JPS5819608B2 - Manufacturing method of magnesium hydroxide - Google Patents

Manufacturing method of magnesium hydroxide

Info

Publication number
JPS5819608B2
JPS5819608B2 JP48084569A JP8456973A JPS5819608B2 JP S5819608 B2 JPS5819608 B2 JP S5819608B2 JP 48084569 A JP48084569 A JP 48084569A JP 8456973 A JP8456973 A JP 8456973A JP S5819608 B2 JPS5819608 B2 JP S5819608B2
Authority
JP
Japan
Prior art keywords
water
seawater
mug
magnesium hydroxide
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48084569A
Other languages
Japanese (ja)
Other versions
JPS5033196A (en
Inventor
望 松野
康生 鈴木
国彦 丹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNIPPON KAGAKU KOGYO KK
Original Assignee
SHINNIPPON KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNIPPON KAGAKU KOGYO KK filed Critical SHINNIPPON KAGAKU KOGYO KK
Priority to JP48084569A priority Critical patent/JPS5819608B2/en
Publication of JPS5033196A publication Critical patent/JPS5033196A/ja
Publication of JPS5819608B2 publication Critical patent/JPS5819608B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 本発明はマグネシウムイオンを含む溶液、たとえば海水
、かん水、苦汁等とアルカリ性物質またはその水溶液た
とえば生石灰、軽焼ドロマイト及びその水和物、カーバ
イド滓、水酸化ナトリウム等とを原料とする水酸化マグ
ネシウム(以下水マグという)の製造法に関するもので
、特にホウ素(以下B2O3という)含有量の少い水マ
グの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention combines a solution containing magnesium ions, such as seawater, brine, bittern, etc., with an alkaline substance or an aqueous solution thereof, such as quicklime, lightly calcined dolomite and its hydrate, carbide slag, sodium hydroxide, etc. The present invention relates to a method for manufacturing magnesium hydroxide (hereinafter referred to as a water mug) as a raw material, and particularly relates to a method for manufacturing a water mug with a low boron (hereinafter referred to as B2O3) content.

水マグの主たる用途は塩基性耐火物原料であるマグネシ
アクリンカ−1金属マグネシウムの原料である塩化マグ
ネシウム、水マグを仮焼して得られる活性マグネシア、
エレクトロニクス分野におけるセラミックスなどである
が、いずれも不純物の少い高純度の水マグが要望されて
いる。
The main uses of water mugs are magnesium chloride, which is the raw material for magnesia clinker-1 metal magnesium, which is a raw material for basic refractories, and activated magnesia, which is obtained by calcining water mugs.
There is a demand for high-purity water mugs with few impurities, such as ceramics in the electronics field.

特にボロンは塩化マグネシウムの電解において金属マグ
ネシウムの凝集を阻害し、結果的に生産効率を低下させ
るので極力少くすることが要求されている。
In particular, boron inhibits the agglomeration of metallic magnesium during the electrolysis of magnesium chloride, resulting in a decrease in production efficiency, so it is required to minimize the amount of boron.

マグネシアクリンカ−は塩基性耐火物原料としてその需
要量は多く天然のマグネサイ) (MgCoa)を焼成
して得られるマグネシア(MgO)とともに海水、かん
水あるいは苦汁を原料とする海水マグネシアとして近来
かなり高純度のものが生産され、製鋼用耐火物として欠
くべからざるものである。
Magnesia clinker is in high demand as a raw material for basic refractories, and along with magnesia (MgO) obtained by calcining natural magnesia (MgCoa), it has recently been used as seawater magnesia, which is made from seawater, brine, or bittern, with fairly high purity. It is indispensable as a refractory for steelmaking.

一般に天然産マグネシアはB2O3含有量が少く、これ
に対し海水マグネシアは原料である海水、かん水あるい
は苦汁中のB2O3を水酸化マグネシウム沈澱中に吸着
包含するためこれに由来するB2O3はかなり高いもの
で通常クリンカー中に0.3〜0.2係含まれる。
Naturally produced magnesia generally has a low B2O3 content, whereas seawater magnesia adsorbs and contains B2O3 in the raw material seawater, brine, or bittern into the magnesium hydroxide precipitate, so the B2O3 derived from this is usually quite high. The clinker contains 0.3 to 0.2 parts.

