JPH02264886A - Apparatus for output control of reactor - Google Patents
Apparatus for output control of reactorInfo
- Publication number
- JPH02264886A JPH02264886A JP1084656A JP8465689A JPH02264886A JP H02264886 A JPH02264886 A JP H02264886A JP 1084656 A JP1084656 A JP 1084656A JP 8465689 A JP8465689 A JP 8465689A JP H02264886 A JPH02264886 A JP H02264886A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- reactor
- atws
- reactor pressure
- operation request
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003780 insertion Methods 0.000 claims abstract description 12
- 230000037431 insertion Effects 0.000 claims abstract description 12
- 230000001052 transient effect Effects 0.000 claims description 21
- 239000002826 coolant Substances 0.000 claims description 4
- 230000003466 anti-cipated effect Effects 0.000 abstract 1
- 238000002955 isolation Methods 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 230000001629 suppression Effects 0.000 description 14
- 230000004913 activation Effects 0.000 description 6
- 230000007257 malfunction Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
RP T (Re−Circulation Pump
Trip System ;再循環ポンプトリップ)
、もしくはA RI (Alternate Rod
In5ertioe;代替制御棒挿入)作動要求を出
力する原子炉出力制御装置に関する。[Detailed description of the invention] [Object of the invention] (Industrial application field) RPT (Re-Circulation Pump
Trip System; recirculation pump trip)
, or A RI (Alternate Rod
This invention relates to a nuclear reactor power control device that outputs an operation request (Insertion of alternative control rods).
(従来の技術)
一般に沸騰水型原子炉においては、通常の運転状態では
原子炉圧力を一定に保って運転を行なっている。この時
、何らかの原因5例えばタービントリップ等の原因で急
激に原子炉圧力が上昇するような過渡変化(過渡事象)
が生じると、原子炉内で発生したボイド(気泡)はその
圧力上昇のために押し潰され、結果的に原子炉内の減速
材(軽水)の密度が高くなり、炉内の中性子の減速が促
進されるため核分裂反応率が上昇し、原子炉出力が上昇
する。この出力上昇により原子炉内で発生する蒸気も急
激に増加するので、原子炉圧力はさらに上昇する。(Prior Art) In general, boiling water nuclear reactors are operated while keeping the reactor pressure constant under normal operating conditions. At this time, a transient change (transient event) such as a sudden increase in reactor pressure due to some cause 5, such as a turbine trip, etc.
When this happens, the voids (bubbles) generated inside the reactor are crushed due to the increased pressure, and as a result, the density of the moderator (light water) inside the reactor increases, causing the moderation of neutrons inside the reactor to increase. This increases the nuclear fission reaction rate and increases reactor power. This increase in power causes a sudden increase in the amount of steam generated within the reactor, which further increases the reactor pressure.
このことは、一般に沸騰水型原子炉の圧力係数が通常正
であることを示している。したがって、圧力が急激に上
昇するような過渡事象が発生した場合、仮に圧力上昇を
抑制する手段が講じられなかった場合には、原子炉圧力
は上昇し、炉心部を収納している原子炉圧力容器の耐圧
限界を超える可能性がある。This indicates that in general the pressure coefficient of boiling water reactors is usually positive. Therefore, if a transient event such as a sudden rise in pressure occurs, and no measures are taken to suppress the pressure rise, the reactor pressure will rise and the pressure in the reactor containing the reactor core will increase. The pressure limit of the container may be exceeded.
このため、沸騰水型原子炉では圧力が急激に上昇するよ
うな過渡変化を生じさせるタービン主蒸気加減弁急閉、
タービン主蒸気止め弁急開、主蒸気隔離弁急閑のような
事象が生じた場合には、答弁の90%ストローク位置を
検出し、原子炉をスクラムさせ安全に停止させるように
している。For this reason, in boiling water reactors, the turbine main steam control valve suddenly closes, which causes transient changes such as sudden pressure increases.
If an event such as a sudden opening of the turbine main steam stop valve or a sudden shut-down of the main steam isolation valve occurs, the 90% stroke position of the response is detected and the reactor is scrammed and safely stopped.
ところが、非常に発生確率は小さく通常考慮する必要は
ないが、過渡事象発生時に原子炉安全保護系によるスク
ラムに失敗した場合、いわゆるATWS時には、上述の
ような過程で最悪の場合、原子炉圧力容器の健全性を損
う可能性がある。However, although the probability of occurrence is very small and normally does not need to be considered, if the scram by the reactor safety protection system fails when a transient event occurs, so-called ATWS, in the worst case, the reactor pressure vessel may damage the soundness of
例えば、主蒸気隔離弁全閉ATWSのような最も厳しい
場合について代表的な1100MWei B W R1
5を例に取って説明する。原子炉定格出力運転時に何ら
かの原因により主蒸気隔離弁全閉が生じると、原子炉で
発生した蒸気は主蒸気隔離弁により遮断されるので、原
子炉圧力は上昇を始める。For example, a typical 1100 MWei B W R1 for the most severe cases such as main steam isolation valve fully closed ATWS.
