JPH05119189A - Nuclear reactor injection water flow automatic controller - Google Patents

Nuclear reactor injection water flow automatic controller

Info

Publication number
JPH05119189A
JPH05119189A JP3277863A JP27786391A JPH05119189A JP H05119189 A JPH05119189 A JP H05119189A JP 3277863 A JP3277863 A JP 3277863A JP 27786391 A JP27786391 A JP 27786391A JP H05119189 A JPH05119189 A JP H05119189A
Authority
JP
Japan
Prior art keywords
signal
reactor
water injection
injection system
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3277863A
Other languages
Japanese (ja)
Inventor
Hiromitsu Imaruoka
浩充 伊丸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3277863A priority Critical patent/JPH05119189A/en
Publication of JPH05119189A publication Critical patent/JPH05119189A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To obtain the controller for maintaining the integrity of a reactor and a reactor container by automatically regulating the setting of a main steam release safety valve for the purpose of proper actuation, stabilizing a reactor water level with reactor pressure and injection water flow controlled and making easy the control of the reactor output even in the case where the actuation of a high pressure water injection system has been failed at the time of ATWS. CONSTITUTION:The reactor injection water floe automatic controller is provided with an ATWS judging part 1 for outputting an ATWS signal, a high pressure water injection system non-actuation discrimination part 2 for outputting a high pressure water injection system non-actuation signal, a high pressure water injection system non-actuation judging part 3 at the time of ATWS for outputting a high pressure water injection system non-actuation signal at the time of ATWS, a main steam release safety valve opening and closing pressure changing part 4 for outputting the open setting pressure changing signal and the close setting pressure changing signal of a main steam release safety valve and a main steam release safety valve opening and closing setting pressure control part 5 for controlling the open and close setting pressure of the main steam release safety valve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電プラントに
おけるスクラム不能の過渡変化(AnticipatedTransient
With outScram ,以下ATWSと略称する) 時で、さら
に高圧注水系が故障した時の、いわゆる過酷事故を想定
した場合において、原子炉の健全性を維持する原子炉注
水流量自動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-scram transient change in a nuclear power plant.
The present invention relates to an automatic reactor water injection flow rate control device that maintains the soundness of a nuclear reactor when a so-called severe accident is assumed when the high pressure water injection system fails, at the time of With outScram (hereinafter abbreviated as ATWS).

【0002】[0002]

【従来の技術】一般に沸騰水型原子炉の運転制御では、
通常の運転状態において何らかの不具合により炉水が喪
失したり給水量が低下した場合には、原子炉の水位が低
下するが、この水位は常時各レベルについて監視してお
り、水位が「原子炉水位低(L−3)」となったことに
より、全制御棒の急速自動挿入等により原子炉を緊急停
止(Scram ,以下スクラムと呼称する)させている。こ
れにより、原子炉から主蒸気管を通って流出する蒸気流
量が抑制されて原子炉水位の低下は緩慢になる。しかし
ながら、原子炉はスクラムしても炉心では崩壊熱が発生
しているため、一般に定格蒸気流量に対して約5%の蒸
気発生は続くことになる。従って、少なくともこの給水
流量が確保できなければ、流入量と流出量のミスマッチ
により、原子炉水位は更に低下して「原子炉水位低低
(L−2)」に到達することになる。原子炉水位が「原
子炉水位低低(L−2)」に到ると、主蒸気隔離弁が閉
止し、また原子炉隔離時冷却系(Reactor CoreIsolatio
n Cooling System ,RCIC)や高圧非常用炉心冷却
系(Emergency Core Cooling System ,ECCS)が自
動起動し、原子炉内に冷却水を注入して原子炉水位がこ
れ以下に低下することを防止する。
2. Description of the Related Art Generally, in operation control of a boiling water reactor,
When the reactor water is lost or the water supply volume decreases due to some malfunction in normal operating conditions, the water level of the reactor decreases, but this water level is constantly monitored at each level and the water level is Due to "Low (L-3)", the reactor is brought to an emergency stop (Scram, hereinafter referred to as "scram") by rapid automatic insertion of all control rods. As a result, the flow rate of steam flowing out from the reactor through the main steam pipe is suppressed, and the decrease in reactor water level becomes slower. However, since the decay heat is generated in the core of the nuclear reactor even if it is scrammed, generally about 5% of the rated steam flow will continue to be generated. Therefore, if at least this feed water flow rate cannot be secured, the reactor water level will further decrease and reach the “reactor water level low (L-2)” due to the mismatch between the inflow amount and the outflow amount. When the reactor water level reaches “Reactor water level low (L-2)”, the main steam isolation valve closes and the reactor isolation cooling system (Reactor CoreIsolatio)
(n Cooling System, RCIC) and high pressure emergency core cooling system (Emergency Core Cooling System, ECCS) are automatically started, and cooling water is injected into the reactor to prevent the reactor water level from dropping below this level.

