JP2003210954A - Method of manufacturing hollow fiber membrane and hollow fiber membrane - Google Patents

Method of manufacturing hollow fiber membrane and hollow fiber membrane

Info

Publication number
JP2003210954A
JP2003210954A JP2002015563A JP2002015563A JP2003210954A JP 2003210954 A JP2003210954 A JP 2003210954A JP 2002015563 A JP2002015563 A JP 2002015563A JP 2002015563 A JP2002015563 A JP 2002015563A JP 2003210954 A JP2003210954 A JP 2003210954A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
producing
polyvinylidene fluoride
fluoride resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002015563A
Other languages
Japanese (ja)
Other versions
JP4599787B2 (en
JP2003210954A5 (en
Inventor
Toshiyuki Ishizaki
利之 石崎
Shinichi Minegishi
進一 峯岸
Koichi Tan
浩一 旦
Masahiro Henmi
昌弘 辺見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002015563A priority Critical patent/JP4599787B2/en
Publication of JP2003210954A publication Critical patent/JP2003210954A/en
Publication of JP2003210954A5 publication Critical patent/JP2003210954A5/ja
Application granted granted Critical
Publication of JP4599787B2 publication Critical patent/JP4599787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a hollow fiber membrane which has a high strength and a high water permeability, and can be manufactured on low environmental load and at a low cost by use of polyvinylidene fluoride resin, which has a high chemical resistance. <P>SOLUTION: The manufacturing method of the hollow fiber membrane comprises the steps of producing a hollow fiber by solidifying a solution containing at least polyvinylidene fluoride resin, drawing the hollow fiber in the draw ratio of 1.1 to 4, and relaxing the drawn hollow fiber in the relaxation rate of 0.1 to 10%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、河川水や地下水な
どの除濁や工業用水の清澄化など浄水処理分野に好適に
使用できる分離用中空糸膜の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a hollow fiber membrane for separation, which can be suitably used in the field of water purification such as turbidity of river water or groundwater and clarification of industrial water.

【0002】[0002]

【従来の技術】膜分離法は省エネルギー、省スペース、
省力化などの特長を有するために様々な分野で利用され
ている技術である。分離対象物によって精密ろ過膜、限
外ろ過膜および逆浸透膜などの平膜や中空糸膜などを使
用する。近年、精密ろ過用、あるいは限外ろ過用の分離
膜として、河川水や地下水除濁、工業用水の清澄化、あ
るいは排水の高度処理などの分野に適用しようとする動
きが活発に行われている。しかし、長期運転を目的とす
るような浄水処理分野への適用には、除菌性、透水性、
機械的特性、耐薬品性などに高い特性が要求されてい
る。ポリビニリデンフルオライド系樹脂を素材として用
いた場合、耐薬品性、耐熱性、機械的特性など優れた諸
特性を持つために分離膜としての期待が非常に高い。こ
れまでにポリビニリデンフルオライド系樹脂からなる分
離膜の製造方法としては、溶液製膜法、溶融製膜法など
が提示されている。溶液製膜法では、例えば特公平1−
22003号公報に開示されているポリビニリデンフル
オライド系樹脂を有機溶媒に溶解させ、非溶媒中で固
液、あるいは液液相分離させて製膜する方法が開示され
ている、しかし膜構造が不均一で表面近くにマクロボイ
ドを形成するために機械的強度に課題が有った。また、
溶融製膜法では、例えば特許2899903号公報に開
示されているようにポリビニリデンフルオライド系樹脂
の溶融成形物から可塑剤や無機微粉体を抽出して、孔を
形成させる方法が提案されているもので、溶液製膜で得
られる膜よりも高い機械的強度を示すものであった。し
かし、溶融成型物から無機微粉体をアルカリ抽出する手
間と工程が複雑化している。さらに使用されるフタル酸
ジブチル、フタル酸ジオクチルなどの可塑剤にも環境上
の影響に懸念が残るものである。
2. Description of the Related Art Membrane separation method is energy saving, space saving,
This technology is used in various fields because it has features such as labor saving. Depending on the object to be separated, flat membranes such as microfiltration membranes, ultrafiltration membranes and reverse osmosis membranes or hollow fiber membranes are used. In recent years, as a separation membrane for microfiltration or ultrafiltration, there has been active movement to apply it to fields such as turbidity of river water and groundwater, clarification of industrial water, or advanced treatment of wastewater. . However, for application in the field of water purification treatment for the purpose of long-term operation, disinfection, water permeability,
High properties such as mechanical properties and chemical resistance are required. When a polyvinylidene fluoride resin is used as a material, it is highly expected as a separation membrane because it has excellent properties such as chemical resistance, heat resistance, and mechanical properties. So far, a solution film forming method, a melt film forming method and the like have been proposed as a method for producing a separation membrane made of a polyvinylidene fluoride resin. In the solution casting method, for example, Japanese Patent Publication 1-
Japanese Patent No. 22003 discloses a method in which a polyvinylidene fluoride resin is dissolved in an organic solvent and solid-liquid or liquid-liquid phase separation is performed in a non-solvent to form a film, but the film structure is unsatisfactory. There was a problem in mechanical strength because a uniform and macrovoid was formed near the surface. Also,
In the melt film forming method, for example, as disclosed in Japanese Patent No. 2899903, a method is proposed in which a plasticizer or an inorganic fine powder is extracted from a melt-molded product of polyvinylidene fluoride resin to form pores. However, it showed higher mechanical strength than the film obtained by solution casting. However, the time and process for extracting the inorganic fine powder from the melt-molded product with alkali are complicated. Furthermore, there are concerns about the environmental impact of the plasticizers used, such as dibutyl phthalate and dioctyl phthalate.

【0003】[0003]

【発明が解決しようとする課題】本発明は、簡素なプロ
セスを用いて、河川水や地下水除濁、工業用水の清澄
化、あるいは排水の高度処理などの分野に好適に使用で
きる高強度で高透水性のポリビニリデンフルオライド系
中空糸膜の製造方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention uses a simple process and has high strength and high strength which can be suitably used in fields such as turbidity of river water and groundwater, clarification of industrial water, or advanced treatment of wastewater. The present invention provides a method for producing a water-permeable polyvinylidene fluoride-based hollow fiber membrane.

【0004】[0004]

【課題を解決するための手段】上記の課題を達成するた
めに以下の構成からなる。すなわち本発明の中空糸膜の
製造方法は、少なくともポリビニリデンフルオライド系
樹脂を含む溶液を凝固させて中空糸を得、該中空糸を
1.1〜4倍の範囲で延伸し、さらに延伸後の中空糸を
弛緩率0.1〜10%の範囲で弛緩させる中ことを特徴
とするものである。また本発明の中空糸膜は、純水透過
量が1.6m3/(m2・h・100kPa)以上であっ
て、引張り強度3.2MN/m2以上、かつ伸度が50
%以上で本発明の製造方法で製造された中空糸膜およ
び、該中空糸膜を用いてなる浄水用中空糸膜エレメント
である。
[Means for Solving the Problems] In order to achieve the above-mentioned object, it has the following constitution. That is, in the method for producing a hollow fiber membrane of the present invention, a hollow fiber is obtained by coagulating a solution containing at least a polyvinylidene fluoride resin, and the hollow fiber is stretched in a range of 1.1 to 4 times, and further stretched. The hollow fiber is relaxed in a relaxation rate range of 0.1 to 10%. The hollow fiber membrane of the present invention has a pure water permeation amount of 1.6 m 3 / (m 2 · h · 100 kPa) or more, a tensile strength of 3.2 MN / m 2 or more, and an elongation of 50.
% Of the hollow fiber membrane produced by the production method of the present invention, and a hollow fiber membrane element for water purification using the hollow fiber membrane.