5 will be explained as an example. If the main steam isolation valve is fully closed for some reason during reactor rated power operation, the steam generated in the reactor is shut off by the main steam isolation valve, and the reactor pressure begins to rise.
一方、主蒸気隔離弁が閉鎖されるので90%ストローク
位置でスクラム信号が発生するが、何らかの原因で全制
御棒の挿入が失敗したとする。出力と圧力の上昇を抑制
する手段がないために原子炉圧力はさらに上昇し、主蒸
気管に設けられた主蒸気逃がし安全弁の設定圧に達して
、主蒸気逃がし安全弁が開放し排気管を通って発生蒸気
の一部が圧力抑制室へ放出される。しかし、主蒸気逃が
し安全弁の容量は原子炉で発生した蒸気を全て圧力抑制
室へ放出することはできないので、圧力はさらに上昇を
続け、原子炉圧力容器の健全性を損う可能性がある。ま
た、圧力抑制室のプール水温も絶えず主蒸気逃がし安全
弁から放出される蒸気によって上昇を続け、遂には主蒸
気逃がし安全弁から放出される蒸気を凝縮出来なくなり
、炉心冷却を行なうための水源である圧力抑制室の健全
性を損う恐れがある。On the other hand, suppose that the main steam isolation valve is closed and a scram signal is generated at the 90% stroke position, but insertion of all control rods fails for some reason. Because there is no way to suppress the rise in power and pressure, the reactor pressure rises further until it reaches the set pressure of the main steam relief safety valve installed in the main steam pipe, which opens and the steam passes through the exhaust pipe. A part of the generated steam is released into the pressure suppression chamber. However, the capacity of the main steam relief safety valve is not sufficient to release all of the steam generated in the reactor into the suppression chamber, so the pressure may continue to rise, potentially damaging the integrity of the reactor pressure vessel. In addition, the pool water temperature in the pressure suppression chamber continues to rise due to the steam released from the main steam relief safety valve, and eventually the steam released from the main steam relief safety valve can no longer be condensed, causing the pressure of the water source for core cooling to rise. There is a risk of damaging the integrity of the suppression room.
そこで、このような事態に至るのを避けるために次のよ
うな手段が考えられている。まず、ATWS時の初期原
子炉圧力を抑制するために原子炉圧力高信号により冷却
材再循環ポンプを2台トリップするいわゆるRPTがあ
る。これは、冷却材再循環ポンプを2台トリップするこ
とにより炉心流量を減少させ、炉心内のボイド率を増加
させ、減速材密度を減少させて負の反応度を投入し、原
子炉出力を低下させ、延では発生蒸気量も減少させるこ
とによって原子炉圧力を抑制するものであるや
ただし、このままでは、依然として原子炉は核出力を保
持しているので、特に原子炉が隔離されている場合は発
生蒸気は全て圧力抑制室に放出される。したがって、圧
力弁゛制室のプール水温は上昇し続ける。このため原子
炉を完全に停止するため原子炉安全保護系とは異なる信
号と方法で制御棒を挿入するいわゆるARIが考えられ
ている。Therefore, in order to avoid such a situation, the following measures have been considered. First, there is a so-called RPT in which two coolant recirculation pumps are tripped by a reactor pressure high signal in order to suppress the initial reactor pressure during ATWS. This reduces the core flow rate by tripping two coolant recirculation pumps, increases the void fraction in the core, reduces the moderator density, introduces negative reactivity, and reduces the reactor power. In this case, the reactor pressure is suppressed by reducing the amount of steam generated. However, as it is, the reactor will still maintain its nuclear output, especially if the reactor is isolated. All generated steam is discharged into the pressure suppression chamber. Therefore, the pool water temperature in the pressure valve control chamber continues to rise. For this reason, so-called ARI, which inserts control rods using signals and methods different from those of the reactor safety protection system, has been considered in order to completely shut down the reactor.
このRPTとARIを作動させるための信号としては、
原子炉圧力高信号と原子炉水位低々信号が考えられてい
る。The signals for activating this RPT and ARI are as follows:
A high reactor pressure signal and a low reactor water level signal are considered.
(発明が解決しようとする課題)
このように考えられている信号設定圧力は、最も厳しい
主蒸気隔離弁全閉/全制御捧挿入損失ATWSを対象と
し、プラントの運用面への配慮から誤作動を防止するた
めに主蒸気逃がし安全弁最高段(主蒸気逃がし安全弁は
通常15個ないし18個設置されている。そして、第1
段から最高段まで数段に分けられた設定圧に応じて、開
する弁の数が決まっている。主蒸気逃がし安全弁最高段
では全ての弁が開となる。)よりも高く設定するように
考えられているのが一般的であり、米国のATWS対策
を講じているBWRプラントはそのように設定されてい
る。(Problem to be solved by the invention) The signal setting pressure considered in this way targets the most severe main steam isolation valve fully closed/fully controlled insertion loss ATWS, and is designed to prevent malfunctions from consideration for plant operation. In order to prevent
The number of valves that open is determined according to the set pressure, which is divided into several stages from the highest stage to the highest stage. All the main steam relief safety valves are open at the highest stage. ), and BWR plants in the United States that take ATWS measures are set this way.
