JPS6267495A - Cooling system on isolation of nuclear reactor - Google Patents

Cooling system on isolation of nuclear reactor

Info

Publication number
JPS6267495A
JPS6267495A JP60206376A JP20637685A JPS6267495A JP S6267495 A JPS6267495 A JP S6267495A JP 60206376 A JP60206376 A JP 60206376A JP 20637685 A JP20637685 A JP 20637685A JP S6267495 A JPS6267495 A JP S6267495A
Authority
JP
Japan
Prior art keywords
reactor
cooling system
flow rate
water
isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60206376A
Other languages
Japanese (ja)
Inventor
浜崎 亮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60206376A priority Critical patent/JPS6267495A/en
Publication of JPS6267495A publication Critical patent/JPS6267495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、原子炉スクラム後に給水系からの冷却水の注
水が停止した場合Cユ、原子炉C:冷却水を送り、炉水
位を維持させる原子炉隔離時冷却系(ユ関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a method for supplying cooling water to reactor C to maintain the reactor water level when the injection of cooling water from the water supply system stops after a reactor scram. Reactor isolation cooling system

[発明の技術的背景] 一般に従来の沸騰水型原子力発電プラントに係る原子炉
隔離時冷却系は第2図Cユ示すように構成さねている。
[Technical Background of the Invention] Generally, a reactor isolation cooling system for a conventional boiling water nuclear power plant is configured as shown in FIG. 2C.

ここで第2図に従来の沸騰水型原子力発電ブラントC:
係る原子炉隔離時冷却系の概略構成図を示す。第2図C
ユおいて、原子炉格納容器1内i二は、炉心2を内部に
収容した原子炉圧力容器3が格納され、この原子炉格納
容器1の下方はサプレッションプール4が形成されてい
る。前記原子炉圧力容器3内で発生した蒸気は主蒸気配
管5を介して王タービン6に導ひかれる。この導ひかれ
た蒸気Cユよって主タービン6は回転して、この主ター
ビン6に接続された発電機7が駆動する。
Here, Figure 2 shows a conventional boiling water nuclear power generation blunt C:
A schematic configuration diagram of such a reactor isolation cooling system is shown. Figure 2C
In the reactor containment vessel 1, a reactor pressure vessel 3 containing a reactor core 2 therein is housed, and a suppression pool 4 is formed below the reactor containment vessel 1. The steam generated within the reactor pressure vessel 3 is led to the main turbine 6 via the main steam pipe 5. The main turbine 6 is rotated by the guided steam C, and a generator 7 connected to the main turbine 6 is driven.

主タービン6の回転区ユ供され之蒸気は復水器8(二て
復水となり、この復水は給水ポンプ9にて昇圧され、給
水配管lOを介して原子炉圧力容器3内(:導ひかれる
The steam supplied to the rotating section of the main turbine 6 becomes condensate in the condenser 8 (condensed water). I get run over.

以上の構成C:おいて、出力運転中に伺らかの原因で給
水ポンプ9が停止した場合には原子炉水位は低下するが
、ある決ぬら名た設定値以下に原子炉の水位が下がれば
原子炉はスクラムさね、原子炉の運転が停止されるよう
になっている。
In the above configuration C:, if the feed water pump 9 stops for some reason during power operation, the reactor water level will decrease, but the reactor water level will not fall below a certain fixed value. The reactor is scrammed and the reactor is shut down.

原子炉が停止しても、崩壊熱による蒸気発生が続くので
原子炉水位は低下し続ける。このような場合のtめに1
原子炉隔離時冷却系(以下RCICと略す。)が設けら
名ており、原子炉水位がある決ぬられた水位以下になる
と、炉蒸気によってRCICタービン11が駆動しそね
(二ともなってポンプ12が駆動し、復水貯蔵タンク1
3またはサプレッション・ブール4の冷却水を原子炉圧
力容器3内に注入し、原子炉水位の維持を行う。
Even if the reactor is shut down, the water level in the reactor continues to fall as steam continues to be generated from decay heat. In such a case, 1
A reactor isolation cooling system (hereinafter abbreviated as RCIC) is installed, and when the reactor water level falls below a certain water level, the RCIC turbine 11 is likely to be driven by reactor steam (both pumps 12 is driven, condensate storage tank 1
3 or suppression boule 4 is injected into the reactor pressure vessel 3 to maintain the reactor water level.

