JP2008062229A - Porous polyvinylidene fluoride membrane and method for preparing the same - Google Patents

Porous polyvinylidene fluoride membrane and method for preparing the same Download PDF

Info

Publication number
JP2008062229A
JP2008062229A JP2007209477A JP2007209477A JP2008062229A JP 2008062229 A JP2008062229 A JP 2008062229A JP 2007209477 A JP2007209477 A JP 2007209477A JP 2007209477 A JP2007209477 A JP 2007209477A JP 2008062229 A JP2008062229 A JP 2008062229A
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
membrane
water
crystal structure
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007209477A
Other languages
Japanese (ja)
Inventor
Arata Ishiodori
新 石躍
Kensaku Komatsu
賢作 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2007209477A priority Critical patent/JP2008062229A/en
Publication of JP2008062229A publication Critical patent/JP2008062229A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide porous polyvinylidene fluoride membrane excellent in chemical resistance and a method for preparing the same. <P>SOLUTION: The porous polyvinylidene fluoride membrane is characterized by having R<SB>1</SB>value not lower than 1.5 which is calculated from the following equation (1). R<SB>1</SB>=A<SB>763</SB>/A<SB>840</SB>(1), wherein A<SB>763</SB>represents absorbance at 763cm<SP>-1</SP>and A<SB>840</SB>represents absorbance at 840cm<SP>-1</SP>, each obtained by IR measurement. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、浄水処理、飲料水製造、工業用水製造、排水処理などの水処理に好適な耐薬品性に優れたポリフッ化ビニリデン多孔膜およびその製造方法に関する。   The present invention relates to a polyvinylidene fluoride porous membrane excellent in chemical resistance suitable for water treatment such as water purification treatment, drinking water production, industrial water production, and wastewater treatment, and a method for producing the same.

近年、選択透過性を有する分離膜を用いた分離手段の技術がめざましく進展している。このような分離操作の技術は、例えば飲料水、超純水および医薬品の製造工程、醸造製品の除菌・仕上げ、排水処理など様々な分野において、分離手段、洗浄手段および殺菌手段等を含む一連の浄化システムとして実用化されている。これらの用途分野において、水のファイン化(高度処理)や安全性向上、精度向上などが高いレベルで要求されていることから分離膜の利用が普及している。   In recent years, the technology of separation means using a separation membrane having selective permeability has been remarkably advanced. Such separation operation techniques include, for example, separation means, washing means, sterilization means, and the like in various fields such as manufacturing processes of drinking water, ultrapure water and pharmaceuticals, sterilization and finishing of brewed products, and wastewater treatment. It has been put to practical use as a purification system. In these fields of application, the use of separation membranes has become widespread because finer water (advanced treatment), improved safety, and improved accuracy are required at a high level.

分離膜に求められる重要な特性としては、化学的強度(耐薬品性)、分離精度、透過性能、物理的強度が挙げられる。   Important properties required for the separation membrane include chemical strength (chemical resistance), separation accuracy, permeation performance, and physical strength.

中でも、化学的強度は重要である。例えば、浄水処理では透過水の殺菌や膜のバイオファウリング防止の目的で、次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分へ添加したり、膜の目詰まり物質除去の目的で、酸、アルカリ、界面活性剤などで洗浄する場合、膜自体が劣化する可能性がある。   Above all, chemical strength is important. For example, in the water purification treatment, a disinfectant such as sodium hypochlorite is added to the membrane module part for the purpose of sterilizing the permeated water and preventing biofouling of the membrane, and for the purpose of removing the clogging substances of the membrane, When washing with an alkali, a surfactant or the like, the film itself may be deteriorated.

膜の劣化は、膜の機械的強度の低下を招き、機械的強度の低下は、膜破断や割れ、ピンホールのような欠点を生じ、原水が処理水に混入する事故を招く。そこで、比較的近年では、化学的強度(耐薬品性)と物理的強度を併せもつフッ素系樹脂を用いた分離膜、例えば、ポリフッ化ビニリデン系分離膜が、使用されるようになってきた。   The deterioration of the membrane causes a decrease in the mechanical strength of the membrane, and the decrease in the mechanical strength causes defects such as membrane breakage, cracking, and pinholes, leading to an accident that raw water is mixed into the treated water. Accordingly, in recent years, a separation membrane using a fluorine-based resin having both chemical strength (chemical resistance) and physical strength, for example, a polyvinylidene fluoride separation membrane has been used.

特許文献1には化学的強度(オゾン酸化耐性)に優れる膜として、DSC(示差走査熱量測定)により得られるピーク温度のうち、その最高温度が160℃以上を示すポリフッ化ビニリデン系樹脂多孔質膜が開示されている。これは、ポリフッ化ビニリデン系樹脂の結晶化度に関する情報を耐薬品性の指標としている。本発明者らは、同じポリフッ化ビニリデン系樹脂を用いた膜でDSCにより得られる最高ピーク温度が160℃以上を示すいくつかの膜を用いて化学的強度(耐薬品性)を評価したところ、耐薬品性が異なる知見を得た。その原因について、更に検討した結果、ポリフッ化ビニリデン多孔膜の耐薬品性は、結晶化度のみならず、結晶構造も大きく寄与していることを見出し、更に鋭意検討した結果本発明に至った。   Patent Document 1 discloses a polyvinylidene fluoride resin porous film having a maximum temperature of 160 ° C. or higher among peak temperatures obtained by DSC (differential scanning calorimetry) as a film having excellent chemical strength (ozone oxidation resistance). Is disclosed. This uses information on the crystallinity of the polyvinylidene fluoride resin as an index of chemical resistance. The inventors of the present invention evaluated chemical strength (chemical resistance) using several films having the highest peak temperature obtained by DSC of 160 ° C. or higher in the same film using the polyvinylidene fluoride resin. We obtained knowledge that chemical resistance is different. As a result of further investigation on the cause, it was found that the chemical resistance of the polyvinylidene fluoride porous film not only crystallinity but also the crystal structure greatly contributed to the present invention.