【0005】[0005]

【発明の実施の形態】本発明におけるポリビニリデンフ
ルオライド系樹脂とは、ビニリデンフルオライドホモポ
リマー、ビニリデンフルオライド共重合体あるいは、両
者の混合物などが挙げられるが、好ましくはビニリデン
フルオライドホモポリマーを85重量%以上(より好ま
しくは90重量%以上、さらに好ましくは95重量%以
上)含むものである。ビニリデンフルオライド共重合体
としては、ポリマー構造にビニリデンフルオライドモノ
マー残基構造を有するようなポリマーがあり、ビニリデ
ンフルオライド−テトラフルオロエチレン共重合体、ビ
ニリデンフルオライド−6フッ化プロピレン共重合体等
のビニリデンフルオライドを原料モノマーとして製造し
得るポリマーの他、エチレン−4フッ化エチレン共重合
体のように、ビニリデンフルオライド以外の原料モノマ
ーから製造し得るものも挙げられる。また、ポリビニリ
デンフルオライド系樹脂の重量平均分子量は、中空糸膜
の機械的特性や透水性を考慮すると5万〜70万が好ま
しく、溶媒の溶解性や紡糸性を考慮した場合、10万〜
50万が好ましい。より好ましくは15万〜45万であ
る。ここで親水化のために溶液中にポリエチレングリコ
ール、ポリプロピレングリコール、ポリビニルアルコー
ル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリアク
リル酸などの水溶性ポリマー、およびグルセリンなどの
多価アルコールを添加することも可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The polyvinylidene fluoride resin in the present invention includes vinylidene fluoride homopolymer, vinylidene fluoride copolymer or a mixture of both, and the like, but vinylidene fluoride homopolymer is preferable. The content is 85% by weight or more (more preferably 90% by weight or more, further preferably 95% by weight or more). As the vinylidene fluoride copolymer, there is a polymer having a vinylidene fluoride monomer residue structure in the polymer structure, such as vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-6-fluorinated propylene copolymer and the like. In addition to the polymer which can be produced using vinylidene fluoride as the raw material monomer, those which can be produced from a raw material monomer other than vinylidene fluoride, such as an ethylene-4 fluoroethylene copolymer, are also included. The weight average molecular weight of the polyvinylidene fluoride resin is preferably 50,000 to 700,000 in consideration of the mechanical properties and water permeability of the hollow fiber membrane, and 100,000 to 100,000 in consideration of the solvent solubility and spinnability.
500,000 is preferable. More preferably, it is 150,000 to 450,000. Here, it is also possible to add a water-soluble polymer such as polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinyl acetate, polyvinylpyrrolidone, or polyacrylic acid, and a polyhydric alcohol such as glycerin to the solution for hydrophilicity. .

【0006】本発明におけるポリビニリデンフルオライ
ド系樹脂を含む溶液の溶媒として、N−メチル−2−ピ
ロリドン、ジメチルスルホキシド、ジメチルアセトアミ
ド、ジメチルホルムアミド、メチルエチルケトン、アセ
トン、テトラヒドロフラン、テトラメチル尿素、リン酸
トリメチル、シクロヘキサノン、イソホロン、γ−ブチ
ロラクトン、メチルイソアミルケトン、フタル酸ジメチ
ル、プロピレングリコールメチルエーテル、プロピレン
カーボネート、ジアセトンアルコール、グリセロールト
リアセテートなどを例示することができる。これらを単
独で用いても良いし、2種類以上を混合して用いても良
い。さらに溶媒以外の成分を添加しても良い。例えば、
ポリエチレングリコール、ポリビニルアルコール、ポリ
ビニルピロリドン、グリセリンなどである。また非溶媒
としては、水、ヘキサン、ペンタン、ベンゼン、メタノ
ール、トルエンなどのプロトン性溶媒、もしくは非極性
溶媒が例示できるが、取り扱い容易な水が好ましく用い
られる。
As the solvent of the solution containing the polyvinylidene fluoride resin in the present invention, N-methyl-2-pyrrolidone, dimethylsulfoxide, dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethyl urea, trimethyl phosphate, Examples thereof include cyclohexanone, isophorone, γ-butyrolactone, methyl isoamyl ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, diacetone alcohol, and glycerol triacetate. These may be used alone or in combination of two or more. Further, components other than the solvent may be added. For example,
Examples thereof include polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone and glycerin. Examples of the non-solvent include water, hexane, pentane, benzene, methanol, toluene and other protic solvents, and non-polar solvents, but water that is easy to handle is preferably used.

【0007】前記のポリビニリデンフルオライド系樹脂
は溶媒に完全に溶解することが好ましいが、例え溶けき
れなかった固形物が残ってもフィルターろ過により除去
すれば問題ない。つまり、溶解温度60〜170℃の温
度範囲に調製されたポリビニリデンフルオライド系樹脂
を含む溶液(以下、単にポリマー溶液ともいう)を、好
ましくは5〜100μmの範囲のステンレス製フィルタ
ーなどでろ過した後に、チューブインオリフィスを使っ
た紡糸方法で中空糸状に賦形して製造することが好まし
い。なおオリフィスの温度すなわち紡糸温度は、溶解温
度と同様、60〜170℃の温度範囲が好ましく、オリ
フィス温度と溶解温度が異なっても構わない。溶解温度
については、溶解を短時間に均一に行うという点から、
オリフィス温度より高い温度設定することも好ましく採
用できる。ここでチューブインオリフィスとは、金属製
などの円形ノズル内に円形チューブ(パイプ)が挿入さ
れており、円形ノズルと円形チューブに一定の間隙を設
けた2重管状のノズルをいう。
The above polyvinylidene fluoride resin is preferably completely dissolved in the solvent, but even if the undissolved solid remains, it can be removed by filtration with a filter. That is, the solution containing the polyvinylidene fluoride resin prepared in the temperature range of 60 to 170 ° C. (hereinafter, also simply referred to as polymer solution) was filtered through a stainless steel filter or the like preferably in the range of 5 to 100 μm. After that, it is preferably produced by shaping into a hollow fiber by a spinning method using a tube-in orifice. The temperature of the orifice, that is, the spinning temperature, is preferably in the temperature range of 60 to 170 ° C., like the melting temperature, and the orifice temperature and the melting temperature may be different. Regarding the melting temperature, from the point of performing uniform melting in a short time,
It is also preferable to set the temperature higher than the orifice temperature. Here, the tube-in-orifice is a double-tube nozzle in which a circular tube (pipe) is inserted into a circular nozzle made of metal or the like, and the circular nozzle and the circular tube are provided with a constant gap.

【0008】本発明においては、前記のポリマー溶液を
凝固浴へ押し出して凝固させ、中空糸を得ることが好ま
しい。凝固に際して、非溶媒による相分離よりも、球晶
構造の発達が優先するように、低温凝固が支配的な熱誘
起相分離による凝固が起こるようにすることが好まし
い。そのため、凝固浴に用いる凝固液としては、前記の
ような溶媒、あるいは60重量%以上、好ましくは70
重量%以上の溶媒を含む水系液が好ましい。凝固浴の温
度としては、50℃以下が好ましく、より好ましくは4
0℃、さらに好ましくは30℃以下である。溶媒濃度が
60重量%を下回ると中空糸表面が緻密化し易く透水性
が低くなる傾向がある。また凝固浴の温度が50℃を越
すと中空糸の形状不良が起こり易い。
In the present invention, it is preferable to obtain the hollow fiber by extruding the polymer solution into a coagulating bath to coagulate it. Upon solidification, it is preferable to cause solidification by thermally induced phase separation in which low-temperature solidification is dominant so that spherulite structure development has priority over phase separation by nonsolvent. Therefore, the coagulating liquid used in the coagulating bath is the above-mentioned solvent, or 60% by weight or more, preferably 70% by weight or more.
Aqueous liquids containing more than wt% solvent are preferred. The temperature of the coagulation bath is preferably 50 ° C or lower, more preferably 4 ° C.
The temperature is 0 ° C, more preferably 30 ° C or lower. If the solvent concentration is less than 60% by weight, the hollow fiber surface tends to be densified and the water permeability tends to be low. Further, if the temperature of the coagulation bath exceeds 50 ° C., the hollow fiber is likely to have a defective shape.

