JP6274642B2 - Porous hollow fiber membrane and method for producing the same - Google Patents

Porous hollow fiber membrane and method for producing the same Download PDF

Info

Publication number
JP6274642B2
JP6274642B2 JP2013209693A JP2013209693A JP6274642B2 JP 6274642 B2 JP6274642 B2 JP 6274642B2 JP 2013209693 A JP2013209693 A JP 2013209693A JP 2013209693 A JP2013209693 A JP 2013209693A JP 6274642 B2 JP6274642 B2 JP 6274642B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
porous hollow
pvdf resin
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013209693A
Other languages
Japanese (ja)
Other versions
JP2015073916A (en
Inventor
大祐 岡村
大祐 岡村
雄揮 三木
雄揮 三木
橋野 昌年
昌年 橋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2013209693A priority Critical patent/JP6274642B2/en
Publication of JP2015073916A publication Critical patent/JP2015073916A/en
Application granted granted Critical
Publication of JP6274642B2 publication Critical patent/JP6274642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

本発明は、透水性能及び微小病原体に対する阻止性能に優れ、高い耐薬品性を有するのみならず、微小病原体に対する阻止性能を長期間安定して保持し得る多孔性中空糸膜及びその製造方法に関する。   The present invention relates to a porous hollow fiber membrane that is excellent in water permeability and blocking performance against micropathogens, has high chemical resistance, and can stably maintain blocking performance against micropathogens for a long period of time, and a method for producing the same.

多孔性中空糸膜によるろ過プロセスは、凝集沈殿・砂ろ過のような従来の化学的処理プロセスと比較して、分離性能が高く且つ維持管理が容易なことから、用排水処理においてその普及が進んでいる。特に、飲料水製造では、医薬品製造や食品工業分野と同様に、工程内に微生物よりもサイズの小さいウイルス等の微小病原体が混入すると製造ラインが汚染されるだけでなく消費者の集団感染を引き起こす危険があることから、精密ろ過よりもさらに孔径が小さな限外ろ過膜の適用が進んでいる。そして、微小病原体の最小サイズが22nm程度であることから、飲料水用途の限外ろ過膜には、排除能力20nm以下の分離層を有する多孔性中空糸膜の開発が求められている。   The filtration process using porous hollow fiber membranes has a higher separation performance and is easier to maintain and manage than conventional chemical treatment processes such as coagulation sedimentation and sand filtration. It is out. In particular, in the production of drinking water, as in the pharmaceutical manufacturing and food industry fields, contamination of the production line as well as consumer infection is caused not only by contamination of the production line, but also by contamination with micropathogens such as viruses that are smaller in size than microorganisms. Due to the danger, ultrafiltration membranes with smaller pore diameters than microfiltration are increasingly being applied. And since the minimum size of a micropathogen is about 22 nm, development of the porous hollow fiber membrane which has a separation layer of 20 nm or less of exclusion capability is calculated | required by the ultrafiltration membrane for drinking water use.

従来、限外ろ過膜の作製方法としては、種々のものが知られているが、小孔径から大孔径まで比較的広範囲の孔径制御に優れる相分離法が、多く用いられている。かかる相分離法としては、非溶媒誘起相分離法(以降において、「NIPS法」とも記載する。)と、熱誘起相分離法(以後において、「TIPS法」とも記載する。)が知られている。   Conventionally, various methods for producing an ultrafiltration membrane are known, but a phase separation method excellent in relatively wide pore diameter control from a small pore diameter to a large pore diameter is often used. As such a phase separation method, a non-solvent induced phase separation method (hereinafter also referred to as “NIPS method”) and a thermally induced phase separation method (hereinafter also referred to as “TIPS method”) are known. Yes.

NIPS法は、高分子を溶媒に溶解することで調製した均一溶液(製膜原液)を吐出して非溶媒を含む凝固液に接触させることにより、該製膜原液中の溶媒と凝固浴中の非溶媒間に濃度勾配を生じさせ、これを駆動力として非溶媒が製膜原液中の溶媒と置換することで相分離現象が進行するものである。かかるNIPS法では、製膜原液が凝固液と接触した面から多孔性中空糸膜内部に向かって前記濃度勾配が減少する影響から、溶媒から非溶媒への置換速度が接触面から多孔性中空糸膜内部にかけて遅くなる。溶媒交換速度が遅いほど相分離は進行し、細孔が粗大化する傾向があることから、一般的にはNIPS法で製造された多孔性中空糸膜は、接触面は緻密な細孔が形成されるとともに多孔性中空糸膜内部に向かうにつれて細孔の孔径が除々に粗大化する、傾斜構造を有するものとなり易い。   In the NIPS method, a uniform solution (film-forming stock solution) prepared by dissolving a polymer in a solvent is discharged and brought into contact with a coagulating liquid containing a non-solvent, so that the solvent in the film-forming stock solution and the coagulation bath A concentration gradient is generated between the non-solvents, and the phase separation phenomenon proceeds by replacing the non-solvent with the solvent in the film-forming stock solution using this as a driving force. In the NIPS method, the rate of substitution from the solvent to the non-solvent is changed from the contact surface to the porous hollow fiber because the concentration gradient decreases from the surface in contact with the coagulating liquid to the membrane forming stock solution to the inside of the porous hollow fiber membrane. Slow down inside the membrane. The slower the solvent exchange rate, the more the phase separation proceeds and the pores tend to become coarser. In general, porous hollow fiber membranes produced by the NIPS method form dense pores on the contact surface. At the same time, it tends to have an inclined structure in which the pore diameter gradually becomes larger toward the inside of the porous hollow fiber membrane.

また、TIPS法は、高分子を潜在溶媒と高温で混練することで調製した均一溶液(製膜原液)を冷却することにより、熱拡散を発生させ、これを駆動力として相分離を進行させるものである。かかるTIPS法では、発生する熱拡散がNIPS法で発生する濃度拡散よりも極めて早い速度で進行するため、多孔性中空糸膜の断面方向での相分離進行度がほぼ等しい。そのため、TIPS法で製造された多孔性中空糸膜は、多孔性中空糸膜の断面方向に比較的均一な孔径を有する細孔が形成された多孔質構造を有するものとなり易い。   The TIPS method generates heat diffusion by cooling a homogeneous solution (film-forming stock solution) prepared by kneading a polymer with a latent solvent at a high temperature, and proceeds phase separation using this as a driving force. It is. In such a TIPS method, the generated thermal diffusion proceeds at a much faster rate than the concentration diffusion generated in the NIPS method, and therefore the degree of phase separation progress in the cross-sectional direction of the porous hollow fiber membrane is substantially equal. Therefore, the porous hollow fiber membrane produced by the TIPS method tends to have a porous structure in which pores having a relatively uniform pore diameter are formed in the cross-sectional direction of the porous hollow fiber membrane.

そして、ウイルス除去に必要な小孔径と透水性能とを両立させるためには、透水性能と孔径と膜厚の関係を示したハーゲンポアゼイユの式から分離層の厚みを薄くする必要があるところ、TIPS法では分離層のみを薄膜化させることが困難である。そのため、小孔径且つ高透水性能の多孔性中空糸膜を作製する場合には、傾斜構造により数μmの厚みの分離層を容易に製造することが可能な、NIPS法による製造が多用される。   And in order to achieve both the small pore size and water permeability required for virus removal, it is necessary to reduce the thickness of the separation layer from the Hagen Poiseuille's formula showing the relationship between water permeability, pore size and film thickness. In the TIPS method, it is difficult to thin only the separation layer. Therefore, when a porous hollow fiber membrane having a small pore diameter and high water permeability is produced, production by the NIPS method that can easily produce a separation layer having a thickness of several μm by an inclined structure is frequently used.

一方、多孔性中空糸膜によるろ過プロセスに用いられるろ材としては、例えば、加工性に優れる高分子を中空状に形成した中空糸膜や高分子をシート状に形成した平膜等を複合化した膜モジュール等が用いられている。しかしながら、このような膜モジュールを水処理等に用いる場合、ろ過により分離された濁質によって膜面閉塞が生じ、その結果、透水性能が低下して膜目詰まりが生じ易いという問題があった。   On the other hand, as a filter medium used for the filtration process with a porous hollow fiber membrane, for example, a hollow fiber membrane formed of a polymer having excellent processability in a hollow shape, a flat membrane formed of a polymer in a sheet shape, etc. are combined. A membrane module or the like is used. However, when such a membrane module is used for water treatment or the like, there is a problem that the membrane surface is clogged by turbidity separated by filtration, and as a result, the water permeability is lowered and membrane clogging is likely to occur.

上述した膜目詰まりは、一般的に、細孔内及び膜表面に濁質が堆積することによって生じる物理的な閉塞と、膜基材に有機物等が吸着等することによって生じる化学的な閉塞とに分類される。多くの場合、一定時間或いは一定水量をろ過した後に、膜目詰まりを解消して透過水量を回復させるために、膜の洗浄が行われる。例えば、物理的な閉塞を解消する手段としては、ろ過又は逆洗運転時において、原水中に空気を連続的或いは断続的に送ることによって膜を振動させる、エアースクラビング処理が有効な手段として用いられている。また、膜の耐圧性能が高ければ、それだけ大きな水圧をかけてろ過をすることができるので、洗浄するまでの時間を長く保持でき、洗浄頻度を下げることができる。   The above-mentioned film clogging is generally caused by physical clogging caused by accumulation of turbidity in pores and on the membrane surface, and chemical clogging caused by adsorption of organic substances etc. on the membrane substrate. are categorized. In many cases, after a certain amount of time or a certain amount of water is filtered, the membrane is washed in order to eliminate clogging of the membrane and restore the amount of permeated water. For example, air scrubbing treatment that vibrates the membrane by continuously or intermittently sending air into the raw water during filtration or backwash operation is used as an effective means for eliminating physical blockage. ing. In addition, if the pressure resistance of the membrane is high, it is possible to perform filtration while applying a larger water pressure, so that the time until cleaning can be maintained longer and the frequency of cleaning can be reduced.

一方、化学的な閉塞を解消する手段としては、蓄積した有機物等を化学薬品、例えば次亜塩素酸ナトリウム等の酸化剤や水酸化ナトリウム等のアルカリを用いて分解除去等することが有効な手段として用いられている。しかしながら、このような化学薬品は、蓄積した有機物を分解するだけでなく、膜を構成する高分子をも分解させ得るため、継続的に薬品洗浄を行うと、膜細孔が粗大化する等して、膜の分離性能を長期間保持することが困難となる。そのため、膜目詰まりによる透過水量の低下を解消しつつ、長期間にわたって分離性能を保持するためには、薬品による洗浄処理を行った後でも分離性能を十分に維持し得る程度の耐薬品性が、分離層に求められている。   On the other hand, as a means for eliminating chemical blockage, it is effective to decompose and remove accumulated organic substances using chemicals, for example, an oxidizing agent such as sodium hypochlorite or an alkali such as sodium hydroxide. It is used as. However, such chemicals not only decompose the accumulated organic matter, but can also decompose the polymer that composes the membrane. Therefore, continuous chemical cleaning causes the pores of the membrane to become coarse. Thus, it becomes difficult to maintain the separation performance of the membrane for a long time. Therefore, in order to maintain the separation performance over a long period of time while eliminating the decrease in the amount of permeated water due to membrane clogging, the chemical resistance is such that the separation performance can be sufficiently maintained even after washing with chemicals. Sought in the separation layer.

近年、このような化学薬品による膜の劣化を防ぐことを目的として、薬品耐性に優れる無機材料やポリテトラフルオロエチレン等のフッ素系高分子を材料とする膜が製品化されている。しかしながら、これらの材料は溶媒に溶解しにくいことから、NIPS法により、微小病原体の除去に有効な膜形状や高い分離性能を有する膜を作製することが困難であった。   In recent years, for the purpose of preventing the deterioration of the film due to such chemicals, a film made of an inorganic material having excellent chemical resistance and a fluorine-based polymer such as polytetrafluoroethylene has been commercialized. However, since these materials are difficult to dissolve in a solvent, it has been difficult to produce a membrane having a membrane shape effective for removing micropathogens and a membrane having high separation performance by the NIPS method.

一方、フッ素系高分子の中でも、ポリフッ化ビニリデン樹脂(以後において、「PVDF樹脂」とも記載する。)は、比較的加工性に優れるので、多孔性中空糸膜の材料としてよく用いられている。一方、PVDF樹脂は、他のフッ素系高分子と比較して、アルカリに対する耐性が低いという欠点がある。そのため、アルカリでの洗浄を伴う長期の使用に耐え得るPVDF樹脂製の多孔性中空糸膜を製造することは、極めて困難であった。   On the other hand, among fluoropolymers, polyvinylidene fluoride resin (hereinafter also referred to as “PVDF resin”) is relatively excellent in processability, and is therefore often used as a material for porous hollow fiber membranes. On the other hand, the PVDF resin has a drawback of low resistance to alkali as compared with other fluoropolymers. Therefore, it has been extremely difficult to produce a porous hollow fiber membrane made of PVDF resin that can withstand long-term use that involves washing with alkali.

PVDF樹脂を用いてNIPS法により多孔性中空糸膜を製造する方法は、これまでに多数の文献において報告されている。例えば、特許文献1には、NIPS法によりβ結晶比率が低く、結晶化度が低く、比面が小さい多孔性中空糸膜を製造することで、物理強度が薬品によって低下しない多孔性中空糸膜を製造する方法が開示されている。また、特許文献2には、PVDF樹脂と潜在溶媒と無機微粉体とを溶融混練して膜状に成型・冷却し、続いて潜在溶媒及び無機微粉体を順次抽出することにより、膜断面方向に均一結晶構造を有する多孔性中空糸膜が得られるとの開示があり、当該多孔性中空糸膜の結晶構造はβ結晶比率が低く、結晶化度が低いことから、分離層の化学強度が強く、長期間の使用にわたって分離性能を維持することが可能であることを確認している。さらに、特許文献3には、ウイルスを4log以上除去するPVDF製の限外ろ過膜が開示されている。   A method for producing a porous hollow fiber membrane by PVIPS resin by the NIPS method has been reported in many literatures so far. For example, Patent Document 1 discloses a porous hollow fiber membrane in which physical strength is not reduced by a chemical by producing a porous hollow fiber membrane having a low β crystal ratio, a low crystallinity, and a small specific surface by the NIPS method. A method of manufacturing is disclosed. In Patent Document 2, PVDF resin, latent solvent, and inorganic fine powder are melted and kneaded, molded and cooled into a film shape, and subsequently extracted in the cross-sectional direction of the film by sequentially extracting the latent solvent and inorganic fine powder. There is a disclosure that a porous hollow fiber membrane having a uniform crystal structure can be obtained, and the crystal structure of the porous hollow fiber membrane has a low β crystal ratio and a low crystallinity, so that the chemical strength of the separation layer is strong. It has been confirmed that separation performance can be maintained over a long period of use. Furthermore, Patent Document 3 discloses a PVDF ultrafiltration membrane that removes 4 logs or more of viruses.

国際特許公開第2007/119850公報パンフレットInternational Patent Publication No. 2007/119850 pamphlet 特開平3−42025JP-A-3-42025 特開2010−94670号公報JP 2010-94670 A

しかしながら、上記特許文献に開示された方法により製造されたPVDF製の多孔質限外ろ過膜は、以下の理由により、高い安全性が要求される飲料水へのろ過用途に不向きなものと考えられる。   However, the porous ultrafiltration membrane made of PVDF manufactured by the method disclosed in the above patent document is considered to be unsuitable for the filtration application to drinking water requiring high safety for the following reasons. .