この発明に関連する先行技術文献としては次のものがある。
特開2000−218267号公報 特開2005−200623 特開昭60−97001 特開平3−215535 特開2003−138422 特開2005−146230 特開2005−194461
Prior art documents related to the present invention include the following.
JP 2000-218267 A JP-A-2005-200563 JP-A-60-97001 JP-A-3-215535 JP 2003-138422 A JP-A-2005-146230 JP-A-2005-194461

本発明の目的は、従来技術の上述した問題点に鑑み、耐薬品性に優れたポリフッ化ビニリデン多孔膜およびその製造方法を提供することにある。   An object of the present invention is to provide a polyvinylidene fluoride porous membrane excellent in chemical resistance and a method for producing the same in view of the above-mentioned problems of the prior art.

上記課題は、下記(1)、(2)によって解決される。
(1)IR測定により得られる763cm−1の吸光度(A763)及び840cm−1の吸光度(A840)から下式(1)によって計算されるRの値が1.5以上であることを特徴とするポリフッ化ビニリデン多孔膜。
=A763/A840(1)
(2)ポリフッ化ビニリデン樹脂多孔膜が、寸法が固定されない状態で、160℃以下で熱処理することを特徴とする請求項1に記載のポリフッ化ビニリデン多孔膜の製造方法。
The above problems are solved by the following (1) and (2).
(1) The value of R 1 calculated by the following formula (1) from the absorbance (A 763 ) of 763 cm −1 and the absorbance (A 840 ) of 840 cm −1 obtained by IR measurement is 1.5 or more. Polyvinylidene fluoride porous membrane characterized.
R 1 = A 763 / A 840 (1)
(2) The method for producing a polyvinylidene fluoride porous membrane according to claim 1, wherein the polyvinylidene fluoride resin porous membrane is heat-treated at 160 ° C. or lower in a state where the dimensions are not fixed.

本発明の耐薬品性に優れたポリフッ化ビニリデン多孔膜によれば、造水時の安全性が向上し、多孔膜の長寿命化を図ることが可能となる。   According to the polyvinylidene fluoride porous membrane having excellent chemical resistance according to the present invention, the safety at the time of water formation is improved, and the lifetime of the porous membrane can be extended.

本発明のポリフッ化ビニリデン多孔膜は、IR測定により得られる763cm−1の吸光度(A763)及び840cm−1の吸光度(A840)から下式(1)によって計算されるRの値が1.5以上である。
=A763/A840(1)
ここで、A763はα型結晶構造に帰属する吸光度であり、A840はβ型結晶構造に帰属する吸光度である(例えば、特許文献2参照)。Rの値は、ポリフッ化ビニリデンの結晶領域におけるα型とβ型の割合を示している。図1に示されるような多孔膜のIRチャートから、695および780cm−1近傍のIRチャートの極小値の間に線を引き、763cm−1近傍のα型結晶構造に帰属される特性吸収ピーク高さを読み取る。併せて、810および925cm−1近傍のIRチャートの極小値の間に線を引き840cm−1近傍のβ型結晶構造に帰属される特性吸収ピーク高さを読み取り、Rを求める。
Polyvinylidene fluoride membrane of the present invention, the value of R 1 is 1, which is calculated by absorbance 763cm -1 obtained by IR measurement (A 763) and absorbance at 840 cm -1 following formula from (A 840) (1) .5 or more.
R 1 = A 763 / A 840 (1)
Here, A 763 is the absorbance attributed to the α-type crystal structure, and A 840 is the absorbance attributed to the β-type crystal structure (see, for example, Patent Document 2). The value of R 1 indicates the ratio of α-type and β-type in the crystalline region of polyvinylidene fluoride. From the IR chart of the porous film as shown in FIG. 1, a line is drawn between the minimum values of the IR chart in the vicinity of 695 and 780 cm −1 , and the characteristic absorption peak height attributed to the α-type crystal structure in the vicinity of 763 cm −1. Read. In addition, a line is drawn between the minimum values of the IR chart in the vicinity of 810 and 925 cm −1 to read the characteristic absorption peak height attributed to the β-type crystal structure in the vicinity of 840 cm −1 to obtain R 1 .

ポリフッ化ビニリデン樹脂のα型結晶構造とは、重合体分子中のある1つの主鎖炭素に結合するフッ素原子(または水素原子)に対し、一方の隣接する炭素原子に結合した水素原子(またはフッ素原子)がトランスの位置にあり、なおかつもう一方(逆側)に隣接する炭素原子に結合する水素原子(またはフッ素原子)がゴーシュの位置(60度の位置)にあり、その立体構造の連鎖が2つ以上連続して有することを特徴とするものであって、分子鎖が分子鎖がTGTG型でC−F、C−H結合の双極子能率が分子鎖に垂直方向と平行方向とにそれぞれ成分を有している。α型結晶構造を有するポリフッ化ビニリデン樹脂についてIR分析を行なうと、1212cm-1、1183cm-1および763cm-1付近に特徴的なピーク(特性吸収)を有し、粉末X線回折分析においては2θ=17.7度、18.3度および19.9度付近に特徴的なピークを有する。 The α-type crystal structure of the polyvinylidene fluoride resin refers to a fluorine atom (or hydrogen atom) bonded to one main chain carbon in a polymer molecule, and a hydrogen atom (or fluorine atom) bonded to one adjacent carbon atom. Atom) is in the trans position, and the hydrogen atom (or fluorine atom) bonded to the carbon atom adjacent to the other (reverse side) is in the Gauche position (60 degree position), The molecular chain is a TG + TG type molecular chain, and the dipole efficiency of C—F 2 and C—H 2 bonds is perpendicular to the molecular chain. Each has a component in the parallel direction. When performing IR analysis polyvinylidene fluoride resin having an α-type crystal structure, 1212cm -1, has characteristic peaks (characteristic absorptions) around 1183 cm -1 and 763cm -1, 2θ in the powder X-ray diffraction analysis = 17.7 degrees, 18.3 degrees, and 19.9 degrees have characteristic peaks.