【0009】前記のチューブインオリフィスの寸法は、
製造する中空糸膜の寸法と膜構造により適宜選択すれば
良いが、おおよそオリフィス外径0.7〜10mm、チ
ューブ管外径0.5〜5mm、チューブ管内径0.25
〜4mmの範囲にあることが好ましい。このオリフィス
外径とチューブ管外径の間隙にポリマー溶液を流し、チ
ューブ管内径内に中空部形成用液体を流すものである。
また、紡糸ドラフト(引取り速度/原液の口金吐出線速
度)は、好ましくは0.8〜50、より好ましくは0.
9〜40、さらに好ましくは0.9〜30の範囲、乾式
長は好ましくは0.1〜80cm、より好ましくは0.
3〜50cm、さらに好ましくは0.5〜30cmの範
囲である。前記の通りオリフィスからポリマー溶液を吐
出させて中空糸に中空部を形成させるにはチューブから
中空部形成用液体を吐出することが好ましい。中空部形
成用液体としては、前記の凝固液と同種類のものが好適
である。チューブに中空部形成用液体を注入する際し
て、溶媒濃度が60重量%を下回ると凝固が速く、膜内
表面の緻密化により透水性が低くなる傾向を示す。
The dimensions of the tube-in orifice described above are
It may be appropriately selected depending on the size and the membrane structure of the hollow fiber membrane to be manufactured, but the orifice outer diameter is 0.7 to 10 mm, the tube outer diameter is 0.5 to 5 mm, and the tube inner diameter is 0.25.
It is preferably in the range of 4 mm. The polymer solution is caused to flow in the gap between the outer diameter of the orifice and the outer diameter of the tube, and the liquid for forming a hollow portion is caused to flow in the inner diameter of the tube.
The spinning draft (take-off speed / linear velocity of the stock solution discharge from the spinneret) is preferably 0.8 to 50, and more preferably 0.
9-40, more preferably 0.9-30, the dry length is preferably 0.1-80 cm, more preferably 0.1.
It is in the range of 3 to 50 cm, preferably 0.5 to 30 cm. As described above, in order to discharge the polymer solution from the orifice to form the hollow portion in the hollow fiber, it is preferable to discharge the hollow portion forming liquid from the tube. As the hollow part forming liquid, the same kind of liquid as the above coagulating liquid is suitable. When the hollow portion-forming liquid is injected into the tube, if the solvent concentration is less than 60% by weight, coagulation is rapid and the inner surface of the membrane tends to be densified, resulting in a low water permeability.

【0010】本発明においては、前記の中空糸を1.1
〜4倍、より好ましくは1.1〜3倍、さらに好ましく
は1.1〜2倍の範囲で延伸することが特徴である。こ
れにより、透水性や阻止率などの特性を容易に制御でき
る。延伸は、50〜165℃の温度範囲の熱媒中に2〜
30m/分、好ましくは3〜20m/分、さらに好まし
くは3〜15m/分の範囲の供給速度で供給して、延伸
することが好ましい。延伸方法としては、繊維工業など
に常法として用いられている湿熱延伸法、あるいは乾熱
延伸法を用いることができる。ここでの延伸倍(数)と
は、延伸ゾーンにおけるライン速度の比(引取速度/供
給速度)を云う。熱媒としては、水、ポリエチレングル
コール、グリセリン、蒸気、空気および窒素から選ばれ
た1つ以上を用いることが好ましい。通常、熱媒浴を用
いて延伸する場合、中空糸と熱媒の接触時間は、5秒以
上、好ましくは7秒以上、さらに好ましくは10秒以上
であるが、熱交換を効果的にするために浴槽における循
環や対流方向を調整して、温度差を設けることであって
も良く。また、熱媒は延伸に際して中空糸の有機溶媒を
含む、あるいは含まないものであっても目的が達成でき
るもので何らかまわない。
In the present invention, the hollow fiber described above is 1.1.
It is characterized in that it is stretched in a range of -4 times, more preferably 1.1-3 times, and even more preferably 1.1-2 times. This makes it possible to easily control properties such as water permeability and blocking rate. Stretching is performed in a heating medium in the temperature range of 50 to 165 ° C. for 2 to
It is preferable to feed at a feeding rate in the range of 30 m / min, preferably 3 to 20 m / min, and more preferably 3 to 15 m / min for stretching. As the stretching method, a wet heat stretching method or a dry heat stretching method which is commonly used in the textile industry can be used. The draw ratio (number) here means the ratio of the line speed in the drawing zone (take-off speed / feed speed). As the heat medium, it is preferable to use one or more selected from water, polyethylene glycol, glycerin, steam, air and nitrogen. Usually, when drawing using a heating medium bath, the contact time between the hollow fiber and the heating medium is 5 seconds or longer, preferably 7 seconds or longer, more preferably 10 seconds or longer, but to make heat exchange effective Alternatively, the temperature difference may be provided by adjusting the circulation or convection direction in the bathtub. Further, the heating medium may or may not contain the organic solvent of the hollow fiber at the time of stretching, as long as the purpose can be achieved.

【0011】前記の延伸が4倍を超えると中空糸の表面
に巨視的な開裂が生じ易く、分画性能の低下や機械的強
度低下の傾向を示す。また1.1倍未満であると中空糸
の形状がほとんど変化しないために透水量の増加が期待
できない。前記の媒体温度が50℃未満で行うと中空糸
を均一に伸ばすことが難しくなる。さらに165℃を越
えるとポリビニリデンフルオライド系樹脂の融点近くに
なるので膜表面の細孔が部分的に消失する場合がある。
前記の供給速度を2m/分未満に行うと連動する前工程
のライン速度を下げることになり、最適な紡糸ドラフト
が得ることができず曳糸性不良などの問題が生じる場合
がある。また、30m/分を越すと中空糸の形状安定性
が低下しやすくなる。通常、熱媒との接触時間が5秒未
満であると中空糸の延伸に好適な温度を得ることが難し
いが、予備加熱を行えば5秒未満であっても目的を達成
できる。
If the stretching exceeds 4 times, macroscopic cleavage is likely to occur on the surface of the hollow fiber, and the fractionation performance and the mechanical strength tend to decrease. On the other hand, if it is less than 1.1 times, the shape of the hollow fiber hardly changes, so that an increase in the amount of water permeation cannot be expected. If the medium temperature is less than 50 ° C., it becomes difficult to stretch the hollow fiber uniformly. Further, if the temperature exceeds 165 ° C., the melting point of the polyvinylidene fluoride resin becomes close to the melting point of the polyvinylidene fluoride resin, so that the pores on the film surface may partially disappear.
If the feeding speed is set to less than 2 m / min, the line speed in the preceding step, which is interlocked, is lowered, and an optimal spinning draft cannot be obtained, which may cause problems such as poor spinnability. Further, if it exceeds 30 m / min, the shape stability of the hollow fiber tends to be deteriorated. Usually, if the contact time with the heating medium is less than 5 seconds, it is difficult to obtain a temperature suitable for stretching the hollow fiber, but if preheating is performed, the object can be achieved even if it is less than 5 seconds.