一方最近の研究の結果ではマグネシア以外の低融点化合
物を少くして熱間での性状を改善する方向即ち高品位化
への要求が強く、特にB2O3を含む化合物は低温で融
液質を形成しやすいので、このB2O3を少くすること
が熱間での性状を改善する最も有効な手段であると認め
られている。
On the other hand, recent research results show that there is a strong demand for improving hot properties by reducing the amount of low-melting compounds other than magnesia, that is, for higher quality.In particular, compounds containing B2O3 form a melt at low temperatures. Therefore, reducing B2O3 is recognized as the most effective means for improving hot properties.

マグネシアクリンカ−中のB2O3含有量は、その原料
である水マグのB2O3含有量に支配され、水マグのB
20.含有量は主に海水、かん水あるいは苦汁中のB2
O3含有量によって決定される。
The B2O3 content in magnesia clinker is controlled by the B2O3 content of the water mug, which is its raw material.
20. The content is mainly B2 in seawater, brine or bittern.
Determined by O3 content.

勿論水マグ中のB2O3は焼成工程で一部揮散するが、
その揮散割合は焼成温度によって左右され、およそ50
%以上を揮散させることは困難である。
Of course, some of the B2O3 in the water mug evaporates during the firing process, but
The rate of volatilization depends on the firing temperature, and is approximately 50%
It is difficult to volatilize more than %.

従って、マグネシアクリンカ−中のB2O3を0.03
係以下にしようとすると水マグ段階で少くともB20a
/MgOで0.06%以下にする必要がある。
Therefore, B2O3 in magnesia clinker is 0.03
If you try to lower it to below, it will be at least B20a at the water mug stage.
/MgO must be 0.06% or less.

又揮散促進剤のようなものも研究されているが常温での
物性を著しく阻害する。
Research has also been conducted on volatilization accelerators, but they significantly impede physical properties at room temperature.

例えば嵩密度が著しく低下する。For example, the bulk density is significantly reduced.

又水マグ生成時のpHを高めることにより水マグに対す
るB2O3吸着を少くすることはできるが、CaOを多
量に共沈するため品位を低下させることになり好ましく
ない。
Although it is possible to reduce B2O3 adsorption to water mags by increasing the pH during water mag production, this is not preferable because a large amount of CaO is co-precipitated, resulting in a decrease in quality.

従って高品位かつ高密度な低B2O3含有マグネシアク
リンカ−を製造するには水マグ製造工程で海水中のB2
O3を極力除去し、低B2O3含有水マグを製造するこ
とが確実、かつ有利な方法である。
Therefore, in order to produce high-grade, high-density, low-B2O3-containing magnesia clinker, B2 in seawater is
It is a reliable and advantageous method to remove O3 as much as possible and produce a water mug with low B2O3 content.

本願発明者らは上記の事実にもとずいてB2O3含有量
が少く、かつ他の不純物の含有量が少い水マグの製造方
法を探索した結果、海水中のB20゜を水マグで吸着除
去し、この水マグに吸着されたB2O3がアルカリ溶液
によって容易に離脱する原理に着目し、これを何度も繰
返し使用するという巧みな応用法を用い、海水中のマグ
ネシウムイオンを水マグとして生成取得すると同時にB
2O3を系外に除去する脱B2O3法を発明するにいた
った。
Based on the above facts, the inventors of the present application searched for a method of manufacturing a water mug with low B2O3 content and low content of other impurities. Focusing on the principle that B2O3 adsorbed in this water mug is easily released by an alkaline solution, we used a clever application method of using this repeatedly over and over again to generate and obtain magnesium ions in seawater as a water mug. At the same time B
This led to the invention of a B2O3 removal method that removes 2O3 from the system.

海水、かん水あるいは苦汁中のB2O3を取得する目的
を以て各種化合物のB2O3吸着性能につい。
Regarding the B2O3 adsorption performance of various compounds with the purpose of obtaining B2O3 in seawater, brine, or bittern.