このように設定された場合、最も厳しい主蒸気隔離弁全
閉/全制御棒挿入失敗ATWSでは、初期の原子炉圧力
の上昇率も厳しく信号設定圧力に達するためRPT、A
RIが作動し原子炉はスクラムし、安全に停止出来る。When set in this way, in the most severe main steam isolation valve fully closed / fully control rod insertion failure ATWS, the initial reactor pressure rise rate is also severe to reach the signal setting pressure, so RPT, A
RI is activated, the reactor scrams, and can be safely shut down.
しかし、このように設定圧が高い場合には、主蒸気隔離
弁全閉/全制御棒挿入失敗ATWS以外の事象、例えば
初期出力が低い場合、及び部分制御棒失敗ATWS (
いわゆる部分ATWS)時にはARIが作動しないので
主蒸気逃がし安全弁を経て圧力抑制室へ放出される蒸気
により圧力抑制室のプール水温は上昇し、運転員がAT
WSに対処するように定められた制限温度に達してしま
い。However, when the set pressure is high like this, events other than main steam isolation valve fully closed/full control rod insertion failure ATWS, such as when the initial output is low, and partial control rod failure ATWS (
During so-called partial ATWS, the ARI does not operate, and the steam released into the pressure suppression chamber via the main steam relief safety valve causes the pool water temperature in the pressure suppression chamber to rise, causing the operator to
The temperature limit set to deal with WS has been reached.
本来ATWS事象を封じ込めるために設置したARIの
効果を十分発揮出来ない。ARI, which was originally set up to contain the ATWS event, is not fully effective.
ところで、厳しくない(穏やかな)ATWS時にもRP
T、ARIを単に作動させるようにすると、誤動作が多
発し、原子力発電所の信頼性を維持できない、また、厳
しくないATWS時の場合、RPTを作動させると、炉
心流量が減少することにより炉心冷却が確保できなくな
り好ましくない。By the way, even during non-severe (gentle) ATWS, RP
If T and ARI are simply activated, malfunctions occur frequently and the reliability of the nuclear power plant cannot be maintained.Furthermore, in the case of less severe ATWS, activating RPT reduces core cooling by reducing the core flow rate. This is not desirable as it will not be possible to secure the
本発明の目的は、初期の原子炉圧力上昇が厳しくないA
TWS時にもARIを作動させることができ、かつ厳し
くないATWS時にはRPTを作動させず、ATWS以
外の事象ではARIの誤動作を低減できる原子炉出力制
御装置を得ることにある。The purpose of the present invention is to provide A
To obtain a nuclear reactor power control device capable of operating ARI even during TWS, not operating RPT during less severe ATWS, and reducing malfunction of ARI during events other than ATWS.
(課題を解決するための手段)
上記目的を達成するために、本発明においては、原子炉
の出力信号とスクラム作動要求信号とを入力し、スクラ
ム不能時の過渡変動の状態が厳しい過渡変動であるか穏
やかな過渡変動であるかを判定する第1の判定部と、
原子炉圧力信号を入力し、この原子炉圧力信号が設定値
以上であって且つ前記第1の判定部にて判定された過渡
変動が厳しい過渡変動である場合に冷却材再循環ポンプ
トリップ信号と代替制御棒挿入作動要求信号とを出力し
、前記原子炉出力信号が設定値以上であって且つ前記第
1の判定部にて判定された過渡変動が穏やかな過渡変動
である場合に代替制御棒挿入作動要求信号を出力する第
2の判定部と、
から成ることを特徴とする原子炉出力制御装置を提供す
る。(Means for Solving the Problems) In order to achieve the above object, in the present invention, a reactor output signal and a scram operation request signal are input, and the state of transient fluctuation when scram is disabled is severe transient fluctuation. a first determination section that determines whether there is a moderate transient fluctuation; outputting a coolant recirculation pump trip signal and an alternative control rod insertion operation request signal when the transient fluctuation is a severe transient fluctuation; A second determination unit outputs an alternative control rod insertion operation request signal when the transient fluctuation determined in is a gentle transient fluctuation.
(作用)
このように構成された装置においては、第1の判定部に
て、厳しいATWSか穏やかなATWSかを判定するの
で、穏やかなA T W S時でもARIを作動させる
ことができ、ATWS以外の事象ではARIの誤動作を
低減できる。また、第2の判定部にて、厳しいATWS
時にはRPTとARIを作動させ、穏やかなATWS時
にはRPTを作動させずARTを作動させるので、穏や
かなATWS時では炉心流量を確保できる。(Function) In the device configured in this way, the first determination section determines whether the ATWS is severe or mild, so ARI can be activated even during mild ATWS, and the ATWS In other events, ARI malfunctions can be reduced. In addition, in the second judgment section, the severe ATWS
At times, RPT and ARI are activated, and during mild ATWS, RPT is not activated and ART is activated, so that the core flow rate can be secured during mild ATWS.