【0012】本発明においては、延伸後の中空糸を弛緩
率0.1〜10%の範囲で弛緩させることも特徴であ
る。弛緩処理は、浴槽、あるいはチャンバー内において
50〜165℃の温度範囲にある水、水蒸気、空気など
の熱媒と中空糸を5秒以上に接触させて、緊張下に弛緩
率が0.1〜10%の範囲になるように引取速度を減速
調整させることが良い。ここで弛緩(率)は、〔1−
(引取速度/供給速度)〕×100で示す。ここで緊張
下とは、中空糸に張力がかかった状態を云うが、中空糸
の熱収縮などを考慮して適宜に張力を決めれば良い。
0.1%未満の弛緩では、ほぼ無張力下に弛緩させるこ
とになり熱収縮による空隙率の低下や細孔の縮小が起き
て、延伸効果が相殺される。緊張下に置くことで残留す
る収縮応力を緩和して、高い透水性と高い機械的特性を
バランスさせることができる。さらにモジュール作製上
における乾燥収縮などを軽減できる。なお、弛緩率が1
0%を越えると伸度の低下が大きくなり、モジュール化
した後の物理洗浄などに不都合が生じることがある。さ
らに上記の製造方法で製造された中空糸膜を用いた、中
空糸膜モジュールも浄水処理、排水処理、工業用水製造
に活用できるので好ましい。
The present invention is also characterized in that the hollow fiber after stretching is relaxed in a relaxation rate range of 0.1 to 10%. The relaxation treatment is performed by bringing a hollow fiber into contact with a heating medium such as water, steam, or air in a temperature range of 50 to 165 ° C. for 5 seconds or more in a bath or a chamber, and a relaxation rate of 0.1 to 0.1 under tension. It is advisable to adjust the take-off speed so that it falls within the range of 10%. Here, the relaxation (rate) is [1-
(Take-off speed / supply speed)] × 100. Here, “under tension” means a state where tension is applied to the hollow fiber, but the tension may be appropriately determined in consideration of heat shrinkage of the hollow fiber and the like.
If it is less than 0.1%, it will be relaxed under almost no tension, which will reduce the porosity and shrink the pores due to heat shrinkage, and the stretching effect will be offset. By placing it under tension, residual shrinkage stress can be relaxed, and high water permeability and high mechanical properties can be balanced. Further, it is possible to reduce drying shrinkage and the like in manufacturing the module. The relaxation rate is 1
If it exceeds 0%, the decrease in elongation becomes large, which may cause inconvenience in physical cleaning after modularization. Furthermore, a hollow fiber membrane module using the hollow fiber membrane produced by the above-mentioned production method is also preferable because it can be utilized for water purification treatment, wastewater treatment, and industrial water production.

【0013】ここで本発明の中空糸膜の形態を次のよう
に評価した。 (1)中空糸膜割断面の走査電子顕微鏡写真から外径、
および内径を求めた。 (2)純水透過水量m3/(m2・h・100kPa)
は、本発明の中空糸状中空糸膜4本からなる長さ20c
mのミニチュアモジュールを作製し、温度25℃、ろ過
差圧16kPaの条件下に、実質的に微粒子などの固形
分を含まない純水の外圧全ろ過を30分間行い、その透
過量(m3)を単位時間(h)、および有効膜面積
(m2)あたりの値に圧力(100kPa)換算した値
とした。 (3)引張り強度および伸度は、引張り試験機(TEN
SILON/RTM−100)(東洋ボールドウィン社
製)を用いて、長さ50mmの試料を引張り速度50m
m/分で試料を代えて30回測定し、その平均を測定値
とした。
Here, the morphology of the hollow fiber membrane of the present invention was evaluated as follows. (1) From the scanning electron micrograph of the split section of the hollow fiber membrane, the outer diameter,
And the inner diameter was determined. (2) Pure water permeation amount m 3 / (m 2 · h · 100 kPa)
Is a length 20c composed of four hollow fiber hollow fiber membranes of the present invention.
m miniature module was produced, and under the conditions of temperature of 25 ° C. and filtration differential pressure of 16 kPa, external pressure full filtration of pure water substantially free of solids such as fine particles was carried out for 30 minutes, and the permeation amount (m 3 ) Was taken as the value per unit time (h) and the value per effective membrane area (m 2 ) converted into pressure (100 kPa). (3) Tensile strength and elongation are measured by a tensile tester (TEN
SILON / RTM-100) (manufactured by Toyo Baldwin) is used to pull a sample with a length of 50 mm at a pulling speed of 50 m.
The sample was changed at m / min, measurement was performed 30 times, and the average thereof was used as the measured value.

【0014】[0014]

【実施例】実施例1 重量平均分子量42万のフッ化ビニリデンホモポリマー
30重量%とジメチルスルホキシドを70重量%を12
0℃で溶解させてポリマー溶液を得た。乾式長2cmで
チューブインオリフィス(オリフィス外径2.0mm、
チューブ外径0.8mm、チューブ内径0.5mm)の
オリフィスから前記ポリマー溶液を、チューブから80
重量%ジメチルスルホキシド水系液を共に押出して、液
温25℃の80重量%ジメチルスルホキシド水系液中で
凝固させ、中空糸を得た。得られた中空糸を30℃で水
洗した。引き続き80℃の熱水浴に8m/分で供給し
て、熱水浴中で1.5倍(引取速度12m/分)に延伸
した後、さらに緊張下に11.2m/分に減速して7%
の弛緩率で弛緩させ、70℃の温水中で脱溶媒して中空
糸膜を得た。この中空糸膜は、純水透過量3.1m3
(m2・h・100kPa)、内径0.86mm、外径
1.32mm、強度5.2MN/m2以上、伸度87%
であった。
Example 1 30% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 420,000 and 70% by weight of dimethyl sulfoxide were added to 12%.
It melt | dissolved at 0 degreeC and the polymer solution was obtained. Dry length 2 cm, tube-in orifice (orifice outer diameter 2.0 mm,
The outer diameter of the tube is 0.8 mm, and the inner diameter of the tube is 0.5 mm.
A wt% dimethyl sulfoxide aqueous solution was co-extruded and coagulated in an 80 wt% dimethyl sulfoxide aqueous solution having a liquid temperature of 25 ° C. to obtain a hollow fiber. The obtained hollow fiber was washed with water at 30 ° C. Subsequently, the mixture was supplied to a hot water bath at 80 ° C at 8 m / min, stretched 1.5 times in the hot water bath (take-off speed 12 m / min), and further decelerated to 11.2 m / min under tension. 7%
Was relaxed at a relaxation rate of, and the solvent was removed in warm water at 70 ° C. to obtain a hollow fiber membrane. This hollow fiber membrane has a pure water permeability of 3.1 m 3 /
(M 2 · h · 100 kPa), inner diameter 0.86 mm, outer diameter 1.32 mm, strength 5.2 MN / m 2 or more, elongation 87%
Met.