では種々研究され、金属水酸化物、例えばF e (O
H) 3 、 Mg (OH) 2 、 Z r 02
+ )G(20はB2O8を吸着する物質であること
は知られている。
Various studies have been conducted on metal hydroxides, such as Fe (O
H) 3 , Mg (OH) 2 , Z r 02
+ ) G(20 is known to be a substance that adsorbs B2O8.

工業的にこれらの吸着剤は利用可能であるが、いずれも
吸着能は小さく海水マグネシアクリンカ−工業。
These adsorbents are commercially available, but their adsorption capacity is low and seawater magnesia clinker industry is unable to do so.

の如く大量の海水を用いる場合には実際上これら吸着剤
の利用は制約される。
When a large amount of seawater is used, the use of these adsorbents is actually limited.

例えば特公昭45−53に開示されている方法では、高
B2O3含有水マグと低B2O3含有水マグの三者が取
得され、従ってマグネシアも二種類生産されることが必
須の。
For example, in the method disclosed in Japanese Patent Publication No. 45-53, three types of water magnesia, a high B2O3 content water mug and a low B2O3 content water mug, are obtained, and therefore it is essential to produce two types of magnesia.

条件になっている。It is a condition.

本発明はこの欠点を解決し、例えばB2O3含有量の少
い0.03%以下のマグネシアクリンカ−を得るための
原料水マグの製造方法を提供するものである。
The present invention solves this drawback and provides a method for producing a raw water mug for obtaining magnesia clinker with a low B2O3 content of 0.03% or less, for example.

本発明は海水脱B20.工程、水マグ再生工程、水マグ
生成工程を含み、かつ水マグ再生工程において生成した
水マグスラリーを海水脱B2o3工程に循環するように
した構成に特徴がある。
The present invention is based on seawater removal B20. The process includes a water mug regeneration process, a water mug generation process, and is characterized by a configuration in which the water mug slurry generated in the water mug regeneration process is circulated to the seawater removal B2o3 process.

海水中のB2O3を除去するに際し水マグに海水を接触
せしめB2O3を吸着した水マグをアルカリで処理して
B2O3を離脱せしめ、水マグスラリーと高B2O3含
有溶液とを分離せしめ、この水マグスラリーを新規海水
に投入して再度B2O3を吸着させ、この操作を連続的
にくり返すことによって海水の脱B2O3を行うプロセ
スである。
To remove B2O3 from seawater, a water mug is brought into contact with seawater, and the water mug that has adsorbed B2O3 is treated with an alkali to remove B2O3, and a water mug slurry and a high B2O3-containing solution are separated. This is a process in which B2O3 is removed from seawater by pouring it into fresh seawater to adsorb B2O3 again and repeating this operation continuously.

このプロセスで循環再使用される水マグは海水中の溶存
MgOの4倍量以上であって原理的には新規に補給され
る水マグは必要ではない。
The amount of water mags that are recycled and reused in this process is more than four times the amount of dissolved MgO in seawater, and in principle there is no need for new water mags to be replenished.

吸着時の固体水マグ濃度はMgOとして1og713以
上に保つことが望ましい。
It is desirable that the solid water mag concentration during adsorption is maintained at 1 og713 or more as MgO.

溶存MgOの25倍量程度を循環使用すれば海水中のB
2O3をほぼ全量除去することができるが、水マグの貯
槽が大きくなり、また循環ポンプの動力が大きくなるの
で、B2O3目標値に合わせた最適点に調整する必要が
ある。
B in seawater can be reduced by recycling approximately 25 times the amount of dissolved MgO.
Almost all of the 2O3 can be removed, but the storage tank of the water mug becomes larger and the power of the circulation pump increases, so it is necessary to adjust it to the optimum point according to the target value of B2O3.

処理された脱B2O3海水はアルカリを添加し、水マグ
を生成させる。
Alkali is added to the treated B2O3-free seawater to produce a water mug.

