JPH06201880A - Boric acid flowout prevention device - Google Patents

Boric acid flowout prevention device

Info

Publication number
JPH06201880A
JPH06201880A JP5000418A JP41893A JPH06201880A JP H06201880 A JPH06201880 A JP H06201880A JP 5000418 A JP5000418 A JP 5000418A JP 41893 A JP41893 A JP 41893A JP H06201880 A JPH06201880 A JP H06201880A
Authority
JP
Japan
Prior art keywords
reactor
core
boric acid
signal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5000418A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kuroda
義博 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5000418A priority Critical patent/JPH06201880A/en
Publication of JPH06201880A publication Critical patent/JPH06201880A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To prevent flowout of boric acid water by terminating the water injection to the core when the activation signal of low pressure emergency core cooling system, the activation signal of boric acid water injection system and the reactor water level high signal are actuated simultaneously. CONSTITUTION:The activation signal 40 of a low pressure core spray system as an activation signal of low pressure core cooling system actuated when the water level in a reactor pressure vessel lowers below a certain level, and the activation signals 41, 42 of low pressure coolant system are input to an OR gate 43. The output signal 44 of this OR gate 43 and the activation signal 45 of boric acid water injection system 45 are input to an AND gate 46. The output signal 47 of the gate 46 and reactor water level high signal 48 which is activated when the water level in the reactor pressure vessel is higher than a main steam line nozzle, are input to the AND circuit 49. If both conditions agree, this circuit 49 outputs a termination signal 50 of low pressure emergency core cooling system. When the temination signal 50 is actuated, the water injection and water level rise are terminated and the boric acid is kept in the core without flowout of coolant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子力発電プ
ラントのほう酸水注水系に関連するほう酸流出防止装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boric acid outflow prevention device related to a boric acid water injection system of a boiling water nuclear power plant.

【0002】[0002]

【従来の技術】一般に沸騰水型原子炉は図2の様に構成
されている。図2において、原子炉格納容器1内は、原
子炉圧力容器2を収容するドライウエル3と、プ―ル水
4を収容する圧力抑制室5とに区分されている。さらに
前記ドライウエル3下方にはベント管6が配設され他端
を前記プ―ル水4中に開放している。前記原子炉圧力容
器2内には炉心7が収容されている。この炉心7で昇温
された炉水は蒸発し、シュラウドヘッド8の上部に配設
された気水分離器9によって蒸気と水分が分離された
後、蒸気は蒸気乾燥器10によって乾燥される。この乾燥
された蒸気は主蒸気配管11から主蒸気隔離弁12,13を介
してタ―ビン14に導びかれる。このタ―ビン14で仕事さ
れた蒸気は復水器15によって凝縮されて復水となり、給
水配管16から給水ポンプ17を介して再たび原子炉圧力容
器2内に注入される。この注入された給水は、再循環配
管18を介して再循環ポンプ19で昇圧され、原子炉圧力容
器2内に配設されたジェットポンプ20を介して周囲の給
水を吸込んで炉心7の下方に導びかれる。前記主蒸気配
管11の主蒸気隔離弁12の上流側には主蒸気逃がし安全弁
21が配設されており、前記主蒸気配管11内の圧力が所定
値以上となった場合に動作し、この主蒸気配管11中の蒸
気を主蒸気逃がし配管22を介して圧力抑制室5のプ―ル
水4中に導びくようになっている。また、この圧力抑制
室5から低圧炉心スプレイポンプ23、高圧炉心スプレイ
ポンプ24を介して原子炉圧力容器2内の水位が所定値以
下となった時にプ―ル水4を炉心7の上方に導びく様に
低圧炉心スプレイ配管25、高圧炉心スプレイ配管26が配
設されている。そして、前記圧力抑制室5から低圧注水
ポンプ29を介して炉心7内に注水される低圧注水配管30
が配設されている。さらに前記原子炉圧力容器2にはほ
う酸水注入配管27を介してほう酸水注入タンク28が配設
されている。
2. Description of the Related Art Generally, a boiling water reactor is constructed as shown in FIG. In FIG. 2, the inside of the reactor containment vessel 1 is divided into a dry well 3 for accommodating the reactor pressure vessel 2 and a pressure suppression chamber 5 for accommodating the pool water 4. Further, a vent pipe 6 is arranged below the dry well 3 and the other end is opened to the pool water 4. A reactor core 7 is housed in the reactor pressure vessel 2. The reactor water whose temperature has been raised in the reactor core 7 evaporates, and the steam and water are separated by a steam separator 9 provided above the shroud head 8, and then the steam is dried by a steam dryer 10. The dried steam is introduced from the main steam pipe 11 to the turbine 14 through the main steam isolation valves 12 and 13. The steam worked in the turbine 14 is condensed by the condenser 15 to become condensed water, and is again injected into the reactor pressure vessel 2 from the water supply pipe 16 via the water supply pump 17. The injected feed water is boosted by the recirculation pump 19 through the recirculation pipe 18, sucks the surrounding feed water through the jet pump 20 arranged in the reactor pressure vessel 2, and moves below the reactor core 7. Be guided. A main steam relief valve is provided on the upstream side of the main steam isolation valve 12 in the main steam pipe 11.
21 is provided, which operates when the pressure in the main steam pipe 11 becomes equal to or higher than a predetermined value, and the steam in the main steam pipe 11 is released from the pressure suppression chamber 5 via the main steam release pipe 22. It is designed to lead into pool water 4. Further, when the water level in the reactor pressure vessel 2 falls below a predetermined value from the pressure suppression chamber 5 via the low pressure core spray pump 23 and the high pressure core spray pump 24, the pool water 4 is guided above the core 7. A low-pressure core spray pipe 25 and a high-pressure core spray pipe 26 are arranged like a crank. Then, a low-pressure water injection pipe 30 for injecting water from the pressure suppression chamber 5 into the core 7 via a low-pressure water injection pump 29.
Is provided. Further, a boric acid water injection tank 28 is arranged in the reactor pressure vessel 2 via a boric acid water injection pipe 27.