【0015】実施例2 重量平均分子量28万のフッ化ビニリデンホモポリマー
45重量%とジメチルスルホキシドを55重量%を12
0℃で溶解させてポリマー溶液を得た。乾式長10cm
でチューブインオリフィス(オリフィス外径2.0m
m、チューブ外径0.8mm、チューブ内径0.5m
m)のオリフィスから前記ポリマー溶液を、チューブか
ら80重量%ジメチルスルホキシド水系液を共に押出し
て、液温15℃の80重量%ジメチルスルホキシド水系
液中で凝固させ、中空糸を得た。得られた中空糸を70
℃で水洗浴で脱溶媒してから延伸、および弛緩処理を行
った。延伸は、95℃の熱水浴に8m/分で供給して、
熱水浴中で2.2倍(引取速度17.6m/分)に延伸
した後、さらに緊張下に17m/分に減速して弛緩率3
%で弛緩させた。得られた中空糸膜は、純水透過量3.
5m3/(m2・h・100kPa)、内径0.88m
m、外径1.18mm、強度4.8MN/m2以上、伸
度68%であった。
Example 2 45% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 280,000 and 12% of 55% by weight of dimethyl sulfoxide were used.
It melt | dissolved at 0 degreeC and the polymer solution was obtained. Dry length 10 cm
Tube-in orifice (orifice outer diameter 2.0m
m, tube outer diameter 0.8 mm, tube inner diameter 0.5 m
The polymer solution was extruded from the orifice of m) and an 80 wt% dimethylsulfoxide aqueous solution was co-extruded from a tube and coagulated in an 80 wt% dimethylsulfoxide aqueous solution at a liquid temperature of 15 ° C. to obtain a hollow fiber. The obtained hollow fiber is 70
The solvent was removed in a washing bath at 0 ° C., and then stretching and relaxation treatment were performed. Stretching was performed by supplying to a hot water bath at 95 ° C at 8 m / min,
After being stretched to 2.2 times (take-off speed 17.6 m / min) in a hot water bath, the tension was reduced to 17 m / min under tension and the relaxation rate was 3
% Relaxed. The resulting hollow fiber membrane had a pure water permeation amount of 3.
5m 3 / (m 2 · h · 100kPa), inner diameter 0.88m
m, outer diameter 1.18 mm, strength 4.8 MN / m 2 or more, and elongation 68%.

【0016】実施例3 重量平均分子量42万のフッ化ビニリデンホモポリマー
35重量%とγ−ブチロラクトンを65重量%を170
℃で溶解させてポリマー溶液を得た。次に乾湿式紡糸法
を用いて、乾式長2cmでチューブインオリフィス(オ
リフィス外径3.0mm、チューブ外径0.8mm、チ
ューブ内径0.5mm)のオリフィスから前記溶液を、
チューブから100重量%γ−ブチロラクトン液を共に
押出して、液温25℃の85重量%γ−ブチロラクトン
水系液中で中空糸状に凝固させ、中空糸を得た。引き続
き60℃の温水浴を経て90℃の熱水浴に10m/分で
供給して、熱水浴中で1.6倍(引取速度16m/分)
に延伸した後、さらに緊張下に15.5m/分に減速し
て弛緩率3%で弛緩させ、60℃の温水で脱溶媒した。
得られた中空糸膜は、純水透過量5.8m3/(m2・h
・100kPa)、内径0.82mm、外径1.31m
m、強度10.8MN/m2以上、伸度127%であっ
た。
Example 3 35% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 420,000 and 170% of 65% by weight of γ-butyrolactone.
It melt | dissolved at degree C and the polymer solution was obtained. Next, using a dry-wet spinning method, the solution was dried from a tube-in orifice (orifice outer diameter 3.0 mm, tube outer diameter 0.8 mm, tube inner diameter 0.5 mm) with a dry length of 2 cm,
A 100 wt% γ-butyrolactone solution was co-extruded from the tube and coagulated into a hollow fiber in an 85 wt% γ-butyrolactone aqueous solution having a liquid temperature of 25 ° C. to obtain a hollow fiber. Then, it is fed through a hot water bath at 60 ° C to a hot water bath at 90 ° C at a rate of 10 m / min, and 1.6 times in the hot water bath (take-off speed 16 m / min).
After stretching, the film was further decelerated under tension to 15.5 m / min for relaxation with a relaxation rate of 3%, and desolvated with warm water at 60 ° C.
The resulting hollow fiber membrane had a pure water permeation rate of 5.8 m 3 / (m 2 · h
・ 100 kPa), inner diameter 0.82 mm, outer diameter 1.31 m
m, the strength was 10.8 MN / m 2 or more, and the elongation was 127%.

【0017】実施例4 重量平均分子量42万のフッ化ビニリデンホモポリマー
50重量%とγ−ブチロラクトンを50重量%を170
℃で溶解させてポリマー溶液を得た。乾式長15cmで
チューブインオリフィス(オリフィス外径3.0mm、
チューブ外径0.8mm、チューブ内径0.5mm)の
オリフィスから前記ポリマー溶液を、チューブから10
0重量%γ−ブチロラクトン液を共に押出して、液温3
5℃の90重量%γ−ブチロラクトン水系液中で凝固さ
せ、中空糸を得た。得られた中空糸を85℃の熱水浴で
脱溶媒させた。引き続き120℃のグリセリン浴に8m
/分で供給し、グリセリン浴中で2.8倍(引取速度2
2.4m/分)に延伸した後、さらに緊張下に20.6
m/分に減速して弛緩率8%で弛緩させて中空糸膜を得
た。この中空糸膜は、純水透過量3.5m3/(m2・h
・100kPa)、内径0.88mm、外径1.02m
m、強度8.7MN/m2以上、伸度88%であった。
Example 4 50% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 420,000 and 170% of 50% by weight of γ-butyrolactone.
It melt | dissolved at degree C and the polymer solution was obtained. Dry type 15 cm tube-in orifice (orifice outer diameter 3.0 mm,
The polymer solution was introduced through an orifice having a tube outer diameter of 0.8 mm and a tube inner diameter of 0.5 mm, and 10
A 0 wt% γ-butyrolactone solution was co-extruded to obtain a liquid temperature of 3
A hollow fiber was obtained by coagulating in a 90 wt% γ-butyrolactone aqueous solution at 5 ° C. The obtained hollow fiber was desolvated in a hot water bath at 85 ° C. 8m in glycerin bath at 120 ℃
Per minute and 2.8 times in the glycerin bath (take-off speed 2
2.4 m / min) and then 20.6 under tension.
It was decelerated to m / min and relaxed at a relaxation rate of 8% to obtain a hollow fiber membrane. This hollow fiber membrane has a pure water permeability of 3.5 m 3 / (m 2 · h
・ 100 kPa), inner diameter 0.88 mm, outer diameter 1.02 m
m, the strength was 8.7 MN / m 2 or more, and the elongation was 88%.

【0018】比較例1 実施例3と同じポリマー溶液を用いて、乾式長2cmで
チューブインオリフィス(オリフィス外径3.0mm、
チューブ外径0.8mm、チューブ内径0.5mm)の
オリフィスから前記溶液を、チューブから100重量%
γ−ブチロラクトン液を共に押出して、液温25℃の8
5重量%γ−ブチロラクトン水系液中で凝固させ、中空
糸を得た。得られた中空糸を80℃で脱溶媒して中空糸
膜を得た。延伸および弛緩は行なわなかった。この中空
糸膜は、純水透過量0.57m3/(m2・h・100k
Pa)、内径0.86mm、外径1.62mm、強度
9.1MN/m2以上、伸度212%であった。
Comparative Example 1 Using the same polymer solution as in Example 3, a dry length of 2 cm and a tube-in orifice (outer diameter of 3.0 mm,
Tube outer diameter 0.8 mm, tube inner diameter 0.5 mm), the above solution from the orifice, and 100% by weight from the tube.
The γ-butyrolactone solution was co-extruded and
A hollow fiber was obtained by coagulating in a 5 wt% γ-butyrolactone aqueous solution. The obtained hollow fiber was desolvated at 80 ° C. to obtain a hollow fiber membrane. No stretching or relaxation was performed. This hollow fiber membrane has a pure water permeation rate of 0.57 m 3 / (m 2 · h · 100 k
Pa), the inner diameter was 0.86 mm, the outer diameter was 1.62 mm, the strength was 9.1 MN / m 2 or more, and the elongation was 212%.