(実施例)
以下1本発明に係る原子炉出力制御装置の一実施例を第
1図から第4図を参照して説明する。(Embodiment) An embodiment of the nuclear reactor power control device according to the present invention will be described below with reference to FIGS. 1 to 4.
第1図は、一実施例の構成を示すブロック図である。第
1の判定部1は、時間遅れ部3とATWS信号制御部4
とから構成されている。第2の判定部2は、RPT/A
RI作動信号制御部5、ARI作動信号制御部6、及び
原子炉圧力高信号制御部7とから構成されている。スク
ラム作動要求信号8は、図示しない主蒸気隔離弁に設け
られ、なおかつ原子炉安全保護系とは別に設けられた検
出系から出力される。この検出系は主蒸気隔離弁90%
ストローク位置でスクラム作動要求信号8を出力するよ
うに構成されている。時間遅れ部3は、スクラム作動要
求信号8を入力し、1〜2秒の時間遅れを持たせ、補正
スクラム作動要求信号9を出力している。ATWS信号
制御部4は、平均出力モニタ信号10と補正スクラム作
動要求信号9を入力し、厳しいATWSか穏やかなAT
WSかを判定し、厳しいATWSであればATWS信号
11aを出力し、穏やかなATWSであればATWS信
号11bを出力する。FIG. 1 is a block diagram showing the configuration of one embodiment. The first determination section 1 includes a time delay section 3 and an ATWS signal control section 4.
It is composed of. The second determination unit 2 is a RPT/A
It is composed of an RI operation signal control section 5, an ARI operation signal control section 6, and a reactor pressure high signal control section 7. The scram operation request signal 8 is output from a detection system provided in a main steam isolation valve (not shown) and provided separately from the reactor safety protection system. This detection system is the main steam isolation valve 90%
It is configured to output a scram operation request signal 8 at the stroke position. The time delay section 3 inputs the scram operation request signal 8, provides a time delay of 1 to 2 seconds, and outputs a corrected scram operation request signal 9. The ATWS signal control unit 4 inputs the average output monitor signal 10 and the correction scram operation request signal 9, and selects either severe ATWS or mild ATWS.
It is determined whether it is WS, and if the ATWS is severe, the ATWS signal 11a is output, and if the ATWS is gentle, the ATWS signal 11b is output.
原子炉圧力信号12は、図示しない原子炉圧力センサー
から出力され、原子炉圧力高信号制御部7に入力されて
いる。原子炉圧力高信号制御部7は。The reactor pressure signal 12 is output from a reactor pressure sensor (not shown) and input to the reactor pressure high signal control section 7. The reactor pressure high signal control section 7 is.
原子炉圧力信号12が設定値以上であれば原子炉圧力高
信号13を出力する。If the reactor pressure signal 12 is higher than the set value, a reactor pressure high signal 13 is output.
RPT/ARI作動信号制御部5は、ATWS信号11
aと原子炉圧力高信号13を入力し、これら2つの信号
が成立していればARI作動要求信号14aとRPT信
号15を出力する。ARI作動信号制御部6は、ATW
S信号11bと原子炉圧力高信号13を入力し、これら
2つの信号が成立していればARI作動要求償号14b
を出力する。The RPT/ARI activation signal control unit 5 receives the ATWS signal 11
a and the reactor pressure high signal 13 are input, and if these two signals are established, the ARI operation request signal 14a and the RPT signal 15 are output. The ARI activation signal control unit 6 is an ATW
Input the S signal 11b and the reactor pressure high signal 13, and if these two signals are established, the ARI operation demand compensation signal 14b
Output.
ATVS信号制御部4の判定条件を第2図に示す、補正
スクラム作動要求信号入であって(すなわち、スクラム
作動要求「あり」の状態であって)(20)、かつ平均
出力モニタ信号が定格出力の80%以上であれば(21
) 、厳しいATWSと判定される(22)、補正スク
ラム作動要求信号人であって(23)。The judgment conditions of the ATVS signal control unit 4 are shown in FIG. 2, as shown in FIG. If it is 80% or more of the output (21
), is determined to be a severe ATWS (22), and is a correction scram operation request signal person (23).
平均出力モニタ信号が定格出力の2%〜80%であれば
(24)、穏やかなATWSと判定される(25)。If the average output monitor signal is between 2% and 80% of the rated output (24), a mild ATWS is determined (25).
補正スクラム作動要求信号人であって(26) 、平均
出力モニタ信号が定格出力の2%未満であれば(27)
、スクラム成功と判定される(2g)。If the corrected scram operation request signal is (26) and the average output monitor signal is less than 2% of the rated output (27)
, the scrum is determined to be successful (2g).
ここで定格出力の80%でしきい値を設けた意味は、主
蒸気逃がし安全弁の定格主蒸気流量に対する容量に余裕
を見た出力であり、80%程度以下の出力では原子炉圧
力の急激な上昇はないと判断できるからである。2%は
、平均出力モニタの誤差を考慮したもので、2%未満な
ら原子炉安全保護系によるスクラムが成功したと判断で
きる。Here, the meaning of setting the threshold at 80% of the rated output is to set the output with a margin in the capacity of the main steam relief safety valve for the rated main steam flow rate, and at an output of about 80% or less, there is a sudden increase in reactor pressure. This is because it can be determined that there will be no increase. 2% takes into account the error of the average output monitor, and if it is less than 2%, it can be determined that the scram by the reactor safety protection system was successful.
