JPS5938322B2 - Microporous hollow fiber and its manufacturing method - Google Patents

Microporous hollow fiber and its manufacturing method

Info

Publication number
JPS5938322B2
JPS5938322B2 JP51050202A JP5020276A JPS5938322B2 JP S5938322 B2 JPS5938322 B2 JP S5938322B2 JP 51050202 A JP51050202 A JP 51050202A JP 5020276 A JP5020276 A JP 5020276A JP S5938322 B2 JPS5938322 B2 JP S5938322B2
Authority
JP
Japan
Prior art keywords
stretching
hollow fiber
hollow
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51050202A
Other languages
Japanese (ja)
Other versions
JPS52137026A (en
Inventor
日子一 長野
浩一 松波
賢太郎 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP51050202A priority Critical patent/JPS5938322B2/en
Publication of JPS52137026A publication Critical patent/JPS52137026A/en
Publication of JPS5938322B2 publication Critical patent/JPS5938322B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】 本発明は、ガスや液体などの精製分離用として有用な繊
維壁に微孔を有する長さ方向に配向しかつ引張り強度が
犬である中空繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a longitudinally oriented hollow fiber having micropores in the fiber wall and having a high tensile strength, which is useful for purification and separation of gases, liquids, etc.

本発明はまた機能性材料の素材として有用な高強度の微
孔性中空繊維を溶融紡糸法により製造する方法を提供す
ることにある。
Another object of the present invention is to provide a method for producing high-strength microporous hollow fibers useful as materials for functional materials by melt spinning.

また、本発明は可溶性成分を溶解除去するための溶剤等
の残留溶剤の懸念を持たない中空繊維の製造方法である
Further, the present invention is a method for producing hollow fibers that does not have to worry about residual solvent such as a solvent for dissolving and removing soluble components.

従来、微細な開孔を有する平面状の膜はよく知られてお
り液体、ガスなどの精製分離、通気性を必要とする包装
などへの応用を目的として種々の技術が提案されてきた
Conventionally, planar membranes having fine pores have been well known, and various techniques have been proposed for application to purification and separation of liquids, gases, etc., packaging that requires breathability, and the like.

しかし液体やガスを微孔性の膜を通して分離精製を行な
う場合平面状の膜を使用すると一般に濾過面積に比し大
きな占有容積を必要とし装置の小型化が困難である。
However, if a flat membrane is used to separate and purify liquid or gas through a microporous membrane, it generally requires a larger occupied volume than the filtration area, making it difficult to downsize the device.

また湿式紡糸法により微孔性中空繊維を製造する方法に
おいては高強度の繊維を得ることができない。
Further, in the method of manufacturing microporous hollow fibers by wet spinning, high strength fibers cannot be obtained.

これに対し本発明の微孔性中空繊維は容積に比し表面積
が著しく大きく単位スペース当りの効率の高い分離用膜
を高強度のものとして提供する。
In contrast, the microporous hollow fibers of the present invention have a significantly large surface area compared to the volume and provide a separation membrane with high efficiency per unit space and high strength.

一方中空繊維については従来から種々のタイプの繊維が
提案され、風合や嵩高性、被覆力の増加、断熱効果の向
上などにより衣料用、ふとん綿、救命具のカポックなど
として利用されている。
On the other hand, various types of hollow fibers have been proposed in the past, and due to their texture, bulk, increased covering power, and improved heat insulation effect, they are used for clothing, futon cotton, kapok for life preservers, etc.

また最近においては水素やヘリウムなどの気体分離用き
してポリエステル中空繊維が利用されている。
Recently, polyester hollow fibers have been used for separating gases such as hydrogen and helium.

しかしこれらの中空繊維の繊維壁には貫通した微細な孔
は存在せず、そのために重合体が本来有する気体や液体
の透過速度をなんら変えたものではない。
However, there are no penetrating fine pores in the fiber walls of these hollow fibers, and therefore the permeation rate of gas and liquid inherent in the polymer is not changed in any way.

本発明の微孔性中空繊維は長さ方向に配向しており、か
つ繊維壁に貫通した微孔を有するため重合体が本来有す
るガスや液体の透過速度に比し著しく大きな透過速度を
有しまた高強度である。
The microporous hollow fibers of the present invention are oriented in the length direction and have micropores that penetrate through the fiber walls, so they have a significantly higher permeation rate than the gas or liquid permeation rate that the polymer originally has. It has high strength.

また、ポリアミド、ポリエステル、ポリオキシメチレン
からなる微孔性繊維が知られている(USP35131
10、’(JSP3551363参照)が、これらの繊
維形態は中空糸でなく本発明の繊維のような濾過特性を
有するものではない。
Microporous fibers made of polyamide, polyester, and polyoxymethylene are also known (USP 35131
10,' (see JSP3551363), but these fiber forms are not hollow fibers and do not have the filtration properties of the fibers of the present invention.

上記に鑑み本発明者らは多年にわたり種々研究の結果本
発明に到達した。
In view of the above, the present inventors have arrived at the present invention as a result of various studies over many years.

即ち本発明は、熱可塑性の結晶性重合体から成る長さ方
向に配向した中空繊維であり、該中空繊維壁に孔径(平
均)が0.01〜0.5μの貫通した微孔を有し、該繊
維壁における窒素の20℃での透過量が0.01〜10
0cc、/cr/l・min・10αHgの値を有する
微孔性中空繊維に関する。
That is, the present invention is a longitudinally oriented hollow fiber made of a thermoplastic crystalline polymer, which has penetrating micropores with an average pore diameter of 0.01 to 0.5 μ in the hollow fiber wall. , the amount of nitrogen permeation at 20°C in the fiber wall is 0.01 to 10
The present invention relates to a microporous hollow fiber having a value of 0cc, /cr/l·min·10αHg.