マグネシウムイオンを含む溶液とアルカリを原料として
製造される水マグの製造原理は、 Mg+++20H−+Mg(OH)2 なる反応で得られる水マグ沈澱物を取得することであり
、本願発明の方法も製造の原理は本質的に同じである。
The principle of manufacturing water mugs produced using a solution containing magnesium ions and an alkali as raw materials is to obtain water mug precipitates obtained by the reaction Mg+++20H-+Mg(OH)2, and the method of the present invention also applies to the manufacturing process. The principle is essentially the same.

脱B2O3海水とアルカリ溶液との反応に於て反応液の
pHは特に限定するものではないが望ましくはpHを1
1.2以上に保つことが好ましい。
In the reaction between B2O3-free seawater and an alkaline solution, the pH of the reaction solution is not particularly limited, but preferably the pH is 1.
It is preferable to maintain it at 1.2 or higher.

本発明を実施するに際しては必要ならば脱炭酸処理した
海水に公知の方法で製造した水マグを添加し、同時に後
述する方法で再生した水マグを添加して海水中の水マグ
固体濃度がMgOとして10 f!/1以上、特に好ま
しくは14g/1以上になるよう添加するのが適当であ
る。
When carrying out the present invention, if necessary, water mag produced by a known method is added to decarboxylated seawater, and at the same time, water mag recycled by the method described below is added so that the solid concentration of water mag in the seawater becomes MgO. As 10 f! It is appropriate to add the amount at least 14g/1, particularly preferably at least 14g/1.

この時海水中のB2O3は水マグの表面に吸着されるが
、単なる攪拌よりは混合液を水マグの懸濁する層中に均
一に分散させることによって接触せしめる方がより良い
結果が得られる。
At this time, the B2O3 in the seawater is adsorbed on the surface of the water mug, but better results can be obtained by uniformly dispersing the mixed liquid in the suspended layer of the water mug than by simply stirring.

水マグと接触する時間は30分以上が適当であるが、3
時間程度で十分である。
The appropriate time for contact with the water mug is 30 minutes or more, but
About an hour is enough.

B2O3を吸着した水マグは濃縮しアルカリを添加しB
2O3溶解量を増加させるため希釈水を添加する。
The water mug that has absorbed B2O3 is concentrated and alkali is added to B
Dilution water is added to increase the amount of 2O3 dissolved.

アルカリはNaOH,KOH,Ca(OH)2のような
強塩基性のものが望ましく、希釈水は淡水あるいは海水
中に含まれるマグネシウムイオンをアルカリの添加によ
って水マグとして沈澱させた後のF液等が使用できる。
The alkali is preferably a strong base such as NaOH, KOH, or Ca(OH)2, and the dilution water is F solution, etc. after magnesium ions contained in fresh water or seawater are precipitated as a water mug by adding alkali. can be used.

水マグ再生工程でのアルカリ濃度は〔OH〕ととしてo
、oisグラムイオン/1以上、好ましくは0.025
グラムイオン/1.以上であって0.035グラムイオ
ン/l以下で十分効果が表われ吸着したB2O3はCO
H’:10.018グラムイオン/lで80%、0.0
25グラムイオン/lでは’、’100%離脱する。
The alkali concentration in the water mug regeneration process is [OH] and o
, ois gram ion/1 or more, preferably 0.025
Gram ion/1. above, the effect is sufficient at 0.035 gram ions/l or less, and the adsorbed B2O3 is CO
H': 80% at 10.018 g ions/l, 0.0
At 25 g ions/l, 100% desorption occurs.

又水マグの固体濃度はMgOとして60 f!/l〜2
0g/lが好ましい。
Also, the solid concentration of the water mug is 60 f as MgO! /l~2
0 g/l is preferred.

水マグは再び濃厚なスラリー状態まで沈降濃縮せしめ、
前述した新規原料海水中に供給され、濃縮槽オーバー液
即ち高B2O3含有溶液は廃棄される。
The water mug is allowed to settle and concentrate again until it becomes a thick slurry.
The above-mentioned new raw material seawater is supplied, and the thickening tank overflow liquid, that is, the high B2O3-containing solution is discarded.