【0003】一方、主蒸気隔離弁が閉止されるため、炉
心からの崩壊熱によって発生した蒸気により原子炉圧力
は上昇し、ついには主蒸気管に設けられた主蒸気逃し安
全弁の開放設定圧に達して主蒸気逃し安全弁が開放され
る。これにより発生蒸気の一部は主蒸気逃し安全弁の排
気管を通って圧力抑制室のサプレッションプールへ放出
され、冷却、凝縮されて原子炉圧力の上昇が抑制され
る。このようにして原子炉水位と原子炉圧力は、安全に
制御されるようになっている。しかしながら、スクラム
不能の過渡変化(ATWS)が発生した場合について、
さらに過酷な状態を想定すると例えば以下のようなこと
が考えられる。通常の運転状態より給水が喪失した場合
には、原子炉水位は低下し、「原子炉水位低(L−
3)」により原子炉スクラム信号が発せられるが、これ
に伴う全制御棒の急速挿入が何らかの原因で失敗したと
する。これにより、原子炉水位は引続き低下して「原子
炉水位低低(L−2)」に到達する。
On the other hand, since the main steam isolation valve is closed, steam generated by decay heat from the core increases the reactor pressure and finally reaches the open set pressure of the main steam relief safety valve provided in the main steam pipe. After that, the main steam relief safety valve is opened. As a result, a part of the generated steam is discharged to the suppression pool of the pressure suppression chamber through the exhaust pipe of the main steam relief safety valve, cooled and condensed, and the rise of the reactor pressure is suppressed. In this way, the reactor water level and reactor pressure are controlled safely. However, in the event of a transient change (ATWS) that is impossible to scrum,
Assuming more severe conditions, the following can be considered, for example. When the water supply is lost from normal operating conditions, the reactor water level will drop and the "Reactor water level low (L-
3) ”causes a reactor scrum signal to be emitted, but it is assumed that the rapid insertion of all control rods accompanying this has failed for some reason. As a result, the reactor water level continues to drop and reaches "low reactor water level (L-2)".

【0004】原子炉水位が「(L−2)」に達すると主
蒸気隔離弁が閉止する。また原子炉隔離時冷却系や高圧
非常用炉心冷却系の自動起動信号が発せられるが、万一
これらも何らかの原因で起動不能となると、このために
原子炉水位は更に低下して、炉心露出の可能性に到り、
いわゆる過酷事故に進行することになる。そこで、この
ような事態に到ることを避けるために従来から以下のよ
うな手段が考えられていた。 (1) 異常発生の初期に原子炉出力を低下させて原子炉に
おける蒸気発生量を少しでも抑えるため、ATWSを検
知した場合に原子炉再循環ポンプをトリップさせる。 (2) ATWS発生時に原子炉が隔離されて高圧注水系が
作動しない場合には、主蒸気逃し安全弁を作動させて原
子炉内を減圧して、低圧注水系により注入可能な原子炉
圧力にし、低圧注水系より冷却水を原子炉内に注水して
原子炉水位を確保する。
When the reactor water level reaches "(L-2)", the main steam isolation valve closes. In addition, an automatic start signal for the reactor isolation cooling system and the high-pressure emergency core cooling system is issued, but if these also become unable to be started for some reason, the reactor water level will further drop and the core exposure Reach potential,
It will progress to what is called a severe accident. Therefore, in order to avoid such a situation, the following means have been conventionally considered. (1) The reactor recirculation pump is tripped when an ATWS is detected in order to reduce the reactor power output and suppress the steam generation amount in the reactor as much as possible at the initial stage of the abnormality. (2) When the high pressure water injection system does not operate because the reactor is isolated when an ATWS occurs, the main steam relief safety valve is operated to reduce the pressure inside the reactor to a reactor pressure that can be injected by the low pressure water injection system, Cooling water is injected into the reactor from the low-pressure injection system to secure the reactor water level.

【0005】[0005]

【発明が解決しようとする課題】ATWS時で、さらに
高圧注水系が作動しないような場合においては、原子炉
圧力を監視しながら、運転員の操作により主蒸気逃し安
全弁を開閉して原子炉内の減圧を行うため、原子炉の主
要なパラメータが大きく振動し、原子炉の挙動の把握と
いう点でかなり困難な状況となって、場合によっては炉
心露出に到り炉心損傷の可能性も想定される。また原子
炉水位が確保されている場合でも、圧力抑制室のサプレ
ッションプールへの蒸気放出は、熱負荷の軽減のために
原子炉出力をなるべく抑えることが望ましいことから、
原子炉水位を低く維持し、原子炉の自然循環力を低下さ
せて炉心入口流量を抑制する方法がある。しかしなが
ら、原子炉出力を十分制御できなかった場合には、主蒸
気逃し安全弁の絶え間ない開閉のために、原子炉圧力は
変動し、かつ原子炉水位も同様に変動して、このために
原子炉水位の制御は非常に困難となり、原子炉出力の制
御が困難になる。そのため、圧力抑制室への放出蒸気量
が増加して原子炉格納容器の健全性に支障をきたすこと
も考えられる。
When the high pressure water injection system does not operate during ATWS, the main steam relief safety valve is opened and closed by the operator's operation while monitoring the reactor pressure. Due to the depressurization of the reactor, the major parameters of the reactor vibrate greatly, which makes it quite difficult to understand the behavior of the reactor.In some cases, the core may be exposed and core damage may occur. It Also, even if the reactor water level is secured, it is desirable to suppress the reactor output as much as possible in order to reduce the heat load for steam release to the suppression pool in the pressure suppression chamber.
There is a method of keeping the reactor water level low and reducing the natural circulation force of the reactor to suppress the core inlet flow rate. However, when the reactor power could not be controlled sufficiently, the reactor pressure fluctuated due to the continuous opening and closing of the main steam relief safety valve, and the reactor water level also fluctuated. It becomes very difficult to control the water level, and it becomes difficult to control the reactor power. Therefore, it is conceivable that the amount of steam released to the pressure suppression chamber increases and the soundness of the reactor containment vessel is hindered.