さらに本発明はポリオレフィンを中空糸紡糸用紡糸口金
を用い巻取速度10m、7分以上ドラフト比200〜1
500、ポリプロピレンの場合200〜300℃、ポリ
エチレンの場合180〜280°Cの範囲で溶融紡糸し
、得られた未延伸糸を必要により熱処理し、5 X 1
0−3以上の複屈折値、高結晶化度であり実質的に0.
01〜0.5μの貫通孔を有しない未延伸糸を得、該未
延伸糸をポリプロピレンの場合80℃以下5〜100%
の冷延伸の後120〜155℃で20〜450%の熱延
伸を行なうか、又はポリエチレンの場合80℃以下10
〜50%の冷延伸の後90〜120℃で30〜150%
の熱延伸を行ない、かくして該延伸に起因する熱可塑性
の結晶性重合体からなる長さ方向に配向した中空繊維で
あり、該中空繊維壁に該延伸により生じた孔径(平均)
が0.01〜0.5μの貫通した微孔を有し、該繊維壁
における窒素の20℃での透過量が0.’01〜10
occ/7・min・10mgの値を有する微孔性中空
繊維を製造する方法に関する。
Furthermore, the present invention uses a spinneret for spinning polyolefin at a winding speed of 10 m and a draft ratio of 200 to 1 for 7 minutes or more.
500, melt-spun at 200 to 300°C for polypropylene and 180 to 280°C for polyethylene, heat-treated the resulting undrawn yarn as necessary, and
Birefringence value of 0-3 or more, high crystallinity and substantially 0.
Obtain an undrawn yarn that does not have through holes of 01 to 0.5 μm, and in the case of polypropylene, the undrawn yarn is heated at 80°C or lower by 5 to 100%.
After the cold stretching, hot stretching is carried out at 120 to 155°C by 20 to 450%, or in the case of polyethylene, the temperature is 10 to 80°C or less.
30-150% at 90-120°C after ~50% cold stretching
The result is a longitudinally oriented hollow fiber made of a thermoplastic crystalline polymer resulting from the stretching, and the pore size (average) produced in the hollow fiber wall by the stretching.
has penetrating micropores of 0.01 to 0.5μ, and the amount of nitrogen permeation through the fiber wall at 20°C is 0. '01-10
The present invention relates to a method for producing microporous hollow fibers having a value of occ/7.min.10 mg.

本発明をさらに詳しく説明する。The present invention will be explained in more detail.

本発明ではポリエチレン、ポリプロピレンからなるポリ
オレフィンを出発重合体として用いることが必須である
In the present invention, it is essential to use a polyolefin consisting of polyethylene or polypropylene as a starting polymer.

これら重合体にはまた安定剤、紫外線吸収剤、可塑剤、
染料、顔料、結晶核剤を必要に応じて添加することがで
きる。
These polymers also contain stabilizers, UV absorbers, plasticizers,
Dyes, pigments, and crystal nucleating agents can be added as necessary.

さらに上記結晶性重合体同士をブレンドしてもよく、ま
たこれら結晶性重合体にエラストマーやゴムなどの非品
性ポリマー、炭酸カルシウムなどの無機物を添加するこ
ともできる。
Furthermore, the above-mentioned crystalline polymers may be blended with each other, and non-grade polymers such as elastomers and rubbers, and inorganic substances such as calcium carbonate may also be added to these crystalline polymers.

本発明の微孔性中空繊維を製造する好ましい方法は、繊
維形成性を有する結晶性重合体の溶融体を紡糸口金を通
して溶融紡糸して中空繊維を得る方法において紡糸口金
の円環状スリットの吐出口径(外径)が0.2〜2Qm
m、円環状のスリットの巾を0.05〜5群とし紡糸温
度は重合体の融点より15〜150℃高い温度を用い、
巻取速度はl Q yn /min以上、ドラフト比2
00〜1500の範囲で溶融紡糸して外径が2朋以下、
肉厚が100μ以下の中空繊維を作り、これを重合体の
融点よりも10〜100°C低い温度で熱処理し、その
後」段延伸または多段延伸により伸度500%以下に延
伸して孔径(平均)が0.5μ以下の貫通した微孔を繊
維壁に有する中空繊維を製造する方法である。
A preferred method for producing the microporous hollow fibers of the present invention is a method for obtaining hollow fibers by melt-spinning a melt of a crystalline polymer having fiber-forming properties through a spinneret, in which the diameter of the discharge opening of the annular slit of the spinneret is (outer diameter) is 0.2~2Qm
m, the width of the annular slit is 0.05 to 5 groups, the spinning temperature is 15 to 150 ° C higher than the melting point of the polymer,
Winding speed is l Q yn /min or more, draft ratio is 2
Melt-spun in the range of 00 to 1500 with an outer diameter of 2 mm or less,
Hollow fibers with a wall thickness of 100μ or less are made, heat treated at a temperature 10 to 100°C lower than the melting point of the polymer, and then stretched to an elongation of 500% or less by stage or multistage stretching to increase the pore size (average ) is a method for producing hollow fibers having penetrating micropores of 0.5μ or less in the fiber wall.

これら結晶性重合体の溶融紡糸においては、スクリュー
やギアポンプおよび中空用紡糸口金を備えた通常の溶融
紡糸装置で充分である。
For melt spinning these crystalline polymers, a conventional melt spinning apparatus equipped with a screw, a gear pump, and a hollow spinneret is sufficient.

スクリュー押出機や溶融格子で溶解されたポリマーはギ
アポンプにて中空糸紡糸用口金に送られ、円環状スリッ
トから紡糸筒内に紡糸し、冷風で冷却固化されて巻取機
に巻取られる。
The polymer melted in a screw extruder or melting grid is sent to a hollow fiber spinning nozzle by a gear pump, spun into a spinning tube through an annular slit, solidified by cooling with cold air, and wound up in a winder.

本発明の中空繊維紡糸口金の一例を第1図、第2図に示
す。
An example of the hollow fiber spinneret of the present invention is shown in FIGS. 1 and 2.

中空糸紡糸用口金の円環状スリットは吐出口径(円環の
外周径)aが0.2〜20m1lL、スリットの巾すが
0.05〜5mmの範囲であるのが好ましい。
It is preferable that the annular slit of the hollow fiber spinning die has a discharge opening diameter (outer diameter of the annular ring) a of 0.2 to 20 ml, and a width of the slit of 0.05 to 5 mm.

円環状スリットの吐出口径は細すぎても、また太すぎて
も紡糸においてドラフト比を大きくすると糸切れが多く
なり、紡糸が困難となる。
Even if the diameter of the discharge opening of the annular slit is too small or too large, increasing the draft ratio during spinning will increase the number of yarn breakages, making spinning difficult.

またスリット巾は狭すぎると流動ポリマーの剪断速度が
高くなり過ぎてメルトフラクチャーを発生しやすく均一
な繊維を得ることが困難であり糸切れも多くなる。
Furthermore, if the slit width is too narrow, the shear rate of the fluid polymer becomes too high, which tends to cause melt fractures, making it difficult to obtain uniform fibers, and increasing the number of thread breakages.

スリット巾が広すぎると得られた中空繊維の肉厚が厚く
なり、この中空繊維の繊維壁に貫通した微孔を形成させ
るために中空繊維を延伸しても肉厚が厚いと貫通した微
孔が発生しにくい。
If the slit width is too wide, the resulting hollow fiber will have a large wall thickness, and even if the hollow fiber is stretched to form penetrating micropores in the fiber wall of the hollow fiber, if the wall thickness is too thick, the penetrating micropores will be formed. is less likely to occur.

外径が2朋以下、肉厚が100μ以下の中空繊維が貫通
した微孔を得るために有利であり、そのためには紡糸口
金の寸法は上記の範囲が好ましい。
It is advantageous to obtain micropores penetrated by hollow fibers having an outer diameter of 2 mm or less and a wall thickness of 100 μm or less, and for this purpose, the dimensions of the spinneret are preferably within the above ranges.