【0019】比較例2 実施例3と同じポリマー溶液を用いて、乾式長2cmで
チューブインオリフィス(オリフィス外径3.0mm、
チューブ外径0.8mm、チューブ内径0.5mm)の
オリフィスから前記溶液を、チューブから100重量%
γ−ブチロラクトン液を共に押出して、液温25℃の8
5重量%γ−ブチロラクトン水系液中で凝固させ、中空
糸を得た。引き続き120℃のグリセリン浴に8m/分
で供給し、グリセリン浴中で4.2倍(引取速度33.
6m/分)に延伸した後、さらに緊張下に32m/分に
減速して弛緩率4%で弛緩させた。得られた中空糸膜
は、純水透過量2.7m3/(m2・h・100kP
a)、内径0.81mm、外径1.04mm、強度7.
8MN/m2以上、伸度39%であった。
Comparative Example 2 The same polymer solution as in Example 3 was used, and the dry length was 2 cm, and the tube-in orifice (orifice outer diameter 3.0 mm,
Tube outer diameter 0.8 mm, tube inner diameter 0.5 mm), the above solution from the orifice, and 100% by weight from the tube.
The γ-butyrolactone solution was co-extruded and
A hollow fiber was obtained by coagulating in a 5 wt% γ-butyrolactone aqueous solution. Subsequently, it was supplied to a glycerin bath at 120 ° C at a rate of 8 m / min, and 4.2 times in the glycerin bath (take-off speed 33.
(6 m / min) and then further decelerated to 32 m / min under tension to relax at a relaxation rate of 4%. The resulting hollow fiber membrane had a pure water permeation rate of 2.7 m 3 / (m 2 · h · 100 kP
a), inner diameter 0.81 mm, outer diameter 1.04 mm, strength 7.
It was 8 MN / m 2 or more and the elongation was 39%.

【0020】比較例3 実施例3と同じポリマー溶液を用いて、乾式長2cmで
チューブインオリフィス(オリフィス外径3.0mm、
チューブ外径0.8mm、チューブ内径0.5mm)の
オリフィスから前記溶液を、チューブから100重量%
γ−ブチロラクトン液を共に押出して、液温25℃の8
5重量%γ−ブチロラクトン水系液中で凝固させ、中空
糸を得た。引き続き60℃の温水浴を経て90℃の熱水
浴に10m/分で供給して、熱水浴中で1.6倍(引取
速度16m/分)に延伸した後、延伸後の中空糸の緊張
状態が保てない13m/分まで減速した(弛緩率19
%)。得られた中空糸膜は、純水透過量2.4m3
(m2・h・100kPa)、内径0.84mm、外径
1.29mm、強度5.4MN/m2以上、伸度22%
であった。
COMPARATIVE EXAMPLE 3 The same polymer solution as in Example 3 was used, and a dry length of 2 cm and a tube-in orifice (orifice outer diameter 3.0 mm,
Tube outer diameter 0.8 mm, tube inner diameter 0.5 mm), the above solution from the orifice, and 100% by weight from the tube.
The γ-butyrolactone solution was co-extruded and
A hollow fiber was obtained by coagulating in a 5 wt% γ-butyrolactone aqueous solution. Then, the mixture was fed through a hot water bath at 60 ° C. to a hot water bath at 90 ° C. at 10 m / min and stretched 1.6 times in the hot water bath (take-off speed 16 m / min). Slowed down to 13m / min where tension could not be maintained (relaxation rate 19
%). The resulting hollow fiber membrane had a pure water permeation amount of 2.4 m 3 /
(M 2 · h · 100 kPa), inner diameter 0.84 mm, outer diameter 1.29 mm, strength 5.4 MN / m 2 or more, elongation 22%
Met.

【0021】[0021]

【発明の効果】本発明の中空糸膜は、透水性、機械的特
性、および耐薬品性に優れた精密ろ過膜、限外ろ過膜、
各種フィルターなどの使用分野に好適に使用される。
INDUSTRIAL APPLICABILITY The hollow fiber membrane of the present invention is a microfiltration membrane, an ultrafiltration membrane, which is excellent in water permeability, mechanical properties and chemical resistance.
It is preferably used in various fields of use such as various filters.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辺見 昌弘 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 Fターム(参考) 4D006 GA06 GA07 MA01 MB02 MB09 MB16 MC29 MC29X NA10 NA18 NA36 NA74 PA01 PB04 PB05 PB08 PB22 PC51 4L035 BB03 BB15 BB72 BB91 CC07 DD03 EE20 FF01 MB13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masahiro Hemi             1-1 1-1 Sonoyama, Otsu City, Shiga Prefecture Toray Co., Ltd.             Ceremony company Shiga business site F-term (reference) 4D006 GA06 GA07 MA01 MB02 MB09                       MB16 MC29 MC29X NA10                       NA18 NA36 NA74 PA01 PB04                       PB05 PB08 PB22 PC51                 4L035 BB03 BB15 BB72 BB91 CC07                       DD03 EE20 FF01 MB13

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 少なくともポリビニリデンフルオライド
系樹脂を含む溶液を凝固させて中空糸を得、該中空糸を
1.1〜4倍の範囲で延伸し、さらに延伸後の中空糸を
弛緩率0.1〜10%の範囲で弛緩させる中空糸膜の製
造方法。
1. A hollow fiber is obtained by coagulating a solution containing at least a polyvinylidene fluoride resin, the hollow fiber is drawn in a range of 1.1 to 4 times, and the hollow fiber after the drawing has a relaxation rate of 0. A method for producing a hollow fiber membrane which relaxes in the range of 1 to 10%.
【請求項2】 中空糸の延伸を50〜165℃の温度範
囲の熱媒中に2〜30m/分の範囲の供給速度で供給し
て行なう請求項1記載の中空糸膜の製造方法。
2. The method for producing a hollow fiber membrane according to claim 1, wherein the drawing of the hollow fiber is performed by supplying the hollow fiber into a heating medium having a temperature range of 50 to 165 ° C. at a supply rate of 2 to 30 m / min.
【請求項3】 熱媒として、水、ポリエチレングルコー
ル、グリセリン、蒸気、空気および窒素から選ばれた1
つ以上を用いる請求項2記載の中空糸膜の製造方法。
3. A heat medium selected from water, polyethylene glycol, glycerin, steam, air and nitrogen.
The method for producing a hollow fiber membrane according to claim 2, wherein three or more are used.
【請求項4】 凝固に際して、ポリビニリデンフルオラ
イド系樹脂を含む溶液を熱誘起相分離させる請求項1〜
3の何れかに記載の中空糸膜の製造方法。
4. A solution containing a polyvinylidene fluoride resin during the solidification is thermally induced phase separation.
4. The method for producing a hollow fiber membrane according to any one of 3 above.
【請求項5】 ポリビニリデンフルオライド系樹脂を含
む溶液を溶媒、あるいは60重量%以上の溶媒を含む水
系液からなる、温度50℃以下の凝固浴に吐出すること
により、凝固させる請求項1〜4の何れかに記載の中空
糸膜の製造方法。
5. The solution containing a polyvinylidene fluoride resin is coagulated by discharging the solution into a coagulation bath having a temperature of 50 ° C. or lower, which is composed of a solvent or an aqueous solution containing 60% by weight or more of the solvent. 4. The method for producing a hollow fiber membrane according to any one of 4 above.
【請求項6】 弛緩を50〜165℃の温度範囲の熱媒
中において緊張下で行なう請求項1〜5の何れかに記載
の中空糸膜の製造方法。
6. The method for producing a hollow fiber membrane according to claim 1, wherein the relaxation is performed under tension in a heating medium in the temperature range of 50 to 165 ° C.
【請求項7】 ポリビニリデンフルオライド系樹脂が8
5重量%以上のビニリデンフルオライドホモポリマーを
有するものである請求項1〜6の何れかに記載の中空糸
膜の製造方法。
7. A polyvinylidene fluoride resin is 8
The method for producing a hollow fiber membrane according to any one of claims 1 to 6, which comprises 5% by weight or more of vinylidene fluoride homopolymer.
【請求項8】 請求項1〜7の何れかに記載の製造方法
で製造された中空糸膜であって、純水透過量が1.6m
3/(m2・h・100kPa)以上、引張り強度3.2
MN/m2以上、かつ伸度が50%以上である中空糸
膜。
8. A hollow fiber membrane manufactured by the manufacturing method according to claim 1, having a pure water permeation amount of 1.6 m.
3 / (m 2 · h · 100 kPa) or more, tensile strength 3.2
A hollow fiber membrane having a MN / m 2 or more and an elongation of 50% or more.
【請求項9】 請求項1〜7の何れかに記載の製造方法
で製造された中空糸膜を有してなる浄水用中空糸膜エレ
メント。
9. A hollow fiber membrane element for water purification comprising a hollow fiber membrane produced by the production method according to any one of claims 1 to 7.
JP2002015563A 2002-01-24 2002-01-24 Method for producing hollow fiber membrane and hollow fiber membrane Expired - Lifetime JP4599787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015563A JP4599787B2 (en) 2002-01-24 2002-01-24 Method for producing hollow fiber membrane and hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015563A JP4599787B2 (en) 2002-01-24 2002-01-24 Method for producing hollow fiber membrane and hollow fiber membrane