【0006】本発明の目的とするところは、ATWS時
で高圧注水系の作動に失敗した場合においても、自動的
に主蒸気逃し安全弁の開閉圧力設定を調整し、適切に作
動させて原子炉圧力を制御すると共に、原子炉注水流量
を制御して、原子炉水位を安定させ、原子炉出力の制御
を容易にして原子炉と原子炉格納容器の健全性を維持す
る原子炉注水流量自動制御装置を提供することにある。
The object of the present invention is to automatically adjust the opening / closing pressure setting of the main steam relief safety valve even when the operation of the high-pressure water injection system fails during ATWS to operate the reactor pressure properly. In addition to controlling the reactor water injection flow rate, the reactor water injection flow rate is stabilized, the reactor water level is stabilized, the control of the reactor power is facilitated, and the soundness of the reactor and the containment vessel is maintained. To provide.

【0007】[0007]

【課題を解決するための手段】原子炉出力信号及びスク
ラム作動要求信号からATWS信号を出力するATWS
判定部と、高圧注水系流量信号及び高圧注水系起動信号
から高圧注水系不作動信号を出力する高圧注水系不作動
判定部と、前記ATWS信号及び高圧注水系不作動信号
を入力して、ATWS時の高圧注水系不作動信号を出力
するATWS時の高圧注水系不作動判定部と、このAT
WS時の高圧注水系不作動判定部からのATWS時の高
圧注水系不作動信号と前記原子炉出力信号を入力して主
蒸気逃し安全弁の開放設定圧変更信号及び閉鎖設定圧変
更信号を出力する主蒸気逃し安全弁開閉設定圧力変更部
と、前記主蒸気逃し安全弁の開放設定圧変更信号及び閉
鎖設定圧変更信号を受けて主蒸気逃し安全弁の開閉設定
圧を制御する主蒸気逃し安全弁開閉設定圧制御部を具備
する。
ATWS for outputting an ATWS signal from a reactor output signal and a scrum operation request signal
A determination unit, a high-pressure water injection system inactivation determination unit that outputs a high-pressure water injection system inactivation signal from a high-pressure water injection system flow signal and a high-pressure water injection system start signal, and the ATWS signal and the high-pressure water injection system inactivation signal are input to input ATWS A high pressure water injection system inoperative determination unit for ATWS that outputs a high pressure water injection system inoperative signal at the time of AT
The high pressure water injection system inactivation signal during ATWS and the reactor output signal from the high pressure water injection system inactivity determination unit during WS are input and the open set pressure change signal and the close set pressure change signal of the main steam relief safety valve are output. Main steam relief safety valve opening / closing set pressure control section, and main steam relief safety valve opening / closing set pressure control that receives the opening setting pressure change signal and the closing setting pressure change signal of the main steam relief safety valve Parts.

【0008】[0008]