また中空繊維用紡糸口金の円環状スリットという形状は
閉鎖円環にこだわるものではなく、C形(一部切欠き部
を有する円環)、星形、三角形、四角形、多角形、およ
びこれらを変形したものでもなと、中空糸を紡糸できる
ものであればなんら差支えない。
In addition, the shape of the circular slit of the spinneret for hollow fibers is not limited to a closed circular ring, but can be C-shaped (circular ring with a partially cut-out part), star-shaped, triangular, square, polygonal, or modified. There is no problem with anything that can be used to spin hollow fibers.

この場合、吐出口径は周囲の長さを円形に換算して直径
を算出したものから求めることができる。
In this case, the discharge port diameter can be determined from the diameter calculated by converting the circumferential length into a circle.

さらに中空繊維の中空部に気体を供給するための気体供
給管1を備えた中空用紡糸口金もこの微孔中空繊維を製
造するためにはより好ましいものである。
Further, a hollow spinneret equipped with a gas supply pipe 1 for supplying gas to the hollow portion of the hollow fiber is also more preferable for producing the microporous hollow fiber.

紡糸口金のスリットが連続した円環状のものにおいては
繊維中空部への気体の供給または吸入は自然吸入でも強
制吸入でも、どちらでもよい。
When the spinneret has continuous slits in an annular shape, the gas may be supplied or sucked into the hollow part of the fiber by either natural suction or forced suction.

しかし、この中空部への気体の供給量により得られる中
空繊維の外径や肉厚が異なる。
However, the outer diameter and wall thickness of the hollow fibers obtained vary depending on the amount of gas supplied to the hollow portion.

気体の供給量が多すぎると繊維がちょうちん状に膨らみ
好ましくない。
If the amount of gas supplied is too large, the fibers will swell into a lantern shape, which is undesirable.

得られる繊維の外径は紡糸口金の吐出口径よりも小さく
なるのが好ましい。
The outer diameter of the resulting fibers is preferably smaller than the diameter of the spinneret outlet.

また、気体の供給量が少なすぎると中空繊維でなくなる
Moreover, if the amount of gas supplied is too small, the fibers will not be hollow fibers.

C形紡糸口金(第1図参照)のようにスリットが不連続
のもの(吐出ポリマーの切れ目から外気を吸入する方式
)では中空部への気体の吸入は自然吸入となる。
In the case of a C-type spinneret (see Fig. 1) with discontinuous slits (a system in which outside air is sucked in through cuts in the discharged polymer), gas is naturally sucked into the hollow part.

紡糸口金から吐出された重合体はドラフト比200〜1
500の範囲で巻取られる。
The polymer discharged from the spinneret has a draft ratio of 200 to 1.
It can be wound in the range of 500.

ドラフト比とは巻取速度と紡糸口金での重合体の吐出線
速度の比であり、次式で示される。
The draft ratio is the ratio between the winding speed and the linear speed at which the polymer is discharged from the spinneret, and is expressed by the following formula.

ドラフト比が低い場合は巻取った中空繊維を延伸しても
貫通した微孔は発生せずまたドラフト比が高い場合は紡
糸において糸条に掛る張力がポリマーの融点強度を超え
るために糸切れが発生する中空繊維の中空部に紡糸のと
きに気体を強制吸入する場合は自然吸入する場合に比べ
て微孔性中空繊維を得るために好ましいドラフト比は小
さくなる。
If the draft ratio is low, penetrating micropores will not occur even if the wound hollow fiber is drawn, and if the draft ratio is high, the tension applied to the yarn during spinning will exceed the melting point strength of the polymer, resulting in yarn breakage. When gas is forcibly inhaled into the hollow part of the generated hollow fibers during spinning, the preferable draft ratio for obtaining microporous hollow fibers becomes smaller than when gas is naturally inhaled.

気体の吸入量にもよるが強制収入の場合はドラフト比は
200〜800、自然吸入の場合はドラフト比が400
〜1500が好ましい。
Depending on the amount of gas inhaled, in the case of forced income, the draft ratio is 200 to 800, and in the case of natural inhalation, the draft ratio is 400.
~1500 is preferred.

このようにして得られた中空繊維は外径が211!+1
!以下、肉厚が100μ以下が好ましい。
The hollow fiber thus obtained has an outer diameter of 211! +1
! Hereinafter, the wall thickness is preferably 100 μm or less.

繊維の太さは太すぎると形状を保つのが困難であり特に
外圧が掛ると潰れて偏平化しやすい。
If the fibers are too thick, it will be difficult to maintain their shape, and they will likely collapse and flatten especially when external pressure is applied.

また細すぎると紡糸において糸切れが生じやすく、また
この微孔性中空繊維を利用して気体や液体を繊維中空部
に通す場合、圧力損失が大きくなる傾向にある。
Furthermore, if the fiber is too thin, thread breakage is likely to occur during spinning, and when the microporous hollow fiber is used to pass gas or liquid through the hollow portion of the fiber, pressure loss tends to increase.

中空繊維の外径は好ましくは10〜500μがよむ)。The outer diameter of the hollow fibers is preferably 10 to 500μ).

また、中空繊維の肉厚は比較的薄いほうが延伸において
貫通した微孔が得られやすく、好ましくは5〜60μが
よい。
In addition, the relatively thinner the hollow fiber is, the easier it is to obtain penetrating micropores during stretching, and the thickness is preferably 5 to 60 μm.

中空繊維の外径および肉厚は光学顕微鏡や走査形電子顕
微鏡を用いて観察すれば容易に測定することができる。
The outer diameter and wall thickness of the hollow fiber can be easily measured by observing it using an optical microscope or a scanning electron microscope.

中空繊維の巻取速度は上記ドラフト比を達成するために
107rL/−以上が良く、好ましくは50〜1000
0yx/mmが好適である。
The winding speed of the hollow fiber is preferably 107 rL/- or more, preferably 50 to 1000 rL/- to achieve the above draft ratio.
0yx/mm is suitable.

高速で巻取れば重合体の分子鎖の配向も改善され、後の
延伸工程で微孔が発生しやすい。
Winding at a high speed also improves the orientation of the molecular chains of the polymer, which tends to generate micropores in the subsequent stretching process.

l Q m 7M以下の巻取速度では上記ドラフト比を
実施するためには紡糸口金からの重合体の吐出線速度は
極端に遅くなり、糸条の凝固点が紡糸口金に接近しすぎ
て紡糸が不安定となる。
l Q m At a winding speed of 7M or less, the linear velocity of the polymer discharged from the spinneret becomes extremely slow in order to achieve the above draft ratio, and the freezing point of the yarn becomes too close to the spinneret, resulting in failure of spinning. It becomes stable.