【0003】以上の構成において沸騰水型原子炉の通常
運転状態では炉心7で発生した蒸気は主蒸気管11を経て
タ―ビン14を回すことにより発電を行っている。この時
に、何らかの原因、例えば主蒸気隔離弁12,13全閉等の
原因で主蒸気が遮断される過渡変化が生じると圧力が上
昇して炉心内で発生したボイドが押しつぶされて減速効
果が増加することになる。これを受けて原子炉の出力も
上昇する。また、圧力が上昇してある設定点に達すると
逃がし安全弁21が作動して遮断された主蒸気を圧力抑制
室5のプ―ル水4中に放出して圧力上昇を抑える。
In the normal operation state of the boiling water reactor having the above-mentioned structure, the steam generated in the core 7 is generated by rotating the turbine 14 through the main steam pipe 11. At this time, if a transient change occurs that shuts off the main steam for some reason, such as the main steam isolation valves 12 and 13 being fully closed, the pressure rises and the voids generated in the core are crushed, increasing the deceleration effect. Will be done. In response to this, the output of the nuclear reactor also rises. Further, when the pressure rises to a certain set point, the relief safety valve 21 is actuated to release the shut off main steam into the pool water 4 in the pressure suppression chamber 5 to suppress the pressure rise.

【0004】このように圧力急上昇に伴うタ―ビン主蒸
気加減弁急閉,タ―ビン主蒸気止め弁急閉,主蒸気隔離
弁閉鎖のような過渡変化が生じた場合、出力上昇及び圧
力上昇を抑制するために、沸騰水型原子炉では各弁の9
0%ストロ―ク位置を検出して原子炉を安全に停止させ
るようになっている。
In this way, when a transient change occurs due to the rapid increase in the pressure of the turbine main steam control valve, the turbine main steam stop valve, and the main steam isolation valve, the output and the pressure increase. In order to suppress the
It detects the 0% stroke position and safely shuts down the reactor.