RCICCよる注水流量はR(、:IC流量調節器(図
示せず)からの信号により前記ポンプ11の速度な制御
でることにより、一定流量(ユ制御される。寸た、手動
によりRCIC流量調節器の設定値を変更することによ
り、注水流量を調節できるようになっている。
The water injection flow rate by the RCICC is controlled at a constant flow rate by controlling the speed of the pump 11 by a signal from an IC flow regulator (not shown). By changing the setting value, the water injection flow rate can be adjusted.

[背景技術の問題点] 最近の沸騰水型原子炉の改良の動きの中で、非常用炉心
冷却系(以下geesと略f)の中ζユRCICを取り
込む設計がなさねている。このECC8は原子炉圧力容
器に接続されている配管が万一破断した場合シー(以下
LOCA時と呼ぶ)、原子炉水位の低下または原子炉格
納容器の圧力上昇が検知された場合に自動起動し、冷却
水を原子炉圧力容器内へ注入し、炉心内に収容された燃
料被榎管の大破損を防止若しくは抑制する機能をもって
いる。
[Problems with Background Art] In recent efforts to improve boiling water reactors, there is no design that incorporates ζ-RCIC in the emergency core cooling system (hereinafter referred to as GEES). This ECC8 automatically activates in the event that a pipe connected to the reactor pressure vessel ruptures (hereinafter referred to as LOCA), or if a drop in the reactor water level or a rise in pressure in the reactor containment vessel is detected. , has the function of injecting cooling water into the reactor pressure vessel and preventing or suppressing major damage to the fuel tubes housed in the reactor core.

さて、RCICをECC8の一部として取り入れた場合
(ユおいて、 RCleは前述に示したように手動(二
より注水流量を調節できるため、LOCA時にあやまっ
て運転員l二より注水流量を減少させてしまうおそれが
ある。
Now, if RCIC is incorporated as part of ECC8 (U), RCl can adjust the water injection flow rate manually (as shown above), so there is no possibility that the operator may accidentally reduce the water injection flow rate during LOCA. There is a risk that this may occur.

このECC8は、1つの系統が故障しても安全機能が達
成されるよう(二設計されているので、RCICの注水
流量の減少がそのまま燃料破損(二つながることを意味
するものではない。
This ECC8 is designed so that the safety function can be achieved even if one system fails, so a decrease in the water injection flow rate of the RCIC does not mean that it will directly lead to fuel failure.

しかし、LOCA時(ユRCICの注水流量な手動で変
更可能であるということは、安全上の観点から好ましい
ものではない。
However, being able to manually change the water injection flow rate during LOCA (URCIC) is not desirable from a safety standpoint.

[発明の目的] 本発明は、LOCA時にECC8として作動するRCI
Ccおいて、RCICがLOCA時c二作動した時に運
転員が誤動作を行っても作動時定格itを確保すること
のできるRCICを得ることを目的とTる。
[Object of the invention] The present invention provides an RCI that operates as ECC8 during LOCA.
The purpose of the present invention is to obtain an RCIC that can maintain the operating rating even if an operator makes a malfunction when the RCIC is activated during LOCA.

[発明の概要コ 本発明は、原子炉スクラム後に給水が停止した場合に冷
却水を原子炉内ζ二注水し、かつ冷却材喪失事故時(一
原子炉内(二冷却水を注水して成る原子炉隔離時冷却系
において、冷却材喪失事故発生後一定時間手動Cユよる
注水流量の制御を禁止する流it制御禁止回路を設けて
成ることを特徴と下る原子炉隔離時冷却系ζ二ある。
[Summary of the Invention] The present invention injects cooling water into the reactor when water supply is stopped after a reactor scram, and injects cooling water into the reactor during a loss of coolant accident (inside the reactor (inside the reactor). The reactor isolation cooling system is characterized by being equipped with a flow control prohibition circuit that prohibits control of the water injection flow rate by manual control for a certain period of time after a coolant loss accident occurs. .

