JP2005270762A - Production method of hollow fiber membrane - Google Patents

Production method of hollow fiber membrane Download PDF

Info

Publication number
JP2005270762A
JP2005270762A JP2004086275A JP2004086275A JP2005270762A JP 2005270762 A JP2005270762 A JP 2005270762A JP 2004086275 A JP2004086275 A JP 2004086275A JP 2004086275 A JP2004086275 A JP 2004086275A JP 2005270762 A JP2005270762 A JP 2005270762A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane
module
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004086275A
Other languages
Japanese (ja)
Inventor
Masaki Azuma
雅樹 東
Naoki Hirayama
直樹 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004086275A priority Critical patent/JP2005270762A/en
Publication of JP2005270762A publication Critical patent/JP2005270762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow fiber membrane with excellent dimension stability and membrane performance stability. <P>SOLUTION: The hollow fiber membrane is produced by immersing/treating the membrane formed to the hollow shape in water of 25-60°C for 5-20 minutes in the relaxed state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は中空糸膜の製造方法に関する。更に詳しくは、寸法安定性および膜性能安定性に優れた中空糸膜の製造方法に関する。   The present invention relates to a method for producing a hollow fiber membrane. More specifically, the present invention relates to a method for producing a hollow fiber membrane excellent in dimensional stability and membrane performance stability.

精密ろ過膜や限外ろ過膜などの分離膜は、食品工業や医療分野、用水製造、排水処理分野等をはじめとして様々な方面で利用されている。特に近年では、飲料水製造分野すなわち浄水処理過程においても分離膜が使われるようになってきている。浄水処理などの水処理用途で用いられる場合、処理しなければならない水量が大きいため、単位体積あたり有効膜面積が大きい中空糸膜が一般的に用いられている。   Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields including the food industry, medical field, water production, wastewater treatment field and the like. Particularly in recent years, separation membranes have been used in the field of drinking water production, that is, in the process of water purification. When used in water treatment applications such as water purification, a hollow fiber membrane having a large effective membrane area per unit volume is generally used because of the large amount of water that must be treated.

中空糸膜は、一般的に、塩化ビニリデンやステンレス製の円筒型容器にいれてモジュールとして使用されるが、その際、中空糸膜からなる中空糸膜束の両端部または一方の端部をエポキシ樹脂等で接着して容器に固定する方法が行われている。近年ではモジュール大型化に伴い、両端部を容器固定する方法が主流となっている。   A hollow fiber membrane is generally used as a module in a cylindrical container made of vinylidene chloride or stainless steel. At this time, both ends or one end of a hollow fiber membrane bundle made of hollow fiber membranes are bonded with epoxy. A method of adhering with a resin or the like and fixing to a container is performed. In recent years, with the increase in size of modules, a method of fixing both ends to a container has become mainstream.

しかしながら、中空糸膜束の両端部を容器に接着固定する場合、中空糸膜束と容器とが完全に固定されるため、中空糸膜モジュール作成後に中空糸膜の化学的修飾、洗浄や運転時の濾過水温度の変動などによって膜が収縮すると、容器内で中空糸膜に張力がかかる。この状態になると、逆洗やエアスクラビングによる中空糸膜の揺動が大きく減少するため、膜面に付いた汚れを十分に落とすことができなくなり、洗浄効率が低下するという問題がある。   However, when both ends of the hollow fiber membrane bundle are bonded and fixed to the container, the hollow fiber membrane bundle and the container are completely fixed. Therefore, after the hollow fiber membrane module is created, the hollow fiber membrane is chemically modified, washed and operated. When the membrane contracts due to fluctuations in the filtered water temperature, tension is applied to the hollow fiber membrane in the container. In this state, the swing of the hollow fiber membrane due to backwashing or air scrubbing is greatly reduced, so that the dirt attached to the membrane surface cannot be removed sufficiently and there is a problem that the washing efficiency is lowered.

これに対して、たとえば特許文献1には、70〜110℃の溶液に浸漬することにより中空糸膜寸法と膜性能変化が少ないポリアクリロニトリル系中空糸膜が開示されている。この方法は、熱による変化が少ない中空糸膜では有効な処理方法であるが、熱に対して収縮が大きい中空糸膜の場合は、この処理を施すことで膜が大きく収縮し、さらに透過水量も大幅に減少するため、この方法を用いることができない。
特開平7−100343号公報
On the other hand, for example, Patent Document 1 discloses a polyacrylonitrile-based hollow fiber membrane in which the hollow fiber membrane dimensions and the membrane performance change are small by being immersed in a solution at 70 to 110 ° C. This method is an effective treatment method for hollow fiber membranes that hardly change due to heat. However, in the case of hollow fiber membranes that are highly shrunk to heat, this treatment causes the membrane to shrink greatly, and the amount of permeated water This method cannot be used because it is greatly reduced.
Japanese Patent Application Laid-Open No. 7-100343

本発明は、上記の課題を解決せんとするものであり、中空糸膜モジュール内での寸法安定性と膜性能安定性に優れた中空糸膜の製造方法およびそれを用いた中空糸膜モジュール、液体処理装置を提供することを目的とするものである。   The present invention is intended to solve the above problems, and a method for producing a hollow fiber membrane excellent in dimensional stability and membrane performance stability in the hollow fiber membrane module, and a hollow fiber membrane module using the same, An object of the present invention is to provide a liquid processing apparatus.