また重合体の分子配向も低いものとなり巻取られた繊維
を延伸しても微孔の発生が少ない。
In addition, the molecular orientation of the polymer is low, and even when the wound fibers are stretched, fewer micropores are generated.

さらに均一な繊維を得るためには紡糸口金から吐出され
た溶融した重合体糸条に冷風を吹付けると効果的である
In order to obtain more uniform fibers, it is effective to blow cold air onto the molten polymer yarn discharged from the spinneret.

紡糸温度は重合体の融点より15〜150℃高い温度範
囲が好適である。
The spinning temperature is preferably within a range of 15 to 150°C higher than the melting point of the polymer.

良好な繊維が得られるならば紡糸温度はなるべく低い温
度が好ましい。
If good quality fibers can be obtained, the spinning temperature is preferably as low as possible.

例えばポリプロピレンの場合においては200〜300
℃、好適には210〜260℃、高密度ポリエチレンの
場合においては180〜280℃、好適には200〜2
50℃、 このように比較的低温における紡糸と高いドラフト比に
より得られた中空繊維の分子配向度は未配向のものに比
べてかなり高い。
For example, in the case of polypropylene, 200 to 300
°C, preferably 210 to 260 °C, in the case of high density polyethylene, 180 to 280 °C, preferably 200 to 2
The degree of molecular orientation of the hollow fibers obtained by spinning at a relatively low temperature of 50° C. and the high draft ratio is considerably higher than that of unoriented fibers.

分子配向度の指標として複屈折率を用いて表わせば5X
10−3以上の値がよく、例えばポリプロピレン中空糸
では10×10−3以上の値が好ましい。
If expressed using birefringence as an index of the degree of molecular orientation, it is 5X.
A value of 10<-3> or more is preferable; for example, for polypropylene hollow fibers, a value of 10*10<-3> or more is preferable.

この値は偏光顕微鏡を用いて通常の方法で求めることが
できる。
This value can be determined in a conventional manner using a polarizing microscope.

紡糸して巻取られた中空繊維の結晶化度は比較的高いが
、いまだ充分でない場合はこの繊維を重合体の融点から
10〜100℃低い温度範囲内において緊張または緩和
熱処理すれば望ましい結晶化度に到達する。
The degree of crystallinity of the spun and wound hollow fiber is relatively high, but if it is still insufficient, the desired crystallization can be achieved by subjecting the fiber to tension or relaxation heat treatment within a temperature range of 10 to 100 degrees Celsius below the melting point of the polymer. reach the degree.

結晶化度はASTM−D1505から求まる密度により
、結晶密度、非晶密度〔岡村誠三ら共著「高分子化学序
論JP、85化学同人(1973))の値から求めるこ
とができる。
The degree of crystallinity can be determined from the values of crystal density and amorphous density [Co-authored by Seizo Okamura et al., "Introduction to Polymer Chemistry JP, 85 Kagaku Dojin (1973)]" based on the density determined from ASTM-D1505.

結晶化度は延伸前の中空繊維で40%以上であればよい
が、50%以上がより好適である。
The degree of crystallinity may be 40% or more in the hollow fiber before drawing, but 50% or more is more preferable.

紡糸したままの中空繊維がこの状態に達していない場合
は、そのまま放置することにより又は熱処理することに
より結晶化度を高めることができる。
If the as-spun hollow fibers have not reached this state, their crystallinity can be increased by leaving them as they are or by heat-treating them.

熱処理するためには、熱処理温度はポリプロピレンでは
120〜160℃、高密度ポリエチレンでは90〜13
0℃、である。
For heat treatment, the heat treatment temperature is 120 to 160 °C for polypropylene and 90 to 13 °C for high density polyethylene.
It is 0℃.

熱処理時間は10秒以上、好ましくは20秒から1時間
の間実施するのがよい。
The heat treatment time is preferably 10 seconds or more, preferably 20 seconds to 1 hour.

常温で数日放置することにより結晶化度が上昇する場合
はそれでもよい。
If the degree of crystallinity increases by leaving it at room temperature for several days, that is fine.

この状態での中空繊維においてはいまだ微孔は形成され
ていない。
Micropores have not yet been formed in the hollow fiber in this state.

この中空繊維は著しい弾性を示す。This hollow fiber exhibits significant elasticity.

また、中空繊維を延伸すれば微孔を形成する。Furthermore, if the hollow fibers are stretched, micropores will be formed.

微孔の発生は降伏点を超える伸張によりはじめて生ずる
The generation of micropores occurs only when the material is stretched beyond its yield point.

そして延伸量が増加するにつれて著しい空孔率の増加を
もたらす。
As the amount of stretching increases, the porosity significantly increases.

微孔の大きさは延伸量により若干変化するが孔径(平均
値)は0.5μ以下であり大部分の孔径は0602〜0
.2μである。
The size of the micropores varies slightly depending on the amount of stretching, but the pore diameter (average value) is 0.5 μ or less, and most of the pore diameters are 0.602 to 0.
.. It is 2μ.

いい変えれば延伸しなければこの繊維は普通の中空繊維
である。
In other words, unless stretched, this fiber is a normal hollow fiber.

延伸により始めて微孔性中空繊維となり、微孔性中空繊
維を得るためには延伸は製造条件において必要不可欠と
なる。
Microporous hollow fibers are obtained only by stretching, and stretching is essential in the manufacturing conditions in order to obtain microporous hollow fibers.

温度80℃以下での延伸を冷延伸、80℃以上での延伸
を熱延伸とすれば1段冷延伸では最初の長さに比べて、
伸度200%まで延伸可能であり、さらに冷延伸と熱延
伸を組合せた多段延伸では500係まで延伸可能である
If stretching at a temperature of 80°C or lower is cold stretching, and stretching at 80°C or higher is hot stretching, then in one-stage cold stretching, compared to the initial length,
It can be stretched up to an elongation of 200%, and further up to 500 in multi-stage stretching that combines cold stretching and hot stretching.

これ以上の倍率に延伸すると繊維は破断することが多い
When stretched to a higher magnification, the fibers often break.

延伸において微孔が均一に発生するまでは冷延伸を行う
必要がある。
It is necessary to perform cold stretching until micropores are uniformly generated during stretching.

熱延伸を最初に行うと延伸しても微孔の発生が著しく少
なかったり、また微孔が発生しない。
If hot stretching is performed first, the generation of micropores will be significantly less or no micropores will occur even after stretching.

多段延伸においてはまず最初の延伸が冷延伸であること
が必要であり、そして5%以上、好ましくは10〜60
係延伸しこれに引続いて熱延伸を行なえば1段冷延伸に
比べて延伸倍率も増加し、微孔の発生もより多くなる。
In multi-stage stretching, it is necessary that the first stretching is cold stretching, and 5% or more, preferably 10 to 60%
If tether stretching is followed by hot stretching, the stretching ratio will increase compared to one-stage cold stretching, and the number of micropores will increase.