[発明の実施例コ 以下本発明の一実施例を第1図を参照して説明する。こ
こで第1図C一本発明の一実施例に係る原子炉隔離時冷
卸糸の概略構成図を示す。なお、第1図Cユおいて、第
2図と同一部分には同一符号を付しその部分の構成の説
明は省略′fる。第1図において、主蒸気配管5から導
びかれた一部の蒸気は配管L4を介してRCICタービ
ン11 に導びかわている。この配管14にはRCIC
タービン11に導ひかれる蒸気を制御する蒸気加減弁1
5が設けられている。この蒸気加減弁15はRCIC流
量調節器16から出力される信号によって作動する。こ
のRCI C流景訓節器16トまスイッチ17を介して
手動制御1を号]8によって流量が調節される。そして
、】出常はスイッチ17は第1図においてA側に設定さ
れているが、LOCAが発生し、原子炉水位低信号19
又は格納容器圧力筒信号20が出力された場合、スイッ
チ17はB側へ切り替る。そして、このB側にはタイマ
ー21が設けられており、このタイマー21は前記原子
炉水位低信号19又は格納容器圧力高信号20が出力さ
れると起動し、あらかじめ設定された時間内は前記手動
制御信号18がRCI(:#、量調節器Lしに人力され
ないように構成されている。なお、通常タイマー21に
設定されている時間は最大限のLOCAが収束する時間
である約10分間(:設定されている。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. Here, FIG. 1C shows a schematic configuration diagram of a cooling string during nuclear reactor isolation according to an embodiment of the present invention. In FIG. 1C, parts that are the same as those in FIG. 2 are designated by the same reference numerals, and the explanation of the structure of those parts will be omitted. In FIG. 1, a part of the steam led from the main steam pipe 5 is led to the RCIC turbine 11 via the pipe L4. This pipe 14 has an RCIC
Steam control valve 1 that controls steam guided to the turbine 11
5 is provided. This steam control valve 15 is operated by a signal output from the RCIC flow controller 16. The flow rate is regulated by the RCI C flow controller 16 and the manual controls 1 and 8 via the toggle switch 17. ] Normally, the switch 17 is set to the A side in Fig. 1, but when LOCA occurs, the reactor water level low signal 19
Alternatively, when the containment vessel pressure cylinder signal 20 is output, the switch 17 is switched to the B side. A timer 21 is provided on the B side, and this timer 21 starts when the reactor water level low signal 19 or the containment vessel pressure high signal 20 is output, and the timer 21 starts when the reactor water level low signal 19 or the containment vessel pressure high signal 20 is output. The control signal 18 is configured so that the RCI (:#) amount regulator L is not manually operated.The time set in the timer 21 is usually about 10 minutes (the time for the maximum LOCA to converge). : Set.

以上の構成(ユよって、LOCAが発生した場合におい
て、運転員による手動の誤った流量の制御が行なわれ友
場合においても、その制御信号は蒸気加減9P(:彩管
しないので、蒸気加減弁はあらかじめ定められた一定値
(二制御され、RCI Cによる原子炉内の注水は正常
に行なわれるので原子炉内の水位を維持させることがで
きる。
According to the above configuration, even if a LOCA occurs and the operator manually incorrectly controls the flow rate, the control signal will not be activated. The water level in the reactor can be maintained at a predetermined constant value (2), and water injection into the reactor by the RCIC is performed normally, so the water level in the reactor can be maintained.

[発明の効果] 以上に示したようイユ本発明Cユよ牙1ば、LOCAI
#l。
[Effect of the invention] As shown above, the invention
#l.