【作用】ATWS時で高圧注入系不作動の場合に、AT
WS判定部にて原子炉出力信号とスクラム要求信号から
ATWS事象発生を判定してATWS信号を、また高圧
注水系不作動判定部では、高圧注水系流量信号と高圧注
水系起動信号から高圧注水系不作動を検知して高圧注水
系不作動信号を出力する。この2つの信号を入力してA
TWS・高圧注水系不作動判定部は、ATWS時で、か
つ高圧注水系が不作動であることを判定し、ATWS時
の高圧注水系不作動信号を出力する。この信号と前記原
子炉出力信号とから主蒸気逃し安全弁開閉圧力変更部に
おいて、原子炉の要求流量を低圧注水系より注入可能な
原子炉圧力と、これに見合う主蒸気逃し安全弁の開閉設
定圧力変更信号を算出して、主蒸気逃し安全弁開閉設定
圧制御部に出力する。この主蒸気逃し安全弁開閉設定圧
制御部においては、前記開閉設定圧に従って自動的に主
蒸気逃し安全弁を作動させる。この主蒸気逃し安全弁の
開閉作動により原子炉圧力の適切な制御と、低圧注水系
よりの注水が行われるので、安定した原子炉水位と出力
の制御が自動で実施され、原子炉圧力容器及び原子炉格
納容器の健全性を確保することができる。
[Operation] If the high pressure injection system does not operate during ATWS, AT
The WS determination unit determines the ATWS event occurrence from the reactor output signal and the scrum request signal and outputs the ATWS signal, and the high pressure water injection system inactivity determination unit detects the high pressure water injection system flow rate signal and the high pressure water injection system start signal from the high pressure water injection system. Detects inactivity and outputs high pressure water injection system inactivity signal. Input these two signals and
The TWS / high pressure water injection system inactivation determination unit determines that the high pressure water injection system is inactive during ATWS, and outputs a high pressure water injection system inactivation signal during ATWS. In the main steam relief safety valve opening / closing pressure changing unit from this signal and the reactor output signal, the reactor pressure at which the required flow rate of the reactor can be injected from the low-pressure water injection system, and the opening / closing set pressure of the main steam relief safety valve corresponding to this can be changed. The signal is calculated and output to the main steam relief safety valve opening / closing set pressure control unit. In the main steam relief safety valve opening / closing set pressure control unit, the main steam relief safety valve is automatically operated according to the opening / closing set pressure. By opening and closing this main steam relief safety valve, the reactor pressure is appropriately controlled and water is injected from the low-pressure water injection system, so stable reactor water level and output control is automatically performed, and the reactor pressure vessel and The integrity of the containment vessel can be ensured.

【0009】[0009]

【実施例】本発明一実施例を図面を参照して説明する。
図1のブロック構成図に示すように、ATWS判定部1
は、原子炉から得た原子炉出力信号S1と、スクラム要
求信号S2を入力して、ATWS事象が発生したことを
判定するもので、ATWS信号S3を出力する。高圧注
水系不作動判定部2は、高圧注水系流量信号S4と高圧
注水系起動信号S5を入力し、高圧注水系の不作動を検
知して高圧注水系不作動信号S6を出力する。またAT
WS・高圧注水系不作動判定部3では、前記ATWS判
定部1からのATWS信号S3と高圧注水系不作動判定
部2からの高圧注水系不作動信号S6を入力し、ATW
S時で、かつ高圧注水系が不作動であることを判定して
ATWS時の高圧注水系不作動信号S7を出力する。さ
らに主蒸気逃し安全弁開閉圧力変更部4は、前記原子炉
出力信号S1及びATWS・高圧注水系不作動判定部3
からのATWS時の高圧注水系不作動信号S7を入力し
て、主蒸気逃し安全弁開閉設定圧制御部5に対し、主蒸
気逃し安全弁の開放設定圧力変更信号S8、及び閉鎖設
定圧力変更信号S9を出力するように構成されている。
An embodiment of the present invention will be described with reference to the drawings.
As shown in the block diagram of FIG.
Inputs the reactor output signal S1 obtained from the reactor and the scrum request signal S2 to determine that an ATWS event has occurred, and outputs an ATWS signal S3. The high-pressure water injection system inactivation determination unit 2 inputs the high-pressure water injection system flow rate signal S4 and the high-pressure water injection system start signal S5, detects the inactivity of the high-pressure water injection system, and outputs the high-pressure water injection system inoperative signal S6. Also AT
In the WS / high-pressure water injection system inactivation determination unit 3, the ATWS signal S3 from the ATWS determination unit 1 and the high-pressure water injection system inactivation signal S6 from the high-pressure water injection system inactivation determination unit 2 are input, and the ATW
At S, it is determined that the high pressure water injection system is inoperative, and the high pressure water injection system inactivation signal S7 at ATWS is output. Further, the main steam relief safety valve opening / closing pressure changing unit 4 includes the reactor output signal S1 and the ATWS / high pressure water injection system inactivation determining unit 3
The high pressure water injection system inactivation signal S7 at the time of ATWS from is input to the main steam relief safety valve opening / closing set pressure control unit 5 to output the main steam relief safety valve open set pressure change signal S8 and closed set pressure change signal S9. It is configured to output.