上記課題を解決するための本発明は、次の(1)〜(4)の構成を特徴とするものである。
(1)中空状に形成された膜を弛緩状態で25℃〜60℃の水に5〜20分浸漬処理することを特徴とする中空糸膜の製造方法。
(2)熱誘起相分離法で形成した中空状の膜に対して該浸漬処理を施すことを特徴とする、上記(1)に記載の中空糸膜の製造方法。
(3)上記(1)または(2)に記載の方法によって製造された中空糸膜を筒状容器に収容したことを特徴とする中空糸膜モジュール。
(4)上記(3)に記載の中空糸膜モジュールと、該中空糸膜モジュールに原液を供給するためのポンプとを備えた液体処理装置。
The present invention for solving the above-described problems is characterized by the following configurations (1) to (4).
(1) A method for producing a hollow fiber membrane, comprising immersing the membrane formed in a hollow shape in water at 25 ° C. to 60 ° C. for 5 to 20 minutes in a relaxed state.
(2) The method for producing a hollow fiber membrane according to (1) above, wherein the immersion treatment is performed on a hollow membrane formed by a thermally induced phase separation method.
(3) A hollow fiber membrane module characterized in that a hollow fiber membrane produced by the method according to (1) or (2) is housed in a cylindrical container.
(4) A liquid processing apparatus comprising the hollow fiber membrane module according to (3) above and a pump for supplying a stock solution to the hollow fiber membrane module.

本発明によれば、中空状に形成された膜を弛緩状態で25℃〜60℃の水に5〜20分浸漬処理するので、寸法安定性と膜性能安定性に優れた中空糸膜を得ることができ、中空糸膜モジュール、液体処理装置として使用しても膜の収縮を防ぐことができ、逆洗やエアスクラビングにより膜面に付いた汚れを十分に落とすことができる。   According to the present invention, since the hollow membrane is immersed in water at 25 ° C. to 60 ° C. for 5 to 20 minutes in a relaxed state, a hollow fiber membrane excellent in dimensional stability and membrane performance stability is obtained. Even when used as a hollow fiber membrane module or a liquid treatment device, the membrane can be prevented from shrinking, and dirt on the membrane surface can be sufficiently removed by backwashing or air scrubbing.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明は、中空状に形成された膜を弛緩状態で25℃〜60℃の水に5〜20分浸漬処理することにより、製造される中空糸膜の寸法安定性と膜性能安定性を高めるものである。   The present invention improves the dimensional stability and membrane performance stability of a hollow fiber membrane to be produced by immersing the membrane formed in a hollow shape in a relaxed state in water at 25 ° C. to 60 ° C. for 5 to 20 minutes. Is.

中空状膜は、たとえばポリマー溶液を調製した後、該ポリマー溶液を二重管式口金から吐出し、所定の長さの空中走行部を通過させた後、冷却浴中に導いて凝固させることで得られる。   For example, the hollow membrane is prepared by, for example, preparing a polymer solution, discharging the polymer solution from a double-tube base, passing it through an aerial traveling portion having a predetermined length, and then guiding it into a cooling bath to solidify it. can get.

中空状膜の形成方法としては、通常用いられる溶融紡糸、湿式紡糸、乾湿式紡糸いずれの方法で形成されたものでもよい。細孔を形成する方法としては、非溶媒相分離法、熱誘起相分離法、溶融抽出法などがあるが、本発明の効果は熱誘起相分離法によって形成された中空状膜に対してより効果的である。熱誘起相分離法を利用した中空状膜は、球状構造によって構成されている。球状構造とは、専ら、球晶であると推定される。ポリフッ化ビニリデン系ポリマー溶液を例とすると、球晶とは、ポリフッ化ビニリデン系ポリマー溶液が相分離して多孔構造を形成する際に、ポリフッ化ビニリデン系ポリマーが球形に析出、固化した結晶のことである。このような構造を有する中空糸膜は、非溶媒相分離法で得られる網目構造を有する中空糸膜と比べて、強度を高くでき、しかも透水性能も高くすることができる。しかしながら、この構造は濾過液温度の影響を受けやすい。したがって、前述の特許文献1に記載されているような70〜110℃の高温による収縮抑制では、中空糸膜の収縮が大きく、また膜性能の変化が非常に大きいので適応できない。しかし、本発明の方法によれば、比較的低温で処理できるため、熱誘起相分離法を利用した中空状膜であっても寸法変化および膜性能変化が少ない。   The hollow membrane may be formed by any of the commonly used melt spinning, wet spinning, and dry and wet spinning methods. There are non-solvent phase separation method, thermally induced phase separation method, melt extraction method and the like as methods for forming the pores, but the effect of the present invention is more effective than the hollow membrane formed by the thermally induced phase separation method. It is effective. A hollow membrane using a thermally induced phase separation method has a spherical structure. The spherical structure is presumed to be exclusively spherulites. Taking a polyvinylidene fluoride polymer solution as an example, a spherulite is a crystal in which a polyvinylidene fluoride polymer is precipitated and solidified into a spherical shape when the polyvinylidene fluoride polymer solution is phase-separated to form a porous structure. It is. A hollow fiber membrane having such a structure can have higher strength and higher water permeability than a hollow fiber membrane having a network structure obtained by a non-solvent phase separation method. However, this structure is susceptible to filtrate temperature. Therefore, the suppression of shrinkage due to a high temperature of 70 to 110 ° C. described in Patent Document 1 described above cannot be applied because the shrinkage of the hollow fiber membrane is large and the change in membrane performance is very large. However, according to the method of the present invention, since the treatment can be performed at a relatively low temperature, the dimensional change and the membrane performance change are small even in the hollow membrane using the thermally induced phase separation method.