ポリフッ化ビニリデン樹脂のβ型結晶構造とは、重合体分子中の1つの主鎖炭素に隣り合う炭素原子に結合したフッ素原子と水素原子がそれぞれトランスの立体配位(TT型構造)、つまり隣り合う炭素原子に結合するフッ素原子と水素原子が炭素−炭素結合の方向から見て180度の位置に存在することを特徴とする。TT型構造の部分がTT型の主鎖を構成する炭素−炭素結合は平面ジグザグ構造をもち、C−F、C−H結合の双極子能率が分子鎖に対して垂直方向の成分を有している。β型結晶構造についてIR分析を行なうと、1274cm-1、1163cm-1および840cm-1付近に特徴的なピーク(特性吸収)を有し、粉末X線回折分析においては2θ=21度付近に特徴的なピークを有する。 The β-type crystal structure of the polyvinylidene fluoride resin is that the fluorine atom and the hydrogen atom bonded to the carbon atom adjacent to one main chain carbon in the polymer molecule are each in the trans configuration (TT-type structure), that is, adjacent to each other. A fluorine atom and a hydrogen atom bonded to a matching carbon atom are present at a position of 180 degrees when viewed from the direction of the carbon-carbon bond. The carbon-carbon bond in which the TT-type structure part constitutes the TT-type main chain has a planar zigzag structure, and the dipole efficiency of the C—F 2 and C—H 2 bonds has a component perpendicular to the molecular chain. Have. IR analysis of the β-type crystal structure has characteristic peaks (characteristic absorption) around 1274 cm −1, 1163 cm −1 and 840 cm −1. In powder X-ray diffraction analysis, the characteristic is around 2θ = 21 degrees. Has a typical peak.

本発明のポリフッ化ビニリデン多孔膜は、このα型結晶構造がβ型結晶構造よりも高い比率で存在する。α型結晶構造がβ型結晶構造よりも高い比率で存在することで耐薬品性が向上するのは次の理由によると考えられる。α型結晶構造は、β型結晶構造に比べて、水素原子とフッ素原子が非局在化しており、電荷の偏りが少ないことに基因すると推定される。すなわち、水素原子とフッ素原子が局在化し、分子内分極しているβ型結晶構造より、非極性であるα型結晶構造の存在比率が高いために、本発明のポリフッ化ビニリデン多孔膜は優れた耐薬品性を有すると推定される。   In the polyvinylidene fluoride porous membrane of the present invention, the α-type crystal structure is present at a higher ratio than the β-type crystal structure. It is considered that the chemical resistance is improved when the α-type crystal structure is present at a higher ratio than the β-type crystal structure because of the following reason. The α-type crystal structure is presumed to be caused by the fact that the hydrogen atom and the fluorine atom are delocalized compared to the β-type crystal structure and there is less charge bias. That is, the polyvinylidene fluoride porous membrane of the present invention is superior because the non-polar α-type crystal structure is present in a higher proportion than the β-type crystal structure in which hydrogen atoms and fluorine atoms are localized and polarized intramolecularly. It is estimated to have high chemical resistance.

本発明のポリフッ化ビニリデン多孔膜の製造方法を示す。熱処理以外の製造方法は公知の技術を適用することが可能であり、樹脂含有溶液の製造、凝固、抽出の各工程があり、熱処理等を適宜行ってもよい。例えば特許文献3〜7に記載の方法にてポリフッ化ビニリデン多孔膜を製造することができる。   The manufacturing method of the polyvinylidene fluoride porous membrane of this invention is shown. A known technique can be applied to a production method other than heat treatment, and there are steps of production, coagulation, and extraction of a resin-containing solution, and heat treatment or the like may be appropriately performed. For example, a polyvinylidene fluoride porous film can be produced by the methods described in Patent Documents 3 to 7.

本発明の多孔膜においては、多孔膜が固定されていないフリーの状態で熱処理されることが好ましい。例えば、延伸処理後、一旦枠やカセに巻取り、その後、多孔膜をフリー状態にすることで、溶剤、凝集剤を抽出すると同時に、熱処理を行うことが可能である。固定された状態で熱処理を行うと、熱収縮等が起こって歪が生じ、多孔膜のミクロ環境における結晶構造の変化が起こる。具体的にはα型結晶構造からβ型結晶構造への転移が起こり、多孔膜中のβ型結晶構造の比率が高まり、所望の効果が得られない場合が生じる。   In the porous membrane of the present invention, it is preferable to perform heat treatment in a free state in which the porous membrane is not fixed. For example, after the stretching treatment, it is possible to perform the heat treatment at the same time as extracting the solvent and the flocculant by winding the porous film once in a frame or a cassette and then setting the porous film in a free state. When heat treatment is performed in a fixed state, thermal shrinkage or the like occurs and distortion occurs, and the crystal structure in the microenvironment of the porous film changes. Specifically, the transition from the α-type crystal structure to the β-type crystal structure occurs, and the ratio of the β-type crystal structure in the porous film increases, and a desired effect may not be obtained.