ポリプロピレンでは初めに80℃以下、好ましくは室温
ないし0℃以下から一60℃の低温において5〜100
%、好ましくは10〜60%冷延伸し、これに引続いて
120〜155℃で20〜450%、好ましくは30〜
300%熱延伸することが必要である。
For polypropylene, the temperature is initially 5 to 100°C at a low temperature of 80°C or lower, preferably room temperature or 0°C or lower to -60°C.
%, preferably 10-60% cold stretching, followed by 20-450%, preferably 30-450% at 120-155°C.
300% hot stretching is required.

延伸は2段でも、また、2段以上の多段延伸でもよい。The stretching may be carried out in two stages or in multiple stages of two or more stages.

ポリエチレンでは80℃以下、好ましくは室温または0
°C以下から一60℃の低温において10〜50係冷延
伸し、これに引続いて90〜120℃で30〜150%
熱延伸し、合計40〜200%延伸するのが必要である
For polyethylene, the temperature is 80°C or less, preferably room temperature or 0°C.
Cold stretching for 10-50% at a low temperature of -60°C from below °C, followed by 30-150% at 90-120°C
It is necessary to carry out hot stretching to achieve a total stretching of 40 to 200%.

冷延伸は一60℃以下の低温で行なうこともできるが、
これを工業的に実施するには経済的でない。
Cold stretching can also be carried out at a low temperature of -60°C or lower,
This is not economical to implement industrially.

延伸速度は1〜606%2んの範囲で行なうことができ
る。
The stretching speed can be in the range of 1 to 606%2.

また延伸時に繊維を有機溶剤に浸漬して延伸することに
より空孔率の増大と孔径の拡大をはかることもできる。
Furthermore, by immersing the fibers in an organic solvent and stretching them during stretching, it is possible to increase the porosity and enlarge the pore diameter.

いずれの重合体の中空繊維においても延伸後、重合体の
融点から10〜100℃低い温度で緊張状態または全延
伸量に対して25%未満の緩和状態で熱固定すれば寸法
安定性が向上する。
Dimensional stability of hollow fibers of any polymer can be improved by heat-setting at a temperature 10 to 100°C lower than the melting point of the polymer in a tensioned state or in a relaxed state of less than 25% of the total amount of stretching. .

例えば、ポリプロピレンでは130〜160°C1高密
度ポリエチレンでは100〜130°C1の温度で熱固
定すれば効果的である。
For example, it is effective to heat set polypropylene at a temperature of 130 to 160°C and high-density polyethylene at a temperature of 100 to 130°C.

熱固定時間は3秒以上が好ましい。The heat setting time is preferably 3 seconds or more.

本発明の微孔性中空繊維は上記の方法により容易に得る
ことができるが、これに限定されない。
The microporous hollow fibers of the present invention can be easily obtained by the method described above, but the method is not limited thereto.

本発明の微孔性中空繊維は長さ方向に配向しており、そ
の配向は通常複屈折値でl0XIO−3以上の値を示す
The microporous hollow fibers of the present invention are oriented in the length direction, and the orientation usually exhibits a birefringence value of 10XIO-3 or more.

そして平均孔径05μ以下大部分は0.02〜0.2μ
の貫通した微孔を有する。
And the average pore diameter is 0.02~0.2μ for most of the pores below 05μ.
It has micropores that penetrate through it.

微孔の大きさは木調ポロシメーターにより測定すること
ができる。
The size of the micropores can be measured using a wood porosimeter.

また微孔性中空繊維の外径は2mm以下、肉厚は100
μ以下で、繊維壁部分の空孔率は通常20〜30%、時
には50引こ達し20℃での窒素ガスの透過量が0.0
1〜100匡/c11t・―・10CrILHgという
特性を示す。
In addition, the outer diameter of the microporous hollow fiber is 2 mm or less, and the wall thickness is 100 mm.
μ or less, the porosity of the fiber wall is usually 20-30%, sometimes as high as 50, and the amount of nitrogen gas permeation at 20°C is 0.0
It exhibits the characteristics of 1 to 100 squares/c11t -- 10CrILHg.

本発明の微孔性中空繊維はその特徴を利用して種々の物
質の分離や濾過に好適である。
The microporous hollow fiber of the present invention is suitable for separating and filtering various substances by utilizing its characteristics.

例えば、ビール製造工程における酵母菌の除去のような
食品工業への利用、各種廃液の濾過などの公害防止への
利用、水の精製、再生への利用などがあげられるがこれ
に制限されるものではない。
Examples include, but are not limited to, applications in the food industry such as the removal of yeast in the beer manufacturing process, applications in pollution prevention such as filtration of various waste liquids, and applications in water purification and recycling. isn't it.

また本発明の繊維はその貫通微孔を利用して多くの物質
を繊維壁或は/及び中空部に吸収または吸着させる用途
に使用することもできる。
Furthermore, the fibers of the present invention can also be used to absorb or adsorb many substances into the fiber walls and/or hollow portions by utilizing the through-pores.

例えば、ポリオレフィン製の微孔性中空繊維は水面上に
拡がった油のオイルキャッチャ−1或は油水分離装置の
充填剤などとして好適である。
For example, microporous hollow fibers made of polyolefin are suitable as an oil catcher 1 for oil spread on the water surface or as a filler for an oil-water separator.

さらに積極的に繊維の中空部及び/又は繊維壁の微孔に
各種の物質を内蔵させることにより高度の機能を付与す
ることもできる。
Furthermore, advanced functions can be imparted by proactively incorporating various substances into the hollow portions of the fibers and/or the micropores of the fiber walls.

例えば、イオン交換能やキレート能を有する物質を内蔵
させ水の精製や金属の捕集に用いたり或は人工の触媒や
天然の酵素を充填して固定化し反応の触媒、検知素子、
医療材料に用いることができる。
For example, a substance with ion exchange ability or chelating ability may be incorporated to purify water or collect metals, or an artificial catalyst or natural enzyme may be filled and immobilized to serve as a catalyst for a reaction, a detection element, etc.
Can be used for medical materials.

また殺虫剤や香料を中空部に充填し微孔から揮散させる
ことにより持続的な効果を得ることができる。
In addition, a lasting effect can be obtained by filling the hollow part with insecticides and fragrances and volatilizing them through the micropores.

さらに吸湿剤、吸酸素剤、液晶、肥料、医薬品などを充
填して利用することもできる。
Furthermore, it can be filled with moisture absorbers, oxygen absorbers, liquid crystals, fertilizers, medicines, etc.