また、膜素材としては、ポリアクリロニトリル、ポリスルホン、ポリエチレンなどの一般的なポリマーでもよいが、特に耐薬品性に優れ高強伸度の膜を得ることができるポリフッ化ビニリデン系ポリマーが、本発明の効果をより効果的に発揮するという観点から好ましい。   In addition, the membrane material may be a general polymer such as polyacrylonitrile, polysulfone, and polyethylene, but a polyvinylidene fluoride polymer that is particularly excellent in chemical resistance and can obtain a high-strength membrane is the effect of the present invention. Is preferable from the viewpoint of exhibiting more effectively.

ポリフッ化ビニリデン系ポリマーとは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有するポリマーのことである。複数の種類のフッ化ビニリデン共重合体を含有しても構わない。フッ化ビニリデン共重合体は、フッ化ビニリデン残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマー等との共重合体である。共重合体としては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。本発明の効果を損なわない範囲で、前記フッ素系モノマー以外の例えばエチレン等のモノマーが共重合されていても良い。またポリフッ化ビニリデン系ポリマーの重量平均分子量は、要求される中空糸膜の強度と透水性能によって適宜選択すれば良いが、中空糸膜への加工性を考慮した場合、25万〜60万の範囲がより好ましく、重量平均分子量35万〜45万の範囲がさらに好ましい。   The polyvinylidene fluoride polymer is a polymer containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. The vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers. Examples of the copolymer include a copolymer of vinylidene fluoride and at least one selected from vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and trifluoroethylene chloride. As long as the effects of the present invention are not impaired, a monomer such as ethylene other than the fluorine-based monomer may be copolymerized. The weight average molecular weight of the polyvinylidene fluoride polymer may be appropriately selected depending on the required strength and water permeability of the hollow fiber membrane, but in the range of 250,000 to 600,000 in consideration of processability to the hollow fiber membrane. Is more preferable, and a weight average molecular weight of 350,000 to 450,000 is more preferable.

なお、熱誘起相分離法によりポリフッ化ビニリデンポリマーからなる中空糸膜を製造する場合、たとえば、80〜175℃の温度範囲のポリフッ化ビニリデン系ポリマーの製膜溶液を2重管式口金から吐出し、所定の長さの空中走行部を通過させた後に、冷却浴に導いて凝固させることで、球状構造が連結されて、その間に空隙を有する構造の中空糸膜を得ることができる。   In the case of producing a hollow fiber membrane made of polyvinylidene fluoride polymer by a thermally induced phase separation method, for example, a film-forming solution of polyvinylidene fluoride polymer in a temperature range of 80 to 175 ° C. is discharged from a double tube die. The hollow fiber membrane having a structure in which a spherical structure is connected and a space between the spherical structures can be obtained by allowing the air travel portion of a predetermined length to pass through and then allowing it to solidify by being guided to a cooling bath.

本発明において、中空状に形成された膜を弛緩状態で浸漬処理するにあたっては、温度は25〜60℃の範囲内であり、30〜40℃の範囲内が好ましい。25℃より低い場合では、浸漬処理による寸法安定化効果および膜性能安定化効果を得ることができず、中空糸膜を所定長に切断して容器にポッティング、モジュール化して使用していると、モジュールの洗浄処理液の温度変動や薬洗で使用する薬液によって中空糸膜が収縮し、中空糸膜に過度の張力がかかる。その結果、中空糸膜の膜ろ過性を快復するためにエアースクラビング洗浄(空洗)や逆洗、薬洗を行っても洗浄効率が低下し、膜ろ過性を快復できず、結果的にモジュール寿命が低下する。一方、60℃より高い場合では、十分な寸法安定化効果および膜性能安定化効果を得ることはできるが、この浸漬処理自体による膜の収縮が大きく透過流速の低下が大きいため、実用的ではない。   In the present invention, when the membrane formed in a hollow shape is immersed in a relaxed state, the temperature is in the range of 25 to 60 ° C, and preferably in the range of 30 to 40 ° C. When the temperature is lower than 25 ° C., the dimensional stabilization effect and the membrane performance stabilization effect due to the dipping treatment cannot be obtained, and when the hollow fiber membrane is cut into a predetermined length and potted into a container and used as a module, The hollow fiber membrane contracts due to temperature fluctuations in the module washing treatment liquid and chemicals used in chemical washing, and excessive tension is applied to the hollow fiber membrane. As a result, even if air scrubbing washing (air washing), back washing, and chemical washing are performed to improve the membrane filterability of the hollow fiber membrane, the cleaning efficiency is reduced, and the membrane filterability cannot be recovered, resulting in a module. The service life is reduced. On the other hand, when the temperature is higher than 60 ° C., a sufficient dimensional stabilization effect and membrane performance stabilization effect can be obtained, but this is not practical because the membrane contraction due to the immersion treatment itself is large and the permeation flow rate is greatly reduced. .