熱処理を行う手順としては、製膜後、抽出成分を洗浄等で除去する前に行っても良いし、除去した後に行っても良い。また、膜が束ねられた糸束状態、乾燥処理後に行っても良いし、モジュール化した後に熱処理を行っても構わない。なお、モジュール化後に熱処理する場合には熱処理による収縮を見越し、膜が引っ張られないように予めゆとりを持たせておくことが好ましい。   As a procedure for performing the heat treatment, it may be performed after the film formation and before the extraction component is removed by washing or the like, or after the removal. Moreover, the yarn bundle state in which the membranes are bundled may be performed after the drying process, or may be heat-treated after being modularized. When heat treatment is performed after modularization, it is preferable to allow for a space in advance so as to prevent shrinkage due to heat treatment.

熱処理方法としては、熱風による乾式方法、液体に浸漬して行う湿式方法、加熱変調した金属製のロール等に多孔膜を接触させて行う方法、スチーム等の気体で行う方法又は電磁波を放射する方法などが例示でき、多孔膜が湿潤状態でも乾燥状態でもどちらでも可能である。中でも、水中で行う方法が温度制御が容易であり簡便である。低分子量のポリエチレングリコ−ル、などのようなポリフッ化ビニリデン樹脂の非溶剤を用いることも好ましく採用できる。さらに水とポリエチレングリコールの混合液体、界面活性剤水溶液など、複数成分の混合液体中で熱処理することも採用できる。   As a heat treatment method, a dry method using hot air, a wet method performed by immersing in a liquid, a method performed by contacting a porous film with a heat-modulated metal roll, a method performed using a gas such as steam, or a method of emitting electromagnetic waves The porous film can be either wet or dry. Among them, the method carried out in water is easy because temperature control is easy. It is also possible to preferably employ a non-solvent of polyvinylidene fluoride resin such as low molecular weight polyethylene glycol. Furthermore, heat treatment in a mixed liquid of a plurality of components such as a mixed liquid of water and polyethylene glycol or a surfactant aqueous solution can also be employed.

湿式方式における浸漬液体の選定によっては、製膜原液中の抽出成分の抽出除去と熱処理を同時に行うことも可能となる。   Depending on the selection of the immersion liquid in the wet method, it is possible to simultaneously perform the extraction and removal of the extracted components in the film-forming stock solution and the heat treatment.

本発明の熱処理温度は、熱処理の効果が得られ、かつ化学的強度以外の多孔膜の要求特性を損なわないという観点から、70℃〜160℃の範囲で行うことが好ましい。   The heat treatment temperature of the present invention is preferably in the range of 70 ° C. to 160 ° C. from the viewpoint of obtaining the effect of heat treatment and not impairing the required characteristics of the porous film other than the chemical strength.

本発明の熱処理時間は、特に制限はないが、工程性の観点から1〜5時間の範囲が好ましい。熱処理温度を高温にすることで、処理時間を短縮することが可能である。   Although the heat processing time of this invention does not have a restriction | limiting in particular, The range of 1 to 5 hours is preferable from a viewpoint of process property. By increasing the heat treatment temperature, the treatment time can be shortened.

熱処理後は、室温などで放置し、ゆっくり放冷するのが好ましい。   After the heat treatment, it is preferably left at room temperature or the like and allowed to cool slowly.

これらの熱処理の方法は、ポリフッ化ビニリデン多孔膜がIR測定により得られる763cm−1の吸光度(A763)及び840cm−1の吸光度(A840)から式(1)によって計算されるRの値が1.5以上になるように熱処理条件を適宜設定する。なお、熱処理条件の設定は、予め各熱処理条件とRの値の相関を調べ工程も考慮して最適な熱処理条件を決めると良い。 These heat treatment methods are based on the value of R 1 calculated by the equation (1) from the absorbance (A 763 ) of 763 cm −1 and the absorbance (A 840 ) of 840 cm −1 obtained by IR measurement of the polyvinylidene fluoride porous membrane. The heat treatment conditions are appropriately set so that the value becomes 1.5 or more. In setting the heat treatment conditions, it is preferable to determine the optimum heat treatment conditions in advance by examining the correlation between each heat treatment condition and the value of R 1 and taking the process into consideration.

上述のフッ化ビニリデン系樹脂多孔膜は、原液流入口や透過液流入口などを備えたケーシングに収容され膜モジュールとして使用される。膜モジュールは、膜が中空糸膜である場合には、中空糸膜を複数本束ねて円筒状の容器に納め、両端または片端をポリウレタンやエポキシ樹脂等で固定して、透過液を回収できるようにしたり、平板状に中空糸膜を固定して透過液を回収できるようにする。膜が平膜状である場合には、平膜を集液管の周りに封筒状に折り畳みながらスパイラル状に巻き取り、円筒状の容器に納め、透過液を回収できるようにしたり、集液管の両面に平膜を配置して周囲を密に固定し、透過液を回収できるようにする。   The above-mentioned vinylidene fluoride resin porous membrane is housed in a casing having a raw solution inlet, a permeate inlet, and the like and used as a membrane module. When the membrane module is a hollow fiber membrane, the permeate can be collected by bundling a plurality of hollow fiber membranes and placing them in a cylindrical container and fixing both ends or one end with polyurethane, epoxy resin or the like. Or by fixing the hollow fiber membrane in a flat plate shape so that the permeate can be collected. When the membrane is a flat membrane, the flat membrane is wound around in an envelope shape around the collecting tube and wound into a spiral shape and placed in a cylindrical container so that the permeate can be collected. Flat membranes are arranged on both sides of the plate so that the perimeter is fixed tightly so that the permeate can be collected.