−上記の物質の内蔵ないし充填はこれら物質を含む液体
に微孔性中空繊維を含浸させるなどの手段により容易に
行なうことができるが、含浸処丹のみでも使用できるし
或は含浸処理後熱処理にJる封入処理して使用できる。
- Incorporation or filling of the above substances can be easily carried out by impregnating microporous hollow fibers with a liquid containing these substances, but it is also possible to use the impregnating process alone or by heat treatment after the impregnating process. Can be used after being encapsulated.

本発明の微孔性中空繊維を加熱すれば、例えばポリプロ
ピレンでは約160℃以上、高密度ポリエチレンでは1
30℃以上、で微孔が消失するので、これを利用すれば
微孔内及び中空部に各種物質を封入することができる。
If the microporous hollow fiber of the present invention is heated, for example, polypropylene can be heated to about 160°C or higher, and high-density polyethylene can be heated to about 160°C or higher.
Since the micropores disappear at temperatures above 30° C., various substances can be sealed within the micropores and the hollow space by utilizing this.

本発明において用いる測定方法を以下に示す。The measurement method used in the present invention is shown below.

(1) 密度:ASTM−Dl 505に準じて温度
27℃で測定した。
(1) Density: Measured at a temperature of 27°C according to ASTM-Dl 505.

(2)メルトインデックス:ASTM−D1238によ
りポリプロピレンでは230℃、2.16Kpポリエチ
レンでは190℃、2.16KPで測定した。
(2) Melt index: Measured at 230° C. for polypropylene and 190° C. and 2.16 KP for polyethylene according to ASTM-D1238.

(3)中空繊維の寸法:中空繊維の断面を日本光学工業
社製生物顕微鏡り型を用い倍率50〜200倍で観察し
て求めた。
(3) Dimensions of hollow fiber: The cross section of the hollow fiber was determined by observing it at a magnification of 50 to 200 times using a biological microscope mold manufactured by Nippon Kogaku Kogyo Co., Ltd.

(4)空孔率と孔径:カルロエルバ社製水鋏ポロシメー
ター800型を用いて測定した。
(4) Porosity and pore diameter: Measured using a water scissors porosimeter model 800 manufactured by Carlo Erba.

(5)窒素透過量:微孔性中空繊維100本をU字型に
束ねて繊維の切口部分をエポキシ樹脂で固め、その一部
を切断して繊維端面をそろえ、そこから中空繊維内部に
窒素で10crfLHgの内圧を掛けて中空繊維の壁面
を通して外部へ透過してくる窒素の単位量を求めた。
(5) Nitrogen permeation amount: 100 microporous hollow fibers are bundled in a U-shape, the cut ends of the fibers are hardened with epoxy resin, a part of the fibers is cut to align the fiber end faces, and from there, nitrogen flows inside the hollow fibers. By applying an internal pressure of 10 crfLHg, the unit amount of nitrogen permeating to the outside through the wall surface of the hollow fiber was determined.

(6)複屈折率ニオリンバス光学工業社製偏光顕微鏡p
osを用いて測定した。
(6) Birefringence Niolin Bus Optical Co., Ltd. polarizing microscope p
Measured using os.

(力 強伸度:東洋副機社製万能引張試験機テンシロン
UTM−3型を用い糸長40mm、試験速度20mm1
分で測定した。
(Strength and elongation: Using a universal tensile tester Tensilon UTM-3 manufactured by Toyo Soki Co., Ltd., yarn length 40 mm, test speed 20 mm 1
Measured in minutes.

測定値は中空部を除く実質断面積に対するものである。The measured value is for the actual cross-sectional area excluding the hollow part.

実施例 1 アイソタクチックポリプロピレン(メルトインデックス
1.0)を押出機(スクリュー口径2011111、L
/D 18、圧縮比3.2)を用いて温度250℃で溶
融し気体供給管を備えた中空用紡糸口金(吐出ロ径IQ
mm、スリット巾1 mmの円環スリット)を用いて紡
糸した。
Example 1 Isotactic polypropylene (melt index 1.0) was extruded using an extruder (screw diameter 2011111, L
/D 18, compression ratio 3.2) at a temperature of 250°C and a hollow spinneret (discharge diameter IQ
The fibers were spun using a circular slit with a slit width of 1 mm and a slit width of 1 mm.

吐出量27g/M、吐出線速度0.13m/m、巻取速
度7Qrn/min、 ドラフト比540の条件で巻
取った。
It was wound up under the conditions of a discharge amount of 27 g/M, a discharge linear velocity of 0.13 m/m, a winding speed of 7 Qrn/min, and a draft ratio of 540.

中空繊維内部への気体の供給は自然吸入である。Gas is supplied into the hollow fiber by natural suction.

得られた中空繊維の寸法は外径450μ、肉厚55μで
あった。
The dimensions of the obtained hollow fibers were an outer diameter of 450μ and a wall thickness of 55μ.

密度は0.892 gloc、、結晶化度は48%複屈
折率は16X10−”であった。
The density was 0.892 gloc, the crystallinity was 48%, and the birefringence was 16 x 10-''.

この中空繊維を温度140℃で5分間緩和状態で熱処理
すると密度は0.911 g/(f、で結晶化度は70
%になった。
When this hollow fiber is heat treated in a relaxed state at a temperature of 140°C for 5 minutes, the density is 0.911 g/(f, and the crystallinity is 70
%Became.

複屈折率は24X10−sに増加した。The birefringence increased to 24X10-s.

結晶化度は結晶密度を0.936g/cc、非晶密度を
0.8509/ccとして求めた。
The crystallinity was determined using a crystal density of 0.936 g/cc and an amorphous density of 0.8509/cc.

そしてこの熱処理した中空繊維を温度10℃で20%冷
延伸した後、145℃で30〜300係熱延伸した。
The heat-treated hollow fibers were cold-stretched for 20% at a temperature of 10°C, and then thermally stretched for 30 to 300 degrees at a temperature of 145°C.

総延伸量は50〜320係であった。The total amount of stretching was 50 to 320 degrees.

これを緊張状態で148℃で1分間熱固定した。This was heat-set under tension at 148° C. for 1 minute.

得られた中空繊維は微孔のために光を散乱し白色を呈し
ていた。
The hollow fibers thus obtained scattered light due to the micropores and were white in color.

この繊維はエチルアルコールを容易に吸収した。This fiber easily absorbed ethyl alcohol.

この微孔性中空繊維の窒素透過量を測定すると著しく大
きな値を示し、貫通した微細な孔が存在してL)ること
か明瞭である。
When the amount of nitrogen permeation through this microporous hollow fiber was measured, it showed a significantly large value, and it was clear that there were fine pores that penetrated through the fiber.

また、この微孔性中空繊維を水銀ポロシメーターで測定
した結果では大部分の孔が0.02〜0.1μの孔径を
有することが判明した。
Moreover, the results of measuring this microporous hollow fiber with a mercury porosimeter revealed that most of the pores had a pore diameter of 0.02 to 0.1 μ.