【0010】また前記主蒸気逃し安全弁開閉圧力変更部
4は、図2のブロック構成図に詳細を示すように、前記
原子炉出力信号S1及びATWS時の高圧注水系不作動
信号S7を入力して、低圧系の注水流量信号S10を出力
する原子炉出力対注水流量換算部10と、この注水流量信
号S10及び、図3の特性図に例示する低圧注水系圧力対
注入流量特性部11からの圧力信号S11を入力して、原子
炉に対して低圧注水系による注水の最適圧力を算出し、
圧力設定信号S12を出力する低圧注水系の最適圧力算出
部12と、さらに、この圧力設定信号S12を入力して前記
図1に示す主蒸気逃し安全弁開閉設定圧制御部5に対し
て、主蒸気逃し安全弁の開放設定圧変更信号S8、及び
閉鎖設定圧変更信号S9を出力する主蒸気逃し安全弁開
閉設定圧力設定部13から構成されている。また主蒸気逃
し安全弁の開放設定圧を図3に示す示す圧力範囲で、低
圧注水系の注入開始圧力より低めに、また主蒸気逃し安
全弁の閉鎖設定圧力を減圧時の出力に見合った圧力に自
動設定する。なお、前記図3は横軸を注入流量、縦軸を
原子炉圧力とした低圧注水系圧力対注入流量特性部11の
機能の一例を示す特性図で、この注入流量から適切な原
子炉圧力である圧力信号S11を特性曲線14により得る。
Further, the main steam relief safety valve opening / closing pressure changing unit 4 inputs the reactor output signal S1 and the high pressure water injection system inactivation signal S7 at ATWS, as shown in detail in the block diagram of FIG. , A reactor output-to-injection flow rate conversion unit 10 which outputs a low-pressure system injection flow rate signal S10, this injection flow rate signal S10, and the pressure from the low-pressure injection system pressure-injection flow rate characteristic unit 11 illustrated in the characteristic diagram of FIG. Input the signal S11 to calculate the optimum pressure of the low-pressure water injection system for the reactor,
The optimum pressure calculating unit 12 for the low-pressure water injection system that outputs the pressure setting signal S12 and the main steam relief safety valve opening / closing setting pressure control unit 5 shown in FIG. It is composed of a main steam relief safety valve open / close set pressure setting unit 13 which outputs an open set pressure change signal S8 and a close set pressure change signal S9 of the relief safety valve. The main steam relief safety valve opening set pressure is automatically set to a pressure lower than the injection start pressure of the low-pressure water injection system within the pressure range shown in Fig. 3, and the main steam relief safety valve closing set pressure is adjusted to a pressure commensurate with the output during decompression. Set. It should be noted that FIG. 3 is a characteristic diagram showing an example of the function of the low-pressure water injection system pressure vs. injection flow rate characteristic section 11 in which the horizontal axis is the injection flow rate and the vertical axis is the reactor pressure. A pressure signal S11 is obtained by means of the characteristic curve 14.

【0011】次に上記構成による作用について説明す
る。原子炉の定格出力運転時に何らかの原因により全給
水流量喪失が生じると原子炉水位は低下し、「原子炉水
位低(L−3)」でスクラム要求信号S2が発せられ
る。これにより別途、全制御棒の急速挿入が指令される
が、この全制御棒挿入が何らかの原因で失敗したと仮定
する。この時、原子炉出力信号S1とスクラム要求信号
S2を入力したATWS判定部1は、スクラム要求信号
S2が発せられているにも関わらず、原子炉出力信号S
1の原子炉出力が低下していないことから、ATWS事
象と判定してATWS信号S3を出力する。一方、原子
炉水位は、更に低下して「原子炉水位低低(L−2)」
に到達して主蒸気隔離弁が閉止され、前記原子炉隔離時
冷却系や高圧炉心スプレイ(High Pressure Core Spra
y,HPCS)の高圧非常用炉心冷却系の起動信号が発
せられる。しかしながら、これも何らかの原因で起動不
能であったとすると、これにより発せられた高圧注水系
起動信号S5と高圧注水系流量信号S4を入力した高圧
注水系不作動判定部2は、高圧注水系起動信号S5が入
力されながら、高圧注水系流量信号S4が零か、極めて
低流量であれば、当該高圧注水系は不動作であると判定
して、ATWS・高圧注水系不作動判定部3に高圧注水
系不作動信号S6を出力する。この高圧注水系不作動信
号S6と、前記ATWS判定部1からのATWS信号S
3を受けたATWS・高圧注水系不作動判定部3は、A
TWSで、かつ高圧注水系が不作動であると判定してA
TWS時の高圧注水系不作動信号S7を出力する。
Next, the operation of the above configuration will be described. If the total feedwater flow rate loss occurs for some reason during the rated output operation of the reactor, the reactor water level will drop, and the scrum request signal S2 will be issued at "reactor water level low (L-3)". This separately commands the rapid insertion of all control rods, but it is assumed that the insertion of all control rods failed for some reason. At this time, the ATWS determination unit 1 that has received the reactor output signal S1 and the scrum request signal S2 receives the reactor output signal S2 even though the scrum request signal S2 is issued.
Since the reactor output of No. 1 has not decreased, it is determined that an ATWS event has occurred, and the ATWS signal S3 is output. On the other hand, the reactor water level further decreased, and the reactor water level was low (L-2).
And the main steam isolation valve is closed, the cooling system for reactor isolation and the high pressure core spray
y, HPCS) high pressure emergency core cooling system activation signal is issued. However, if it is also impossible to start due to some reason, the high-pressure water injection system inactivation determination unit 2 that has input the high-pressure water injection system activation signal S5 and the high-pressure water injection system flow rate signal S4 generated thereby causes the high-pressure water injection system activation signal to be high. If the high-pressure water injection system flow rate signal S4 is zero or an extremely low flow rate while S5 is being input, it is determined that the high-pressure water injection system is inoperative, and the high pressure injection system 3 for ATWS / high-pressure water injection system inoperative determination unit 3 The water system inactivation signal S6 is output. This high-pressure water injection system inactivation signal S6 and the ATWS signal S from the ATWS determination unit 1
The ATWS / high pressure water injection system non-operation determination unit 3 that received 3
It is judged by TWS that the high pressure water injection system is inoperative.
The high pressure water injection system inoperative signal S7 at the time of TWS is output.