そして、本発明において、浸漬処理の時間は5〜20分の範囲であり、5〜10分の範囲であることがより好ましい。この範囲で処理を施すことにより、中空糸膜を所定長に切断して容器にポッティング、モジュール化して使用していても寸法変化が抑制され、中空糸膜に過度の張力がかかることを回避することができる。その結果、エアースクラビング洗浄や逆洗などの物理洗浄の際に中空糸膜が揺れにくくなることを防ぐことができ、洗浄効率の低下を防ぐことができる。すなわち、浸漬処理の時間が5分より短い場合では、十分な寸法安定化効果および膜性能安定化効果を得ることができないため、モジュール化すると中空糸膜が収縮し、中空糸膜に過度の張力がかかる。その結果、中空糸膜モジュールの洗浄効率が低下し、モジュールの寿命が低下する。一方、浸漬処理の時間が20分より長い場合は、十分な寸法安定化効果および膜性能安定化効果を得ることができるが、処理時間が長いため、生産効率が低下するので好ましくない。また、過度に収縮させてしまい、中空糸膜として要求される性能を発揮できない可能性がある。   In the present invention, the immersion treatment time is in the range of 5 to 20 minutes, and more preferably in the range of 5 to 10 minutes. By performing the treatment within this range, the hollow fiber membrane is cut into a predetermined length, potted in a container, and even if it is modularized and used, the dimensional change is suppressed, and it is avoided that excessive tension is applied to the hollow fiber membrane. be able to. As a result, it is possible to prevent the hollow fiber membrane from being easily shaken during physical cleaning such as air scrubbing cleaning and backwashing, and it is possible to prevent a decrease in cleaning efficiency. That is, when the immersion treatment time is shorter than 5 minutes, a sufficient dimensional stabilization effect and membrane performance stabilization effect cannot be obtained. Therefore, when modularized, the hollow fiber membrane contracts and excessive tension is applied to the hollow fiber membrane. It takes. As a result, the cleaning efficiency of the hollow fiber membrane module is reduced, and the life of the module is reduced. On the other hand, when the immersion treatment time is longer than 20 minutes, a sufficient dimensional stabilization effect and film performance stabilization effect can be obtained, but the treatment time is long, so the production efficiency is lowered, which is not preferable. Moreover, it may be excessively shrunk and the performance required as a hollow fiber membrane may not be exhibited.

ここで、中空状に形成された膜を浸漬処理する水としては、中空糸膜を構成するポリマーへの膨潤作用や化学的修飾など化学的・物理的影響が少ないほうが好ましいため、実質的に他の成分を含まないものであることが好ましいが、エタノール、2−プロパノールなどのアルコール類、グリセリン、エチレングリコール、DMF、DMSOなどの水溶性有機化合物、塩化ナトリウムや次亜塩素酸ナトリウムなどの水溶性無機化合物が0〜20重量%の範囲内で含まれていてもよい。   Here, the water used for immersing the membrane formed in a hollow shape preferably has less chemical / physical effects such as swelling action and chemical modification on the polymer constituting the hollow fiber membrane, so that it is substantially different. It is preferable that it does not contain these components, but alcohols such as ethanol and 2-propanol, water-soluble organic compounds such as glycerin, ethylene glycol, DMF and DMSO, and water-soluble compounds such as sodium chloride and sodium hypochlorite. An inorganic compound may be contained within a range of 0 to 20% by weight.

また、本発明においては、浸漬処理する際に、中空状に形成された膜を弛緩状態とする、すなわち、処理中に中空状膜に張力がかからないようにすることが必要である。したがって、例えば中空状膜をかせに巻いた状態で上記水に浸漬処理する場合は、浸漬処理による収縮を考慮して10%ほどかせ長を短くしておけばよい。また、中空状膜を所定長に切断して処理する場合では、中空状膜に張力がかからないよう両端をフリーにして処理すればよい。かせの長さを変更せずに処理したり、両端を固定するなどの中空状膜に対して張力をかけた場合では、浸漬処理が有効に働かない。そのため、製造された中空糸膜をモジュール化して使用していると、処理液の温度変動や薬洗時に使用する薬液によって中空糸膜が収縮し、中空糸膜に過度の張力がかかる。その結果、中空糸膜の膜ろ過性を快復するためにエアースクラビング洗浄や逆洗、薬洗を行っても洗浄効率が低下し、膜ろ過性を快復できず、結果的にモジュール寿命が低下する。   In the present invention, it is necessary that the membrane formed in a hollow shape is in a relaxed state when the immersion treatment is performed, that is, the hollow membrane is not tensioned during the treatment. Therefore, for example, when the immersion treatment is performed in the above-described water in a state where the hollow membrane is wound in a skein, the skein length may be shortened by about 10% in consideration of the shrinkage due to the dip treatment. Further, when the hollow membrane is cut into a predetermined length for processing, both ends may be made free so that tension is not applied to the hollow membrane. When treatment is performed without changing the length of the skein, or when tension is applied to the hollow membrane such as fixing both ends, the dipping treatment does not work effectively. Therefore, when the manufactured hollow fiber membrane is used as a module, the hollow fiber membrane contracts due to temperature fluctuations in the treatment liquid or chemicals used during chemical washing, and excessive tension is applied to the hollow fiber membrane. As a result, even if air scrubbing cleaning, backwashing, or chemical cleaning is performed to improve the membrane filterability of the hollow fiber membrane, the cleaning efficiency is reduced, and the membrane filterability cannot be recovered, resulting in a decrease in module life. .