未延伸及び延伸量による微孔性の変化を第1表に示す。Table 1 shows changes in microporosity depending on unstretched and stretched amounts.

上記1−3の繊維の破断強度は14Ky/mx2、破断
伸度は35%であった。
The breaking strength of the above-mentioned fiber 1-3 was 14 Ky/mx2, and the breaking elongation was 35%.

比較例 1 実施例1で紡糸した中空繊維を熱処理後、延伸せずに窒
素の透過量と空孔率を測定したが共に零であった。
Comparative Example 1 After the hollow fiber spun in Example 1 was heat treated, the amount of nitrogen permeation and the porosity were measured without stretching, and both were zero.

第1表に結果を示す。実施例 2 高密度ポリエチレン(メルトインデックス0.23、密
度0.953)を押出機(スクリュー口径3Q+++m
、L/D25、圧縮比3.5)にギアポンプを接続して
、温度230℃で溶融し中空用紡糸口金(吐出口径2龍
、スリットの巾Q、 3 rnm、不連続スリット部の
巾Q、 3 mmのC形スリット)を用いて紡糸した。
Table 1 shows the results. Example 2 High-density polyethylene (melt index 0.23, density 0.953) was processed using an extruder (screw diameter 3Q+++m).
, L/D 25, compression ratio 3.5), and melted at a temperature of 230°C using a hollow spinneret (discharge port diameter 2 mm, slit width Q, 3 nm, discontinuous slit width Q, A 3 mm C-shaped slit) was used for spinning.

吐出量は23g/min、吐出線速度1.5 Q m
/mir+、巻取速度12007n/m、ドラフト比8
00で巻取った。
Discharge amount is 23 g/min, discharge linear velocity 1.5 Q m
/mir+, winding speed 12007n/m, draft ratio 8
It was wound with 00.

得られた中空繊維の寸法は外径62μ、肉厚12μであ
った。
The dimensions of the obtained hollow fibers were 62μ in outer diameter and 12μ in wall thickness.

複屈折率は21X10−3であった。The birefringence was 21×10 −3 .

この中空繊維を温度110℃で1分間熱処理し25℃で
30チ冷延伸し引続いて2段目の延伸温度を室温から1
10°Cの範囲で変えて50%延伸した。
This hollow fiber was heat-treated at a temperature of 110°C for 1 minute, cold-stretched at 25°C for 30 inches, and then the second-stage drawing temperature was changed from room temperature to 1 minute.
The film was stretched by 50% at varying temperatures of 10°C.

総延伸量は80%であった。これを120℃で1分間熱
固定した。
The total amount of stretching was 80%. This was heat-set at 120° C. for 1 minute.

得られた繊維はエチルアルコールを容易に吸収し、開孔
した孔が存在することがわかった。
It was found that the obtained fibers easily absorbed ethyl alcohol and had open pores.

木調ポロシメーターで測定すると大部分の孔径が0.0
2〜0.2μの間に分布していることがわかった。
Most pore diameters are 0.0 when measured with a wood-tone porosimeter.
It was found that the thickness was distributed between 2 and 0.2μ.

結果を第2表に示す。The results are shown in Table 2.

比較例 2 実施例2と同じ条件で紡糸および熱処理した中空繊維を
25℃で30%冷延伸し引続いて2段目の延伸温度を1
25〜135℃で50%延伸した。
Comparative Example 2 A hollow fiber spun and heat-treated under the same conditions as Example 2 was cold-stretched at 25°C by 30%, and then the second-stage stretching temperature was increased to 1.
It was stretched 50% at 25-135°C.

総延伸量は80%であった。The total amount of stretching was 80%.

この場合は、延伸終了後延伸温度と同じ温度で1分間熱
固定した。
In this case, after the stretching was completed, heat setting was carried out for 1 minute at the same temperature as the stretching temperature.

得られた中空繊維は透明であり、またエチルアルコール
を吸収せず、孔が存在しないのが判明した。
The hollow fibers obtained were found to be transparent, did not absorb ethyl alcohol, and were free of pores.

結果を第2表に示す。The results are shown in Table 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明繊維を紡糸するための紡糸口金
の吐出形状の一例を示す。
FIGS. 1 and 2 show an example of the discharge shape of a spinneret for spinning the fiber of the present invention.

Claims (1)

【特許請求の範囲】 1 ポリオレフィンを中空糸防糸用紡糸口金を用い巻取
速度10m/分以上ドラフト比200〜1500、温度
を下記の範囲で溶融紡糸し、得られた未延伸糸を必要に
より熱処理し、5X10−”以上の複屈折値、高結晶化
度であり実質的に0.01〜0.5μの貫通孔を有しな
い未延伸糸を得、該未延伸糸を下記の条件の延伸を行な
い、かくして該延伸に起因するポリオレフィンからなる
長さ方向に配向した中空繊維であり、該中空繊維壁に該
延伸により生じた孔径(平均)が0.01〜0.5μの
貫通した微孔を有し、該繊維壁における窒素の20℃で
の透過量が0.01〜100 cc /c1. ・ma
n −10cmHgの値を有する微孔性中空繊維を製造
することを特徴とする方法。 紡糸温度:ポリプロピレンの場合200〜300°Cポ
リエチレンの場合 180〜280°C延伸条件;ポリ
プロピレンの場合80℃以下5〜100%の冷延伸の後
120〜155°Cで20〜450%の熱延伸を行なう
。 ポリエチレンの場合80℃以下10〜50%の冷延伸の
後90〜120°Cで30〜150%の熱延伸を行なう
[Claims] 1. Polyolefin is melt-spun using a hollow fiber protection spinneret at a winding speed of 10 m/min or higher, a draft ratio of 200 to 1,500, and a temperature in the following range, and the resulting undrawn yarn is used as necessary. Heat treatment is performed to obtain an undrawn yarn having a birefringence value of 5X10-'' or more, a high degree of crystallinity, and substantially no through holes of 0.01 to 0.5μ, and the undrawn yarn is stretched under the following conditions. The result is a longitudinally oriented hollow fiber made of polyolefin resulting from the stretching, and penetrating fine pores with an average pore diameter of 0.01 to 0.5 μ generated by the stretching in the hollow fiber wall. and the permeation amount of nitrogen in the fiber wall at 20°C is 0.01 to 100 cc/c1.・ma
A method characterized in that it produces microporous hollow fibers with a value of n -10 cmHg. Spinning temperature: 200-300°C for polypropylene, 180-280°C for polyethylene.Stretching conditions: 5-100% cold stretching at 80°C for polypropylene, followed by 20-450% hot stretching at 120-155°C. Do this. In the case of polyethylene, after cold stretching of 10 to 50% below 80°C, hot stretching of 30 to 150% is carried out at 90 to 120°C.
JP51050202A 1976-04-30 1976-04-30 Microporous hollow fiber and its manufacturing method Expired JPS5938322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51050202A JPS5938322B2 (en) 1976-04-30 1976-04-30 Microporous hollow fiber and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51050202A JPS5938322B2 (en) 1976-04-30 1976-04-30 Microporous hollow fiber and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4970582A Division JPS584810A (en) 1982-03-26 1982-03-26 Microporous hollow fiber