本発明の効果は再生循環する水マグの量で規制されるも
のであるが、海水中のB20.を除く場合海水中の溶存
MgOの一5倍のMgOの循環により15即/lの海水
中のB20.を65〜/lまで除去できる。
The effect of the present invention is regulated by the amount of water mag that is regenerated and circulated, but B20. When excluding B20 in seawater, the circulation of MgO, which is 15 times the amount of dissolved MgO in seawater, causes 15 times the amount of dissolved MgO in seawater. can be removed up to 65~/l.

上記連続サイクルによって得られた脱B2O3海水にア
ルカリを添加して得られる水マグのB10゜含有量は少
く通常の方法による水マグのB2O3含有量の約40%
となり、この水マグを焼成したマグネシアクリンカ−の
B2O3含有量は著しく少い。
The B10 content of the water mug obtained by adding alkali to the B2O3-free seawater obtained by the above continuous cycle is small, and is about 40% of the B2O3 content of the water mug obtained by the normal method.
Therefore, the B2O3 content of the magnesia clinker produced by firing this water mug is extremely low.

実施例 1 本例は図面に示される如き工程によって行われた。Example 1 This example was carried out by the steps shown in the drawings.

但し図中〔A〕はB2O3吸着槽〔B〕は吸着濃縮槽〔
CaはB20.離脱槽〔D〕は分離濃縮槽である。
However, in the figure [A] is a B2O3 adsorption tank [B] is an adsorption concentration tank [
Ca is B20. The separation tank [D] is a separation and concentration tank.

図中1は原料海水、2は新規に加えられる水マグ3は脱
B2O3再生水マグ4は希釈水5は消石灰ミルク6は脱
B20.海水、γは高B2o、含有液を示す。
In the figure, 1 is raw seawater, 2 is newly added water mug 3 is B2O3-free recycled water mug 4 is dilution water 5 is slaked lime milk 6 is B20-free. Seawater, γ indicates high B2o, containing liquid.

攪拌機を有する直径1.4m容積4dのB20.吸着槽
〔A〕上下部り酸を添加して脱炭酸(CO2として4p
pm)した海水1を877+”/Hrの流入速度で供給
し予め調製した水マグ2をMgOとして16kg/Hr
の添加速度で供給した。
B20. with a diameter of 1.4 m and a volume of 4 d with a stirrer. Adsorption tank [A] Decarboxylation by adding phosphoric acid (4p as CO2)
pm) seawater 1 was supplied at an inflow rate of 877+"/Hr, and the water mug 2 prepared in advance was 16 kg/Hr as MgO.
was added at an addition rate of .

混合液は直径3.3m高さ2m容積17m3の濃縮槽〔
B〕の上部から注入し、槽上部の周囲から均一にオーバ
ーフ亡−させた。
The mixed liquid is stored in a concentration tank with a diameter of 3.3 m and a height of 2 m and a volume of 17 m3.
B] was injected from the upper part of the tank, and the mixture was allowed to overflow uniformly from around the upper part of the tank.

この操作を連続して行い吸着濃縮槽〔B)に水マグ層が
大体槽の高さの2分の1程度になるように形成させた。
This operation was carried out continuously to form a water mag layer in the adsorption/concentration tank [B] so that it was approximately half the height of the tank.

その後新しい水マグの添加を止めて、吸着濃縮槽〔B〕
に於ける水マグはレーキにより中央に集め80’Q/H
rに相当する水マグを抜出して攪拌機を有した容積In
”のB2O3離脱槽〔Caへ供給した。
After that, stop adding a new water mug and move to the adsorption concentration tank [B].
The water mug at 80'Q/H is collected in the center by a rake.
A water mug corresponding to r is extracted and the volume with a stirrer is In
" was supplied to the B2O3 separation tank [Ca.

B2O3離脱槽へは海水に消石灰を添加し、水マグを沈
降分離したp液を2.5m/Hrの速度で注入し、同時
に液中のアルカリが〔OH〕として0.025グラムイ
オン/lとなるように10係のCa (OH) 2ミル
クを供給した。
Slaked lime was added to the seawater, and the p liquid obtained by sedimentation and separation of the water mug was injected into the B2O3 separation tank at a rate of 2.5 m/Hr, and at the same time, the alkali in the liquid was reduced to 0.025 g ions/l as [OH]. 10 parts of Ca(OH)2 milk was supplied so that

混合液は、直径25m高さ2m容積10ゴの分離濃縮槽
〔D〕へ供給しオーバーフロー液は廃棄した。
The mixed liquid was supplied to a separation/concentration tank [D] having a diameter of 25 m, a height of 2 m, and a volume of 10 g, and the overflow liquid was discarded.