そして、膜モジュールは、少なくとも原液側に加圧手段または透過液側に吸引手段を設け、水などを分離する分離装置として用いられる。加圧手段としてはポンプを用いても良いし、水位差による圧力を利用してもよい。また、吸引手段としては、ポンプやサイフォンを利用すればよい。   The membrane module is used as a separation device for separating water and the like by providing a pressurizing means at least on the stock solution side or a suction means on the permeate side. A pump may be used as the pressurizing means, or a pressure due to a water level difference may be used. Moreover, what is necessary is just to utilize a pump and a siphon as a suction means.

この分離装置は、水処理分野であれば浄水処理、上水処理、排水処理、工業用水製造などで利用でき、河川水、湖沼水、地下水、海水、下水、排水などを被処理水とする。   This separation device can be used for water purification, clean water treatment, wastewater treatment, industrial water production, etc. in the field of water treatment, and uses river water, lake water, groundwater, seawater, sewage, wastewater, etc. as treated water.

また、上記フッ化ビニリデン系樹脂多孔膜は、電池の内部で正極と負極とを分離する電池用セパレーターに用いることもでき、この場合、イオンの透過性が高いことによる電池性能の向上や、破断強度が高いことによる電池の耐久性向上などの効果が期待できる。   The vinylidene fluoride-based resin porous membrane can also be used for a battery separator that separates the positive electrode and the negative electrode inside the battery. In this case, the battery performance is improved due to high ion permeability or breakage. Effects such as improved battery durability due to high strength can be expected.

さらに、上記の製造方法により作製したフッ化ビニリデン系樹脂多孔膜は、荷電基(イオン交換基)を導入して荷電膜とすると、イオンの認識性向上や、破断強度が高いことによる荷電膜の耐久性向上などの効果が期待できる。   Furthermore, when a charged group (ion exchange group) is introduced into a charged membrane by introducing a charged group (ion exchange group) into a vinylidene fluoride resin porous membrane produced by the above-described production method, the ion recognition performance is improved, and the charged membrane due to high breaking strength is used. Effects such as improved durability can be expected.

さらにまた、上記のフッ化ビニリデン系樹脂多孔膜にイオン交換樹脂を含浸し、イオン交換膜として燃料電池に用いると、特に燃料にメタノールを用いる場合、イオン交換膜のメタノールによる膨潤が抑えられるので、燃料電池性能の向上が期待できる。さらに、破断強度が高いことによる燃料電池の耐久性向上なども期待できる。   Furthermore, when the above-mentioned vinylidene fluoride resin porous membrane is impregnated with an ion exchange resin and used as a fuel cell as an ion exchange membrane, particularly when methanol is used as a fuel, swelling of the ion exchange membrane due to methanol can be suppressed. Improvement of fuel cell performance can be expected. Furthermore, improvement in the durability of the fuel cell due to high breaking strength can be expected.

以下に、本発明の実施例について説明する。なお、以下の実施例において、各測定は以下の方法に従って行った。   Examples of the present invention will be described below. In the following examples, each measurement was performed according to the following method.

各種の測定(分析)方法および装置
(1)IR分析
(1−1)測定条件
表面反射法。ポリフッ化ビニリデン中空糸膜をサンプルとして測定した。
(1−2)測定装置
日本電子社製 フーリエ変換赤外分光光度計 JIR−5500
Various measurement (analysis) methods and apparatuses (1) IR analysis (1-1) Measurement conditions Surface reflection method. A polyvinylidene fluoride hollow fiber membrane was measured as a sample.
(1-2) Measuring apparatus Fourier transform infrared spectrophotometer JIR-5500 manufactured by JEOL Ltd.

(4)引張強度測定
(4−1)測定条件
25℃の水中で実施し、チャック間距離は20mm、引張り速度は100mm/分、標本数は10(表1中の値は平均値で記載している)とした。
(4−2)測定装置
島津製作所製 オートグラフ AGS−100G
(4) Tensile strength measurement (4-1) Measurement conditions The measurement was carried out in water at 25 ° C., the distance between chucks was 20 mm, the tensile speed was 100 mm / min, and the number of specimens was 10 (values in Table 1 are shown as average values). )
(4-2) Measuring device Autograph AGS-100G manufactured by Shimadzu Corporation

例中の引張破断強度保持率は、上記方法により測定し、次亜塩素酸水溶液浸漬前の値を100%として記載した。   The tensile rupture strength retention in the examples was measured by the above method, and the value before immersion in hypochlorous acid aqueous solution was described as 100%.

以下、本発明において用いられるポリフッ化ビニリデン樹脂多孔膜の結晶構造制御方法の例と次亜塩素酸ナトリウム耐性評価試験の例を説明するが、本発明はこれにより限定されるものではない。   Hereinafter, although the example of the crystal structure control method of the polyvinylidene fluoride resin porous membrane used in this invention and the example of a sodium hypochlorite tolerance evaluation test are demonstrated, this invention is not limited by this.