原子炉圧力高信号制御部7の設定値を第3図に示す、第
3図は、縦軸に原子炉圧力をとり、図中点線で示す従来
のRPT/ARI用原子炉圧力高原子炉圧力高設定値3
0線で示す主蒸気逃がし安全弁最高段設定圧31、図中
2点破線で示す主蒸気逃がし安全弁第1段段定圧32、
及び図中実線で示す本実施例の原子炉圧力高設定値33
を並べて示したものである。従来のRPT/ARI用原
子炉圧力高原子炉圧力高設定値30し安全弁最高段設定
圧31よりも高く設定されていたが1本実施例の原子炉
圧力高設定値33は主蒸気逃がし安全弁第1段設定圧3
2よりも誤差、余裕を見て約0.5Icg/J低く設定
されている。The set values of the reactor pressure high signal control unit 7 are shown in FIG. 3. In FIG. 3, the vertical axis shows the reactor pressure, and the conventional RPT/ARI reactor pressure high reactor pressure is shown by the dotted line in the figure. High setting value 3
The main steam relief safety valve highest stage setting pressure 31 is shown by the 0 line, the main steam relief safety valve first stage constant pressure 32 is shown by the two-dot broken line in the figure,
and the reactor pressure height setting value 33 of this example shown by the solid line in the figure.
are shown side by side. The conventional reactor pressure high setting value 30 for RPT/ARI was set higher than the safety valve highest stage setting pressure 31, but the reactor pressure high setting value 33 in this embodiment is higher than the main steam relief safety valve stage setting value 31. 1st stage setting pressure 3
It is set approximately 0.5 Icg/J lower than 2, considering the error and margin.
次に、この実施例の作用について第1図を参照して説明
する。Next, the operation of this embodiment will be explained with reference to FIG.
主蒸気隔離弁全閉/全制御棒挿入失敗ATWSの場合に
ついて示す、主蒸気隔離弁全開の際に原子炉安全保護系
とは別に設けた検出系から、主蒸気隔離弁90%ストロ
ーク位置でスクラム作動要求信号8が発せられる。制御
棒が挿入される遅れを考慮し、時間遅れ部3でスクラム
作動要求信号8に時間遅れ(1〜2秒)を持たせて補正
スクラム作動要求信号9とする。補正スクラム作動要求
信号9と平均出力モニタ信号10を入力したATWS信
号制御部4は厳しいATWSか穏やかなATWSかを判
定する。この場合は、全制御棒挿入失敗ATWSである
から、出力は少なくとも100%以上である。したがっ
て厳しいATWSと判定され(第2図符号22)、厳し
いATWSを示すATVS信号11aが出力される。This shows the case of main steam isolation valve fully closed/all control rod insertion failure ATWS.When the main steam isolation valve is fully open, a scram is detected from the detection system installed separately from the reactor safety protection system at the main steam isolation valve 90% stroke position. An actuation request signal 8 is issued. Taking into account the delay in inserting the control rods, a time delay unit 3 adds a time delay (1 to 2 seconds) to the scram operation request signal 8 to generate a corrected scram operation request signal 9. The ATWS signal control unit 4, which receives the corrected scram operation request signal 9 and the average output monitor signal 10, determines whether it is a severe ATWS or a gentle ATWS. In this case, all control rods have failed to be inserted into the ATWS, so the output is at least 100% or more. Therefore, it is determined that the ATWS is severe (reference numeral 22 in FIG. 2), and an ATVS signal 11a indicating the severe ATWS is output.
一方、原子炉圧力は主蒸気隔離弁全開のため急上昇する
。原子炉圧力センサーで検出された原子炉圧力信号12
は、原子炉圧力高信号制御部7に入力され、予め設定さ
れた第3図の原子炉圧力高段高信号13が出力される。Meanwhile, the reactor pressure rises rapidly due to the main steam isolation valve being fully opened. Reactor pressure signal 12 detected by reactor pressure sensor
is input to the reactor pressure high signal control unit 7, and a preset reactor pressure high stage high signal 13 shown in FIG. 3 is output.
ATWS信号11aと原子炉圧力高信号13はRPT/
ARI作動信号制御部5に入力され、入力された2つの
信号が成立しているので、ARI作動要求信号14bと
RPT信号15が出力される。このARI作動要求償号
14aを受けてARIがイRPT信号15を受けてRP
Tが、それぞれ作動する。これにより、主蒸気隔離弁全
閉による初期圧力の急上昇はRPTで、圧力抑制室のプ
ール水温の上昇は、ARIで完全に抑えられ原子炉は安
全に停止される。ATWS signal 11a and reactor pressure high signal 13 are RPT/
Since the two input signals are input to the ARI activation signal control section 5 and established, the ARI activation request signal 14b and the RPT signal 15 are output. In response to this ARI operation request signal 14a, ARI receives RPT signal 15 and performs RP.