Publications (2)

Publication Number Publication Date
JPS52137026A JPS52137026A (en) 1977-11-16
JPS5938322B2 true JPS5938322B2 (en) 1984-09-17

Family

ID=12852527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51050202A Expired JPS5938322B2 (en) 1976-04-30 1976-04-30 Microporous hollow fiber and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5938322B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54173510U (en) * 1978-05-27 1979-12-07
JPS551816A (en) * 1978-06-15 1980-01-09 Mitsubishi Rayon Co Ltd Vapor-liquid contactor
DE2841091A1 (en) * 1978-09-21 1980-04-03 Akzo Gmbh THIN-WALLED HOSE FROM A MELT-SPINNABLE SYNTHETIC POLYMER AND METHOD FOR THE PRODUCTION THEREOF
ZA80465B (en) * 1979-02-13 1981-08-26 Celanese Corp Process for preparing hollow microporous polypropylene fibers
JPS55137209A (en) * 1979-04-09 1980-10-25 Mitsubishi Rayon Co Ltd Novel hollow fiber with fine pore and its production
JPS5651418U (en) * 1979-09-26 1981-05-07
JPS5742919A (en) * 1980-08-22 1982-03-10 Mitsubishi Rayon Co Ltd Porous hollow polyethylenic fiber and its preparation
JPS5766114A (en) * 1980-10-14 1982-04-22 Mitsubishi Rayon Co Ltd Porous polyethylene hollow fiber and its production
JPS57154407A (en) * 1981-03-11 1982-09-24 Mitsubishi Rayon Co Ltd Germicidal fiber
JPS57171403A (en) * 1981-04-15 1982-10-22 Mitsubishi Rayon Co Ltd Removal of pyrogen in water
FR2513243B1 (en) * 1981-09-24 1983-11-18 Commissariat Energie Atomique
JPS6031764Y2 (en) * 1981-11-17 1985-09-24 三菱レイヨン株式会社 Separation device
JPS58163490A (en) * 1982-03-23 1983-09-28 Mitsubishi Rayon Co Ltd Method and apparatus for purification of water
JPS58128184A (en) * 1982-01-25 1983-07-30 Mitsubishi Rayon Co Ltd Removing method for traces of organic material in water
JPS58133883A (en) * 1982-02-05 1983-08-09 Mitsubishi Rayon Co Ltd Water purifying method
JPS58219940A (en) * 1982-06-14 1983-12-21 Mitsubishi Rayon Co Ltd Adsorbing material for organic substance
JPS60139808A (en) * 1983-12-28 1985-07-24 Ube Ind Ltd Production of porous hollow fiber of polypropylene
JPS60139807A (en) * 1983-12-28 1985-07-24 Ube Ind Ltd Production of porous hollow fiber of polypropylene
JPS60139815A (en) * 1983-12-28 1985-07-24 Mitsubishi Rayon Co Ltd Conjugate hollow yarn and production thereof
JPS60136377U (en) * 1984-02-22 1985-09-10 アイ・シ−電子工業株式会社 textile material
JPS61146811A (en) * 1984-12-21 1986-07-04 Ube Ind Ltd Production of porous hollow fiber of thermoplastic resin
JPS61146308A (en) * 1984-12-21 1986-07-04 Ube Ind Ltd Preparation of porous polypropylene hollow yarn or film
US4569883A (en) * 1985-01-22 1986-02-11 Albany International Corp. Paper machine clothing
JPH07111003B2 (en) * 1985-03-11 1995-11-29 三菱レイヨン株式会社 Hollow fiber for heat exchanger
JP2896781B2 (en) * 1988-10-19 1999-05-31 三菱レイヨン株式会社 Porous polyethylene hollow fiber and method for producing the same
ES2306756T3 (en) * 2001-03-06 2008-11-16 Asahi Kasei Chemicals Corporation METHOD FOR THE PRODUCTION OF MEMBRANES OF HOLLOW FIBERS.
CA2365817A1 (en) 2001-12-11 2003-06-11 Pierre Cote Methods of making stretched filtering membranes and membrane modules
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
AU2011302393B2 (en) 2010-09-15 2016-09-08 Bl Technologies, Inc. Method to make a yarn-reinforced hollow fibre membranes around a soluble core
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9022229B2 (en) 2012-03-09 2015-05-05 General Electric Company Composite membrane with compatible support filaments
CN117813150A (en) * 2021-08-23 2024-04-02 东丽株式会社 Hollow fiber microporous membrane and gas separation membrane module assembled with same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423491A (en) * 1964-09-02 1969-01-21 Dow Chemical Co Permselective hollow fibers and method of making

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423491A (en) * 1964-09-02 1969-01-21 Dow Chemical Co Permselective hollow fibers and method of making

Also Published As

Publication number Publication date
JPS52137026A (en) 1977-11-16

Similar Documents

Publication Publication Date Title
JPS5938322B2 (en) Microporous hollow fiber and its manufacturing method
US4401567A (en) Microporous polyethylene hollow fibers
US3871950A (en) Hollow fibers of acrylonitrile polymers for ultrafilter and method for producing the same
US4055696A (en) Porous polypropylene hollow filaments and method making the same
EP0124028A2 (en) Heterogeneous membrane and process for production thereof
GB2041821A (en) Process for Preparing Hollow Microporous Polypropylene Fibers
JPS648732B2 (en)
JPH0211619B2 (en)
JPH04187224A (en) Production of fluorine-based porous hollow yarn membrane
US4530809A (en) Process for making microporous polyethylene hollow fibers
US20120067813A1 (en) Composite hollow fiber membrane and method for manufacturing the same
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JPS6149405B2 (en)
Xi et al. Effect of stretching on structure and properties of polyethylene hollow fiber membranes made by melt‐spinning and stretching process
JPS584810A (en) Microporous hollow fiber
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JP3093821B2 (en) Method for producing regenerated cellulose porous hollow fiber membrane by cuprammonium method
JPS6342006B2 (en)
JPS59166208A (en) Manufacture of gas separating membrane
JPS60137402A (en) Membrane with microfine pore
JPS6018329B2 (en) porous isotactic polypropylene hollow fiber
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JPH0450053B2 (en)
JPH0398625A (en) Preparation of carbon fiber-based porous hollow fiber membrane
JP2592725B2 (en) Manufacturing method of hollow fiber membrane