フッ化ビニリデン系樹脂としてポリフッ化ビニリデン(以下、PVDFと略記することがある)(ソルベイ ソレクシス株式会社製、SOLEF6010)と、溶剤としてガンマ-ブチロラクトン(三菱化学株式会社製)と、無機粒子としてシリカ(株式会社トクヤマ製、ファインシールX−45、平均凝集粒子径4.0〜5.0μm)と、凝集剤としてグリセリン(花王株式会社製、精製グリセリン)とを、重量比でそれぞれ30:56:23:21の割合となるように混合液を調製した。   Polyvinylidene fluoride (hereinafter sometimes abbreviated as PVDF) (Solvay Solexis Co., Ltd., SOLEF6010) as a vinylidene fluoride resin, gamma-butyrolactone (Mitsubishi Chemical Co., Ltd.) as a solvent, silica (inorganic particles) Tokuyama Co., Ltd., Fine Seal X-45, average agglomerated particle size 4.0 to 5.0 μm) and glycerin (produced by Kao Corporation, purified glycerin) as the aggregating agent in a weight ratio of 30:56:23, respectively. : A mixed solution was prepared so as to have a ratio of 21.

上記した混合液を、二軸混練押出機中で加熱混練(温度150℃)して、押出したストランドをペレタイザーに通すことでチップ化した。このチップを、外径1.6mm、内径0.8mmの二重環構造のノズルを装着した押出機(150℃)を用いて押出した。このときテトラエチレングリコールを押出物の中空部内に注入した。   The above mixed solution was heated and kneaded (temperature: 150 ° C.) in a twin-screw kneading extruder, and the extruded strand was passed through a pelletizer to form chips. This chip was extruded using an extruder (150 ° C.) equipped with a double ring nozzle having an outer diameter of 1.6 mm and an inner diameter of 0.8 mm. At this time, tetraethylene glycol was injected into the hollow portion of the extrudate.

紡口から空気中に押し出した中空糸状物を、3cmの空中走行距離を経て、重量パーセント濃度20%硫酸ナトリウム水溶液(温度60℃)に入れ、約100cm塩水浴中を通過させて冷却固化させた。次いで、得られた中空糸状物を95℃の流水中で180分間熱処理と溶剤(ガンマ-ブチロラクトン)、凝集剤(グリセリン)、注入液(テトラエチレングリコール)の抽出除去を行った。   The hollow fiber extruded from the nozzle into the air was passed through an air travel distance of 3 cm, put into a 20% sodium sulfate aqueous solution (temperature 60 ° C.) by weight percent concentration, and allowed to cool and solidify by passing through a salt water bath of about 100 cm. . Next, the obtained hollow fiber-like material was heat-treated in flowing water at 95 ° C. for 180 minutes, and the solvent (gamma-butyrolactone), the flocculant (glycerin), and the injection solution (tetraethylene glycol) were extracted and removed.

このようにして得られた中空糸状物を40℃の重量パーセント濃度5%の水酸化ナトリウム水溶液中で120分浸漬して無機粒子(ファインシールX−45)を抽出除去した後に、水洗を経て、中空糸膜を得た。製造した中空糸膜のIR測定により求めたRは2.5であった。 The hollow fiber thus obtained was immersed in an aqueous solution of sodium hydroxide having a weight percent concentration of 5% at 40 ° C. for 120 minutes to extract and remove inorganic particles (Fine Seal X-45). A hollow fiber membrane was obtained. R 1 obtained by IR measurement of the produced hollow fiber membrane was 2.5.

得られた中空糸膜の耐酸化剤性を評価するため、次亜塩素酸ナトリウム水溶液(有効塩素濃度:5000ppm)に60℃で7日間浸漬し、その物性評価(引張破断強度)を測定し、結果を表1に記載した。   In order to evaluate the oxidation resistance of the obtained hollow fiber membrane, it was immersed in an aqueous sodium hypochlorite solution (effective chlorine concentration: 5000 ppm) at 60 ° C. for 7 days, and its physical property evaluation (tensile breaking strength) was measured. The results are shown in Table 1.

95℃の流水中で120分間熱処理と溶剤、凝集剤、注入液の抽出除去を行った以外は、実施例1と同様にして中空糸膜を得た。製造した中空糸膜のIR測定により求めたRは2.0であった。 A hollow fiber membrane was obtained in the same manner as in Example 1, except that heat treatment was performed for 120 minutes in flowing water at 95 ° C., and the solvent, flocculant, and injection solution were extracted and removed. R 1 obtained by IR measurement of the produced hollow fiber membrane was 2.0.

得られた中空糸膜の耐酸化剤性を評価するため、次亜塩素酸ナトリウム水溶液(有効塩素濃度:5000ppm)に60℃で7日間浸漬し、その物性評価(引張破断強度)を測定し、結果を表1に記載した。   In order to evaluate the oxidation resistance of the obtained hollow fiber membrane, it was immersed in an aqueous sodium hypochlorite solution (effective chlorine concentration: 5000 ppm) at 60 ° C. for 7 days, and its physical property evaluation (tensile breaking strength) was measured. The results are shown in Table 1.

比較例1
50℃の流水中で180分間熱処理と溶剤、凝集剤、注入液の抽出除去を行った以外は、実施例1と同様にして中空糸膜を得た。製造した中空糸膜のIR測定により求めたRは1.0であった。
Comparative Example 1
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the heat treatment was performed in flowing water at 50 ° C. for 180 minutes and the solvent, the flocculant, and the injection solution were extracted and removed. R 1 obtained by IR measurement of the produced hollow fiber membrane was 1.0.