上述のようにして製造された中空糸膜は、たとえば筒状容器に収容され、モジュールとして使用される。モジュールの形式は内圧型、外圧型いずれでも良い。また、膜モジュールは、使用するにしたがって膜が汚れ圧力損失が高くなるため、エアーによるスクラビング洗浄や濾過水を用いた逆洗、薬洗が必要となるが、これらの洗浄は一般的に知られている方法で行えばよい。例えば逆洗液には次亜塩素酸ナトリウム、過酸化水素水などの薬剤を5〜5000ppm混合させる。   The hollow fiber membrane manufactured as described above is accommodated in, for example, a cylindrical container and used as a module. The module type may be either an internal pressure type or an external pressure type. In addition, since the membrane module has a high dirt pressure loss as it is used, scrubbing cleaning with air, backwashing using filtered water, and chemical cleaning are required, but these cleanings are generally known. You can do that by For example, 5 to 5000 ppm of chemicals such as sodium hypochlorite and hydrogen peroxide are mixed in the backwash solution.

以下に説明する実施例、比較例において、各膜の透水性能は、逆浸透膜処理水を25℃で1.5mの水位差を駆動力に小型モジュール(膜長約20cm、膜本数1〜10本程度)に送液し、一定時間の透過水量を測定して得た値を、100kPa当たりに換算して算出した。透水性能は、ポンプ等で一定の圧力に加圧して得た値を100kPa当たりに換算して求めてもよい。水温についても、25℃以外で測定し、評価液体の粘性から25℃での値に換算してもよい。   In the examples and comparative examples described below, the water permeation performance of each membrane is as follows. The reverse osmosis membrane treated water is a small module (membrane length of about 20 cm, number of membranes of 1 to 10 with a water level difference of 1.5 m at 25 ° C.) The value obtained by measuring the amount of permeated water for a certain time was calculated by converting per 100 kPa. The water permeation performance may be obtained by converting a value obtained by pressurizing to a constant pressure with a pump or the like per 100 kPa. The water temperature may also be measured at a temperature other than 25 ° C. and converted to a value at 25 ° C. from the viscosity of the evaluation liquid.

破断強伸度は、引張試験機を用いて、試験長50mmでフルスケール2000gの加重をクロスヘッドスピード50mm/分で測定し、求めた。
<実施例1>
分子量41.7万のフッ化ビニリデンホモポリマーとγ−ブチロラクトンとをそれぞれ40重量%と60重量%の割合で混合し、170℃の温度で溶解したポリマー溶液を、100%γ−ブチロラクトンを中空部形成液体として随伴させながら100℃の口金から吐出し、温度7℃のγ−ブチロラクトン100%溶液からなる冷却浴中で固化した。得られた中空状膜は、外径1.28mm、内径0.78mmで、内部に直径1.3μmの球状構造を有し、外表面の平均細孔径が0.5μmであった。また、透水性能は0.80m3/m2・hr(差圧100kPa,25℃の条件)で、破断強力が1000g/mm2、破断伸度が100%であった。
The tensile strength at break was determined by measuring a load of 2000 g full scale at a test length of 50 mm at a crosshead speed of 50 mm / min using a tensile tester.
<Example 1>
A polymer solution prepared by mixing vinylidene fluoride homopolymer having a molecular weight of 47,000 and γ-butyrolactone at a ratio of 40% by weight and 60% by weight respectively and dissolving at a temperature of 170 ° C. It was discharged from a 100 ° C. base while being accompanied as a forming liquid, and solidified in a cooling bath composed of a 100% γ-butyrolactone solution at a temperature of 7 ° C. The obtained hollow membrane had an outer diameter of 1.28 mm, an inner diameter of 0.78 mm, a spherical structure with a diameter of 1.3 μm inside, and an average pore diameter of the outer surface of 0.5 μm. The water permeability was 0.80 m 3 / m 2 · hr (differential pressure 100 kPa, 25 ° C.), the breaking strength was 1000 g / mm 2 , and the breaking elongation was 100%.

この中空状膜をかせに巻いた後、2.2mの長さに切断し、1束400本の単位でまとめ、両端をそれぞれ帯状のマジックテープ(登録商標)で結束した。この中空状膜の束を、張力をかけず弛緩状態として30℃の温水に5分間浸漬処理した。浸漬処理により、膜寸法は2.1%収縮し、透水性は19%低下した。   After winding this hollow membrane in a skein, it was cut to a length of 2.2 m, bundled in units of 400 bundles, and bound at both ends with strip-shaped Velcro (registered trademark). This bundle of hollow membranes was immersed in warm water at 30 ° C. for 5 minutes in a relaxed state without applying tension. By immersion treatment, the membrane size contracted 2.1% and the water permeability decreased 19%.