すなわち、特許文献1に記載された多孔性中空糸膜は、膜断面方向に結晶構造が変化しており、膜断面の中央近辺では薬品の劣化に対して強い構造を有している一方で、膜表面近傍の分離層の化学強度が弱い(耐薬品性に劣る)ことから、膜厚全体で担う強度・伸度の劣化は抑えられるものの、長期間の使用に伴って或いは薬品洗浄により分離層が劣化し、分離性能が低下することが容易に予想される。そのため、特許文献1に記載された製法によって作製された多孔性中空糸膜は、ウイルス等の微小病原体を長期間除去することが求められる飲料水用途には不向きである。   That is, the porous hollow fiber membrane described in Patent Document 1 has a crystal structure that changes in the direction of the membrane cross-section, and has a structure that is strong against chemical degradation near the center of the membrane cross-section, Although the chemical strength of the separation layer in the vicinity of the membrane surface is weak (poor chemical resistance), the deterioration of the strength and elongation of the entire film thickness can be suppressed, but the separation layer can be used with long-term use or by chemical cleaning. It is easily expected that the separation performance will deteriorate and the separation performance will deteriorate. Therefore, the porous hollow fiber membrane produced by the manufacturing method described in Patent Document 1 is not suitable for drinking water applications that require removal of micropathogens such as viruses for a long period of time.

また、特許文献2に記載された多孔性中空糸膜は、TIPS法により作製されており、多孔性中空糸膜の断面方向に比較的均一な孔径を有する細孔が形成された多孔質構造を有しているため、ウイルス等の微小病原体の除去性能を担保するために細孔の孔径を微細化すると、透水性能が著しく低下する。また、特許文献2に記載された製法によって多孔性中空糸膜を製造すると、添加した無機微粉体が脱落する等して孔が形成されるため、得られる多孔性中空糸膜は、ウイルス等の微小病原体の阻止性能が不十分なものとなり易い。とりわけ、製造時に無機微粉体の凝集物等が存在した場合には、無機微粉体の粒径以上の孔径を有する粗大な孔が形成されるため、微小病原体の阻止性能が著しく低下する傾向にある。   Further, the porous hollow fiber membrane described in Patent Document 2 is produced by the TIPS method, and has a porous structure in which pores having a relatively uniform pore diameter are formed in the cross-sectional direction of the porous hollow fiber membrane. Therefore, if the pore diameter is reduced in order to ensure the removal performance of micropathogens such as viruses, the water permeation performance is significantly reduced. In addition, when a porous hollow fiber membrane is produced by the production method described in Patent Document 2, pores are formed by dropping the added inorganic fine powder, etc. It tends to be insufficient in the ability to prevent micropathogens. In particular, when there are aggregates of inorganic fine powder at the time of production, coarse pores having a pore size larger than the particle size of the inorganic fine powder are formed, so that the ability to prevent micropathogens tends to be significantly reduced. .

さらに、特許文献3に記載されたPVDF製の限外ろ過膜は、ウイルスの除去を目的としたものであり、分離層の耐薬品性に劣るものであることから、薬品洗浄の度に分離層が破壊され、長期の使用に伴ってその分離性能が除々に低下してしまうものである。   Furthermore, the ultrafiltration membrane made of PVDF described in Patent Document 3 is for the purpose of removing viruses and is inferior in chemical resistance of the separation layer. Is destroyed, and the separation performance gradually decreases with long-term use.

本発明は、以上の問題点を鑑みてなされたものであり、透水性能及び微小病原体に対する阻止性能に優れ、薬品洗浄等に対して孔の粗大化を抑制し得る極めて高い耐薬品性を有するのみならず、微小病原体に対する阻止性能を長期間安定して保持し得る、多孔性中空糸膜及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and has excellent water permeability and blocking performance against micropathogens, and has only extremely high chemical resistance capable of suppressing the coarsening of pores for chemical cleaning and the like. In addition, it is an object to provide a porous hollow fiber membrane and a method for producing the same that can stably maintain a blocking performance against micropathogens for a long period of time.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、特定の多孔質構造及び圧縮強度を有することが上記課題を解決するのに必要不可欠であることを見出し、また、そのような多孔性中空糸膜を再現性よく得られる製造方法を見出し、本発明を完成するに至った。   In order to solve the above problems, the present inventors have conducted extensive research and found that having a specific porous structure and compressive strength is indispensable for solving the above problems, A production method for obtaining such a porous hollow fiber membrane with good reproducibility has been found, and the present invention has been completed.

すなわち、本発明は、以下(1)〜(16)を提供する。
(1)
PVDF樹脂からなる多孔性中空糸膜であって、前記多孔性中空糸膜の一方の表面を表面(A)、他方の表面を表面(B)としたときに、表面(A)から表面(B)までにかけて断面構造が3次元網目構造であり、前記多孔性中空糸膜のどちらか一方の表面の細孔径が0.05μm以下であり、かつPVDF樹脂の結晶部におけるα型構造結晶(Hα)とβ型構造結晶(Hβ)との比率(Hα/Hβ)が0.5以上である、多孔性中空糸膜。
(2)
前記一方の表面(A)を構成する細孔径が0.05μm以下であり、前記他方の表面(B)を構成する幹の平均の太さが0.5〜10umかつ細孔径が0.1um以上1μm以下である、前記(1)に記載の多孔性中空糸膜。
(3)
中空部に表面(B)を有する内層と表面(A)を有する外層とからなる2層構造を有し、前記外層は、前記外層表面から前記内層表面との境界に向けて、孔径が連続的に増加する、前記(1)又は(2)に記載の多孔性中空糸膜。
(4)
前記内層の孔径分布は、等方的である、前記(1)〜(3)の何れか一項記載の多孔性中空糸膜。
(5)
前記外層の厚みは、1μm以上100μm以下である、前記(1)〜(4)の何れか一項記載の多孔性中空糸膜。
(6)
前記内層の厚みは、20μm以上1000μm以下である、前記(1)〜(5)の何れか一項記載の多孔性中空糸膜。
(7)
圧縮強度が0.8MPa以上である、前記(1)〜(6)の何れか一項記載の多孔性中空糸膜。
(8)
前記多孔性中空糸膜の中空部へ30分に1分の頻度で貫通口より1Nm/hの流量の空気を導入することでエアーバブリングし、30日運転した後でも、前記多孔性中空糸膜における前記内層及び前記外層が剥離しない、前記(1)〜(7)の何れか一項記載の多孔性中空糸膜。
(9)
中空部に表面(B)を有する内層と表面(A)を有する外層との2層により構成される、PVDF樹脂からなる多孔性中空糸膜の製造方法において、前記内層を構成するポリマー原液と前記外層を構成するポリマー原液とを同時に3重構造紡糸ノズルから吐出し、前記外層は非溶剤誘起相分離法により相分離し、前記内層は熱誘起相分離法により相分離する、多孔性中空糸膜の製造方法。
(10)
前記内層を構成するポリマー原液中のポリマー及び前記外層を構成するポリマー原液中のポリマーが、熱可塑性樹脂である、前記(9)記載の多孔性中空糸膜の製造方法。
(11)
前記熱可塑性樹脂は、PVDF樹脂である、前記(9)又は(10)記載の多孔性中空糸膜の製造方法。
(12)
前記外層を構成するポリマー原液中のポリマーがPVDF樹脂であり、前記内層を構成するポリマー原液中のポリマーがPVDF樹脂であり、前記外層を構成するポリマー原液の吐出温度及び前記内層を構成するポリマー原液の吐出温度が、200〜280℃の範囲である、前記(9)〜(11)の何れか一項記載の多孔性中空糸膜の製造方法。
(13)
前記外層を構成するポリマー原液中のポリマーがPVDF樹脂であり、前記PVDF樹脂を溶解する良溶媒がスルホランである、前記(9)〜(12)の何れか一項記載の多孔性中空糸膜の製造方法。
(14)
前記内層を構成するポリマー原液は、PVDF樹脂、有機液体及びシリカを含有する、前記(9)〜(13)の何れか一項記載の多孔性中空糸膜の製造方法。
That is, the present invention provides the following (1) to (16).
(1)
A porous hollow fiber membrane made of PVDF resin, wherein one surface of the porous hollow fiber membrane is defined as a surface (A) and the other surface is defined as a surface (B). ), The cross-sectional structure is a three-dimensional network structure, the pore diameter of either surface of the porous hollow fiber membrane is 0.05 μm or less, and the α-type structural crystal (H α ) And β-type structural crystal (H β ) (H α / H β ) is a porous hollow fiber membrane having a ratio of 0.5 or more.
(2)
The pore diameter constituting the one surface (A) is 0.05 μm or less, the average thickness of the trunk constituting the other surface (B) is 0.5 to 10 μm, and the pore diameter is 0.1 μm or more. The porous hollow fiber membrane according to (1), which is 1 μm or less.
(3)
It has a two-layer structure consisting of an inner layer having a surface (B) in the hollow portion and an outer layer having a surface (A), and the outer layer has a continuous pore size from the outer layer surface toward the boundary with the inner layer surface. The porous hollow fiber membrane according to (1) or (2), which increases to
(4)
The porous hollow fiber membrane according to any one of (1) to (3), wherein the pore size distribution of the inner layer is isotropic.
(5)
The porous hollow fiber membrane according to any one of (1) to (4), wherein the outer layer has a thickness of 1 μm to 100 μm.
(6)
The porous hollow fiber membrane according to any one of (1) to (5), wherein the inner layer has a thickness of 20 μm or more and 1000 μm or less.
(7)
The porous hollow fiber membrane according to any one of (1) to (6), wherein the compressive strength is 0.8 MPa or more.
(8)
Even after 30 days of operation, the porous hollow fiber is air bubbled by introducing air at a flow rate of 1 Nm 3 / h from the through-hole into the hollow part of the porous hollow fiber membrane every 30 minutes. The porous hollow fiber membrane according to any one of (1) to (7), wherein the inner layer and the outer layer in the membrane do not peel off.
(9)
In the method for producing a porous hollow fiber membrane made of PVDF resin, which is composed of two layers of an inner layer having a surface (B) in the hollow portion and an outer layer having the surface (A), the polymer stock solution constituting the inner layer and the A porous hollow fiber membrane in which a polymer stock solution constituting an outer layer is simultaneously discharged from a triple-structure spinning nozzle, the outer layer is phase-separated by a non-solvent induced phase separation method, and the inner layer is phase-separated by a thermally induced phase separation method Manufacturing method.
(10)
The method for producing a porous hollow fiber membrane according to (9), wherein the polymer in the polymer stock solution constituting the inner layer and the polymer in the polymer stock solution constituting the outer layer are thermoplastic resins.
(11)
The method for producing a porous hollow fiber membrane according to (9) or (10), wherein the thermoplastic resin is a PVDF resin.
(12)
The polymer in the polymer stock solution constituting the outer layer is PVDF resin, the polymer in the polymer stock solution constituting the inner layer is PVDF resin, the discharge temperature of the polymer stock solution constituting the outer layer, and the polymer stock solution constituting the inner layer The method for producing a porous hollow fiber membrane according to any one of (9) to (11), wherein the discharge temperature is in the range of 200 to 280 ° C.
(13)
The porous hollow fiber membrane according to any one of (9) to (12), wherein the polymer in the polymer stock solution constituting the outer layer is PVDF resin, and the good solvent for dissolving the PVDF resin is sulfolane. Production method.
(14)
The method for producing a porous hollow fiber membrane according to any one of (9) to (13), wherein the polymer stock solution constituting the inner layer contains a PVDF resin, an organic liquid, and silica.

本発明の多孔性中空糸膜によれば、透水性能及び微小病原体に対する阻止性能に優れ、薬品洗浄等に対して孔の粗大化を抑制し得る極めて高い耐薬品性を有するのみならず、微小病原体に対する阻止性能を長期間安定して保持することができる。   According to the porous hollow fiber membrane of the present invention, not only has excellent water permeability and blocking performance against micropathogens, and has extremely high chemical resistance capable of suppressing the coarsening of pores for chemical cleaning, etc., but also micropathogens Can be stably maintained for a long period of time.

実施例1の外層の表面(A)の電子顕微鏡写真。The electron micrograph of the surface (A) of the outer layer of Example 1. 実施例1の内層の表面(B)の電子顕微鏡写真。The electron micrograph of the surface (B) of the inner layer of Example 1. FIG.

以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明は、この実施の形態のみに限定する趣旨ではない。また、本発明は、その要旨を逸脱しない限り、種々の形態で実施することができる。   Embodiments of the present invention will be described below. Note that the following embodiment is an example for explaining the present invention, and the present invention is not limited to this embodiment. Moreover, this invention can be implemented with a various form, unless it deviates from the summary.

本実施形態の多孔性中空糸膜は、PVDF樹脂からなる多孔性中空糸膜であって、その一方の表面を表面(A)、他方の表面を表面(B)としたときに、表面(A)から表面(B)までにかけて断面構造が3次元網目構造であり、どちらか一方の表面の細孔径が0.05μm以下であり、かつPVDF樹脂の結晶部におけるα型構造結晶(Hα)とβ型構造結晶(Hβ)との比率(Hα/Hβ)が0.5以上であることを特徴とする。 The porous hollow fiber membrane of the present embodiment is a porous hollow fiber membrane made of PVDF resin, and when one surface thereof is the surface (A) and the other surface is the surface (B), the surface (A ) To the surface (B), the cross-sectional structure is a three-dimensional network structure, the pore diameter of either surface is 0.05 μm or less, and the α-type structure crystal (H α ) in the crystal part of the PVDF resin beta type structure crystals (H beta) and a ratio of (H α / H β) is equal to or not less than 0.5.

多孔性中空糸膜の強度を担保する観点から、表面(A)から表面(B)までにかけて断面構造が3次元網目構造であり、どちらか一方の表面の細孔径が0.05μm以下であることが必要とされる。ここで、多孔性中空糸膜の三次元網目構造は、電子顕微鏡を用いて500倍から10,000倍の視野で確認することができる。なお、本明細書において、中空糸膜の表面の細孔径は、種々の粒径を持つユニフォームラテックス球を用いて、そのラテックス球懸濁液のろ過を実施して阻止率を測定し、粒径と阻止率との関係から90%阻止が認められた粒径を細孔径とした値であって、無作為に抽出した6点の平均値とする。どちらか一方の表面の細孔径が0.05μmを越えると、微小病原体などを透過させてしまう傾向にある。より高い性能を発現させる観点から、一方の表面の細孔径は、18nm以下であることが好ましく、15nm以下であることがより好ましい。   From the viewpoint of ensuring the strength of the porous hollow fiber membrane, the cross-sectional structure is a three-dimensional network structure from the surface (A) to the surface (B), and the pore diameter of either surface is 0.05 μm or less. Is needed. Here, the three-dimensional network structure of the porous hollow fiber membrane can be confirmed with a field of view of 500 to 10,000 times using an electron microscope. In the present specification, the pore diameter of the surface of the hollow fiber membrane is measured using a uniform latex sphere having various particle diameters, the latex sphere suspension is filtered, and the blocking rate is measured. From the relationship between the blocking rate and the blocking rate, the particle diameter at which 90% blocking was observed was taken as the pore size, and the average value of 6 points extracted at random. If the pore diameter on either surface exceeds 0.05 μm, micropathogens or the like tend to permeate. From the viewpoint of developing higher performance, the pore diameter on one surface is preferably 18 nm or less, and more preferably 15 nm or less.

また、薬品耐性、特に、PVDF樹脂の劣化を促進させるアルカリに対する耐性を向上させるために、PVDF樹脂の結晶部におけるα型構造結晶(Hα)とβ型構造結晶(Hβ)との比率(Hα/Hβ)は、0.5以上であることが必要とされる。ここで、PVDF樹脂の結晶構造としては、α型及びβ型、存在が極少量のγ型の3つの構造が知られている。そして、β型構造の結晶構造は熱力学的に不安定であることから、結晶中にβ型構造が多く含まれると、結晶部と非晶部の境界付近に薬品による劣化を受けやすい部分を有することになると推定され、結果として、多孔性中空糸膜全体の薬品耐性が低下する傾向にある。なお、PVDF樹脂の結晶部におけるα型構造結晶(Hα)とβ型構造結晶(Hβ)との比率(Hα/Hβ)は、より好ましくは0.7以上である。 Further, in order to improve chemical resistance, particularly resistance to alkali that promotes deterioration of PVDF resin, the ratio of α-type structural crystal (H α ) and β-type structural crystal (H β ) in the crystal part of PVDF resin ( H α / H β ) is required to be 0.5 or more. Here, as the crystal structure of the PVDF resin, there are known three structures of α-type and β-type, and γ-type having a very small amount. And since the crystal structure of the β-type structure is thermodynamically unstable, if the crystal contains a lot of β-type structure, a portion susceptible to deterioration by chemicals is located near the boundary between the crystal part and the amorphous part. As a result, the chemical resistance of the entire porous hollow fiber membrane tends to decrease. The ratio (H α / H β ) between the α-type structure crystal (H α ) and the β-type structure crystal (H β ) in the crystal part of the PVDF resin is more preferably 0.7 or more.