【0012】主蒸気逃し安全弁開閉圧力変更部4におい
ては、このATWS時の高圧注水系不作動信号S7と、
前記原子炉出力信号S1を入力して、主蒸気逃し安全弁
開閉設定圧制御部5に対して主蒸気逃し安全弁開閉設定
圧力を変更する主蒸気逃し安全弁の開放設定圧変更信号
S8、及び閉鎖設定圧変更信号S9を出力する。この信
号を受けた主蒸気逃し安全弁開閉設定圧制御部5では、
主蒸気逃し安全弁における開閉設定圧を変更する。この
時の主蒸気逃し安全弁の設定圧設定は図2で示すよう
に、主蒸気逃し安全弁開閉圧力変更部4における原子炉
出力対注水流量換算部10は、原子炉出力信号S1と高圧
注水系不作動信号S7を入力し、この原子炉出力を必要
注水流量に換算して注水流量信号S10を出力する。次い
で低圧注水系最適圧力算出部12においては、この注水流
量信号S10と、図3に例示した低圧注水系圧力対注入流
量特性11部からの圧力信号S11を入力して設定圧力を算
出し、圧力設定信号S12を主蒸気逃し安全弁開閉圧力設
定部13に出力する。この主蒸気逃し安全弁開閉圧力設定
部13では、圧力設定信号S12の算出された設定圧力に主
蒸気逃し安全弁の繰返し開閉操作に際して確実で安定し
た作動を得るための作動幅を加味し、例えば主蒸気逃し
安全弁の開閉設定圧を算出設定圧力の±10%(開放設定
圧:算出設定圧の+10%、閉鎖設定圧:算出設定圧の−
10%)に設定して、主蒸気逃し安全弁の開放設定圧変更
信号S8と閉鎖設定圧変更信号S9を出力する。
In the main steam relief safety valve opening / closing pressure changing unit 4, the high pressure water injection system inactivation signal S7 at the time of ATWS,
The reactor output signal S1 is input to the main steam relief safety valve opening / closing set pressure control unit 5 to change the main steam relief safety valve opening / closing set pressure. The change signal S9 is output. Upon receiving this signal, the main steam relief safety valve opening / closing set pressure control unit 5
Change the opening / closing set pressure of the main steam relief safety valve. As shown in FIG. 2, the set pressure of the main steam relief safety valve at this time is set by the reactor output-to-injection flow rate conversion unit 10 in the main steam relief safety valve opening / closing pressure changing unit 4 to the reactor output signal S1 and the high-pressure injection system failure. The operation signal S7 is input, this reactor output is converted into the required water injection flow rate, and the water injection flow rate signal S10 is output. Next, in the low pressure water injection system optimum pressure calculation unit 12, this pressure water injection flow rate signal S10 and the pressure signal S11 from the low pressure water injection system pressure vs. injection flow rate characteristic section 11 illustrated in FIG. The setting signal S12 is output to the main steam relief safety valve opening / closing pressure setting unit 13. In the main steam relief safety valve opening / closing pressure setting unit 13, the calculated setting pressure of the pressure setting signal S12 is added with an operation width for obtaining a reliable and stable operation during repeated opening / closing operations of the main steam relief safety valve. Calculate the open / close set pressure of the relief safety valve ± 10% of the set pressure (Open set pressure: + 10% of the calculated set pressure, Close set pressure: − of the calculated set pressure
10%) to output the open set pressure change signal S8 and the close set pressure change signal S9 of the main steam relief safety valve.

【0013】これらの信号は主蒸気逃し安全弁開閉設定
圧制御部5に入力され、図示しない主蒸気逃し安全弁の
開閉設定圧を自動的に変更する。これにより主蒸気逃し
安全弁における開閉設定圧が常に低圧注水系の注水可能
な作動圧力に設定されるため、今迄高かった原子炉圧力
は主蒸気逃し安全弁の開放作動により設定圧力まで一気
に減圧されるので、低圧注水系が適切に作動して冷却水
を炉内に注入する。この後は本発明によって制御される
開閉設定圧による主蒸気逃し安全弁の作動により、原子
炉圧力ひいては原子炉水位が自動制御される。従って、
原子炉水位が適確に確保されるため炉心を充分冠水さ
せ、原子炉圧力容器の健全性が維持できる。また原子炉
水位が低く抑えられるため原子炉出力も抑制されるの
で、原子炉抑制室のサプレッションプールへの熱負荷も
小さく止めることができるので、原子炉格納容器の健全
性も良好に確保される。これにより原子炉圧力の抑制と
共に、低圧注水系の注水流量の制御が自動的に行われる
ので、原子炉水位も自動的に制御することができる。
These signals are input to the main steam relief safety valve opening / closing set pressure control unit 5 to automatically change the opening / closing set pressure of the main steam relief safety valve (not shown). As a result, the open / close set pressure in the main steam relief safety valve is always set to the operating pressure at which the low-pressure water injection system can be injected, so the reactor pressure that was high until now is suddenly reduced to the set pressure by the opening operation of the main steam relief safety valve. Therefore, the low-pressure water injection system operates properly to inject the cooling water into the furnace. After that, the reactor pressure and hence the reactor water level are automatically controlled by the operation of the main steam relief safety valve with the opening / closing set pressure controlled by the present invention. Therefore,
Since the reactor water level is properly secured, the reactor core can be fully submerged and the integrity of the reactor pressure vessel can be maintained. Also, since the reactor water level is kept low, the reactor output is also suppressed, so the heat load to the suppression pool in the reactor suppression chamber can be kept small, and the soundness of the reactor containment vessel is also ensured in good condition. .. This suppresses the reactor pressure and automatically controls the water injection flow rate of the low-pressure water injection system, so that the reactor water level can also be automatically controlled.

