming fluid 14 ・ ・ ・ Aerial traveling part 15 ・ ・ ・ Liquid bath upper layer 16 ・ ・ ・ Liquid bath lower layer (water) 17 ・ ・ ・ Liquid bath upper layer thickness 18 ・ ・ ・ Liquid bath lower layer thickness 19 ・ ・ ・ Roll 20 ... Take-up roll

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA06 GA07 HA18 JA02C MA01 MA22 MA33 MB02 MB16 MC22 MC22X NA04 NA13 NA14 NA17 NA64 NA68 PB04 PB70 PC01 PC11 PC21 PC22 PC41 4L035 BB31 BB58 BB66 BB69 DD03 DD07 EE08 EE20 FF01 HH05 JJ15 KK05 LA01  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4D006 GA06 GA07 HA18 JA02C MA01 MA22 MA33 MB02 MB16 MC22 MC22X NA04 NA13 NA14 NA17 NA64 NA68 PB04 PB70 PC01 PC11 PC21 PC22 PC41 4L035 BB31 BB58 BB66 BB69 DD03 DD07 EE08 EE05 KK01 H05 LA01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレンと有機液体との混合溶融物
を、中空部内に中空部形成流体を注入しつつ、中空糸状
に中空糸成型用紡口から空気中を経て液浴中に押し出し
て冷却固化し、しかる後に該有機液体を抽出除去して、
ポリエチレン中空糸状多孔膜を得る方法において、
(1)該液浴が上層部は高温にてポリエチレンと液液相
分離する能力を持つ水には非混合性の液から成り下層部
は水より成る2層構成の液浴であり、かつ(2)冷却固
化後、有機液体の抽出除去の前あるいは後に残留伸び率
が5%以上150%以下になるように中空糸状物の延伸
を行うことを特徴とする、ポリエチレン中空糸状多孔膜
の製造方法。
1. A molten mixture of polyethylene and an organic liquid is cooled and solidified by extruding a hollow fiber into a liquid bath through a hollow fiber molding spout through the air while injecting a hollow part forming fluid into the hollow part. Then, after that, the organic liquid is extracted and removed,
In a method for obtaining a polyethylene hollow fiber porous membrane,
(1) The liquid bath is a two-layer liquid bath in which the upper layer is made of a water-immiscible liquid having the ability to separate liquid and liquid phases from polyethylene at a high temperature, and the lower layer is made of water. 2) A method for producing a polyethylene hollow fiber-like porous membrane, wherein the hollow fiber is stretched so that the residual elongation is 5% or more and 150% or less after or after extraction and removal of the organic liquid after cooling and solidification. .
JP2000002246A 2000-01-11 2000-01-11 Method of manufacturing polyethylene hollow fiber porous membrane Pending JP2001190939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002246A JP2001190939A (en) 2000-01-11 2000-01-11 Method of manufacturing polyethylene hollow fiber porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002246A JP2001190939A (en) 2000-01-11 2000-01-11 Method of manufacturing polyethylene hollow fiber porous membrane

Publications (1)

Publication Number Publication Date
JP2001190939A true JP2001190939A (en) 2001-07-17

Family

ID=18531379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002246A Pending JP2001190939A (en) 2000-01-11 2000-01-11 Method of manufacturing polyethylene hollow fiber porous membrane

Country Status (1)

Country Link
JP (1) JP2001190939A (en)

Similar Documents

Publication Publication Date Title
JP5717987B2 (en) Porous multilayer hollow fiber membrane
JP5893093B2 (en) Amorphous porous hollow fiber membrane, method for producing a shaped porous hollow fiber membrane, module using the shaped porous hollow fiber membrane, filtration device, and water treatment method
JP5305296B2 (en) Polyamide hollow fiber membrane and method for producing the same
JP6824284B2 (en) Method for manufacturing porous hollow fiber membrane and porous hollow fiber membrane
JP5546992B2 (en) Method for producing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filtration device using porous hollow fiber membrane, and water treatment method using porous hollow fiber membrane
JP5878288B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
JP6368324B2 (en) Porous hollow fiber membrane, method for producing the same, and water purification method
JP2013173139A (en) Manufacturing method of porous hollow fiber membrane
JP2001190940A (en) Method of manufacturing polyethylene hollow fiber porous membrane
JP2024107332A (en) Porous membrane
JP4775984B2 (en) Method for melting and forming hollow fiber porous membrane
JP6097818B2 (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP2001157827A (en) Polyethylene hollow-fiber porous membrane
JP2012040462A (en) Method for manufacturing modified porous hollow-fiber membrane, modified porous hollow-fiber membrane, module using modified porous hollow-fiber membrane, filtering device using modified porous hollow-fiber membrane, and filtering method using modified porous hollow-fiber membrane
JP2008093503A (en) Manufacturing method of porous hollow fiber membrane
JP2001190939A (en) Method of manufacturing polyethylene hollow fiber porous membrane
JP2001087636A (en) Method for production of hollow fiber porous membrane made of polyethylene
JP4623780B2 (en) Melt casting method
JP5894687B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
JP4605840B2 (en) Method for forming hollow fiber porous membrane
JP2001157826A (en) Anisotropic polyethylene hollow-fiber porous membrane
AU2003245463A1 (en) Halar membranes