本実施形態の多孔性中空糸膜は、多孔性中空糸膜の強度を向上するとともに微小病原体を高効率で排除する観点から、一方の表面(A)を構成する細孔径が0.05μm以下であり、前記他方の表面(B)を構成する幹の平均の太さが0.5〜10umかつ細孔径が0.1um以上1μm以下であることがより好ましい。より好ましくは、表面(B)を構成する幹の平均の太さは0.5〜10umであり、且つ、細孔径は0.1um以上1μm以下であり、さらに好ましくは、表面(B)を構成する幹の平均の太さが0.5μm以上5μm以下であり、且つ、細孔径が0.3μm以上0.7μm以下ある。   The porous hollow fiber membrane of this embodiment has a pore diameter of 0.05 μm or less constituting one surface (A) from the viewpoint of improving the strength of the porous hollow fiber membrane and eliminating micropathogens with high efficiency. It is more preferable that the average thickness of the trunk constituting the other surface (B) is 0.5 to 10 μm and the pore diameter is 0.1 μm or more and 1 μm or less. More preferably, the average thickness of the trunk constituting the surface (B) is 0.5 to 10 μm, and the pore diameter is 0.1 μm or more and 1 μm or less, and more preferably, the surface (B) is formed. The average thickness of the trunk is 0.5 μm or more and 5 μm or less, and the pore diameter is 0.3 μm or more and 0.7 μm or less.

ここで、本実施形態の多孔性中空糸膜は、透水性能、微小病原体に対する阻止性能、耐薬品性等を高次元でバランスさせる観点から、中空部に面する内層と、外方に面する外層からなる2層構造を有することが好ましい。以下、2層構造について詳述する。   Here, the porous hollow fiber membrane of the present embodiment has an inner layer facing the hollow portion and an outer layer facing outward from the viewpoint of balancing water permeability performance, blocking performance against micropathogens, chemical resistance, etc. at a high level. It preferably has a two-layer structure consisting of Hereinafter, the two-layer structure will be described in detail.

多孔性中空糸膜が上記2層構造を有する場合、上述した外層の厚みは、特に限定されないが、欠点があった場合の補完という観点から、1μm以上100μm以下であることが好ましく、より好ましくは5μm以上50μm以下である。   When the porous hollow fiber membrane has the above two-layer structure, the thickness of the outer layer described above is not particularly limited, but is preferably 1 μm or more and 100 μm or less from the viewpoint of complementation when there is a defect, more preferably It is 5 μm or more and 50 μm or less.

また、多孔性中空糸膜が上記2層構造を有する場合、上述した内層の厚みは、特に限定されないが、強度維持と透水性確保の観点から、20μm以上1000μm以下であることが好ましく、より好ましくは100μm以上500μm以下である。   When the porous hollow fiber membrane has the above two-layer structure, the thickness of the inner layer described above is not particularly limited, but is preferably 20 μm or more and 1000 μm or less from the viewpoint of maintaining strength and ensuring water permeability. Is from 100 μm to 500 μm.

このように多孔性中空糸膜が2層構造を有する場合において、外層の表面(A)から内層の表面(B)までにかけて断面構造が3次元網目構造を有するものが好ましい。また、外層は、外層の表面(A)から内層の表面(B)との境界に向けて、孔径が連続的に増加するものがより好ましい。   Thus, when the porous hollow fiber membrane has a two-layer structure, it is preferable that the cross-sectional structure has a three-dimensional network structure from the surface (A) of the outer layer to the surface (B) of the inner layer. Further, it is more preferable that the outer layer has a pore diameter that continuously increases from the surface (A) of the outer layer toward the boundary with the surface (B) of the inner layer.

多孔性中空糸膜が上記2層構造を有する場合、微小病原体を排除するため、表面(B)を有する外層の細孔径が0.05μm以下であることが好ましい。   When the porous hollow fiber membrane has the above two-layer structure, the pore diameter of the outer layer having the surface (B) is preferably 0.05 μm or less in order to eliminate micropathogens.

多孔性中空糸膜が上記2層構造を有する場合、高い強度を発現させて2層の剥離を抑制する観点から、表面(B)を有する内層を構成する幹の平均の太さは、0.5〜10umであり、且つ、その細孔径が0.1um以上1μm以下であることが好ましい。より好ましくは、内層を構成する幹の平均の太さは0.5μm以上5μm以下であり、且つ、細孔径が0.3μm以上0.7μm以下ある。   In the case where the porous hollow fiber membrane has the above two-layer structure, the average thickness of the trunk constituting the inner layer having the surface (B) is 0. It is preferably 5 to 10 μm and the pore diameter is 0.1 μm or more and 1 μm or less. More preferably, the average thickness of the trunk constituting the inner layer is not less than 0.5 μm and not more than 5 μm, and the pore diameter is not less than 0.3 μm and not more than 0.7 μm.

なお、多孔性中空糸膜を構成する熱可塑性樹脂としては、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリフッ化ビニリデン、エチレンービニルアルコール共重合体、ポリアミド、ポリエーテルイミド、ポリスチレン、ポリサルホン、ポリビニルアルコール、ポリフェニレンエーテル、ポリフェニレンサルファイド、酢酸セルロース、ポリアクリロニトリルなどが挙げられるが、これらに特に限定されない。これらの中でも、透水性能、微小病原体に対する阻止性能、耐薬品性等の観点から、PVDF樹脂、ポリスルフォン、ポリエチレン等が好ましく、耐薬品性等の化学的耐久性をさらに考慮するとポリフッ化ビニリデンが特に好ましい。   The thermoplastic resin constituting the porous hollow fiber membrane includes polyolefins such as polyethylene and polypropylene, polyvinylidene fluoride, ethylene-vinyl alcohol copolymer, polyamide, polyetherimide, polystyrene, polysulfone, polyvinyl alcohol, and polyphenylene. Examples include ether, polyphenylene sulfide, cellulose acetate, polyacrylonitrile, and the like. Among these, PVDF resin, polysulfone, polyethylene and the like are preferable from the viewpoint of water permeability, blocking performance against micropathogens, chemical resistance, etc., and polyvinylidene fluoride is particularly preferable in view of chemical durability such as chemical resistance. preferable.

多孔性中空糸膜が上記2層構造を有する場合、2層の剥離を抑制するため、中空部に面する表面(B)を有する内層と外方に面する表面(A)を有する外層は、それぞれ三次元網目構造を有するものであることが好ましい。ここで、内層と外層の三次元網目構造は、電子顕微鏡を用いて500倍から10,000倍の視野で確認することができる。このように多孔性中空糸膜がそれぞれ三次元網目構造を有する場合、2層の剥離を抑制するため、外層表面から内層表面との境界に向けて、外層の孔径が連続的に増加することがより好ましい。一方、内層の孔径分布は、強度を維持しやすいため、等方的であることがより好ましい。   When the porous hollow fiber membrane has the above two-layer structure, in order to suppress peeling of the two layers, the outer layer having the inner layer having the surface facing the hollow part (B) and the outer surface facing the surface (A), Each preferably has a three-dimensional network structure. Here, the three-dimensional network structure of the inner layer and the outer layer can be confirmed with a field of view of 500 to 10,000 times using an electron microscope. Thus, when each porous hollow fiber membrane has a three-dimensional network structure, in order to suppress separation of the two layers, the pore diameter of the outer layer may continuously increase from the outer layer surface toward the boundary with the inner layer surface. More preferred. On the other hand, the pore size distribution of the inner layer is more preferably isotropic because the strength is easily maintained.

本実施形態の多孔性中空糸膜は、圧縮強度が0.8MPa以上であるものがより好ましい。圧縮強度が0.8MPa未満であると、ろ過逆洗の繰り返し運転の途中で膜潰れが発生する傾向にあるため、耐久性が低下する傾向にある。なお、本明細書において、多孔性中空糸膜の圧縮強度は、後述する実施例に記載の方法で測定した値を意味する。   As for the porous hollow fiber membrane of this embodiment, that whose compressive strength is 0.8 Mpa or more is more preferable. When the compressive strength is less than 0.8 MPa, the membrane tends to be crushed in the course of repeated operation of filtration backwashing, so that the durability tends to decrease. In addition, in this specification, the compressive strength of a porous hollow fiber membrane means the value measured by the method as described in the Example mentioned later.

そして、本実施形態の多孔性中空糸膜は、多孔性中空糸膜の中空部へ30分に1分の頻度で貫通口より1Nm/hの流量の空気を導入することでエアーバブリングし、30日運転した後において、多孔性中空糸膜における前記内層及び前記外層が剥離しないことが好ましい。 And the porous hollow fiber membrane of this embodiment carries out air bubbling by introduce | transducing the air of the flow volume of 1 Nm < 3 > / h from a through-hole at a frequency of 1 minute in 30 minutes to the hollow part of a porous hollow fiber membrane, It is preferable that the inner layer and the outer layer in the porous hollow fiber membrane do not peel after operating for 30 days.

上記2層構成の多孔性中空糸膜は、例えば、内層を構成するポリマー原液と外層を構成するポリマー原液とを同時に3重構造紡糸ノズルから吐出し、外層を非溶剤誘起相分離法により相分離し、内層を熱誘起相分離法により相分離することにより、得ることができる。以下、ポリマーとしてPVDF樹脂を用いた例について詳述する。   The porous hollow fiber membrane having the above-mentioned two-layer structure, for example, discharges the polymer stock solution constituting the inner layer and the polymer stock solution constituting the outer layer simultaneously from a triple-structure spinning nozzle, and the outer layer is phase-separated by a non-solvent induced phase separation method. The inner layer can be obtained by phase separation by a thermally induced phase separation method. Hereinafter, the example using PVDF resin as a polymer is explained in full detail.

本実施形態の多孔性中空糸膜は、PVDF樹脂及び溶媒を少なくとも含む製膜原液を吐出して相分離を進行させることで得ることができる。ここでは、製膜原液の吐出温度及び製膜原液と接触させる凝固液の温度を調整することにより、所望の相分離を進行させることができる。   The porous hollow fiber membrane of this embodiment can be obtained by discharging a membrane-forming stock solution containing at least a PVDF resin and a solvent and advancing phase separation. Here, the desired phase separation can be advanced by adjusting the discharge temperature of the film-forming stock solution and the temperature of the coagulating liquid brought into contact with the film-forming stock solution.

具体的には、外層を構成するポリマー原液の吐出温度と、内層を構成するポリマー原液の吐出温度は、特に限定されないが、α型構造結晶を生成させるため、200〜280℃の範囲であることが好ましく、より好ましくは200〜260℃の範囲である。   Specifically, the discharge temperature of the polymer stock solution constituting the outer layer and the discharge temperature of the polymer stock solution constituting the inner layer are not particularly limited, but are in the range of 200 to 280 ° C. in order to generate α-type structural crystals. Is more preferable, and the range of 200 to 260 ° C. is more preferable.

この例において、製膜原液は、多孔性中空糸膜を構成する高分子成分として、PVDF樹脂を含有する。ここで、PVDF樹脂とは、フッ化ビニリデンのホモポリマー、又は、フッ化ビニリデンをモル比で50%以上含有する共重合ポリマーを意味する。PVDF樹脂は、強度に優れる多孔性中空糸膜を得る観点から、ホモポリマーであることが好ましい。また、PVDF樹脂が共重合ポリマーである場合、フッ化ビニリデンモノマーと共重合される他の共重合モノマーは、公知のものを適宜選択して用いることができ、特に限定されるものではないが、例えば、フッ素系モノマーや塩素系モノマー等を好適に用いることができる。   In this example, the membrane forming stock solution contains a PVDF resin as a polymer component constituting the porous hollow fiber membrane. Here, the PVDF resin means a homopolymer of vinylidene fluoride or a copolymer containing 50% or more of vinylidene fluoride in a molar ratio. The PVDF resin is preferably a homopolymer from the viewpoint of obtaining a porous hollow fiber membrane having excellent strength. Further, when the PVDF resin is a copolymer, other copolymer monomers copolymerized with the vinylidene fluoride monomer can be appropriately selected from known ones and are not particularly limited. For example, a fluorine-based monomer or a chlorine-based monomer can be preferably used.

PVDF樹脂の重量平均分子量(Mw)は、特に限定されないが、10万以上、100万以下であることが好ましく、20万以上、70万以下であることがより好ましい。重量平均分子量を20万以上、100万以下にすることによって、製膜原液の粘度を紡糸に適した範囲に制御できる。また、重量平均分子量70万以下のPVDF樹脂を用いることで、溶媒と非溶媒との置換(交換)が早く進行し、より薬品耐性の高い分離層を形成することが可能となる。   The weight average molecular weight (Mw) of the PVDF resin is not particularly limited, but is preferably 100,000 or more and 1,000,000 or less, and more preferably 200,000 or more and 700,000 or less. By setting the weight average molecular weight to 200,000 or more and 1,000,000 or less, the viscosity of the film-forming stock solution can be controlled within a range suitable for spinning. In addition, by using a PVDF resin having a weight average molecular weight of 700,000 or less, substitution (exchange) between a solvent and a non-solvent proceeds quickly, and a separation layer with higher chemical resistance can be formed.

製膜原液は、溶媒を含む。溶媒とは、1週間以内に80℃でPVDF樹脂を1重量%以上溶解させることができるものを意味する。一方、80℃でPVDF樹脂を1週間以内に溶解できる量が1重量%未満のものを非溶媒と定義する。   The film-forming stock solution contains a solvent. The solvent means a solvent capable of dissolving 1% by weight or more of PVDF resin at 80 ° C. within one week. On the other hand, a solvent that can dissolve the PVDF resin at 80 ° C. within one week is defined as a non-solvent.