【0014】[0014]

【発明の効果】以上本発明によれば、万一炉水喪失等に
よるスクラム時に、全制御棒の挿入が失敗したスクラム
不能時で、かつ高圧注水系が作動しないような事態にお
いても、原子炉圧力及び原子炉水位を自動制御して、低
圧注水系から支障なく注水を実施して、原子炉出力を抑
制すると共に、原子炉圧力容器及び原子炉格納容器の健
全性も維持でき、いわゆる過酷事故に対して既存の設備
を用いて十分に制御、対応できる。また作動は自動的に
行われ、原子炉が安全に制御できることから信頼性が向
上すると共に、運転員の負担も軽減される効果がある。
As described above, according to the present invention, in the event of scram due to loss of reactor water or the like, even if the scram cannot be inserted due to failure of insertion of all control rods and the high pressure injection system does not operate, the reactor The pressure and the reactor water level are automatically controlled, and water is injected from the low-pressure water injection system without any problems, suppressing the reactor output and maintaining the soundness of the reactor pressure vessel and the reactor containment vessel. For this, existing equipment can be used to adequately control and respond. Further, since the operation is automatically performed and the reactor can be safely controlled, the reliability is improved and the burden on the operator is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原子炉注水流量自動制御装置のブロッ
ク構成図。
FIG. 1 is a block configuration diagram of a reactor water injection flow rate automatic control device according to the present invention.

【図2】本発明の主蒸気逃し安全弁開閉圧力変更部のブ
ロック構成図。
FIG. 2 is a block configuration diagram of a main steam relief safety valve opening / closing pressure changing unit of the present invention.

【図3】低圧注水系圧力対注入流量特性図。FIG. 3 is a characteristic diagram of low-pressure water injection system pressure versus injection flow rate.

【符号の説明】[Explanation of symbols]

1…ATWS判定部、2…高圧注水系不作動判定部、3
…ATWS・高圧注水系不作動判定部、4…主蒸気逃し
安全弁開閉圧力変更部、5…主蒸気逃し安全弁開閉設定
圧制御部、10…原子炉出力対注水流量換算部、11…低圧
注水系圧力対注入流量特性部、12…低圧注水系最適圧力
算出部、13…主蒸気逃し安全弁開閉設定圧力設定部、14
…特性曲線、S1…原子炉出力信号、S2…スクラム要
求信号、S3…ATWS信号、S4…高圧注水系流量信
号、S5…高圧注水系起動信号、S6…高圧注水系不作
動信号、S7…ATWS時の高圧注水系不作動信号、S
8…主蒸気逃し安全弁の開放設定圧変更信号、S9…主
蒸気逃し安全弁の閉鎖設定圧変更信号、S10…注水流量
信号、S11…圧力信号、S12…圧力設定信号。
1 ... ATWS determination unit, 2 ... High pressure water injection system inactivity determination unit, 3
… ATWS / high pressure water injection system inactivity judgment unit, 4… Main steam relief safety valve opening / closing pressure changing unit, 5… Main steam relief safety valve opening / closing set pressure control unit, 10… Reactor output versus water injection flow rate conversion unit, 11… Low pressure water injection system Pressure vs. injection flow rate characteristic part, 12 ... Low pressure injection system optimum pressure calculation part, 13 ... Main steam relief safety valve opening / closing setting pressure setting part, 14
... Characteristic curve, S1 ... Reactor output signal, S2 ... Scrum request signal, S3 ... ATWS signal, S4 ... High pressure water injection system flow signal, S5 ... High pressure water injection system start signal, S6 ... High pressure water injection system inoperative signal, S7 ... ATWS High pressure water injection system inactive signal, S
8 ... Main steam release safety valve open set pressure change signal, S9 ... Main steam release safety valve close set pressure change signal, S10 ... Water injection flow rate signal, S11 ... Pressure signal, S12 ... Pressure set signal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子炉出力信号及びスクラム作動要求信
号からスクラム不能信号を出力するスクラム不能の過渡
変化判定部と、高圧注水系流量信号及び高圧注水系起動
信号から高圧注水系不作動信号を出力する高圧注水系不
作動判定部と、前記スクラム不能信号及び高圧注水系不
作動信号を入力して、スクラム不能時の高圧注水系不作
動信号を出力するスクラム不能時の高圧注水系不作動判
定部と、このスクラム不能時の高圧注水系不作動信号と
前記原子炉出力信号を入力して主蒸気逃し安全弁の開放
設定圧変更信号及び閉鎖設定圧変更信号を出力する主蒸
気逃し安全弁開閉設定圧力変更部と、前記主蒸気逃し安
全弁の開放設定圧変更信号及び閉鎖設定圧変更信号を受
けて主蒸気逃し安全弁の開閉設定圧を制御する主蒸気逃
し安全弁開閉設定圧制御部とからなることを特徴とする
原子炉注水流量自動制御装置。
1. A transient change determination unit that cannot output a scrum signal from a reactor output signal and a scrum operation request signal, and a high pressure water injection system non-operation signal from a high pressure water injection system flow rate signal and a high pressure water injection system start signal High pressure water injection system inactivity determination unit, and the high pressure water injection system inactivity signal when the scrum is unavailable and the high pressure water injection system inactivity signal is input, and the high pressure water injection system inactivity determination unit is output when the scrum is unavailable And the high pressure water injection system inactivation signal when the scrum is disabled and the reactor output signal are input to output the main steam relief safety valve open set pressure change signal and the closed set pressure change signal. Section and the main steam relief safety valve opening / closing set pressure for controlling the opening / closing set pressure of the main steam relief safety valve in response to the opening setting pressure change signal and the closing setting pressure change signal of the main steam relief safety valve. A reactor water injection flow rate automatic control device comprising a control unit.
JP3277863A 1991-10-24 1991-10-24 Nuclear reactor injection water flow automatic controller Pending JPH05119189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3277863A JPH05119189A (en) 1991-10-24 1991-10-24 Nuclear reactor injection water flow automatic controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3277863A JPH05119189A (en) 1991-10-24 1991-10-24 Nuclear reactor injection water flow automatic controller