T respectively operate. As a result, the sudden rise in initial pressure due to the full closure of the main steam isolation valve is completely suppressed by RPT, and the rise in pool water temperature in the pressure suppression chamber is completely suppressed by ARI, and the reactor is safely shut down.
次に定格出力運転中の沸騰水型原子炉で何らかの原因で
主蒸気隔離弁が全閉しかつ制御棒が半数しか挿入されな
かった場合について示す。この場合、従来のRPT/A
RI設定圧であれば、圧力上昇があまり厳しくないため
に原子炉圧力は第3図のRPT/ARI用原子炉圧力高
原子炉圧力高設定値30い、したがって、ある程度の出
力を持ったまま運転が続けられる。しかし、原子炉圧力
は主蒸気逃がし安全弁の設定圧より上昇する。このとき
、原子炉は隔離状態であるから発生蒸気は主蒸気逃がし
安全弁を経て圧力抑制室へ放出される。Next, a case will be described in which the main steam isolation valve is fully closed for some reason in a boiling water reactor operating at rated power, and only half of the control rods are inserted. In this case, conventional RPT/A
With the RI set pressure, the pressure rise is not so severe that the reactor pressure is set at 30, which is the high reactor pressure for RPT/ARI shown in Figure 3. Therefore, the reactor pressure can be operated with a certain level of output. can continue. However, the reactor pressure rises above the set pressure of the main steam relief safety valve. At this time, since the reactor is in an isolated state, the generated steam is released into the pressure suppression chamber via the main steam relief safety valve.
そして、圧力抑制室のプール水温度は上昇し、運動員に
何らかの対応を迫る温度まで上昇する。Then, the temperature of the pool water in the pressure suppression chamber rises, reaching a temperature that forces the campaigners to take some sort of response.
本実施例では、主蒸気隔離弁全閉の際に、主蒸気隔離弁
に設けた検出系から主蒸気隔離弁90%ストローク位置
でスクラム作動要求信号8が出力される。制御棒が挿入
される遅れを考慮して時間遅れ回路2でスクラム作動要
求信号8に時間遅れ(1〜2秒)を持たせ補正スクラム
作動要求信号9とする。補正スクラム作動要求信号9と
平均出力モニタ信号10を入力したATWS信号制御部
4は厳しいATWSか穏やかなATWSかを判定する。In this embodiment, when the main steam isolation valve is fully closed, the scram operation request signal 8 is output from the detection system provided in the main steam isolation valve at the 90% stroke position of the main steam isolation valve. In consideration of the delay in inserting the control rods, a time delay circuit 2 adds a time delay (1 to 2 seconds) to the scram operation request signal 8 to generate a corrected scram operation request signal 9. The ATWS signal control unit 4, which receives the corrected scram operation request signal 9 and the average output monitor signal 10, determines whether it is a severe ATWS or a gentle ATWS.
この場合、平均出力モニタ信号が例えば70%程度であ
るので穏やかなATWSと判定され、(第2図符号25
)、穏やかなATWSを示すATWS信号11bが出力
される。In this case, since the average output monitor signal is, for example, about 70%, it is determined that it is a mild ATWS (reference numeral 25 in Figure 2).
), an ATWS signal 11b indicating a mild ATWS is output.
一方、原子炉圧力は、主蒸気隔離弁全閉のために急激に
蒸気が遮断されるため上昇する(急激には上昇しない)
、原子炉圧力センサーで検出された原子炉圧力信号12
は、yX子炉圧力高信号制御部7に入力される。ここで
予めこのような部分ATWSに対処するように設定され
た第3図の原子炉圧力高設定値33と原子炉圧力信号1
2が比較され。On the other hand, the reactor pressure rises (it does not rise suddenly) because the main steam isolation valve is fully closed and the steam is suddenly cut off.
, reactor pressure signal 12 detected by the reactor pressure sensor
is input to the yX child reactor pressure high signal control section 7. Here, the reactor pressure high setting value 33 and the reactor pressure signal 1 in FIG. 3, which are set in advance to deal with such a partial ATWS, are
2 are compared.
原子炉圧力信号12が原子炉圧力高設定値33よりも高
いので、原子炉圧力高信号13が出力される。ATWS
信号11bと原子炉圧力高信号12はARI作動信号制
御部6に入力され、入力された2つの信号が成立してい
るのでARI作動要求償号14bを出力する。このAR
I作動要求償号14bを受けてARIが作動し原子炉は
安全に停止する。Since the reactor pressure signal 12 is higher than the reactor pressure high set value 33, the reactor pressure high signal 13 is output. ATWS
The signal 11b and the reactor pressure high signal 12 are input to the ARI activation signal control unit 6, and since the two input signals are established, the ARI activation request signal 14b is output. This AR
In response to the I-operation request signal 14b, the ARI is activated and the reactor is safely shut down.