にgeesの48能を有するRCICζユおいて、LO
CA発生後一定時間内は強制的(二RCICの流すな自
動制御にさせる念め、もし作業員がRCICを誤動作さ
せてもRCI (、:の定格流量は確実(二確保するこ
とができイ)。
In RCICζU with 48 abilities of GEES
For a certain period of time after CA occurs, the rated flow rate of the RCI (, : can be ensured (2)) to ensure automatic control so that the RCIC does not flow (2) even if the worker malfunctions the RCIC. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る原子炉隔離時冷却系の
概略構成図、第2図は従来の原子炉隔離時冷却系を示す
概略構成図である。 11・・・原子炉隔離時冷却系(RCIC)タービン】
2・・・ポンプ     13・・・復水貯蔵タンク1
5・・・蒸気加減弁 16・・・原子炉隔離時冷却系(RCIC)流を調節器
17・・・スイッチ    18・・・手動制御信号1
9・・・原子炉水位低信号 20・・・格納容器圧力高信号 21・・・タイマー代
理人 弁理士 則 近 憲 佑 同  三俣弘文 第2図
FIG. 1 is a schematic diagram of a cooling system for reactor isolation according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional cooling system for reactor isolation. 11...Reactor isolation cooling system (RCIC) turbine]
2... Pump 13... Condensate storage tank 1
5...Steam control valve 16...Reactor isolation cooling system (RCIC) flow regulator 17...Switch 18...Manual control signal 1
9...Reactor water level low signal 20...Containment vessel pressure high signal 21...Timer agent Patent attorney Noriyoshi Chika Yudo Hirofumi Mitsumata Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)原子炉スクラム後に給水が停止した場合に冷却水
を原子炉内に注水し、かつ冷却材喪失事故時に原子炉内
に冷却水を注水して成る原子炉隔離時冷却系において、
冷却材喪失事故発生後一定時間手動による注水流量の制
御を禁止する流量制御禁止回路を設けて成ることを特徴
とする原子炉隔離時冷却系。
(1) In a reactor isolation cooling system that injects cooling water into the reactor when the water supply is stopped after a reactor scram, and injects cooling water into the reactor in the event of a loss of coolant accident,
A reactor isolation cooling system comprising a flow rate control prohibition circuit that prohibits manual water injection flow rate control for a certain period of time after a loss of coolant accident occurs.
(2)前記流量制御禁示回路は、冷却材喪失事故信号に
よって起動し、起動後一定時間内は注水流量手動制御信
号を原子炉隔離時冷却系に設けられた流量調節器に入力
しないよう構成されて成ることを特徴とする特許請求の
範囲第1項記載の原子炉隔離時冷却系。
(2) The flow rate control prohibition circuit is activated by a loss of coolant accident signal, and is configured so that the water injection flow rate manual control signal is not input to the flow rate regulator installed in the reactor isolation cooling system within a certain period of time after activation. A nuclear reactor isolation cooling system according to claim 1, characterized in that the cooling system comprises:
(3)前記注水流量の制御を禁止する一定時間は最大の
冷却材喪失事故が収束する時間である10分間に設定さ
れて成ることを特徴とする特許請求の範囲第1項記載の
原子炉隔離時冷却系。
(3) Reactor isolation according to claim 1, wherein the certain period of time during which control of the water injection flow rate is prohibited is set to 10 minutes, which is the time during which the maximum coolant loss accident is resolved. time cooling system.
JP60206376A 1985-09-20 1985-09-20 Cooling system on isolation of nuclear reactor Pending JPS6267495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60206376A JPS6267495A (en) 1985-09-20 1985-09-20 Cooling system on isolation of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60206376A JPS6267495A (en) 1985-09-20 1985-09-20 Cooling system on isolation of nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6267495A true JPS6267495A (en) 1987-03-27

Family

ID=16522305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60206376A Pending JPS6267495A (en) 1985-09-20 1985-09-20 Cooling system on isolation of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6267495A (en)

Similar Documents

Publication Publication Date Title
US4818475A (en) Turbine-generator shaft-coupled auxiliary generators supplying short-duration electrical loads for an emergency coolant injection system
EP2839480B1 (en) Defense in depth safety paradigm for nuclear reactor
JPS6267495A (en) Cooling system on isolation of nuclear reactor
CN110752046B (en) Safety device, nuclear power plant system and safe operation method of nuclear power plant
JP2859990B2 (en) Boiling water reactor equipment
JPS58117489A (en) Method of shielding high-temperature reactor
JP3136786B2 (en) Reactor water level control method and apparatus
JPS62237397A (en) Safety protective device for boiling water type reactor
JPS6118155B2 (en)
JP2695905B2 (en) Boiling water reactor
JPS61243397A (en) Emergency core cooling device for nuclear reactor
JPH02222878A (en) Residual heat removal system of nuclear power plant
EP4085471A1 (en) Dry stand-by liquid control system for a nuclear reactor
JPH06230177A (en) Boiling water reactor
JPH0432798A (en) Nuclear reactor pressure reduction maintaining device
JPH06201880A (en) Boric acid flowout prevention device
JPS5967498A (en) Control device for reactor core cooling system
JPH05119189A (en) Nuclear reactor injection water flow automatic controller
JPS5816479B2 (en) Comprehensive reactor backup cooling system equipment
JPS61105496A (en) Automatic decompression device for nuclear reactor
JPH0567000B2 (en)
JPH0631782B2 (en) Light water reactor
JPS60222798A (en) Method of maintaining water level in nuclear reactor on tripof feed pump
JPS6224759B2 (en)
JPH01161194A (en) Boric acid injecting device