Publications (3)

Publication Number Publication Date
JP2003210954A true JP2003210954A (en) 2003-07-29
JP2003210954A5 JP2003210954A5 (en) 2005-07-14
JP4599787B2 JP4599787B2 (en) 2010-12-15

Family

ID=27651926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015563A Expired - Lifetime JP4599787B2 (en) 2002-01-24 2002-01-24 Method for producing hollow fiber membrane and hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP4599787B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005032700A1 (en) * 2003-10-03 2005-04-14 Kureha Corporation Vinylidene fluoride based resin porous hollow yarn and method for production thereof
JP2006063095A (en) * 2004-08-24 2006-03-09 Kureha Corp Method for producing vinylidene fluoride-based resin porous membrane
WO2007032331A1 (en) * 2005-09-14 2007-03-22 Kureha Corporation Vinylidene fluoride resin hollow fiber porous membrane and method for production thereof
WO2007080862A1 (en) * 2006-01-11 2007-07-19 Toyo Boseki Kabushiki Kaisha Polyvinylidene fluoride hollow yarn type microporous film and process for production of the same
WO2008018181A1 (en) * 2006-08-10 2008-02-14 Kuraray Co., Ltd. Porous membrane of vinylidene fluoride resin and process for producing the same
JP2008062229A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous polyvinylidene fluoride membrane and method for preparing the same
JP2008105016A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method
WO2008117740A1 (en) 2007-03-23 2008-10-02 Kureha Corporation Vinylidene fluoride resin hollow-fiber porous membrane and process for production of the same
WO2009143734A1 (en) * 2008-05-27 2009-12-03 广州美能材料科技有限公司 A polyvinylidene fluoride hollow fiber membrane and process for producing the same
WO2010082437A1 (en) * 2009-01-15 2010-07-22 株式会社クレハ Vinylidene fluoride resin hollow fiber porous membrane and process for producing same
CN101879417A (en) * 2010-04-23 2010-11-10 苏州膜华材料科技有限公司 Hollow fiber membrane containing PMMA (Polymethyl Methacrylate) and preparation method thereof
CN101890310A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 Porous membrane using acetic acid-2-ethoxyl ethyl ester and polyethylene glycol as diluents and preparation method
CN101890308A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 External compression type hollow fiber ultrafiltration membrane and preparation method
CN101890307A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 Hollow-fiber membrane with density gradient pores and preparation method
CN101890303A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 Hollow fibrous membrane with asymmetrical structure and preparation method thereof
CN101890304A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 Porous membrane with three-dimensional interpenetrating polymer network and preparation method
CN101920173A (en) * 2010-04-23 2010-12-22 苏州膜华材料科技有限公司 Ultrafiltration membrane using ethylene glycol carbonic ester and diethylene glycol as diluent and manufacturing method thereof
CN102350231A (en) * 2011-06-27 2012-02-15 张会艳 Method for manufacturing polyvinylidene fluoride separation membrane
CN103191655A (en) * 2013-04-01 2013-07-10 杭州求是膜技术有限公司 Composite hollow fiber film and preparation method thereof
CN104984669A (en) * 2015-05-30 2015-10-21 桐乡市健民过滤材料有限公司 Ultralow pressure polysulfone hollow spongy membrane and preparation method thereof
WO2017038224A1 (en) * 2015-08-31 2017-03-09 東レ株式会社 Porous hollow fiber membrane
WO2017146211A1 (en) * 2016-02-25 2017-08-31 東レ株式会社 Porous hollow fiber membrane
CN112877795A (en) * 2021-01-13 2021-06-01 中国水产科学研究院东海水产研究所 Preparation method of fishing polyvinylidene fluoride monofilament