ここで、樹脂と溶媒もしくは非溶媒との親和性を推測するツールとして使用される、ハンセンの溶解度パラメーター(以後において、「HSP」とも記載する。)について詳述する。HSPは、ある樹脂がある溶媒もしくは非溶媒にどのくらい溶けるのかを示す溶解性の指標であり、溶解特性を3次元の座標で表し、その距離(以後において、「HSP距離」とも記載する。)が近いもの同士は溶解性が高いと判断するものである。ここで、3次元の座標軸は、分散項dD、極性項dP、水素結合項dHで表される。分散項dDはファンデルワールスの力、極性項dPはダイポール・モーメントの力、水素結合項dHは水、アルコールなどが持つ水素結合力とされる。具体的には、dD、dP、dHを軸とする3次元座標上において、PVDF樹脂の溶解度パラメーターから溶媒もしくは非溶媒の溶解度パラメーターまでのHSP距離を計算することで、PVDF樹脂の溶媒もしくは非溶媒に対する溶解性が評価できる。HSP距離の算定式を、以下に示す。
HSP距離=[4×(dDPVDF−dD溶媒)2+(dPPVDF−dP溶媒)2+(dHPVDF−dH溶媒)2]0.5
Here, Hansen's solubility parameter (hereinafter also referred to as “HSP”) used as a tool for estimating the affinity between the resin and the solvent or non-solvent will be described in detail. HSP is a solubility index indicating how much a certain resin dissolves in a solvent or non-solvent, and the solubility characteristics are expressed in three-dimensional coordinates, and the distance (hereinafter also referred to as “HSP distance”). Those close to each other are judged to have high solubility. Here, the three-dimensional coordinate axis is represented by a dispersion term dD, a polarity term dP, and a hydrogen bond term dH. The dispersion term dD is the van der Waals force, the polar term dP is the dipole moment force, and the hydrogen bond term dH is the hydrogen bond force of water, alcohol, or the like. Specifically, the solvent or non-solvent of the PVDF resin is calculated by calculating the HSP distance from the solubility parameter of the PVDF resin to the solubility parameter of the solvent or non-solvent on the three-dimensional coordinates with dD, dP, and dH as axes. Can be evaluated. The formula for calculating the HSP distance is shown below.
HSP distance = [4 × (dDPVDF-dD solvent) 2+ (dPPVDF-dP solvent) 2 + 2 + (dHPVDF-dH solvent) 2] 0.5

熱力学的に、HSP距離が0に近づくほど、樹脂と溶媒もしくは非溶媒との相溶性が高い。ハンセンとアボットが開発したコンピューターソフトウエアHSPiPには、HSP距離を計算する機能と様々な樹脂と溶媒もしくは非溶媒のハンセンパラメーターを記載したデータベースが含まれている。そして、本明細書で用いている溶解度パラメーター(SP値)は、HSPiP 3rd versionに含まれるSolvent listとPolymer listに記載されている値を25℃に補正したものを参照している。ここで、Solvent listに記載されていない樹脂と溶媒もしくは非溶媒については、Y−MBと呼ばれるニューラルネットワーク法を用いた推算方法により算出する。分子構造をHSPiPに付属のY−MB計算ソフトに入力することで、自動的に原子団に分解し、HSP値と分子体積が計算される。   Thermodynamically, the closer the HSP distance is to 0, the higher the compatibility between the resin and the solvent or non-solvent. Computer software HSPiP developed by Hansen and Abbott includes a database describing the function of calculating the HSP distance and Hansen parameters for various resins and solvents or non-solvents. The solubility parameter (SP value) used in this specification refers to a value obtained by correcting the value described in the Solvent list and Polymer list included in the HSPiP 3rd version to 25 ° C. Here, resins and solvents or non-solvents not described in the Solvent list are calculated by an estimation method using a neural network method called Y-MB. By inputting the molecular structure into Y-MB calculation software attached to HSPiP, it is automatically decomposed into atomic groups, and the HSP value and molecular volume are calculated.

本実施形態では、NIPS法による多孔性中空糸膜の製造において、相分離速度を速めることで、耐薬品性が高められた分離層を有する多孔性中空糸膜を製造するものである。より具体的には、PVDF樹脂、及び非溶媒に対して任意の親和性を有する溶媒を選択し、適切な非溶媒を含有する凝固液中においてNIPS相分離を誘起することで、相分離速度が高速化され、これにより、高い阻止性能を有する分離層が形成される。   In the present embodiment, in the production of a porous hollow fiber membrane by the NIPS method, a porous hollow fiber membrane having a separation layer with improved chemical resistance is produced by increasing the phase separation speed. More specifically, a PVDF resin and a solvent having an arbitrary affinity for a non-solvent are selected, and NIPS phase separation is induced in a coagulation liquid containing an appropriate non-solvent, whereby the phase separation rate is increased. The speed is increased, thereby forming a separation layer having high blocking performance.

製膜原液に含まれる溶媒として、PVDF樹脂との相溶性が低い溶媒を選択することにより、相分離速度をより高速化することが可能となる。かかる観点から、PVDF樹脂と溶媒とのHSP距離が、5.20以上、8.00以下であることが好ましい。PVDF樹脂とのHSP距離が5.20以上の溶媒を選択することによって、PVDF樹脂との親和性が下がり、溶媒が凝固浴中に拡散されやすくなることから、相分離速度をより高速化し、膜の薬品耐性をさらに向上させることが可能となる。また、PVDF樹脂とのHSP距離が8.00以下の溶媒を選択することによって、製膜原液の多孔構造形成開始温度が低くなり、凝固液の温度を低く設定することができ、これにより、高温の製膜原液と低温の凝固液との温度差により溶媒及び非溶媒の置換(交換)が促進されて相分離速度が高速化することから、分離層の耐薬品性をより向上させることが可能となる。   By selecting a solvent having a low compatibility with the PVDF resin as the solvent contained in the film-forming stock solution, the phase separation speed can be further increased. From this viewpoint, it is preferable that the HSP distance between the PVDF resin and the solvent is 5.20 or more and 8.00 or less. By selecting a solvent having an HSP distance of 5.20 or more with the PVDF resin, the affinity with the PVDF resin is lowered, and the solvent is easily diffused into the coagulation bath. It is possible to further improve the chemical resistance of the. In addition, by selecting a solvent having an HSP distance with the PVDF resin of 8.00 or less, the formation temperature of the porous structure of the film-forming stock solution can be lowered, and the temperature of the coagulation liquid can be set low. The difference in temperature between the membrane forming stock solution and the low-temperature coagulating liquid accelerates the substitution (exchange) of the solvent and non-solvent, and increases the phase separation speed, so that the chemical resistance of the separation layer can be further improved. It becomes.

溶媒の具体例としては、Glycerol Diacetate、Ethyl Lactate、Diethylene Glycol Monobutyl Ether、gamma−Butyrolactone (GBL)、Methylene Chloride、Methyl Acetate、Dimethyl Isosorbide、1,3−Dioxolane、Dibasic Esters (DBE)、Dipropylene Glycol Mono n−Butyl Ether、Sulfolane (Tetramethylene Sulfone)、Methyl Ethyl Ketone (MEK)、Ethylene Glycol Monomethyl Ether、Cyclohexanone、Propylene Glycol Monomethyl Ether、Isophorone、Caprolactone (Epsilon)、Tetrahydrofuran (THF)、Propylene Glycol Phenyl Ether、Texanol等の単一溶媒の他、これらを任意の割合で混合した混合溶媒等が挙げられる。なお、混合溶媒の溶解度パラメーターについては、下式のように、溶媒の重量比(a:b)に基づいて、加成法則により計算したパラメーターを使用する。
[dD混合溶媒、dP混合溶媒、dH混合溶媒]=[(a×dD溶媒1+b×dD溶媒2)、(a×dP溶媒1+b×dP溶媒2)) (a×dH溶媒1+b×dH溶媒2)]/(a+b)
Specific examples of the solvent, Glycerol Diacetate, Ethyl Lactate, Diethylene Glycol Monobutyl Ether, gamma-Butyrolactone (GBL), Methylene Chloride, Methyl Acetate, Dimethyl Isosorbide, 1,3-Dioxolane, Dibasic Esters (DBE), Dipropylene Glycol Mono n -Butyl Ether, Sulfolane (Tetramethylene Sulphone), Methyl Ethyl Ketone (MEK), Ethylene Glycol Monomethyl Ether, Cyclohexone, Propylene lycol Monomethyl Ether, Isophorone, Caprolactone (Epsilon), Tetrahydrofuran (THF), Propylene Glycol Phenyl Ether, other single solvent such as Texanol, a mixed solvent obtained by mixing them at an arbitrary ratio can be mentioned. In addition, about the solubility parameter of a mixed solvent, the parameter calculated by the addition law based on the weight ratio (a: b) of a solvent like the following formula is used.
[DD mixed solvent, dP mixed solvent, dH mixed solvent] = [(a × dD solvent 1 + b × dD solvent 2), (a × dP solvent 1 + b × dP solvent 2)) (a × dH solvent 1 + b × dH solvent 2) ] / (A + b)

また、製膜原液には、上述したPVDF樹脂及び溶媒以外に、非溶媒や添加剤を含んでいてもよい。添加剤の配合により、膜表面の平均孔径の制御を容易に行うことができる。例えば、非溶媒を含む凝固液に添加剤を配合した製膜溶液を接触させてNIPS相分離を生じさせる際に、又は、PVDF樹脂を凝固させた後に、この添加剤を溶出させることにより、添加剤の種類や配合量或いは製膜条件に応じて、所望する平均孔径を有する膜表面を形成することができる。このような添加剤としては、特に限定されないが、有機化合物、無機化合物等が用いられる。有機化合物としては、PVDF樹脂を溶解させる際に使用する溶媒及びNIPS相分離を起こす際に使用する非溶媒の双方に溶解するものが好ましく用いられる。例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリル酸、デキストランなどの水溶性ポリマー、界面活性剤、グリセリン、糖類、タンパク質類等を挙げることができる。無機化合物としては、PVDF樹脂を溶解させる際に使用する溶媒及びNIPS相分離を起こす際に使用する非溶媒の双方に溶解するものが好ましく、例えば、塩化カルシウム、塩化マグネシウム、塩化リチウム、硫酸バリウム等を挙げることができる。   In addition to the PVDF resin and the solvent described above, the film-forming stock solution may contain a non-solvent and an additive. By blending the additive, the average pore diameter on the membrane surface can be easily controlled. For example, when a film-forming solution containing an additive is mixed with a coagulating liquid containing a non-solvent to cause NIPS phase separation, or after coagulating PVDF resin, the additive is eluted. A film surface having a desired average pore diameter can be formed according to the type and blending amount of the agent or the film forming conditions. Such additives are not particularly limited, and organic compounds, inorganic compounds, and the like are used. As the organic compound, those that are soluble in both the solvent used when dissolving the PVDF resin and the non-solvent used when causing the NIPS phase separation are preferably used. For example, water-soluble polymers such as polyvinylpyrrolidone, polyethylene glycol, polyethyleneimine, polyacrylic acid, and dextran, surfactants, glycerin, saccharides, proteins, and the like can be given. As the inorganic compound, those that dissolve in both the solvent used when dissolving the PVDF resin and the non-solvent used when causing the NIPS phase separation are preferable. For example, calcium chloride, magnesium chloride, lithium chloride, barium sulfate, etc. Can be mentioned.

とりわけ、外層を構成するポリマー原液中のポリマーがPVDF樹脂であり、PVDF樹脂を溶解する良溶媒がスルホランである態様が好ましい。また、内層を構成するポリマー原液は、PVDF樹脂、有機液体及びシリカを含有する態様が好ましい。   In particular, an embodiment in which the polymer in the polymer stock solution constituting the outer layer is PVDF resin and the good solvent for dissolving PVDF resin is sulfolane is preferable. Moreover, the aspect in which the polymer stock solution which comprises an inner layer contains PVDF resin, an organic liquid, and a silica is preferable.

製膜原液における各成分の含有割合は、特に限定されないが、分離性能、透水性能、強度の観点から、製膜原液の総量に対する重量割合で、PVDF樹脂が5重量%以上、35重量%以下であり、溶媒が20重量%以上、95重量%以下であり、添加剤が0重量%以上、40重量%以下であり、非溶媒が0重量%以上、5重量%以下であることが好ましい。PVDF樹脂の含有割合が5重量%以上であると、分離層の強度がより高められる傾向にある。また、PVDF樹脂の含有割合が35重量%以下であると、製膜原液を紡糸に適した粘度に調整することが容易となり、かつ、分離層の緻密化が抑制されて透水性能がより高められる傾向にある。また、長期的に製膜原液のゲル化を招く恐れがあるため、非溶媒の含有割合は、0重量%以上、5重量%以下の範囲が好ましい。   The content ratio of each component in the membrane-forming stock solution is not particularly limited, but from the viewpoint of separation performance, water permeability, and strength, the PVDF resin is 5% by weight or more and 35% by weight or less with respect to the total amount of the film-forming stock solution. The solvent is preferably 20 wt% or more and 95 wt% or less, the additive is 0 wt% or more and 40 wt% or less, and the non-solvent is preferably 0 wt% or more and 5 wt% or less. When the content ratio of the PVDF resin is 5% by weight or more, the strength of the separation layer tends to be further increased. Moreover, when the content ratio of the PVDF resin is 35% by weight or less, it becomes easy to adjust the film-forming stock solution to a viscosity suitable for spinning, and the separation layer is suppressed from being densified, and the water permeability is further improved. There is a tendency. Moreover, since there exists a possibility of causing gelatinization of a film forming undiluted solution for a long term, the content rate of a non-solvent has the preferable range of 0 to 5 weight%.

製膜原液の調製方法は、特に限定されず、任意の手法により行うことができる。例えば、上述したPVDF樹脂を添加剤および非溶媒とともに溶媒に混合して攪拌することで、製膜原液を調製することができる。ここで、PVDF樹脂を溶媒に溶解させる際の温度は、PVDF樹脂の融点(Tm)以上であり、且つ、溶媒の沸点未満であることが好ましい。PVDF樹脂の融点(Tm)は、結晶領域の分子鎖が重心の移動を伴って動き出す温度のことであり、PVDF樹脂の化学構造に依存した固有の値である。PVDF樹脂の融点(Tm)は、後述するように、示差走査熱量分析(DSC)によって、求めることができる。このようにPVDF樹脂の融点(Tm)以上で溶媒と混合すると、ポリマーの結晶がほぐれ、ポリマーとの親和性の低い溶媒にも早く溶解させることが可能となる。なお、PVDF樹脂の溶解温度の上限は、溶媒の沸点とされるが、溶媒の引火爆発の危険性を回避して安全に処理を行う観点から、沸点からさらに10℃低い温度であることがましい。また、製膜原液は、溶解中もしくは溶解後において真空ポンプを用いた脱気を行うことが好ましい。脱気工程を経ることで、不純物が少なく、かつ気泡が少ない安定した原液を得ることができる。   The method for preparing the film-forming stock solution is not particularly limited, and can be performed by any method. For example, a film-forming stock solution can be prepared by mixing the PVDF resin described above with an additive and a non-solvent in a solvent and stirring. Here, the temperature at which the PVDF resin is dissolved in the solvent is preferably equal to or higher than the melting point (Tm) of the PVDF resin and lower than the boiling point of the solvent. The melting point (Tm) of the PVDF resin is a temperature at which the molecular chain in the crystal region starts to move with the movement of the center of gravity, and is a specific value depending on the chemical structure of the PVDF resin. The melting point (Tm) of the PVDF resin can be determined by differential scanning calorimetry (DSC) as will be described later. Thus, when mixed with the solvent at a melting point (Tm) or higher of the PVDF resin, the polymer crystals are loosened and can be quickly dissolved in a solvent having a low affinity with the polymer. The upper limit of the melting temperature of the PVDF resin is the boiling point of the solvent. However, from the viewpoint of safe treatment by avoiding the danger of flammable explosion of the solvent, the upper limit of the melting temperature of the PVDF resin is preferably 10 ° C lower than the boiling point. Yes. Moreover, it is preferable to deaerate the film-forming stock solution using a vacuum pump during or after dissolution. By passing through the deaeration process, a stable stock solution with few impurities and few bubbles can be obtained.

かくして得られる製膜原液を、Tダイ或いは中空ノズル等の成型用ノズルから吐出して非溶媒を少なくとも含む凝固液と接触させ、相分離現象を進行させることにより、多孔性中空糸膜が作製される。この多孔性中空糸膜の製膜は、製膜原液を成型用ノズルから押し出して凝固液中で凝固させる、いわゆる湿式製膜法、或いは、製膜原液を成形用ノズルから押し出した後に所定の空走区間を確保した後に凝固液中で凝固させる、いわゆる乾湿式製膜法のいずれも適用可能である。なお、製膜原液の吐出形状は、特に限定されず、例えば、平膜状、チューブ状、中空糸状等、任意に設定することができる。また、作製する多孔性中空糸膜の膜厚は、特に限定されないが、25μmから500μmの範囲とすることが好ましい。膜厚を25μm以上にすることで、膜の破損による微小病原体の流出をより一層確実に防ぐことができる。また、膜厚を500μm以下にすることで、連通性の悪いスポンジ状構造の発生を抑制することができるので、膜の透水性能を著しく向上することが可能となる。   The membrane-forming stock solution thus obtained is ejected from a molding nozzle such as a T die or a hollow nozzle and brought into contact with a coagulating liquid containing at least a non-solvent, and a porous hollow fiber membrane is produced by advancing the phase separation phenomenon. The This porous hollow fiber membrane can be formed by a so-called wet film forming method in which a film-forming stock solution is extruded from a molding nozzle and coagulated in a coagulating liquid, or a predetermined empty space after the film-forming stock solution is extruded from a molding nozzle. Any of the so-called dry and wet film forming methods in which a running section is secured and then solidified in a coagulating liquid can be applied. In addition, the discharge shape of the film-forming stock solution is not particularly limited, and can be arbitrarily set to, for example, a flat film shape, a tube shape, a hollow fiber shape, or the like. The film thickness of the porous hollow fiber membrane to be produced is not particularly limited, but is preferably in the range of 25 μm to 500 μm. By setting the film thickness to 25 μm or more, the outflow of micropathogens due to the breakage of the film can be more reliably prevented. In addition, by setting the film thickness to 500 μm or less, it is possible to suppress the formation of a sponge-like structure with poor communication, and thus the water permeability of the film can be significantly improved.