次に本実施例の効果を第4図を参照して説明する。第4
図は、横軸にATWS発生からの時間、縦軸に圧力抑制
室プール水温度をとって示すグラフである。従来装置に
比較して、原子炉圧力高設定値を低く設定したことで、
穏やかなATWSに対して圧力抑制室のプール水温度の
上昇を抑えられることがわかる。Next, the effects of this embodiment will be explained with reference to FIG. Fourth
The figure is a graph in which the horizontal axis represents the time since the occurrence of ATWS, and the vertical axis represents the pressure suppression chamber pool water temperature. Compared to conventional equipment, the reactor pressure high setting value is set lower,
It can be seen that the rise in pool water temperature in the pressure suppression chamber can be suppressed for mild ATWS.
以上、本実施例によれば、最も厳しい定格出力運転中の
主蒸気隔離弁前閉/全制御捧挿入失敗ATWS以外の事
象、例えば初期出力が低いATWS事象、及び部分制御
棒失敗ATWS (いわゆる部分ATWS)時のような
原子炉圧力がそれほど上昇しないATWSの際にも原子
炉圧力高設定値を主蒸気逃がし安全弁の第1段設定圧よ
り低く設定し、ATWS信号制御部を設けたことにより
。As described above, according to this embodiment, events other than main steam isolation valve pre-closing/full control rod insertion failure ATWS during the most severe rated output operation, such as ATWS events with low initial output, and partial control rod failure ATWS (so-called partial The reactor pressure high set value is set lower than the first stage set pressure of the main steam relief safety valve even during ATWS, where the reactor pressure does not rise as much as during ATWS), and an ATWS signal control section is provided.
ARIを誤動作なく確実に作動させることができ、圧力
抑制室のプール水温度を低く保ったまま抑えられ、本来
のARIの効果を十分発揮でき、かつ運転員にATWS
に対応するための過大な負担をかけることなく原子炉を
安全に停止出来る。The ARI can be operated reliably without malfunction, the temperature of the pool water in the pressure suppression chamber can be kept low, the original ARI effect can be fully demonstrated, and the ATWS can be easily used by operators.
It is possible to safely shut down the reactor without placing an excessive burden on the reactor.
本発明によれば、初期の原子炉圧力上昇が厳しくないA
TWS時にもARIを作動させることができ、かつ厳し
くないATWS時にはRPTを作動、させず、ATWS
以外の事象ではARIの誤動作を低減できるので、原子
力発電所の安全性を大幅に向上できる。According to the present invention, the initial reactor pressure rise is not severe A
ARI can be activated even during TWS, and RPT can be activated or not activated during less severe ATWS.
Since ARI malfunctions can be reduced in other events, the safety of nuclear power plants can be greatly improved.
第1図から第4図は本発明の一実施例を示し。
第1図は構成を示すブロック図、第2図はATWS信号
制御部におけるATVS判定条件を示す図、第3図は原
子炉圧力高信号制御部における原子炉圧力高設定値を示
す図、第4図は圧力抑制室のプール水の温度変化を示す
グラフである。
1・・・第1の判定部、
2・・・第2の判定部、
8・・・スクラム作動要求信号、
10・・・平均出力モニタ信号、
11a、 1lb−A T W S信号、12・・・原
子炉圧力信号、
14a、 14b−A RI作動要求信号、15・・・
RPT信号。
32・・・主蒸気逃がし安全弁第1段設定圧、33・・
・原子炉圧力高設定値。
代理人 弁理士 則 近 憲 佑
同 第子丸 健
第
図
第
図1 to 4 show one embodiment of the present invention. Figure 1 is a block diagram showing the configuration, Figure 2 is a diagram showing ATVS judgment conditions in the ATWS signal control unit, Figure 3 is a diagram showing the reactor pressure high setting value in the reactor pressure high signal control unit, and Figure 4 is a diagram showing the reactor pressure high setting value in the reactor pressure high signal control unit. The figure is a graph showing changes in the temperature of pool water in the pressure suppression chamber. DESCRIPTION OF SYMBOLS 1... First judgment part, 2... Second judgment part, 8... Scram operation request signal, 10... Average output monitor signal, 11a, 1lb-ATWS signal, 12. ...Reactor pressure signal, 14a, 14b-A RI operation request signal, 15...
RPT signal. 32...Main steam relief safety valve first stage set pressure, 33...
・Reactor pressure high setting value. Agent Patent Attorney Nori Ken Yudo Daishimaru Ken
Claims (3)
力し、スクラム不能時の過渡変動の状態が厳しい過渡変
動であるか穏やかな過渡変動であるかを判定する第1の
判定部と、 原子炉圧力信号を入力し、この原子炉圧力信号が設定値
以上であって且つ前記第1の判定部にて判定された過渡
変動が厳しい過渡変動である場合に冷却材再循環ポンプ
トリップ信号と代替制御棒挿入作動要求信号とを出力し
、前記原子炉出力信号が設定値以上であって且つ前記第
1の判定部にて判定された過渡変動が穏やかな過渡変動
である場合に代替制御棒挿入作動要求信号を出力する第
2の判定部と、 から成ることを特徴とする原子炉出力制御装置。(1) a first determination unit that inputs a reactor output signal and a scram operation request signal and determines whether the state of transient fluctuation when scram is disabled is severe transient fluctuation or gentle transient fluctuation; A reactor pressure signal is input, and when this reactor pressure signal is equal to or higher than a set value and the transient fluctuation determined by the first determining section is a severe transient fluctuation, a coolant recirculation pump trip signal is determined. An alternative control rod insertion operation request signal is output, and when the reactor output signal is equal to or higher than a set value and the transient fluctuation determined by the first determining section is a gentle transient fluctuation, the alternative control rod is inserted. A nuclear reactor power control device comprising: a second determination unit that outputs an insertion operation request signal.