得られた中空糸膜の耐酸化剤性を評価するため、次亜塩素酸ナトリウム水溶液(有効塩素濃度:5000ppm)に60℃で7日間浸漬し、その物性評価(引張破断強度)を測定し、結果を表1に記載した。   In order to evaluate the oxidation resistance of the obtained hollow fiber membrane, it was immersed in an aqueous sodium hypochlorite solution (effective chlorine concentration: 5000 ppm) at 60 ° C. for 7 days, and its physical property evaluation (tensile breaking strength) was measured. The results are shown in Table 1.

PVDF(株式会社クレハ製、#1000)と、溶剤としてガンマ-ブチロラクトン(三菱化学株式会社製)重量比で40:60の割合となるように混合液を調製した。   A mixed solution was prepared so that the weight ratio of PVDF (manufactured by Kureha Co., Ltd., # 1000) and gamma-butyrolactone (manufactured by Mitsubishi Chemical Corporation) as a solvent was 40:60.

上記した混合液を、二軸混練押出機中で加熱混練(温度120℃)して、外径1.5mm、内径0.8mmの二重環構造のノズル(100℃)を用いて押出した。このとき重量パーセント濃度90%ガンマ−ブチロラクトン水溶液を押出物の中空部内に注入した。   The above mixed solution was heated and kneaded (temperature 120 ° C.) in a twin-screw kneading extruder and extruded using a double ring structure nozzle (100 ° C.) having an outer diameter of 1.5 mm and an inner diameter of 0.8 mm. At this time, a 90% by weight concentration aqueous solution of gamma-butyrolactone was injected into the hollow portion of the extrudate.

紡口から空気中に押し出した押出成形物を、5cmの空中走行距離を経て、重量パーセント濃度80%ガンマ−ブチロラクトン水溶液(温度30℃)に入れ、約100cm浴中を通過させて冷却固化させた。次いで、得られた中空糸状物を80℃の流水中で120分間熱処理と溶剤(ガンマ-ブチロラクトン)、凝集剤(グリセリン)、注入液(テトラエチレングリコール)の抽出除去を行い、中空糸膜を得た。   The extruded product extruded into the air from the nozzle was put into an aqueous solution of 80% gamma-butyrolactone at a weight percent concentration (temperature 30 ° C.) through an air travel distance of 5 cm, and allowed to cool and solidify by passing through a bath of about 100 cm. . Next, the obtained hollow fiber-like material is heat treated in flowing water at 80 ° C. for 120 minutes, and the solvent (gamma-butyrolactone), the flocculant (glycerin), and the injection solution (tetraethylene glycol) are extracted and removed to obtain a hollow fiber membrane. It was.

製造した中空糸膜のIR測定により求めたRは1.8であった。 R 1 obtained by IR measurement of the produced hollow fiber membrane was 1.8.

得られた中空糸膜の耐酸化剤性を評価するため、次亜塩素酸ナトリウム水溶液(有効塩素濃度:5000ppm)に60℃で7日間浸漬し、その物性評価(引張破断強度)を測定し、結果を表1に記載した。   In order to evaluate the oxidation resistance of the obtained hollow fiber membrane, it was immersed in an aqueous sodium hypochlorite solution (effective chlorine concentration: 5000 ppm) at 60 ° C. for 7 days, and its physical property evaluation (tensile breaking strength) was measured. The results are shown in Table 1.

Figure 2008062229
Figure 2008062229





実施例1の方法により製造した中空糸膜のIRチャートである。2 is an IR chart of a hollow fiber membrane manufactured by the method of Example 1. FIG.

Claims (2)

ポリフッ化ビニリデン多孔膜において、IR測定により得られる763cm−1の吸光度(A763)及び840cm−1の吸光度(A840)から下式(1)によって計算されるRの値が1.5以上であることを特徴とするポリフッ化ビニリデン多孔膜。
=A763/A840(1)
In the polyvinylidene fluoride porous membrane, the value of R 1 calculated by the following formula (1) from the absorbance (A 763 ) of 763 cm −1 and the absorbance (A 840 ) of 840 cm −1 obtained by IR measurement is 1.5 or more. A polyvinylidene fluoride porous membrane characterized by
R 1 = A 763 / A 840 (1)
ポリフッ化ビニリデン樹脂多孔膜を、寸法が固定されない状態で、160℃以下で熱処理することを特徴とする請求項1に記載のポリフッ化ビニリデン多孔膜の製造方法。               2. The method for producing a polyvinylidene fluoride porous membrane according to claim 1, wherein the polyvinylidene fluoride resin porous membrane is heat-treated at a temperature of 160 [deg.] C. or less in a state in which dimensions are not fixed.
JP2007209477A 2006-08-10 2007-08-10 Porous polyvinylidene fluoride membrane and method for preparing the same Pending JP2008062229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209477A JP2008062229A (en) 2006-08-10 2007-08-10 Porous polyvinylidene fluoride membrane and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006218398 2006-08-10
JP2007209477A JP2008062229A (en) 2006-08-10 2007-08-10 Porous polyvinylidene fluoride membrane and method for preparing the same

Publications (1)

Publication Number Publication Date
JP2008062229A true JP2008062229A (en) 2008-03-21

Family

ID=39285390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209477A Pending JP2008062229A (en) 2006-08-10 2007-08-10 Porous polyvinylidene fluoride membrane and method for preparing the same

Country Status (1)