濃縮した水マグはレーキにより中央に集めMgOとして
80kg/Hrの速度でB20.吸着槽〔A〕に循環し
た。
The concentrated water mug is collected in the center by a rake and converted into MgO at a rate of 80 kg/Hr with B20. It was circulated to the adsorption tank [A].

′□以上のような操作で継続し平衡状態での原料海水中
のB2O3濃度、脱B20.海水中のB20.濃度各種
に於ける水マグ中のB2O3含有量、高B2o。
'□Continuing the above operations, the concentration of B2O3 in the raw seawater in an equilibrium state, the removal of B20. B20 in seawater. B2O3 content in water mugs at various concentrations, high B2o.

含有溶液のB2O3濃度は表−1及び表−2のようであ
った。
The B2O3 concentration of the containing solution was as shown in Tables 1 and 2.

脱B2O3海水は上記の如<6.4■/lのB2O3を
含んでいるが、この海水にCa (OH) 2 ミルク
を注入し、反応液のpHを11.4に保って反応させて
得た水マグ中のB2O3含有量はB2O3/MgOで0
.06%であった。
The B2O3-free seawater contains B2O3 of <6.4 ■/l as described above, and Ca (OH) 2 milk was injected into this seawater and the reaction solution was kept at a pH of 11.4. The B2O3 content in the water mug is B2O3/MgO, which is 0.
.. It was 0.6%.

この水マグを200 g/11に濃縮し容積比で15倍
量の淡水で洗滌した後涙過乾燥し、この乾燥体に10係
の水を添加して500ky7ct?rの圧力で成形した
後1800°Cで1時間焼成したクリンカーの化学組成
及び物性は表の通りであった。
This water mug was concentrated to 200 g/11, washed with 15 times the amount of fresh water by volume, then dried, and 10 parts of water was added to this dried product to make 500ky7ct? The chemical composition and physical properties of the clinker, which was molded at a pressure of r and then fired at 1800°C for 1 hour, were as shown in the table.

又乾燥体を1000°Cで2時間軽焼し、1000kg
/critの圧力で成形した後1800℃で1時間焼成
したタリンカーの化学組成及び物性は表−3の通りであ
った。
In addition, the dried body was lightly baked at 1000°C for 2 hours, and 1000 kg
Table 3 shows the chemical composition and physical properties of Talinkar, which was molded at a pressure of /crit and then baked at 1800°C for 1 hour.

実施例 2 実施例1と同様の装置、方法を用いて、分離濃縮槽〔D
〕で濃縮した水マグをMgOとして400IV/Hの速
度でB20.吸着槽〔A)に循環した結果、平衡状態で
の海水中のB20.濃度、水マグ中のB2O3含有量、
タリンカーの化学組成及び物性は表−4,5,6に示す
ようであった。
Example 2 Using the same equipment and method as in Example 1, a separation concentration tank [D
] B20. As a result of circulation in the adsorption tank [A), B20. Concentration, B2O3 content in water mug,
The chemical composition and physical properties of Talincar were as shown in Tables 4, 5, and 6.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の詳細な説明する工程説明図である。 The drawings are process explanatory diagrams for explaining the present invention in detail.