あることを特徴とする請求項1記載の原子炉出力制御装
置。(2) The reactor power control device according to claim 1, wherein the output signal of the nuclear reactor is an average power monitor signal.
クラム作動要求「あり」の状態であって且つ平均出力モ
ニタ信号が約80%以上である場合に厳しい過渡変動で
あると判定し、スクラム作動要求信号がスクラム作動要
求「あり」の状態であって且つ平均出力モニタ信号が約
2%から80%である場合に穏やかな過渡変動であると
判定することを特徴とする請求項2記載の原子炉出力制
御装置。 4 前記原子炉圧力信号の設定値は、主蒸気逃がし安全
弁の第1段設定圧よりも低く設定されて成ることを特徴
とする請求項1記載の原子炉出力制御装置。(3) the first determination unit determines that there is a severe transient fluctuation when the scram operation request signal is in a state where the scram operation request is “present” and the average output monitor signal is about 80% or more; 3. A mild transient fluctuation is determined when the scram operation request signal is in the scram operation request state and the average output monitor signal is approximately 2% to 80%. nuclear reactor power control device. 4. The reactor power control device according to claim 1, wherein the set value of the reactor pressure signal is set lower than the first stage set pressure of the main steam relief safety valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1084656A JPH02264886A (en) | 1989-04-05 | 1989-04-05 | Apparatus for output control of reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1084656A JPH02264886A (en) | 1989-04-05 | 1989-04-05 | Apparatus for output control of reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02264886A true JPH02264886A (en) | 1990-10-29 |
Family
ID=13836762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1084656A Pending JPH02264886A (en) | 1989-04-05 | 1989-04-05 | Apparatus for output control of reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02264886A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102024503A (en) * | 2010-05-27 | 2011-04-20 | 中国核电工程有限公司 | Pneumatic auxiliary feed water pump of pressurized water reactor power station |
CN103985421A (en) * | 2014-05-06 | 2014-08-13 | 中科华核电技术研究院有限公司 | Method for improving security of nuclear power unit during failure of emergency shut-down of reactor |
CN104181420A (en) * | 2014-08-20 | 2014-12-03 | 中广核工程有限公司 | Response time testing method and system of nuclear power station ATWS system |
-
1989
- 1989-04-05 JP JP1084656A patent/JPH02264886A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102024503A (en) * | 2010-05-27 | 2011-04-20 | 中国核电工程有限公司 | Pneumatic auxiliary feed water pump of pressurized water reactor power station |
CN103985421A (en) * | 2014-05-06 | 2014-08-13 | 中科华核电技术研究院有限公司 | Method for improving security of nuclear power unit during failure of emergency shut-down of reactor |
CN104181420A (en) * | 2014-08-20 | 2014-12-03 | 中广核工程有限公司 | Response time testing method and system of nuclear power station ATWS system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018077231A (en) | Methods for protection of nuclear reactors from thermal hydraulic/neutronic core instability | |
US5528639A (en) | Enhanced transient overpower protection system | |
JPH02264886A (en) | Apparatus for output control of reactor | |
JP2965312B2 (en) | Emergency condenser system | |
JPS59184887A (en) | Depressing device of reactor container | |
JPH05119189A (en) | Nuclear reactor injection water flow automatic controller | |
JP2818941B2 (en) | Boiling water reactor | |
JP3095485B2 (en) | Full capacity turbine bypass nuclear power plant | |
JP3095468B2 (en) | Reactor scram suppression device | |
JPS6128893A (en) | Nuclear power plant | |
JPS6050318B2 (en) | Reactor control device | |
Liang¹ et al. | Overpressure Analysis of Second-Class Low Temperature Water Compaction in HPR1000 | |
JP2008157944A (en) | Protection system for and method of operating nuclear boiling water reactor | |
JPH06317691A (en) | Selected control rod inserting method | |
JPH11211886A (en) | Recovering method after full closure of main steam isolation valve | |
JPH0574037B2 (en) | ||
JPH043837B2 (en) | ||
JPH1130693A (en) | Transient relaxation system for nuclear reactor | |
JPH0517515B2 (en) | ||
JPS61139797A (en) | Closing device for isolating valve of main steam | |
JPS63195592A (en) | Output controller for natural circulation reactor | |
JPH06201880A (en) | Boric acid flowout prevention device | |
JPH02272394A (en) | Boric acid water charging device | |
JPS60166890A (en) | Inhibiting device for reactivity of reactor | |
JPH04104090A (en) | Pressure releasing apparatus for nuclear reactor |