上述した凝固液は、少なくとも非溶媒を含む。凝固液に含まれる非溶媒として、PVDF樹脂を溶解する溶媒と親和性が高いものを選択することで、相分離速度が速まり、膜の耐薬品性をより一層高めることが可能となる。かかる観点から、非溶媒は、溶媒を100mg以上溶解するのもが好ましい。なお、使用する非溶媒は、1種類に限定するものではなく、2種類以上の非溶媒を混合したものでも良い。   The coagulation liquid described above contains at least a non-solvent. By selecting a non-solvent contained in the coagulation liquid that has a high affinity for the solvent that dissolves the PVDF resin, the phase separation speed is increased, and the chemical resistance of the membrane can be further enhanced. From this viewpoint, it is preferable that the non-solvent dissolves 100 mg or more of the solvent. In addition, the non-solvent to be used is not limited to one type, and may be a mixture of two or more types of non-solvents.

非溶媒の具体例としては、水、グリセリン、メタノール、エタノール、2―プロパノール等の単一非溶媒の他、これらを任意の割合で混合した混合非溶媒等が挙げられる。   Specific examples of the non-solvent include single non-solvents such as water, glycerin, methanol, ethanol, and 2-propanol, and mixed non-solvents obtained by mixing these at an arbitrary ratio.

本実施形態の多孔性中空糸膜の製造方法において、凝固液の温度は、製膜原液の多孔構造形成開始温度より高いことが好ましい。凝固液の温度が製膜原液の多孔構造形成開始温度以下であると、熱誘起相分離が進行して厚く均一に緻密な分離層が生成する傾向にある。ここで、本明細書において、製膜原液の多孔構造形成開始温度とは、製膜原液の熱誘起相分離開始温度のことであり、かかる多孔構造形成温度は、温度コントローラー付きの光学顕微鏡を用いて製膜原液を吐出時の温度まで加熱し、2分間ホールドして溶解させた後に、100℃/minで冷却する過程において形成される多孔構造を観察することによって求めることができる。   In the method for producing a porous hollow fiber membrane of the present embodiment, the temperature of the coagulating liquid is preferably higher than the starting temperature for forming the porous structure of the membrane forming stock solution. When the temperature of the coagulation liquid is equal to or lower than the porous structure formation start temperature of the film-forming stock solution, the heat-induced phase separation tends to progress and a thick and uniformly dense separation layer tends to be generated. Here, in this specification, the porous structure formation start temperature of the film-forming stock solution is the heat-induced phase separation start temperature of the film-forming stock solution, and this porous structure formation temperature is measured using an optical microscope with a temperature controller. The film forming stock solution can be obtained by observing the porous structure formed in the process of heating to the temperature at the time of discharge, holding for 2 minutes to dissolve, and cooling at 100 ° C./min.

従来、中空糸膜を高い透水性能にするために、孔径もしくは開孔性率を大きくすると、ポリマーの幹が細くなるため、中空糸膜の耐圧縮強度を高くすることは出来なかったが、中空糸膜長手方向のポリマーの幹を太くすることで、耐圧縮強度を高くすることが出来ることを見出した。この中空糸膜長手方向のポリマーの幹の太さは、中空糸膜の耐圧縮強度に強く影響すると考えられるため、この幹を太くすることにより、中空糸膜の耐圧縮強度が高くなったと推定される。内層の表面(B)を構成する幹の太さは、0.5μm以上10μm以下が好ましい。幹の太さを0.5μm以上にすることで、耐圧縮強度を高くすることができる。また、幹の太さを10μm以下にすることで、幹が太くなり孔が小さくなることによる透水性能の低下が生じない。より好ましくは1.5μm以上8μm以下であり、さらに好ましくは2μm以上6μm以下である。一方、外層の表面(A)を構成する幹の太さは、0.01以上0.5um以下が好ましく、より好ましくは0.01μm以上0.3μm以下であり、さらに好ましくは0.01μm以上0.1μm以下である。   Conventionally, in order to make hollow fiber membranes have high water permeability, if the pore diameter or the openability ratio is increased, the polymer trunk becomes thin, so the compression strength of the hollow fiber membrane could not be increased. It has been found that the compression strength can be increased by thickening the polymer trunk in the longitudinal direction of the thread membrane. Since the thickness of the polymer trunk in the longitudinal direction of the hollow fiber membrane is considered to strongly affect the compression strength of the hollow fiber membrane, it is estimated that the compression strength of the hollow fiber membrane is increased by increasing the thickness of the stem. Is done. The thickness of the trunk constituting the surface (B) of the inner layer is preferably 0.5 μm or more and 10 μm or less. By setting the thickness of the trunk to 0.5 μm or more, the compression resistance can be increased. In addition, by setting the thickness of the trunk to 10 μm or less, water permeability does not deteriorate due to the trunk becoming thicker and the hole becoming smaller. More preferably, they are 1.5 micrometers or more and 8 micrometers or less, More preferably, they are 2 micrometers or more and 6 micrometers or less. On the other hand, the thickness of the trunk constituting the surface (A) of the outer layer is preferably 0.01 to 0.5 μm, more preferably 0.01 μm to 0.3 μm, and still more preferably 0.01 μm to 0 μm. .1 μm or less.

本明細書において、幹の太さの測定は、以下の方法で算出されたものを意味する。まず走査型電子顕微鏡を用い、中空糸膜の外表面を極力多数の孔の形状が明確に確認できる程度の倍率で外表面に垂直な方向から撮影する。次いで、中空糸膜の長手方向に対して垂直な方向の孔と孔の間の距離を100個測定し、その相加平均を幹の太さとする。   In this specification, the measurement of the thickness of a trunk means what was computed with the following method. First, a scanning electron microscope is used to photograph the outer surface of the hollow fiber membrane from a direction perpendicular to the outer surface at a magnification that allows the shape of a large number of holes to be clearly confirmed as much as possible. Next, 100 distances between the holes in the direction perpendicular to the longitudinal direction of the hollow fiber membrane are measured, and the arithmetic average is taken as the thickness of the trunk.

原料となる熱可塑性樹脂の融点以上で製膜原液を吐出する際、使用する溶媒や熱可塑性樹脂の分子量によっては、製膜原液の粘度が低くなり任意の膜形状が保持できないような場合がある。そのような場合には、製膜原液と同時に形態保持流体を吐出することで、任意の形状に保持することができる。このような形態保持流体としては、この種の分野において常用されている公知のものを適宜用いることができ、特に限定されないが、例えば、グリセリンの他、Tetraethylene glycolやethylene glycol等のグリコールエーテルにポリビニルピロリドン等の増粘剤を添加したもの、高分子ポリマーを含む成分を溶媒に溶解した高粘度流体等が挙げられる。形態保持流体は、粘度1.0Pa・s以上、5、000Pa・s以下のものが好ましい。形態保持流体の粘度が1Pa・s以上であると、製膜原液と形態保持流体との混合を抑制でき、任意の形態に保持することが容易になる。また、形態保持流体の粘度が5000Pa・s以下であると、製膜原液と同時吐出した際の可紡性が向上する。なお、上述した形態保持流体の粘度は、「JIS K7117−1」の粘度測定法に基づき、単一円筒型回転粘度計を用いて20℃の条件下で測定した値とする。さらに、形態保持流体は、沸点及び分解温度が、製膜原液の吐出温度未満のものが好ましい。形態保持流体の沸点が吐出温度未満の場合、吐出時に形態保持流体が沸騰せず、多孔性中空糸膜内に気泡が混入することがないため、ピンホールの発生を防止できる。また、形態保持流体の分解温度が吐出温度未満の場合、形態保持流体に焦げが発生せず、得られる多孔性中空糸膜の強度が低下しない。一般的にPVDFを原料として熱誘起相分離法を用いた場合、α型構造結晶の割合が大きくなり膜の強度を維持するのに都合がよい。具体的には、PVDF樹脂を常温で溶解する溶媒を用いて、PVDF樹脂の融点以上で製膜原液を吐出し、融点以下の紡浴へ吐出して固化させると相分離の形態が非溶剤誘起と熱誘起の中間に起因する固化工程を経る。このような相分離の形態では、非溶剤誘起相分離法の利点である微小細孔径を保持しつつも、耐薬品性に強いα構造結晶を両立することができる。さらに、200℃を超える温度で吐出するとその傾向はさらに強まり、十分な耐薬品性を付与することができる。温度の上限は、熱可塑性樹脂の分解温度である。   Depending on the solvent used and the molecular weight of the thermoplastic resin, the viscosity of the film-forming solution may be lowered and the desired film shape may not be maintained when discharging the film-forming solution above the melting point of the raw thermoplastic resin. . In such a case, it can be held in an arbitrary shape by discharging the form-retaining fluid simultaneously with the film-forming stock solution. As such a shape-retaining fluid, a well-known fluid commonly used in this type of field can be used as appropriate, and is not particularly limited. For example, in addition to glycerin, glycol ethers such as tetraethylene glycol and ethylene glycol, polyvinyl Examples thereof include a material to which a thickener such as pyrrolidone is added, and a high-viscosity fluid in which a component containing a polymer is dissolved in a solvent. The shape-retaining fluid preferably has a viscosity of 1.0 Pa · s to 5,000 Pa · s. When the viscosity of the shape-retaining fluid is 1 Pa · s or more, mixing of the film-forming stock solution and the shape-retaining fluid can be suppressed, and the shape-retaining fluid can be easily retained in any shape. Further, when the viscosity of the shape-retaining fluid is 5000 Pa · s or less, the spinnability when discharged simultaneously with the film-forming stock solution is improved. The viscosity of the shape-retaining fluid described above is a value measured under the condition of 20 ° C. using a single cylindrical rotational viscometer based on the viscosity measurement method of “JIS K7117-1”. Further, the shape-retaining fluid preferably has a boiling point and a decomposition temperature that are lower than the discharge temperature of the film-forming stock solution. When the boiling point of the shape-retaining fluid is lower than the discharge temperature, the shape-retaining fluid does not boil at the time of discharge, and bubbles are not mixed into the porous hollow fiber membrane, so that pinholes can be prevented from occurring. Moreover, when the decomposition temperature of the shape retention fluid is lower than the discharge temperature, the shape retention fluid does not burn, and the strength of the resulting porous hollow fiber membrane does not decrease. In general, when a thermally induced phase separation method is used with PVDF as a raw material, the proportion of α-type structure crystals is increased, which is convenient for maintaining the strength of the film. Specifically, using a solvent that dissolves PVDF resin at room temperature, when the raw film forming solution is discharged at a temperature equal to or higher than the melting point of the PVDF resin and discharged to a spinning bath below the melting point, the form of phase separation is non-solvent induced. It goes through a solidification process due to the middle of heat induction. In such a phase separation form, it is possible to achieve both α-structure crystals having strong chemical resistance while maintaining the fine pore diameter which is an advantage of the non-solvent induced phase separation method. Further, when the ink is discharged at a temperature exceeding 200 ° C., the tendency is further increased, and sufficient chemical resistance can be imparted. The upper limit of the temperature is the decomposition temperature of the thermoplastic resin.