Claims (1)

【特許請求の範囲】[Claims] 1 ホウ素を含有するマグネシウムイオン溶液を水酸化
マグネシウムと接触せしめ該溶液中のホウ素を水酸化マ
グネシウムに吸着せしめる吸着工程前記吸着工程におい
て脱ホウ素されたマグネシウムイオン溶液にアルカリを
添加し水酸化マグネシウムを生成取得する生成工程、前
記吸着工程においてホウ素を吸着した水酸化マグネシウ
ムをアルカリで処理してホウ素を離脱せしめ、水酸化マ
グネシウムスラリーと高ホウ素含有溶液とに分離する再
生工程、および再生工程からの水酸化マグネシウムスラ
リーを吸着工程に循環する循環工程を含むことを特徴と
する低ホウ素含有の水酸化マグネシウムの製造方法。
1. An adsorption step in which a magnesium ion solution containing boron is brought into contact with magnesium hydroxide and the boron in the solution is adsorbed onto the magnesium hydroxide.An alkali is added to the magnesium ion solution deboronized in the adsorption step to produce magnesium hydroxide. a production step in which the magnesium hydroxide adsorbed with boron in the adsorption step is treated with an alkali to remove boron and separated into a magnesium hydroxide slurry and a high boron-containing solution; and a regeneration step in which the hydroxide from the regeneration step is A method for producing low boron-containing magnesium hydroxide, comprising a circulation step of circulating a magnesium slurry to an adsorption step.
JP48084569A 1973-07-28 1973-07-28 Manufacturing method of magnesium hydroxide Expired JPS5819608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48084569A JPS5819608B2 (en) 1973-07-28 1973-07-28 Manufacturing method of magnesium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48084569A JPS5819608B2 (en) 1973-07-28 1973-07-28 Manufacturing method of magnesium hydroxide

Publications (2)

Publication Number Publication Date
JPS5033196A JPS5033196A (en) 1975-03-31
JPS5819608B2 true JPS5819608B2 (en) 1983-04-19

Family

ID=13834284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48084569A Expired JPS5819608B2 (en) 1973-07-28 1973-07-28 Manufacturing method of magnesium hydroxide

Country Status (1)

Country Link
JP (1) JPS5819608B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847283A (en) * 1981-09-15 1983-03-18 Ietatsu Ono Buckle watch
JPS59185684U (en) * 1983-05-26 1984-12-10 二ノ宮 太 Buckle with clock
JPS62178314U (en) * 1986-05-02 1987-11-12

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229423A (en) * 1979-02-09 1980-10-21 Kaiser Aluminum & Chemical Corporation Method of producing magnesium hydroxide
JPH0635711B2 (en) * 1989-10-13 1994-05-11 鐘紡株式会社 Hosiery support device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847283A (en) * 1981-09-15 1983-03-18 Ietatsu Ono Buckle watch
JPS59185684U (en) * 1983-05-26 1984-12-10 二ノ宮 太 Buckle with clock
JPS62178314U (en) * 1986-05-02 1987-11-12

Also Published As

Publication number Publication date
JPS5033196A (en) 1975-03-31

Similar Documents

Publication Publication Date Title
Bhatti et al. Magnesia from seawater: a review
US2224780A (en) Manufacture of crystalline magnesium hydroxide
JPH0137331B2 (en)
JPS5819608B2 (en) Manufacturing method of magnesium hydroxide
US2358818A (en) Magnesium composition and method of preparation
US3676067A (en) Production of fresh water,brine and magnesium hydroxide
US3689218A (en) Production of active magnesia
US2210892A (en) Process for recovering magnesium oxide
JPS5819609B2 (en) Manufacturing method of magnesium hydroxide
US4179490A (en) Preparation of pure magnesian values
US3471259A (en) Method of manufacturing a magnesia clinker
JPH04357110A (en) High-density crude crystal line particle magnesia clinker
US2469512A (en) Siliceous magnesium-containing purifying medium and process of producing it
US734030A (en) Process of producing magnesium and calcium carbonates.
JPH052611B2 (en)
KR900003086B1 (en) High-density magnesia-calcia clinker and process for production thereof
JPH0222007B2 (en)
US2414980A (en) Process of working up refractory
US3302997A (en) Preparation of magnesium oxide from magnesite
US3819803A (en) Method of preparing magnesium hydroxide
CN115583665B (en) Method for coproducing high-quality calcium carbonate and magnesium building material raw materials from dolomite ore
US2393920A (en) Process fob the liberation of the
US3305302A (en) Process of beneficiating magnesite
US2606816A (en) Process for producing highly active magnesia from magnesium hydroxide
US2651563A (en) Method of preparing pure barium and strontium hydroxides