Country Link
JP (1) JP2008062229A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063669A1 (en) * 2010-11-09 2012-05-18 東レ株式会社 Process for production of separation membrane
JP2015073916A (en) * 2013-10-04 2015-04-20 旭化成ケミカルズ株式会社 Porous hollow fiber membrane, and manufacturing method of the same
WO2018084131A1 (en) * 2016-11-04 2018-05-11 旭化成メディカル株式会社 Porous film and method for manufacturing porous film
US9991489B2 (en) 2015-10-02 2018-06-05 Sumitomo Chemical Company, Limited Porous layer, laminated body, nonaqueous electrolyte secondary battery member including the porous layer, and nonaqueous electrolyte secondary battery including the porous layer
US10361458B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
US10361418B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
US10367182B2 (en) 2016-06-21 2019-07-30 Sumitomo Chemical Company, Limited Laminated body
US10388932B2 (en) 2016-06-21 2019-08-20 Sumitomo Chemical Company, Limited Laminated body
US10461297B2 (en) 2016-06-21 2019-10-29 Sumitomo Chemical Company, Limited Laminated body
US10476066B2 (en) 2016-06-21 2019-11-12 Sumitomo Chemical Company, Limited Laminated body
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR20230055528A (en) * 2021-10-19 2023-04-26 주식회사 에이런 Manufacturing method of pvdf composite separator membrane and pvdf composite separator membrane manufactured using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210954A (en) * 2002-01-24 2003-07-29 Toray Ind Inc Method of manufacturing hollow fiber membrane and hollow fiber membrane
JP2005270762A (en) * 2004-03-24 2005-10-06 Toray Ind Inc Production method of hollow fiber membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210954A (en) * 2002-01-24 2003-07-29 Toray Ind Inc Method of manufacturing hollow fiber membrane and hollow fiber membrane
JP2005270762A (en) * 2004-03-24 2005-10-06 Toray Ind Inc Production method of hollow fiber membrane

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063669A1 (en) * 2010-11-09 2012-05-18 東レ株式会社 Process for production of separation membrane
JP2015073916A (en) * 2013-10-04 2015-04-20 旭化成ケミカルズ株式会社 Porous hollow fiber membrane, and manufacturing method of the same
US9991489B2 (en) 2015-10-02 2018-06-05 Sumitomo Chemical Company, Limited Porous layer, laminated body, nonaqueous electrolyte secondary battery member including the porous layer, and nonaqueous electrolyte secondary battery including the porous layer
US10388932B2 (en) 2016-06-21 2019-08-20 Sumitomo Chemical Company, Limited Laminated body
US10476066B2 (en) 2016-06-21 2019-11-12 Sumitomo Chemical Company, Limited Laminated body
US10461297B2 (en) 2016-06-21 2019-10-29 Sumitomo Chemical Company, Limited Laminated body
US10361458B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
US10361418B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
US10367182B2 (en) 2016-06-21 2019-07-30 Sumitomo Chemical Company, Limited Laminated body
JPWO2018084131A1 (en) * 2016-11-04 2019-07-11 旭化成メディカル株式会社 Porous membrane and method of manufacturing porous membrane
CN109715276A (en) * 2016-11-04 2019-05-03 旭化成医疗株式会社 The manufacturing method of perforated membrane and perforated membrane
WO2018084131A1 (en) * 2016-11-04 2018-05-11 旭化成メディカル株式会社 Porous film and method for manufacturing porous film
AU2017354687B2 (en) * 2016-11-04 2020-02-27 Asahi Kasei Medical Co., Ltd. Porous membrane and method for manufacturing porous membrane
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR20230055528A (en) * 2021-10-19 2023-04-26 주식회사 에이런 Manufacturing method of pvdf composite separator membrane and pvdf composite separator membrane manufactured using the same
KR102640709B1 (en) * 2021-10-19 2024-02-27 주식회사 에이런 Manufacturing method of pvdf composite separator membrane and pvdf composite separator membrane manufactured using the same

Similar Documents

Publication Publication Date Title
JP2008062229A (en) Porous polyvinylidene fluoride membrane and method for preparing the same
Nawaz et al. Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with Polyaniline-Graphene oxide nano fillers for treatment of textile effluents
KR101969633B1 (en) Membrane distillation apparatus and hydrophobic porous membrane
WO2008018181A1 (en) Porous membrane of vinylidene fluoride resin and process for producing the same
KR101657307B1 (en) Fluorinated hollow fiber membrane and method for preparing the same
KR100904943B1 (en) Hollow fiber film and method for production thereof
JP2004230280A (en) Production method for hydrophilic polyvinylidene fluoride-based resin porous membrane
CN106457165B (en) Composite semipermeable membrane
JP5318385B2 (en) Porous membrane made of vinylidene fluoride resin and method for producing the same
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
JP2018083189A (en) Film distillation apparatus
CN110756061A (en) Oxidation-resistant high-flux reverse osmosis membrane and preparation method and application thereof
JP4525296B2 (en) Manufacturing method of composite semipermeable membrane
JP5964114B2 (en) Internal pressure type hollow fiber NF membrane and manufacturing method thereof
RU2440181C2 (en) Porous membrane from vinylidene fluoride resin and method of its production
CN108043233B (en) Oxidation-resistant polyamide reverse osmosis membrane and preparation method and application thereof
JP6081290B2 (en) Internal pressure type hollow fiber NF membrane and manufacturing method thereof
KR101335948B1 (en) Manufacturing method of separation membrane for water treatment and separation membrane for water treatment thereby
JP2004202438A (en) Porous membrane
KR20110093160A (en) High flux poly ether sulfone nanofiltration composite membrane and method for producing the same
JPWO2016136966A1 (en) Composite semipermeable membrane
AU2006261581B2 (en) Cross linking treatment of polymer membranes
CN113039013A (en) Filtration method using porous membrane
JP2015221400A (en) Manufacturing method of hollow fiber membrane for ultrafiltration membrane
JP5823761B2 (en) NF membrane and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100326

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124