続いて、浸漬処理により得られた中空糸膜をポッティングし、両端固定タイプのモジュールを作成した。その後、親水化処理として、外圧形式の循環水洗40分、30wt%エタノール水溶液をモジュール内に満たした状態で10分間浸漬し、エタノール水溶液を排出後、循環水洗10分、0.02N水酸化ナトリウム水溶液をモジュール内に満たした状態で10分間浸漬、循環水洗10分、5wt%過酸化水素水溶液を5時間浸漬した。そして、過酸化水素水溶液を排出後30分間の水洗処理を行った。親水化終了後のモジュール内での中空糸膜の収縮は0.1%以下であり、モジュール内で中空糸膜にかかる張力変化はほとんどなかった。   Subsequently, the hollow fiber membrane obtained by the dipping treatment was potted to produce a both-end fixed type module. Thereafter, as hydrophilization treatment, the module was immersed for 10 minutes in an external pressure-type circulating water wash for 40 minutes and a 30 wt% ethanol aqueous solution filled in the module. Was immersed in a module for 10 minutes, circulating water was washed for 10 minutes, and a 5 wt% aqueous hydrogen peroxide solution was immersed for 5 hours. And the water washing process for 30 minutes was performed after discharging | emitting hydrogen peroxide aqueous solution. The shrinkage of the hollow fiber membrane in the module after the completion of hydrophilization was 0.1% or less, and there was almost no change in tension applied to the hollow fiber membrane in the module.

このモジュールを用いて濾過運転を行った。運転条件は濾過時間20分、その後逆洗・空洗を同時に20秒行うサイクルで行った。逆洗および空洗時には中空糸膜が揺動し、中空糸膜に付着している物質を剥離する事ができた。その結果、濾過初期と60日運転後の濾過差圧の比は、1.00/1.14であった。
<実施例2>
浸漬処理の時間を10分にした以外は、実施例1と同様に行った。その結果、浸漬処理により膜寸法は2.0%収縮し、透水性は20%低下した。
A filtration operation was performed using this module. The operating conditions were a cycle in which the filtration time was 20 minutes, and then back washing and empty washing were simultaneously carried out for 20 seconds. During backwashing and air washing, the hollow fiber membrane oscillated, and the substance adhering to the hollow fiber membrane could be peeled off. As a result, the ratio of the filtration differential pressure at the beginning of filtration and after 60 days of operation was 1.00 / 1.14.
<Example 2>
The same procedure as in Example 1 was performed except that the immersion treatment time was 10 minutes. As a result, the membrane size was reduced by 2.0% by the immersion treatment, and the water permeability was reduced by 20%.

続いて、浸漬処理により得られた中空糸膜をポッティングし、両端固定タイプのモジュールを作成した。その後、実施例1と同様に親水化処理、洗浄を行ったところ、中空糸膜の収縮は0.1%以下であり、モジュール内で中空糸膜にかかる張力変化もほとんどなかった。   Subsequently, the hollow fiber membrane obtained by the dipping treatment was potted to produce a both-end fixed type module. Thereafter, when hydrophilic treatment and washing were performed in the same manner as in Example 1, the shrinkage of the hollow fiber membrane was 0.1% or less, and there was almost no change in tension applied to the hollow fiber membrane in the module.

このモジュールを用いて実施例1と同様に濾過運転を行った。逆洗および空洗時には中空糸膜が揺動し、中空糸膜に付着している物質を剥離する事ができた。その結果、その結果、濾過初期と60日運転後の濾過差圧の比は、1.00/1.20であった。
<実施例3>
浸漬処理の温度を40℃にした以外は実施例1と同様に行った。その結果、浸漬処理により膜寸法は2.2%収縮し、透水性は16%低下した。
A filtration operation was performed in the same manner as in Example 1 using this module. During backwashing and air washing, the hollow fiber membrane oscillated, and the substance adhering to the hollow fiber membrane could be peeled off. As a result, the ratio between the filtration initial pressure and the filtration differential pressure after 60 days of operation was 1.00 / 1.20.
<Example 3>
The same procedure as in Example 1 was performed except that the temperature of the immersion treatment was 40 ° C. As a result, the membrane size was reduced by 2.2% and the water permeability was reduced by 16% by the immersion treatment.

続いて、浸漬処理により得られた中空糸膜をポッティングし、両端固定タイプのモジュールを作成した。その後、実施例1と同様に親水化処理、洗浄を行ったところ、中空糸膜の収縮は0.1%以下であり、モジュール内で中空糸膜にかかる張力変化もほとんどなかった。   Subsequently, the hollow fiber membrane obtained by the dipping treatment was potted to produce a both-end fixed type module. Thereafter, when hydrophilic treatment and washing were performed in the same manner as in Example 1, the shrinkage of the hollow fiber membrane was 0.1% or less, and there was almost no change in tension applied to the hollow fiber membrane in the module.