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891732A (en) * 1981-11-27 1983-05-31 Teijin Ltd Porous polyvinylidene fluoride resin membrane and preparation thereof
JPS60216804A (en) * 1984-04-13 1985-10-30 Teijin Ltd Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof
JPH03118A (en) * 1989-05-25 1991-01-07 Toray Ind Inc Membrane for concentrating aqueous solution of volatile organic liquid and its production
JPH08332359A (en) * 1995-06-07 1996-12-17 Dainippon Ink & Chem Inc Production of hollow yarn porous membrane
JPH08332360A (en) * 1995-06-07 1996-12-17 Dainippon Ink & Chem Inc Production of hollow yarn heterogenous membrane
WO1999047593A1 (en) * 1998-03-16 1999-09-23 Asahi Kasei Kogyo Kabushiki Kaisha Microporous film
WO2001028667A1 (en) * 1999-10-22 2001-04-26 Asahi Kasei Kabushiki Kaisha Heat-resistant microporous film
WO2002004101A1 (en) * 2000-07-10 2002-01-17 Asahi Kasei Kabushiki Kaisha Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891732A (en) * 1981-11-27 1983-05-31 Teijin Ltd Porous polyvinylidene fluoride resin membrane and preparation thereof
JPS60216804A (en) * 1984-04-13 1985-10-30 Teijin Ltd Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof
JPH03118A (en) * 1989-05-25 1991-01-07 Toray Ind Inc Membrane for concentrating aqueous solution of volatile organic liquid and its production
JPH08332359A (en) * 1995-06-07 1996-12-17 Dainippon Ink & Chem Inc Production of hollow yarn porous membrane
JPH08332360A (en) * 1995-06-07 1996-12-17 Dainippon Ink & Chem Inc Production of hollow yarn heterogenous membrane
WO1999047593A1 (en) * 1998-03-16 1999-09-23 Asahi Kasei Kogyo Kabushiki Kaisha Microporous film
WO2001028667A1 (en) * 1999-10-22 2001-04-26 Asahi Kasei Kabushiki Kaisha Heat-resistant microporous film
WO2002004101A1 (en) * 2000-07-10 2002-01-17 Asahi Kasei Kabushiki Kaisha Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005032700A1 (en) * 2003-10-03 2005-04-14 Kureha Corporation Vinylidene fluoride based resin porous hollow yarn and method for production thereof
US7569145B2 (en) 2003-10-03 2009-08-04 Kureha Corporation Vinylidene fluoride based resin porous hollow yarn and method for production thereof
JP2006063095A (en) * 2004-08-24 2006-03-09 Kureha Corp Method for producing vinylidene fluoride-based resin porous membrane
JPWO2007032331A1 (en) * 2005-09-14 2009-03-19 株式会社クレハ Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same
WO2007032331A1 (en) * 2005-09-14 2007-03-22 Kureha Corporation Vinylidene fluoride resin hollow fiber porous membrane and method for production thereof
EP1932582A4 (en) * 2005-09-14 2009-12-23 Kureha Corp Vinylidene fluoride resin hollow fiber porous membrane and method for production thereof
WO2007080862A1 (en) * 2006-01-11 2007-07-19 Toyo Boseki Kabushiki Kaisha Polyvinylidene fluoride hollow yarn type microporous film and process for production of the same
US8708161B2 (en) 2006-01-11 2014-04-29 Toyo Boseki Kabushiki Kaisha Polyvinylidene fluoride hollow fiber microporous membrane and process for production of the same
US7909178B2 (en) 2006-08-10 2011-03-22 Kuraray Co., Ltd. Porous membrane of vinylidene fluoride resin and process for producing the same
JP2008062229A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous polyvinylidene fluoride membrane and method for preparing the same
WO2008018181A1 (en) * 2006-08-10 2008-02-14 Kuraray Co., Ltd. Porous membrane of vinylidene fluoride resin and process for producing the same
CN101500696B (en) * 2006-08-10 2013-02-27 株式会社可乐丽 Porous membrane of vinylidene fluoride resin and process for producing the same
JP2008105016A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method
WO2008117740A1 (en) 2007-03-23 2008-10-02 Kureha Corporation Vinylidene fluoride resin hollow-fiber porous membrane and process for production of the same
WO2009143734A1 (en) * 2008-05-27 2009-12-03 广州美能材料科技有限公司 A polyvinylidene fluoride hollow fiber membrane and process for producing the same
WO2010082437A1 (en) * 2009-01-15 2010-07-22 株式会社クレハ Vinylidene fluoride resin hollow fiber porous membrane and process for producing same
CN101879417B (en) * 2010-04-23 2011-11-23 苏州膜华材料科技有限公司 Hollow fiber membrane containing PMMA (Polymethyl Methacrylate) and preparation method thereof
CN101890303B (en) * 2010-04-23 2011-11-23 苏州膜华材料科技有限公司 Hollow fibrous membrane with asymmetrical structure and preparation method thereof
CN101890304A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 Porous membrane with three-dimensional interpenetrating polymer network and preparation method
CN101920173A (en) * 2010-04-23 2010-12-22 苏州膜华材料科技有限公司 Ultrafiltration membrane using ethylene glycol carbonic ester and diethylene glycol as diluent and manufacturing method thereof
CN101890307A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 Hollow-fiber membrane with density gradient pores and preparation method
CN101920173B (en) * 2010-04-23 2011-11-23 苏州膜华材料科技有限公司 Ultrafiltration membrane using ethylene glycol carbonic ester and diethylene glycol as diluent and manufacturing method thereof
CN101890307B (en) * 2010-04-23 2011-11-23 苏州膜华材料科技有限公司 Hollow-fiber membrane with density gradient pores and preparation method
CN101879417A (en) * 2010-04-23 2010-11-10 苏州膜华材料科技有限公司 Hollow fiber membrane containing PMMA (Polymethyl Methacrylate) and preparation method thereof
CN101890308B (en) * 2010-04-23 2011-11-23 苏州膜华材料科技有限公司 External compression type hollow fiber ultrafiltration membrane and preparation method
CN101890308A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 External compression type hollow fiber ultrafiltration membrane and preparation method
CN101890304B (en) * 2010-04-23 2011-11-23 苏州膜华材料科技有限公司 Porous membrane with three-dimensional interpenetrating polymer network and preparation method
CN101890303A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 Hollow fibrous membrane with asymmetrical structure and preparation method thereof
CN101890310A (en) * 2010-04-23 2010-11-24 苏州膜华材料科技有限公司 Porous membrane using acetic acid-2-ethoxyl ethyl ester and polyethylene glycol as diluents and preparation method
CN102350231A (en) * 2011-06-27 2012-02-15 张会艳 Method for manufacturing polyvinylidene fluoride separation membrane
CN103191655A (en) * 2013-04-01 2013-07-10 杭州求是膜技术有限公司 Composite hollow fiber film and preparation method thereof
CN104984669A (en) * 2015-05-30 2015-10-21 桐乡市健民过滤材料有限公司 Ultralow pressure polysulfone hollow spongy membrane and preparation method thereof
WO2017038224A1 (en) * 2015-08-31 2017-03-09 東レ株式会社 Porous hollow fiber membrane
KR20180043285A (en) * 2015-08-31 2018-04-27 도레이 카부시키가이샤 Porous hollow fiber membrane
US20180369757A1 (en) * 2015-08-31 2018-12-27 Toray Industries, Inc. Porous hollow fiber membrane
US10456753B2 (en) 2015-08-31 2019-10-29 Toray Industries, Inc. Porous hollow fiber membrane
KR102382287B1 (en) * 2015-08-31 2022-04-05 도레이 카부시키가이샤 porous hollow fiber membrane
WO2017146211A1 (en) * 2016-02-25 2017-08-31 東レ株式会社 Porous hollow fiber membrane
JPWO2017146211A1 (en) * 2016-02-25 2018-12-13 東レ株式会社 Porous hollow fiber membrane
US11058996B2 (en) 2016-02-25 2021-07-13 Toray Industries, Inc. Porous hollow fiber membrane
CN112877795A (en) * 2021-01-13 2021-06-01 中国水产科学研究院东海水产研究所 Preparation method of fishing polyvinylidene fluoride monofilament

Also Published As

Publication number Publication date
JP4599787B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP2003210954A (en) Method of manufacturing hollow fiber membrane and hollow fiber membrane
Rajabzadeh et al. Preparation of PVDF hollow fiber membrane from a ternary polymer/solvent/nonsolvent system via thermally induced phase separation (TIPS) method
Chung et al. Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes
AU2002338039B2 (en) Hollow fiber film and method for production thereof
JP5339677B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
JP5068168B2 (en) Vinylidene fluoride resin hollow fiber porous membrane
KR101462939B1 (en) Hydrophilic Polyvinylidene Fluoride Based Hollow Fiber Membrane and Preparing Method Thereof
KR101597829B1 (en) Porous Membrane and Method for Manufacturing The Same
JP5293959B2 (en) Hollow fiber membrane and method for producing the same
JP2006088148A (en) Hollow fiber membrane having excellent water permeability
KR20120001970A (en) Hollw fiber membrane and method for manufacturing the same
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
WO2010082437A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and process for producing same
JP3395907B2 (en) Improved polymeric membrane
JP2006218441A (en) Porous membrane and its production method
JP3724412B2 (en) Hollow fiber membrane manufacturing method and hollow fiber membrane module
JP4269576B2 (en) Method for producing microporous membrane
JP4564758B2 (en) Method for producing vinylidene fluoride resin porous membrane
JP4781691B2 (en) Porous membrane and method for producing the same
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
WO2007123004A1 (en) Porous hollow-fiber membrane of vinylidene fluoride resin and process for producing the same
JPH0569571B2 (en)
JP3760838B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
KR20130040621A (en) The preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment
KR20070031330A (en) Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4599787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

EXPY Cancellation because of completion of term