さらに多孔性中空糸膜の膜強度を高めたい場合には、例えば円環状吐出口を2つ以上有する中空糸成型ノズル等の多重管状のノズルを用い、隣接する2つの該円環状吐出口の一方からはポリフッ化ビニリデン樹脂、有機液体及び無機微粉を少なくとも含む溶融混練物を、他方からは前述の製膜原液を吐出し、前記製膜原液の多孔構造形成開始温度より高く、前記溶融混練物の多孔構造形成開始温度よりも低い凝固液に接触させて多層多孔中空糸構造を形成し、得られた多層多孔中空糸構造物から前記有機液体を抽出除去させることが好ましい。得られた多層多孔中空糸構造物から前記有機液体を抽出除去することで、極めて物理強度が強く、透水性能が高く、層界面の接着性が良好な、多孔性中空糸膜を得ることができる。ここで、前記溶融混錬物と多層多孔中空糸構造を形成させるにあたって、製膜原液に含まれる溶媒は、PVDF樹脂とのHSP距離が5.20以上、8.00以下であることが好ましい。製膜原液に含まれる溶媒にPVDF樹脂とのHSP距離が5.20以上のものを使用した場合、溶媒がPVDFを容易に溶解するため、該製膜原液から前記溶融混錬物に向けて前記溶媒が潤浸して溶融混練物の粘度が急激に低下することを防止でき、その結果、溶融混錬物の相分離速度が速くなりすぎず、2層の接合部付近においても連通性が良い構造が維持され、最終的に純水透過性能が高く、物理強度が高い多孔質膜が得られる。また、製膜原液に含まれる溶媒にPVDF樹脂と溶媒のHSP距離の差が8.00以下のものを使用した場合には、溶融混錬物に溶媒が浸透しやすいため、接合界面の接着性が良くなり、実使用中に2つの層の剥離を防止できる等の物理強度が高い多孔質膜が得られる。
また、内層の例として3次元網目スポンジ構造の好適な製造方法である熱誘起相分離法がある。熱誘起相分離法とは、熱可塑性高分子と、その熱可塑性高分子に対し室温付近では非溶剤だが高温では溶剤となる潜在的溶剤とを、高温(両者の相溶温度以上)で加熱混合して溶融させ、その後熱可塑性高分子の固化温度以下にまで冷却することにより、その冷却過程での潜在的溶剤の熱可塑性高分子に対する溶解力の低下を利用して高分子濃厚相と高分子希薄相(溶剤濃厚相)とに相分離させ、さらにその後潜在的溶剤を抽出除去して、相分離時に生成した高分子濃厚相の固化体からなる多孔体を得る方法である(H.Matsuyama,Chemical Engineering,43(1998)453−464、又はD.R.Lloyd,et al.,Journal of Membrane Science,64(1991)1−11など)。なお、熱可塑性高分子とその潜在的溶剤以外に、微粉シリカ等の無機フィラーを加えて加熱混合し、冷却固化後の抽出工程で潜在的溶剤とともに無機フィラーも抽出除去して多孔体を得るという方法も熱誘起相分離法の1種として含められる。潜在的溶剤の例としては、熱可塑性高分子が例えばポリエチレン、ポリプロピレン、ポリフッ化ビニリデンの場合、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジオクチル、フタル酸ジ(2−エチルヘキシル)、フタル酸ジイソデシル等のフタル酸エステル類及びこれらの混合物等が挙げられる。
熱誘起相分離法を用いて多孔性中空糸膜を得る好適な方法の1つは、熱可塑性高分子である膜素材高分子及びその潜在的溶剤(及び必要に応じて無機フィラー)を、押し出し機等を用いて加熱混合して溶融させ、中空糸成型用紡口(押し出し面に加熱混合物を押し出すための円環状穴と、その円環状穴の内側に、中空部形成流体を吐出するための円形穴を備えたノズル)から該溶融物を、中空部内に中空部形成流体を注入しつつ中空糸状に押し出して冷却固化させ、しかる後に潜在的溶剤(及び無機フィラー)を抽出除去する方法である。中空部形成流体は、中空糸状押し出し物の中空部が冷却固化の途中でつぶれて閉じてしまわないように中空部内に注入するもので、押し出す溶融物に対して実質的に不活性な(化学的変化を起こさない)気体又は液体を用いる。押し出し後の冷却固化は、空冷又は液冷又は両者の組み合わせで行うことができる。冷却媒体である気体又は液体は、押し出し物に対して実質的に不活性であることが求められる。潜在的溶剤(又は無機フィラー)の抽出は、冷却固化物に対して実質的に不活性でかつ潜在的溶剤(又は無機フィラー)の溶解力に優れた揮発性の液体又は水溶液を用いて行う。
外表面開口率の高くかつ3次元網目スポンジ構造の多孔性中空糸膜を製造する好ましい方法例としては、熱誘起相分離法を利用した以下の方法がある。膜素材高分子とその潜在的溶剤以外に、無機フィラーを加えて加熱混合し、冷却固化後の抽出で潜在的溶剤とともに無機フィラーも抽出除去する方法。無機フィラーとしては平均1次粒子径0.005μm以上0.5μm以下、比表面積30m/g以上500m/g以下の微粉シリカが好ましい。このような微粉シリカは、加熱混合時の分散性が良いために得られる膜に構造欠陥が生じにくく、かつ抽出除去はアルカリ水溶液で容易に行うことができる。加熱混合する際の膜素材高分子の量は、得られる膜の強度と開口性のバランスの点から、ポリエチレン、ポリプロピレン等の比重が約1g/cmの素材の場合は15重量%〜25重量%、ポリフッ化ビニリデンのように比重が約1.7g/cm3の素材の場合は、比重1の素材の場合の約1.7倍量である25重量%〜45重量%が好ましい。また、潜在的溶剤/微粉シリカの重量比は、得られる膜の強度と開口性のバランスの点から、1.0以上2.5以下、特に1.2以上1.8以下が好ましい。
加熱混合する際の膜素材高分子量の好ましい量は、得られる膜の強度と開口性のバランスの点から、ポリエチレン、ポリプロピレン等の比重が約1g/cmの素材の場合は15重量%〜35重量%、ポリフッ化ビニリデンのように比重が約1.7g/cmの素材の場合は、比重1の素材の場合の約1.7倍量である25重量%〜60重量%である。
When it is desired to further increase the membrane strength of the porous hollow fiber membrane, for example, a multi-tubular nozzle such as a hollow fiber molding nozzle having two or more annular discharge ports is used, and one of the two adjacent annular discharge ports is used. From the melt-kneaded material containing at least polyvinylidene fluoride resin, organic liquid and inorganic fine powder, and from the other, the film-forming stock solution is discharged, and is higher than the porous structure formation temperature of the film-forming stock solution, It is preferable that a multilayer porous hollow fiber structure is formed by contact with a coagulation liquid lower than the porous structure formation start temperature, and the organic liquid is extracted and removed from the obtained multilayer porous hollow fiber structure. By extracting and removing the organic liquid from the obtained multilayer porous hollow fiber structure, a porous hollow fiber membrane having extremely high physical strength, high water permeability, and good adhesion at the layer interface can be obtained. . Here, in forming the multilayer kneaded hollow fiber structure with the melt-kneaded product, the solvent contained in the film forming stock solution preferably has an HSP distance of 5.20 or more and 8.00 or less with the PVDF resin. When the solvent contained in the film-forming stock solution has a HSP distance of 5.20 or more with the PVDF resin, the solvent easily dissolves PVDF, so that the above-mentioned film-forming stock solution is directed toward the melt-kneaded product. A structure in which the viscosity of the melt-kneaded product can be prevented from drastically decreasing due to the immersion of the solvent, and as a result, the phase separation rate of the melt-kneaded product does not become too fast, and the structure has good communication even in the vicinity of the joint between the two layers. Is finally maintained, and a porous membrane having high pure water permeation performance and high physical strength can be obtained. In addition, when the difference in HSP distance between the PVDF resin and the solvent is 8.00 or less as the solvent contained in the film-forming stock solution, the solvent easily penetrates into the melt-kneaded material, so that the adhesiveness at the bonding interface As a result, a porous film having a high physical strength such as prevention of peeling of two layers during actual use can be obtained.
Further, as an example of the inner layer, there is a thermally induced phase separation method which is a suitable manufacturing method of a three-dimensional network sponge structure. Thermally induced phase separation is a method in which a thermoplastic polymer is mixed with a latent solvent that is a non-solvent near room temperature but becomes a solvent at a high temperature (higher than the compatible temperature). And then cooled to below the solidification temperature of the thermoplastic polymer, taking advantage of the decrease in the dissolving power of the latent solvent in the thermoplastic polymer during the cooling process. This is a method of separating a dilute phase (solvent rich phase) and then extracting and removing a latent solvent to obtain a porous body composed of a solidified polymer rich phase formed during phase separation (H. Matsuyama, Chemical Engineering, 43 (1998) 453-464, or DR Lloyd, et al., Journal of Membrane Science, 64 (1991). Such as -11). In addition to the thermoplastic polymer and its potential solvent, an inorganic filler such as finely divided silica is added and mixed by heating, and the porous filler is obtained by extracting and removing the inorganic filler together with the potential solvent in the extraction step after cooling and solidification. The method is also included as a kind of thermally induced phase separation method. Examples of potential solvents include when the thermoplastic polymer is polyethylene, polypropylene, polyvinylidene fluoride, such as dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate, etc. Examples thereof include phthalic acid esters and mixtures thereof.
One suitable method for obtaining a porous hollow fiber membrane using a heat-induced phase separation method is to extrude a membrane material polymer that is a thermoplastic polymer and its potential solvent (and inorganic filler if necessary). A hollow fiber molding spout (annular hole for extruding the heated mixture on the extrusion surface, and for discharging the hollow portion forming fluid inside the annular hole. This is a method of extruding the melt from a nozzle provided with a circular hole) into a hollow fiber while injecting a hollow portion forming fluid into the hollow portion to cool and solidify, and then extracting and removing the potential solvent (and inorganic filler). . The hollow portion forming fluid is injected into the hollow portion so that the hollow portion of the hollow fiber-like extrudate is not crushed and closed during cooling and solidification, and is substantially inert to the extruded melt (chemically). Use gas or liquid that does not change. Cooling and solidification after extrusion can be performed by air cooling, liquid cooling, or a combination of both. The gas or liquid that is the cooling medium is required to be substantially inert to the extrudate. The extraction of the latent solvent (or inorganic filler) is carried out using a volatile liquid or aqueous solution that is substantially inert to the cooled solidified product and has excellent dissolving power for the latent solvent (or inorganic filler).
Examples of a preferable method for producing a porous hollow fiber membrane having a high outer surface opening ratio and a three-dimensional network sponge structure include the following method using a thermally induced phase separation method. In addition to the membrane material polymer and its potential solvent, an inorganic filler is added and mixed by heating, and the inorganic filler is extracted and removed together with the potential solvent by extraction after cooling and solidification. As the inorganic filler, finely divided silica having an average primary particle size of 0.005 μm to 0.5 μm and a specific surface area of 30 m 2 / g to 500 m 2 / g is preferable. Such finely divided silica has good dispersibility during heating and mixing, so that structural defects are hardly generated in the obtained film, and extraction and removal can be easily performed with an alkaline aqueous solution. The amount of the membrane material polymer at the time of heating and mixing is 15% by weight to 25% in the case of a material having a specific gravity of about 1 g / cm 3 , such as polyethylene and polypropylene, from the viewpoint of the balance between the strength of the obtained membrane and the opening property. In the case of a material having a specific gravity of about 1.7 g / cm 3, such as polyvinylidene fluoride, 25% by weight to 45% by weight, which is about 1.7 times that of a material having a specific gravity of 1, is preferable. Further, the weight ratio of the latent solvent / fine silica is preferably 1.0 or more and 2.5 or less, particularly preferably 1.2 or more and 1.8 or less, from the viewpoint of the balance between the strength of the obtained film and the opening property.
The preferred amount of the high molecular weight of the membrane material for heating and mixing is 15% by weight to 35% in the case of a material having a specific gravity of about 1 g / cm 3 , such as polyethylene and polypropylene, from the viewpoint of the balance between strength and openability of the obtained membrane. In the case of a material having a specific gravity of about 1.7 g / cm 3 , such as weight% and polyvinylidene fluoride, the amount is about 1.7 times that of the material having a specific gravity of 1 to 25% by weight to 60% by weight.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの限定されるものではない。   Hereinafter, although an example is given and the present invention is explained in detail, the present invention is not limited to these.

実施例及び比較例における、(1)PVDF樹脂の重量平均分子量(Mw)、(2)PVDF樹脂の融点(Tm)、(3)多孔性中空糸膜の透水性、(4)多孔性中空糸膜のデキストラン除去率、(5)多孔性中空糸膜の薬品耐性、(6)多孔性中空糸膜の欠陥発生率、(7)圧縮強度、(8)剥離性評価は、以下の方法で各々測定及び評価を行った。   (1) Weight average molecular weight (Mw) of PVDF resin, (2) Melting point (Tm) of PVDF resin, (3) Water permeability of porous hollow fiber membrane, (4) Porous hollow fiber in Examples and Comparative Examples Dextran removal rate of membrane, (5) Chemical resistance of porous hollow fiber membrane, (6) Defect occurrence rate of porous hollow fiber membrane, (7) Compressive strength, (8) Peelability evaluation are as follows. Measurement and evaluation were performed.

(1)PVDF樹脂の重量平均分子量(Mw)
PVDF樹脂を1.0mg/mLの濃度でDMFに溶解した試料を50mL用い、以下の条件でGPC測定を行い、その重量平均分子量(PMMA換算)を求めた。
装置 :HPLC−8220GPC (東ソー株式会社)
カラム :Shodex KF―606M、KF−601
移動相 :0.6mL/min DMF
検出器 :示差屈折率検出器
(1) Weight average molecular weight (Mw) of PVDF resin
Using 50 mL of a sample obtained by dissolving PVDF resin in DMF at a concentration of 1.0 mg / mL, GPC measurement was performed under the following conditions, and the weight average molecular weight (PMMA conversion) was obtained.
Apparatus: HPLC-8220GPC (Tosoh Corporation)
Column: Shodex KF-606M, KF-601
Mobile phase: 0.6 mL / min DMF
Detector: Differential refractive index detector

(2)PVDF樹脂の融点(Tm)
PVDF樹脂15mgを密封式DSC容器に密封し、セイコー電子製DSC−6200を用いて昇温速度10℃/minで昇温し、この昇温過程で観察される融解ピークの頂点をPVDF樹脂の融点(Tm)とした。
(2) Melting point (Tm) of PVDF resin
15 mg of PVDF resin was sealed in a sealed DSC container and heated at a rate of temperature increase of 10 ° C./min using a DSC-6200 manufactured by Seiko Electronics Co., Ltd. The peak of the melting peak observed during this temperature increase process was the melting point of the PVDF resin. (Tm).

(3)多孔性中空糸膜の透水性試験(L/(m・hr))
約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内へ注射針を入れ、注射針から0.1MPaの圧力にて25℃の純水を中空部内へ注入し、外表面へと透過してくる純水の透過水量を測定し、下記式から純水透水率を決定した。
純水透水率(L/(m・hr))=(60(min/hr)×透水量(L))/(π×膜内径(m)×膜有効長(m)×測定時間(min))
(3) Permeability test of porous hollow fiber membrane (L / (m 2 · hr))
Seal one end of a wet hollow fiber membrane of about 10 cm length, put an injection needle into the hollow part at the other end, and inject pure water at 25 ° C. into the hollow part at a pressure of 0.1 MPa from the injection needle. The amount of pure water permeated into the water was measured, and the pure water permeability was determined from the following equation.
Pure water permeability (L / (m 2 · hr)) = (60 (min / hr) × water permeability (L)) / (π × membrane inner diameter (m) × membrane effective length (m) × measurement time (min ))

(4)多孔性中空糸膜のデキストラン除去率(%)
湿潤中空糸膜両端の中空部内へ注射針を入れ、温度25℃、ろ過差圧50kPa、膜面線速0.5m/sの条件下、分子量200万のデキストラン(Dextran 2000、Amersham bioscience製)1,000ppm水溶液の外圧クロスフローろ過を25分間行った。次に、初期原水中及び25分ろ過終了後に採取したろ過水のデキストラン濃度を、示唆屈折率計を用いて求めた。最後に、分子量200万のデキストラン除去率を、下記式から求めた。
除去率(%)=(1−(25分ろ過終了後デキストラン濃度)/(初期原水中デキストラン濃度))×100
(4) Dextran removal rate of porous hollow fiber membrane (%)
An injection needle is inserted into the hollow part at both ends of the wet hollow fiber membrane, and dextran having a molecular weight of 2 million (Dextran 2000, manufactured by Amersham bioscience) 1 under the conditions of a temperature of 25 ° C., a filtration differential pressure of 50 kPa, and a membrane surface linear velocity of 0.5 m / s. An external pressure cross-flow filtration of a 1,000 ppm aqueous solution was performed for 25 minutes. Next, the concentration of dextran in the initial raw water and the filtrate collected after 25 minutes of filtration was determined using a suggested refractometer. Finally, the dextran removal rate with a molecular weight of 2 million was determined from the following formula.
Removal rate (%) = (1- (Dextran concentration after completion of filtration for 25 minutes) / (Dextran concentration in initial raw water)) × 100

(5)多孔性中空糸膜の薬品耐性試験(5日目孔径保持率(%))
多孔性中空糸膜の薬品耐性試験として、5日目孔径保持率(%)による評価を行った、5日目孔径保持率(%)は、湿潤状態の多孔質中空糸膜を40℃の水酸化ナトリウムを4重量%と次亜塩素酸ナトリウムを有効塩素濃度で0.5重量%溶液との混合水溶液に5日間浸漬し、薬液への浸漬前後で上記(5)の分子量200万のデキストラン除去率の測定を行い、浸漬前のデキストラン除去率(E0)と5日浸漬による薬品劣化後のデキストラン除去率(E5)を下記式に代入して算出した。
5日目孔径保持率(%)=(E5/E0)×100
(5) Chemical resistance test of porous hollow fiber membrane (5th day pore diameter retention rate (%))
As a chemical resistance test of the porous hollow fiber membrane, the evaluation was performed based on the 5th day pore size retention rate (%). The 5th day pore size retention rate (%) was determined by measuring the wet porous hollow fiber membrane with water at 40 ° C. Immerse in a mixed aqueous solution of 4% by weight of sodium oxide and 0.5% by weight of sodium hypochlorite at an effective chlorine concentration for 5 days, and remove dextran with a molecular weight of 2 million (5) before and after immersion in the chemical solution. The dextran removal rate (E0) before immersion and the dextran removal rate (E5) after chemical degradation by immersion for 5 days were substituted into the following formula.
Day 5 pore size retention (%) = (E5 / E0) × 100