このモジュールを用いて実施例1と同様に濾過運転を行った。逆洗および空洗時には中空糸膜が揺動し、中空糸膜に付着している物質を剥離する事ができた。その結果、濾過初期と60日運転後の濾過差圧の比は、1.00/1.25であった。
<比較例1>
浸漬処理を行わない以外は、実施例1と同様に行った。
A filtration operation was performed in the same manner as in Example 1 using this module. During backwashing and air washing, the hollow fiber membrane oscillated, and the substance adhering to the hollow fiber membrane could be peeled off. As a result, the ratio of the filtration differential pressure after the initial filtration and after 60 days of operation was 1.00 / 1.25.
<Comparative Example 1>
It carried out similarly to Example 1 except not performing immersion treatment.

続いて、浸漬処理により得られた中空糸膜をポッティングし、両端固定タイプのモジュールを作成した。その後、実施例1と同様に親水化処理、洗浄を行ったところ、中空糸膜の収縮は2.5%となり、モジュール内で中空糸膜が緊張していた。   Subsequently, the hollow fiber membrane obtained by the dipping treatment was potted to produce a both-end fixed type module. Thereafter, when hydrophilic treatment and washing were performed in the same manner as in Example 1, the shrinkage of the hollow fiber membrane was 2.5%, and the hollow fiber membrane was strained in the module.

このモジュールを用いて実施例1と同様に濾過運転を行った。逆洗および空洗時には中空糸膜が揺動せず、中空糸膜に付着している物質をほとんど剥離する事ができなかった。その結果、濾過初期と60日運転後の濾過差圧の比は、1.00/5.22であった。
<比較例2>
浸漬処理の温度を20℃にした以外は、実施例1と同様に行った。その結果、浸漬処理により、膜寸法変化は2.0%収縮し、透水性は17%低下した。
A filtration operation was performed in the same manner as in Example 1 using this module. During backwashing and air washing, the hollow fiber membrane did not oscillate, and the substance adhering to the hollow fiber membrane could hardly be peeled off. As a result, the ratio of the filtration differential pressure at the beginning of filtration to that after 60 days of operation was 1.00 / 5.22.
<Comparative example 2>
The same procedure as in Example 1 was performed except that the temperature of the immersion treatment was 20 ° C. As a result, the film dimensional change contracted by 2.0% and the water permeability decreased by 17% by the immersion treatment.

続いて、浸漬処理により得られた中空糸膜をポッティングし、両端固定タイプのモジュールを作成した。その後、実施例1と同様に親水化処理、洗浄を行ったところ、中空糸膜の収縮は1.5%であり、モジュール内で中空糸膜膜が緊張していた。   Subsequently, the hollow fiber membrane obtained by the dipping treatment was potted to produce a both-end fixed type module. Thereafter, when the hydrophilic treatment and washing were performed in the same manner as in Example 1, the shrinkage of the hollow fiber membrane was 1.5%, and the hollow fiber membrane was strained in the module.

このモジュールを用いて実施例1と同様に濾過運転を行った。逆洗および空洗時には中空糸膜が揺動せず、中空糸膜に付着している物質をほとんど剥離する事ができなかった。その結果、濾過初期と60日運転後の濾過差圧の比は、1.00/3.43であった。
<比較例3>
浸漬処理の温度を70℃にした以外は、実施例1と同様に行った。その結果、浸漬処理により、膜寸法変化は6.0%収縮し、透水性は35%低下した。
A filtration operation was performed in the same manner as in Example 1 using this module. During backwashing and air washing, the hollow fiber membrane did not oscillate, and the substance adhering to the hollow fiber membrane could hardly be peeled off. As a result, the ratio of the filtration differential pressure at the beginning of filtration to that after 60 days of operation was 1.00 / 3.43.
<Comparative Example 3>
The same operation as in Example 1 was performed except that the temperature of the immersion treatment was set to 70 ° C. As a result, the film dimensional change was reduced by 6.0% and the water permeability was reduced by 35% by the immersion treatment.

続いて、浸漬処理により得られた中空糸膜をポッティングし、両端固定タイプのモジュールを作成した。その後、実施例1と同様に親水化処理、洗浄を行ったところ、中空糸膜の収縮は0.1%以下であり、モジュール内で中空糸膜にかかる張力変化はほとんどなかった。しかし、浸漬処理により透水性が大きく低下したため、モジュールとして目標透過水量を得ることができなかった。
<比較例4>
浸漬処理の時間を3分にした以外は、実施例3と同様に行った。その結果、浸漬処理により、膜寸法変化は2.0%収縮し、透水性は13%低下した。
Subsequently, the hollow fiber membrane obtained by the dipping treatment was potted to produce a both-end fixed type module. Thereafter, when hydrophilic treatment and washing were performed in the same manner as in Example 1, the shrinkage of the hollow fiber membrane was 0.1% or less, and there was almost no change in tension applied to the hollow fiber membrane in the module. However, since the water permeability was greatly reduced by the immersion treatment, the target permeated water amount could not be obtained as a module.
<Comparative example 4>
The same procedure as in Example 3 was performed except that the dipping time was 3 minutes. As a result, the film dimensional change contracted by 2.0% and the water permeability decreased by 13% by the immersion treatment.