Publications (1)

Publication Number Publication Date
JPH05119189A true JPH05119189A (en) 1993-05-18

Family

ID=17589338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3277863A Pending JPH05119189A (en) 1991-10-24 1991-10-24 Nuclear reactor injection water flow automatic controller

Country Status (1)

Country Link
JP (1) JPH05119189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985421A (en) * 2014-05-06 2014-08-13 中科华核电技术研究院有限公司 Method for improving security of nuclear power unit during failure of emergency shut-down of reactor
CN111540485A (en) * 2020-05-18 2020-08-14 中国核动力研究设计院 Protection system for dealing with ATWS (automatic water supply) accident of nuclear power plant caused by loss of normal water supply
JP2020153752A (en) * 2019-03-19 2020-09-24 日立Geニュークリア・エナジー株式会社 Reactor output control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985421A (en) * 2014-05-06 2014-08-13 中科华核电技术研究院有限公司 Method for improving security of nuclear power unit during failure of emergency shut-down of reactor
JP2020153752A (en) * 2019-03-19 2020-09-24 日立Geニュークリア・エナジー株式会社 Reactor output control device
CN111540485A (en) * 2020-05-18 2020-08-14 中国核动力研究设计院 Protection system for dealing with ATWS (automatic water supply) accident of nuclear power plant caused by loss of normal water supply
CN111540485B (en) * 2020-05-18 2022-02-01 中国核动力研究设计院 Protection system for dealing with ATWS (automatic water supply) accident of nuclear power plant caused by loss of normal water supply

Similar Documents

Publication Publication Date Title
JP2809977B2 (en) Control device
JPS6253797B2 (en)
JPH08170998A (en) Reinforcement protective system against transient excessive output
JPH05119189A (en) Nuclear reactor injection water flow automatic controller
JP3136786B2 (en) Reactor water level control method and apparatus
JPH07270593A (en) Automatic output controller for reactor
JPH02264886A (en) Apparatus for output control of reactor
JP2799068B2 (en) Reactor power control method and apparatus
JPS6050318B2 (en) Reactor control device
JP2008157944A (en) Protection system for and method of operating nuclear boiling water reactor
JP2863581B2 (en) Turbine steam control valve controller
JPS6217121B2 (en)
KR20220138755A (en) Control System for safety injection flow to prevent high level of steam generator
JPH0456957B2 (en)
JPH0222360B2 (en)
JP3095468B2 (en) Reactor scram suppression device
JPH063479A (en) Control equipment of reactor power
JPH06201880A (en) Boric acid flowout prevention device
JPH0740073B2 (en) Automatic decompression system
JPH1130693A (en) Transient relaxation system for nuclear reactor
JPS62237397A (en) Safety protective device for boiling water type reactor
JPS63686B2 (en)
JPH0641989B2 (en) Automatic decompression system controller
JPH05223979A (en) Water feeding system for nuclear reactor
JPS5897697A (en) Feedwater recirculation flow rate cooperation control device