(6)多孔性中空糸膜の欠陥発生数
約1m長の湿潤中空糸膜の一端を封止し、他端の中空部内へ注射針を入れ、注射針から0.2MPaの圧力にて空気を中空部内へ注入し、気泡が外表面から出てくる箇所数を計測することにより、欠陥発生数を決定した。
(7)圧縮強度(MPa)
約5cm長の湿潤中空糸膜の一端を封止し、他端を大気開放とし、外表面より40℃の純水を加圧し大気開放端より透過水を出した。このとき膜供給水を循環させることなくその全量を濾過する方式、即ち全量濾過方式を取った。加圧圧力を0.1MPaより0.01MPa刻みで昇圧し、各圧力にて15秒間圧力を保持し、この15秒間に大気開放端より出てくる透過水をサンプリングした。中空糸膜の中空部がつぶれないうちは加圧圧力が増すにつれて透過水量(質量)の絶対値も増してゆくが、加圧圧力が中空糸膜の耐圧縮強度を超えると中空部が潰れて閉塞が始まるため、透過水量の絶対値は加圧圧力が増すにも関わらず、低下する。透過水量の絶対値が極大になる加圧圧力を圧縮強度とした。
(8)剥離性評価
約1m長の湿潤中空糸膜を200本束ねて1インチ径のPVC製パイプに挿入し、両端を接着固定した。接着剤にはポリウレタンを用い、接着層厚みは50mmとした。このとき中空糸膜の一端を封止して接着部を貫通する10mm径の穴(貫通口)を5個設け、一方の他端を開口させて膜モジュールを製作した。貫通口から河川水を導入してケース内に水圧をかけることによって、開口端からろ水を取り出した。この時の水圧を0.2MPaと一定とした。さらに30分に1分の頻度で貫通口より1Nm/hの流量の空気を導入することでエアーバブリングを実施した。30日運転後の(A)層、(B)層の剥離性を、評価するため、ろ過水側から0.1MPaの空気圧力を印可することにより、剥離箇所の有無を確認した。剥離箇所がある場合を剥離性「あり」、剥離箇所がない場合を剥離性「なし」とした。
(9)PVDF樹脂の結晶部におけるα型構造結晶とβ型構造結晶の比率の測定
Thermo Scientific株式会社のNicoletiS50/Continuumを用いて、ATR法により分解能8cm−1で膜表面のIRスペクトルを測定した。
得られたスペクトルにおいて763cm−1の位置に現れるα型構造結晶のシグナルのピーク高さ(Hα)と、840cm−1に現れるβ型結晶のシグナルのピーク高さ(Hβ)から、次式を用いてα型構造結晶とβ型構造結晶の比率を算出した。
α型/β型構造結晶の比率=Hα/Hβ
(6) Number of defects generated in porous hollow fiber membrane One end of a wet hollow fiber membrane having a length of about 1 m is sealed, an injection needle is inserted into the hollow part at the other end, and air is blown from the injection needle at a pressure of 0.2 MPa. The number of defects generated was determined by injecting into the hollow part and measuring the number of locations where bubbles emerge from the outer surface.
(7) Compressive strength (MPa)
One end of a wet hollow fiber membrane having a length of about 5 cm was sealed, the other end was opened to the atmosphere, pure water at 40 ° C. was pressurized from the outer surface, and permeate was discharged from the open end of the atmosphere. At this time, the whole amount was filtered without circulating the membrane feed water, that is, the whole amount filtration method was adopted. The pressurization pressure was increased from 0.1 MPa in increments of 0.01 MPa, the pressure was maintained at each pressure for 15 seconds, and the permeated water coming out from the open end of the atmosphere was sampled during the 15 seconds. While the hollow part of the hollow fiber membrane is not crushed, the absolute value of the permeated water amount (mass) also increases as the pressurized pressure increases. However, when the pressurized pressure exceeds the compressive strength of the hollow fiber membrane, the hollow part is crushed. Since the clogging starts, the absolute value of the permeated water amount decreases even though the pressurizing pressure increases. The compression pressure at which the absolute value of the amount of permeated water was maximized was taken as the compressive strength.
(8) Peelability evaluation 200 wet hollow fiber membranes having a length of about 1 m were bundled and inserted into a 1-inch diameter PVC pipe, and both ends were bonded and fixed. Polyurethane was used as the adhesive, and the adhesive layer thickness was 50 mm. At this time, one end of the hollow fiber membrane was sealed to provide five 10 mm-diameter holes (penetrating ports) penetrating the bonded portion, and the other end was opened to produce a membrane module. The river water was taken out from the opening end by introducing river water from the through hole and applying water pressure in the case. The water pressure at this time was kept constant at 0.2 MPa. Further, air bubbling was performed by introducing air at a flow rate of 1 Nm 3 / h from the through-hole at a frequency of 1 minute every 30 minutes. In order to evaluate the peelability of the (A) layer and the (B) layer after 30 days of operation, the presence or absence of a peeled portion was confirmed by applying an air pressure of 0.1 MPa from the filtered water side. When there was a peeled portion, the peelability was “present”, and when there was no peeled portion, the peelability was “no”.
(9) Measurement of ratio of α-type structure crystal and β-type structure crystal in crystal part of PVDF resin IR spectrum of the film surface was measured by ATR method with a resolution of 8 cm −1 using Nicoletti S50 / Continuum of Thermo Scientific Co., Ltd. .
From the peak height (H α ) of the signal of the α-type structure crystal appearing at 763 cm −1 in the obtained spectrum and the peak height (H β ) of the signal of the β-type crystal appearing at 840 cm −1 , Was used to calculate the ratio of α-type structure crystals and β-type structure crystals.
α type / β type structure crystal ratio = H α / H β

[実施例1]
3重構造の紡糸ノズルを用いて、外層と内層を有する2層中空糸膜の膜構造を有する実施例1の多孔性中空糸膜を得た。外層にはPVDF樹脂として重量平均分子量が35万であるフッ化ビニリデンホモポリマー(アルケマ社製、Kynar741)24重量%と、K値17のポリビニルピロリドン(BASF製、ルビスコールK17)17重量%と、スルホラン(和光純薬製)59重量%とを混合し、180℃で溶解させて、製膜原液を調製した。このフッ化ビニリデンホモポリマーの融点(Tm)は174℃、分解温度は375℃であり、この製膜原液の多孔構造形成開始温度は42℃であった。
内層にはフッ化ビニリデンホモポリマー(ソルベイソレキシス社製、SOLEF6020)34重量%、フタル酸ビス(2−エチルヘキシル)33.8重量%、フタル酸ジブチル6.8重量%、微粉シリカ25.4重量%の溶融混練物を、中空部形成流体には空気をそれぞれ用い、これらを3重環紡糸ノズル(外層最外径2.0mm、内層最外径1.8mm、中空部形成層最外径0.9mm)から同時に200℃で吐出すことで、中空糸状成型物を得た。
押し出した中空糸状成型物は、80mmの空走距離を通した後、60℃の水中で非溶媒誘起相分離を進行させ、20m/分の速度でかせに巻き取った。得られた2層中空糸状押出し物をイソプロピルアルコール中に浸漬させてフタル酸ビス(2−エチルヘキシル)及びフタル酸ジブチルを抽出除去した。続いて、水中に30分間浸漬し、中空糸膜を膨潤化した。続いて、20重量%NaOH水溶液中に70℃にて1時間浸漬し、さらに水洗を繰り返して微粉シリカを抽出除去した。
表1に、得られた実施例1の多孔性中空糸膜の配合組成及び製造条件並びに各種性能を示す。
[Example 1]
A porous hollow fiber membrane of Example 1 having a membrane structure of a two-layer hollow fiber membrane having an outer layer and an inner layer was obtained using a triple-structure spinning nozzle. In the outer layer, vinylidene fluoride homopolymer having a weight average molecular weight of 350,000 as PVDF resin (Arkema, Kynar 741) 24% by weight, polyvinyl pyrrolidone having a K value of 17 (BASF, rubiscol K17) 17% by weight, Sulfolane (manufactured by Wako Pure Chemical Industries, Ltd.) 59% by weight was mixed and dissolved at 180 ° C. to prepare a film forming stock solution. The melting point (Tm) of this vinylidene fluoride homopolymer was 174 ° C., the decomposition temperature was 375 ° C., and the porous structure formation starting temperature of this film-forming stock solution was 42 ° C.
The inner layer is composed of 34% by weight of vinylidene fluoride homopolymer (Solef 6020, manufactured by Solvay Solexis), 33.8% by weight of bis (2-ethylhexyl) phthalate, 6.8% by weight of dibutyl phthalate, and 25.4% fine silica. The melt-kneaded material of the weight%, air was used as the hollow part forming fluid, and these were used as triple ring spinning nozzles (outer layer outermost diameter 2.0 mm, inner layer outermost diameter 1.8 mm, hollow part forming layer outermost diameter 0.9 mm) was simultaneously discharged at 200 ° C. to obtain a hollow fiber molded product.
The extruded hollow fiber-shaped molded article passed through a free running distance of 80 mm, and then proceeded with non-solvent-induced phase separation in water at 60 ° C., and was wound up skein at a speed of 20 m / min. The obtained two-layer hollow fiber extrudate was immersed in isopropyl alcohol to extract and remove bis (2-ethylhexyl) phthalate and dibutyl phthalate. Subsequently, it was immersed in water for 30 minutes to swell the hollow fiber membrane. Subsequently, it was immersed in a 20 wt% NaOH aqueous solution at 70 ° C. for 1 hour, and further washed with water to extract and remove finely divided silica.
Table 1 shows the composition, production conditions, and various performances of the porous hollow fiber membrane of Example 1 obtained.

参考例
3重構造の紡糸ノズルを用いて、外層と内層を有する2層中空糸膜の膜構造を有する実施例2の多孔性中空糸膜を得た。ここでは、外層の製膜原液として、PVDFホモポリマー20重量%と、K値17のポリビニルピロリドン17重量%と、Triacetin(Aldrich製、99%)63重量%とを混合し、200℃で溶解させた製膜原液を用いた。このフッ化ビニリデンホモポリマーの融点(Tm)は174℃、分解温度は375℃であり、この製膜原液の多孔構造形成開始温度は102℃であった。
内層、紡糸条件、後処理条件などは実施例1と同様とし、参考例の多孔性中空糸膜(多孔質中空糸膜)を得た。
表1に、得られた参考例の多孔性中空糸膜の配合組成及び製造条件並びに各種性能を示す。
[ Reference example ]
A porous hollow fiber membrane of Example 2 having a membrane structure of a two-layer hollow fiber membrane having an outer layer and an inner layer was obtained using a triple-structure spinning nozzle. Here, 20% by weight of PVDF homopolymer, 17% by weight of polyvinyl pyrrolidone having a K value of 17 and 63% by weight of Triacetin (manufactured by Aldrich, 99%) are mixed and dissolved at 200 ° C. The membrane forming stock solution was used. The melting point (Tm) of this vinylidene fluoride homopolymer was 174 ° C., the decomposition temperature was 375 ° C., and the porous structure formation starting temperature of this film-forming stock solution was 102 ° C.
The inner layer, spinning conditions, post-treatment conditions, and the like were the same as in Example 1, and a porous hollow fiber membrane (porous hollow fiber membrane) of a reference example was obtained.
Table 1 shows the composition, production conditions, and various performances of the porous hollow fiber membrane of the obtained reference example .

[比較例1]
3重構造の紡糸ノズルを用いて、外層と内層を有する2層中空糸膜の膜構造を有する比較例1の多孔性中空糸膜を得た。ここでは、外層の製膜原液として、実施例1と同じPVDFポリマー24重量%と、K17ポリビニルピロリドン17重量%と、スルホラン(和光純薬製)59重量%とを混合し、180℃で溶解させたものを用いた。このフッ化ビニリデンホモポリマーの融点(Tm)は174℃、分解温度は375℃であり、この原液の多孔構造形成開始温度は42℃であった。また、内層の製膜原液として、フッ化ビニリデンホモポリマー(ソルベイソレキシス社製、SOLEF6020)34重量%、ガンマブチロラクトン66重量%の溶融混練物を用いた。さらに、中空部形成流体には空気を用いた。これらを3重環紡糸ノズル(外層最外径2.0mm、内層最外径1.8mm、中空部形成層最外径0.9mm)から同時に200℃で吐出すことで、中空糸状成型物を得た。
押し出した中空糸状成型物は、80mmの空走距離を通した後、23℃の水中で相分離を進行させ、内層は空走部及び水中において相分離を進行させ、20m/分の速度でかせに巻き取った。得られた2層中空糸状押出し物を十分に水洗して溶媒成分を除去した。
表1に、得られた比較例1の多孔性中空糸膜の配合組成及び製造条件並びに各種性能を示す。
[比較例2]
3重構造の紡糸ノズルを用いて、外層と内層を有する2層中空糸膜の膜構造を有する比較例2の多孔性中空糸膜を得た。ここでは、外層の製膜原液として、重量平均分子量が35万であるフッ化ビニリデンホモポリマー(アルケマ社製、Kynar741)24重量%と、K値17のポリビニルピロリドン(BASF製、ルビスコールK17)17重量%と、スルホラン(和光純薬製)59重量%とを混合し、180℃で溶解させたものを用いた。このフッ化ビニリデンホモポリマーの融点(Tm)は174℃、分解温度は375℃であり、この製膜原液の多孔構造形成開始温度は42℃であった。また、内層の製膜原液として、フッ化ビニリデンホモポリマー(ソルベイソレキシス社製、SOLEF6020)34重量%、フタル酸ビス(2−エチルヘキシル)33.8重量%、フタル酸ジブチル6.8重量%、微粉シリカ25.4重量%の溶融混練物を用いた。さらに、中空部形成流体には空気を用いた。これらを3重環紡糸ノズル(外層最外径2.0mm、内層最外径1.8mm、中空部形成層最外径0.9mm)から同時に180℃で吐出すことで、中空糸状成型物を得た。
押し出した中空糸状成型物は、80mmの空走距離を通した後、60℃の水中で非溶媒誘起相分離を進行させ、20m/分の速度でかせに巻き取った。得られた2層中空糸状押出し物をイソプロピルアルコール中に浸漬させてフタル酸ビス(2−エチルヘキシル)及びフタル酸ジブチルを抽出除去した。続いて、水中に30分間浸漬し、中空糸膜を膨潤化した。続いて、20重量%NaOH水溶液中に70℃にて1時間浸漬し、さらに水洗を繰り返して微粉シリカを抽出除去した。
表1に、得られた比較例2の多孔性中空糸膜の配合組成及び製造条件並びに各種性能を示す。5日孔径保持率が実施例1と比較して低いことが分かった。
[Comparative Example 1]
A porous hollow fiber membrane of Comparative Example 1 having a membrane structure of a two-layer hollow fiber membrane having an outer layer and an inner layer was obtained using a spinning nozzle having a triple structure. Here, the same PVDF polymer 24% by weight as in Example 1, 17% by weight of K17 polyvinylpyrrolidone and 59% by weight of sulfolane (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed and dissolved at 180 ° C. Used. The melting point (Tm) of this vinylidene fluoride homopolymer was 174 ° C., the decomposition temperature was 375 ° C., and the porous structure formation starting temperature of this stock solution was 42 ° C. Further, as a film forming stock solution for the inner layer, a melt kneaded material of 34% by weight of vinylidene fluoride homopolymer (Solef 6020, manufactured by Solvay Solexis) and 66% by weight of gamma butyrolactone was used. Furthermore, air was used as the hollow portion forming fluid. By discharging these simultaneously from a triple ring spinning nozzle (outer layer outermost diameter 2.0 mm, inner layer outermost diameter 1.8 mm, hollow part forming layer outermost diameter 0.9 mm) at a temperature of 200 ° C., Obtained.
The extruded hollow fiber-shaped molded article passes through a free running distance of 80 mm, and then phase separation proceeds in water at 23 ° C., and the inner layer advances phase separation in the free running part and water, and is skeined at a speed of 20 m / min. Rolled up. The obtained two-layer hollow fiber extrudate was sufficiently washed with water to remove the solvent component.
In Table 1, the compounding composition of the porous hollow fiber membrane of the obtained comparative example 1, manufacturing conditions, and various performance are shown.
[Comparative Example 2]
A porous hollow fiber membrane of Comparative Example 2 having a membrane structure of a two-layer hollow fiber membrane having an outer layer and an inner layer was obtained using a spinning nozzle having a triple structure. Here, as a film forming stock solution for the outer layer, vinylidene fluoride homopolymer having a weight average molecular weight of 350,000 (Kynar 741 manufactured by Arkema Co., Ltd.) 24% by weight, polyvinyl pyrrolidone having a K value of 17 (manufactured by BASF, Rubiscor K17) 17 Weight% and 59% by weight sulfolane (manufactured by Wako Pure Chemical Industries) were mixed and dissolved at 180 ° C. The melting point (Tm) of this vinylidene fluoride homopolymer was 174 ° C., the decomposition temperature was 375 ° C., and the porous structure formation starting temperature of this film-forming stock solution was 42 ° C. In addition, as a film forming stock solution for the inner layer, 34% by weight of vinylidene fluoride homopolymer (Solef 6020 manufactured by Solvay Solexis), 33.8% by weight of bis (2-ethylhexyl) phthalate, 6.8% by weight of dibutyl phthalate A melt kneaded product of 25.4% by weight of finely divided silica was used. Furthermore, air was used as the hollow portion forming fluid. By discharging these from a triple ring spinning nozzle (outer layer outermost diameter 2.0 mm, inner layer outermost diameter 1.8 mm, hollow part forming layer outermost diameter 0.9 mm) at 180 ° C. at the same time, Obtained.
The extruded hollow fiber-shaped molded article passed through a free running distance of 80 mm, and then proceeded with non-solvent-induced phase separation in water at 60 ° C., and was wound up skein at a speed of 20 m / min. The obtained two-layer hollow fiber extrudate was immersed in isopropyl alcohol to extract and remove bis (2-ethylhexyl) phthalate and dibutyl phthalate. Subsequently, it was immersed in water for 30 minutes to swell the hollow fiber membrane. Subsequently, it was immersed in a 20 wt% NaOH aqueous solution at 70 ° C. for 1 hour, and further washed with water to extract and remove finely divided silica.
Table 1 shows the composition, production conditions, and various performances of the porous hollow fiber membrane of Comparative Example 2 obtained. It was found that the 5-day pore diameter retention was lower than that of Example 1.