続いて、浸漬処理により得られた中空糸膜をポッティングし、両端固定タイプのモジュールを作成した。その後、実施例1と同様に親水化処理、洗浄を行ったところ、中空糸膜の収縮は2.5%であり、モジュール内で中空糸膜膜が緊張していた。   Subsequently, the hollow fiber membrane obtained by the dipping treatment was potted to produce a both-end fixed type module. Thereafter, when hydrophilic treatment and washing were performed in the same manner as in Example 1, the shrinkage of the hollow fiber membrane was 2.5%, and the hollow fiber membrane was strained in the module.

このモジュールを用いて実施例1と同様に濾過運転を行った。逆洗および空洗時には中空糸膜が揺動せず、中空糸膜に付着している物質をほとんど剥離する事ができなかった。その結果、濾過初期と60日運転後の濾過差圧の比は、1.00/4.12であった。   A filtration operation was performed in the same manner as in Example 1 using this module. During backwashing and air washing, the hollow fiber membrane did not oscillate, and the substance adhering to the hollow fiber membrane could hardly be peeled off. As a result, the ratio between the filtration differential pressure after the initial filtration and the 60-day operation was 1.00 / 4.12.

本発明は、食品工業や医療分野、用水製造、排水処理分野等をはじめとして様々な方面で利用される中空糸膜を製造するにあたり好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for producing hollow fiber membranes that are used in various fields including the food industry, medical field, irrigation water production, wastewater treatment field, and the like.

Claims (4)

中空状に形成された膜を弛緩状態で25℃〜60℃の水に5〜20分浸漬処理することを特徴とする中空糸膜の製造方法。   A method for producing a hollow fiber membrane, comprising immersing the membrane formed in a hollow shape in water at 25 ° C to 60 ° C for 5 to 20 minutes in a relaxed state. 熱誘起相分離法で形成した中空状の膜に対して該浸漬処理を施すことを特徴とする請求項1に記載の中空糸膜の製造方法。   The method for producing a hollow fiber membrane according to claim 1, wherein the immersion treatment is performed on a hollow membrane formed by a thermally induced phase separation method. 請求項1または2に記載の方法によって製造された中空糸膜を筒状容器に収容したことを特徴とする中空糸膜モジュール。   A hollow fiber membrane module, wherein the hollow fiber membrane produced by the method according to claim 1 or 2 is accommodated in a cylindrical container. 請求項3に記載の中空糸膜モジュールと、該中空糸膜モジュールに原液を供給するためのポンプとを備えた液体処理装置。   A liquid processing apparatus comprising the hollow fiber membrane module according to claim 3 and a pump for supplying a stock solution to the hollow fiber membrane module.
JP2004086275A 2004-03-24 2004-03-24 Production method of hollow fiber membrane Pending JP2005270762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086275A JP2005270762A (en) 2004-03-24 2004-03-24 Production method of hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086275A JP2005270762A (en) 2004-03-24 2004-03-24 Production method of hollow fiber membrane

Publications (1)

Publication Number Publication Date
JP2005270762A true JP2005270762A (en) 2005-10-06

Family

ID=35170980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086275A Pending JP2005270762A (en) 2004-03-24 2004-03-24 Production method of hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2005270762A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062227A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Raw material solution for preparing membrane, porous membrane, and method for preparing porous membrane
JP2008062229A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous polyvinylidene fluoride membrane and method for preparing the same
JP2008062226A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous membrane made from vinylidene fluoride resin and method for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062227A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Raw material solution for preparing membrane, porous membrane, and method for preparing porous membrane
JP2008062229A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous polyvinylidene fluoride membrane and method for preparing the same
JP2008062226A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous membrane made from vinylidene fluoride resin and method for preparing the same

Similar Documents

Publication Publication Date Title
JP5622833B2 (en) High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
JP6694326B2 (en) Composite membrane
JP6644674B2 (en) Hollow fiber membrane and method for manufacturing hollow fiber membrane
KR101392943B1 (en) Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
JP6577781B2 (en) Hollow fiber membrane and method for producing hollow fiber membrane
JP5318385B2 (en) Porous membrane made of vinylidene fluoride resin and method for producing the same
JP6544245B2 (en) Composite semipermeable membrane
Li et al. Engineering design of outer‐selective tribore hollow fiber membranes for forward osmosis and oil‐water separation
JP4299468B2 (en) Cellulose derivative hollow fiber membrane
JP6419917B2 (en) Method for producing hollow fiber membrane
JP6374291B2 (en) Hollow fiber membrane module
JP2006231274A (en) Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method
JP6277097B2 (en) Hollow fiber membrane, method for producing hollow fiber membrane, and liquid treatment method
JP2005144412A (en) Polyketone hollow fiber membrane and manufacturing method of the same
JP2005270762A (en) Production method of hollow fiber membrane
JP2018012072A (en) Forward osmosis membrane and method for manufacturing the same
JP2015221400A (en) Manufacturing method of hollow fiber membrane for ultrafiltration membrane
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP4380380B2 (en) Method for producing liquid separation membrane
JP6707880B2 (en) Hollow fiber membrane and hollow fiber membrane module
JP2006205003A (en) Chlorine resistance polyolefin hollow fiber membrane and its manufacturing method
JP4164730B2 (en) Selective separation membrane
JP4164774B2 (en) Method for producing selective separation membrane
JP2005205358A (en) Production method of porous hollow fiber membrane