以上説明したとおり、本発明によれば、透水性能及び微小病原体に対する阻止性能に優れ、薬品洗浄等に対して孔の粗大化を抑制し得る極めて高い耐薬品性を有するのみならず、微小病原体に対する阻止性能を長期間安定して保持し得る、多孔性中空糸膜を再現性よく簡便に実現することができる。そのため、膜面に蓄積する濁質等の汚れをアルカリ水溶液等の薬品を用いて洗浄を行うことが求められるろ過用途、長期間にわたり安定したろ過性能が求められるろ過用途において、広く且つ有効に利用でき、例えば、浄水場での浄水処理や、河川水や湖沼水のろ過処理、工業用水のろ過精製及び廃水処理、海水淡水化の前処理等液体のろ過処理等の、濾過によって膜面に蓄積する濁質等の汚れを薬品で洗浄するような、膜に高い透水性と薬品耐性の両立が要求される分野において、広く且つ有効に利用可能である。   As described above, according to the present invention, not only has excellent water permeability and blocking performance against micropathogens, and has extremely high chemical resistance that can suppress pore coarsening for chemical cleaning, etc., but also against micropathogens. A porous hollow fiber membrane capable of maintaining the blocking performance stably for a long period of time can be easily realized with good reproducibility. Therefore, it can be used widely and effectively in filtration applications that require cleaning of turbidity and other contaminants accumulated on the membrane surface using chemicals such as alkaline aqueous solutions, and filtration applications that require stable filtration performance over a long period of time. Can be accumulated on the membrane surface by filtration, for example, water treatment at water purification plants, filtration treatment of river water and lake water, filtration and purification of industrial water and wastewater treatment, pretreatment of seawater desalination, etc. It can be used widely and effectively in a field where both high water permeability and chemical resistance are required for the membrane, such as cleaning dirt such as turbidity with chemicals.

Claims (13)

PVDF樹脂からなる多孔性中空糸膜であって、
前記多孔性中空糸膜の一方の表面を表面(A)、他方の表面を表面(B)としたときに、表面(A)から表面(B)までにかけて断面構造が3次元網目構造であり、
前記表面(A)を含む層に少なくともPVDF樹脂の良溶媒であって、沸点が200℃を超える良溶媒を含有し、
前記多孔性中空糸膜の一方の表面である表面(A)の細孔径が0.05μm以下であり、かつ前記表面(A)を含む層のPVDF樹脂の結晶部におけるα型構造結晶(Hα)とβ型構造結晶(Hβ)との比率(Hα/Hβ)が0.5以上である、多孔性中空糸膜。
A porous hollow fiber membrane made of PVDF resin,
When one surface of the porous hollow fiber membrane is the surface (A) and the other surface is the surface (B), the cross-sectional structure from the surface (A) to the surface (B) is a three-dimensional network structure,
The layer containing the surface (A) is a good solvent for at least PVDF resin , and contains a good solvent having a boiling point exceeding 200 ° C.
The α-type structural crystal (Hα) in the crystal part of the PVDF resin in the layer containing the surface (A), the pore diameter of the surface (A) being one surface of the porous hollow fiber membrane is 0.05 μm or less A porous hollow fiber membrane in which the ratio (Hα / Hβ) of β to β-type structural crystal (Hβ) is 0.5 or more.
前記一方の表面(A)を構成する細孔径が0.05μm以下であり、前記他方の表面(B)を構成する幹の平均の太さが0.5〜10μmかつ細孔径が0.1μm以上1μm以下である、請求項1に記載の多孔性中空糸膜。   The pore diameter constituting the one surface (A) is 0.05 μm or less, the average thickness of the trunk constituting the other surface (B) is 0.5 to 10 μm, and the pore diameter is 0.1 μm or more. The porous hollow fiber membrane according to claim 1, which is 1 µm or less. 中空部に表面(B)を有する内層と表面(A)を有する外層とからなる2層構造を有し、前記外層は、前記外層表面から前記内層表面との境界に向けて、孔径が連続的に増加する、請求項1又は2に記載の多孔性中空糸膜。   It has a two-layer structure consisting of an inner layer having a surface (B) in the hollow portion and an outer layer having a surface (A), and the outer layer has a continuous pore size from the outer layer surface toward the boundary with the inner layer surface. The porous hollow fiber membrane according to claim 1 or 2, wherein 前記内層の孔径分布は、等方的である、請求項記載の多孔性中空糸膜。 The porous hollow fiber membrane according to claim 3 , wherein the pore size distribution of the inner layer is isotropic. 前記外層の厚みは、1μm以上100μm以下である、請求項3又は4記載の多孔性中空糸膜。 The porous hollow fiber membrane according to claim 3 or 4 , wherein the outer layer has a thickness of 1 µm to 100 µm. 前記内層の厚みは、20μm以上1000μm以下である、請求項〜5の何れか一項記載の多孔性中空糸膜。 The porous hollow fiber membrane according to any one of claims 3 to 5, wherein the inner layer has a thickness of 20 µm or more and 1000 µm or less. 前記多孔性中空糸膜の中空部へ30分に1分の頻度で貫通口より1Nm3/hの流量の空気を導入することでエアーバブリングし、30日運転した後でも、前記多孔性中空糸膜における前記内層及び前記外層が剥離しない、請求項3〜6の何れか一項記載の多孔性中空糸膜。 Even after 30 days of operation, the porous hollow fiber is air bubbled by introducing air at a flow rate of 1 Nm 3 / h into the hollow part of the porous hollow fiber membrane every 30 minutes from the through-hole. The porous hollow fiber membrane according to any one of claims 3 to 6 , wherein the inner layer and the outer layer in the membrane do not peel off. 圧縮強度が0.8MPa以上である、請求項1〜7の何れか一項記載の多孔性中空糸膜。The porous hollow fiber membrane according to any one of claims 1 to 7, wherein the compressive strength is 0.8 MPa or more. PVDF樹脂からなり、表面(A)を含む層を有する多孔性中空糸膜の製造方法であって、
前記表面(A)を含む層はPVDF樹脂の良溶媒であって、沸点が200℃を超える良溶媒を用いて非溶剤誘起相分離法により相分離し、
前記多孔性中空糸膜の一方の表面を表面(A)、他方の表面を表面(B)としたときに、表面(A)から表面(B)までにかけて断面構造が3次元網目構造であり、
前記多孔性中空糸膜の一方の表面である表面(A)の細孔径が0.05μm以下であり、かつ前記表面(A)を含む層のPVDF樹脂の結晶部におけるα型構造結晶(Hα)とβ型構造結晶(Hβ)との比率(Hα/Hβ)が0.5以上である多孔性中空糸膜を製造する、多孔性中空糸膜の製造方法。
A method for producing a porous hollow fiber membrane comprising a PVDF resin and having a layer containing the surface (A),
Layer containing the surface (A) is a good solvent for PVDF resin, phase separation by a non-solvent induced phase separation method using a good solvent having a boiling point greater than 200 ° C.,
When one surface of the porous hollow fiber membrane is the surface (A) and the other surface is the surface (B), the cross-sectional structure from the surface (A) to the surface (B) is a three-dimensional network structure,
The α-type structural crystal (Hα) in the crystal part of the PVDF resin in the layer containing the surface (A), the pore diameter of the surface (A) being one surface of the porous hollow fiber membrane is 0.05 μm or less A method for producing a porous hollow fiber membrane, wherein a porous hollow fiber membrane having a ratio (Hα / Hβ) of β to β-type structural crystal (Hβ) of 0.5 or more is produced.
PVDF樹脂からなり、中空部に表面(B)を有する内層と表面(A)を有する外層との2層により構成される、多孔性中空糸膜の製造方法において、
前記内層を構成するポリマー原液と前記外層を構成するポリマー原液とを同時に3重構造紡糸ノズルから吐出し、
前記外層はPVDF樹脂の良溶媒であって、沸点が200℃を超える良溶媒を用いて非溶剤誘起相分離法により相分離し、前記内層は熱誘起相分離法により相分離し、
前記外層は、PVDF樹脂の結晶部におけるα型構造結晶(Hα)とβ型構造結晶(Hβ)との比率(Hα/Hβ)が0.5以上である多孔性中空糸膜を製造する、多孔性中空糸膜の製造方法。
In the method for producing a porous hollow fiber membrane, which is made of PVDF resin and is constituted by two layers of an inner layer having a surface (B) in a hollow portion and an outer layer having a surface (A),
The polymer stock solution constituting the inner layer and the polymer stock solution constituting the outer layer are simultaneously discharged from a triple-structure spinning nozzle,
The outer layer is a good solvent for PVDF resin having a boiling point phase-separated by a non-solvent induced phase separation method using a good solvent of greater than 200 ° C., the inner layer is phase separated by thermally induced phase separation method,
The outer layer produces a porous hollow fiber membrane in which the ratio (Hα / Hβ) of α-type structural crystal (Hα) to β-type structural crystal (Hβ) in the crystal part of PVDF resin is 0.5 or more. For producing a conductive hollow fiber membrane.
前記外層を構成するポリマー原液中のポリマーがPVDF樹脂であり、前記内層を構成するポリマー原液中のポリマーがPVDF樹脂であり、
前記外層を構成するポリマー原液の吐出温度及び前記内層を構成するポリマー原液の吐出温度が、200〜280℃の範囲である、請求項10記載の多孔性中空糸膜の製造方法。
The polymer in the polymer stock solution constituting the outer layer is PVDF resin, the polymer in the polymer stock solution constituting the inner layer is PVDF resin,
The method for producing a porous hollow fiber membrane according to claim 10 , wherein the discharge temperature of the polymer stock solution constituting the outer layer and the discharge temperature of the polymer stock solution constituting the inner layer are in the range of 200 to 280 ° C.
前記外層を構成するポリマー原液中のポリマーがPVDF樹脂であり、前記PVDF樹脂を溶解する良溶媒がスルホランである、請求項10又は11記載の多孔性中空糸膜の製造方法。 The method for producing a porous hollow fiber membrane according to claim 10 or 11 , wherein the polymer in the polymer stock solution constituting the outer layer is PVDF resin, and the good solvent for dissolving the PVDF resin is sulfolane. 前記内層を構成するポリマー原液は、PVDF樹脂、有機液体及びシリカを含有する、請求項10〜12の何れか一項記載の多孔性中空糸膜の製造方法。 The method for producing a porous hollow fiber membrane according to any one of claims 10 to 12 , wherein the polymer stock solution constituting the inner layer contains a PVDF resin, an organic liquid, and silica.
JP2013209693A 2013-10-04 2013-10-04 Porous hollow fiber membrane and method for producing the same Active JP6274642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013209693A JP6274642B2 (en) 2013-10-04 2013-10-04 Porous hollow fiber membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013209693A JP6274642B2 (en) 2013-10-04 2013-10-04 Porous hollow fiber membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015073916A JP2015073916A (en) 2015-04-20
JP6274642B2 true JP6274642B2 (en) 2018-02-07

Family

ID=52999204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013209693A Active JP6274642B2 (en) 2013-10-04 2013-10-04 Porous hollow fiber membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP6274642B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6577781B2 (en) * 2015-08-03 2019-09-18 株式会社クラレ Hollow fiber membrane and method for producing hollow fiber membrane
JP6599818B2 (en) * 2016-05-31 2019-10-30 株式会社クラレ Method for producing porous membrane
WO2018088232A1 (en) * 2016-11-09 2018-05-17 旭化成株式会社 Porous hollow fiber membrane and method for manufacturing porous hollow fiber membrane
WO2018159642A1 (en) * 2017-02-28 2018-09-07 東レ株式会社 Composite hollow-fiber membrane and production method therefor
JP7204382B2 (en) * 2017-09-07 2023-01-16 旭化成株式会社 SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE
JP7182960B2 (en) * 2017-09-07 2022-12-05 旭化成株式会社 SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE
JP7082681B2 (en) * 2018-11-15 2022-06-08 旭化成株式会社 Filtration method using a porous membrane
CN114272761B (en) * 2021-12-07 2022-11-04 同济大学 Deep cleaning method for unrecoverable pollution in micro/ultrafiltration membrane based on green solvent
WO2024071005A1 (en) * 2022-09-28 2024-04-04 東レ株式会社 Porous membrane and desalination method
CN115651259A (en) * 2022-11-09 2023-01-31 江苏海洋大学 Method for preparing high-purity beta crystal form polyvinylidene fluoride and copolymer film thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569627A (en) * 1978-11-17 1980-05-26 Asahi Chem Ind Co Ltd Production of porous film of vinylidene fluoride resin
JPS62186922A (en) * 1986-02-12 1987-08-15 Asahi Chem Ind Co Ltd Novel composite membrane
JP2006218441A (en) * 2005-02-14 2006-08-24 Nitto Denko Corp Porous membrane and its production method
JP5076320B2 (en) * 2006-01-11 2012-11-21 東洋紡績株式会社 Method for producing polyvinylidene fluoride hollow fiber type microporous membrane
JP2008062229A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous polyvinylidene fluoride membrane and method for preparing the same
EP2452741A4 (en) * 2009-07-06 2013-12-04 Sekisui Chemical Co Ltd Polymer membrane for water treatment
JP2011036848A (en) * 2009-07-14 2011-02-24 Toray Ind Inc Separation membrane made of polyvinylidene fluoride resin and method for manufacturing the same

Also Published As

Publication number Publication date
JP2015073916A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
JP6274642B2 (en) Porous hollow fiber membrane and method for producing the same
JP5856887B2 (en) Method for producing porous membrane
JP5622833B2 (en) High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
JP5371058B2 (en) Hollow fiber membrane
JP5619532B2 (en) Vinylidene fluoride resin porous membrane and method for producing the same
JP5576866B2 (en) Method for producing vinylidene fluoride resin porous membrane
JP5626269B2 (en) Polymer porous membrane and method for producing polymer porous membrane
JP5293959B2 (en) Hollow fiber membrane and method for producing the same
JP5050499B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP6577781B2 (en) Hollow fiber membrane and method for producing hollow fiber membrane
JP2006239680A5 (en)
JP2009226338A (en) Vinylidene fluoride type resin hollow filament porous membrane and method for manufacruring the same
KR20190045361A (en) Porous hollow fiber membranes and methods for producing porous hollow fiber membranes
JP5292890B2 (en) Composite hollow fiber membrane
JP6599818B2 (en) Method for producing porous membrane
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
JP2009082882A (en) Polyvinylidene fluoride based composite hollow fiber membrane, and its manufacturing method
JP6368324B2 (en) Porous hollow fiber membrane, method for producing the same, and water purification method
KR20120094362A (en) Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof
JP2012187575A (en) Composite membrane and method for manufacturing the same
JP4666530B2 (en) Method for producing hollow fiber membrane
JPWO2019049858A1 (en) Filtration method using porous membrane
JP7082681B2 (en) Filtration method using a porous membrane
WO2011027878A1 (en) Porous vinylidene fluoride resin membrane and process for producing same
KR102524285B1 (en) porous hollow fiber membrane

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180105

R150 Certificate of patent or registration of utility model

Ref document number: 6274642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350