【0005】ところが、非常に発生確率は小さく通常は
考慮する必要はないが、過渡変化時に原子炉安全保護系
によるスクラムに失敗した場合(以上ATWSと略す)
には、原子炉圧力高信号により再循環ポンプトリップ信
号が作動して再循環ポンプが停止する。そして炉心流量
を減少させて炉心ボイド率を増加させることにより、出
力抑制を行う。この様にして出力は抑制されても、まだ
出力が維持されているため逃がし安全弁21からは、引き
続き主蒸気が放出され、圧力抑制室5のプ―ル水温は上
昇を続ける。そこでこのような場合には手動でほう酸水
注入系を作動させて、ほう酸水を炉心内に注入して負の
反応度を添加して原子炉を最終的に停止させることが出
来る。
However, the probability of occurrence is very small and usually need not be considered, but when scram by the reactor safety protection system fails during transient change (abbreviated as ATWS above).
In response to the high reactor pressure signal, the recirculation pump trip signal is activated and the recirculation pump is stopped. Then, the output is suppressed by decreasing the core flow rate and increasing the core void rate. Even if the output is suppressed in this way, since the output is still maintained, main steam is continuously released from the relief safety valve 21, and the pool water temperature in the pressure suppression chamber 5 continues to rise. Therefore, in such a case, the boric acid water injection system can be manually operated to inject boric acid water into the core to add a negative reactivity to finally stop the reactor.

【0006】主蒸気が遮断されたときには、復水器への
戻り水がなくなるので、晢くすると給水は喪失し、その
後は高圧の非常用炉心冷却系(高圧炉心スプレイ系、高
圧注水系)により注水が続けられて原子炉の水位は維持
される。この時、この高圧の非常用炉心冷却系作動しな
くても、その後備としての低圧用炉心冷却系(低圧炉心
スプレイ系、低圧注水系)が注水して水位維持をはかる
様に構成されている。
When the main steam is shut off, there is no return water to the condenser, so the supply of water will be lost when the main steam is shut off, and thereafter the high pressure emergency core cooling system (high pressure core spray system, high pressure injection system) Water injection is continued to maintain the reactor water level. At this time, even if this high-pressure emergency core cooling system does not operate, the low-pressure core cooling system (low-pressure core spray system, low-pressure water injection system) as a reserve is configured to inject water to maintain the water level. .

【0007】[0007]

【発明が解決しようとする課題】しかしこの低圧の非常
用炉心冷却系は本来冷却材喪失事故を想定して設計され
ているため、注水開始後は出来るだけ停止せずに注水を
続けるようになっている。また、低圧の非常用炉心冷却
系は容量が大きいので注水開始後短時間で原子炉は満水
となる。
However, since this low-pressure emergency core cooling system was originally designed assuming a coolant loss accident, after the start of water injection, water injection is continued without stopping as much as possible. ing. Further, since the low pressure emergency core cooling system has a large capacity, the reactor is filled with water in a short time after the start of water injection.

【0008】よって、ほう酸水系が作動している状態で
低圧の非常用炉心冷却系が作動した場合には上記の理由
により原子炉が満水して注水されたほう酸が逃がし安全
弁を経て圧力抑制室プ―ルに流失してしまう恐れがあっ
た。本発明は上記の課題を解消するためになされたもの
で、ほう酸水の流失を防止することのできるほう酸流出
防止装置を得ることを目的とする。
Therefore, when the low-pressure emergency core cooling system operates while the boric acid water system is operating, the reactor is filled with water and the injected boric acid escapes through the safety valve due to the above reasons. -There was a risk that she would be washed away. The present invention has been made to solve the above problems, and an object of the present invention is to obtain a boric acid outflow prevention device that can prevent the flow of boric acid water.

【0009】[0009]

【課題を解決するための手段】上記目的を達成させるた
めに、本発明においては、事故時に原子炉の炉心内に冷
却材を注入する低圧非常用炉心冷却系の注水ポンプを起
動させる第1の起動信号と、事故時に炉心内に制御棒が
挿入されない場合に炉心内にほう酸水を注入するほう酸
水注入系の注水ポンプを起動させる第2の起動信号と、
前記炉心を収容する原子炉圧力容器内の原子炉水位が予
め定められた値を越えた時に発信される原子炉水位高信
号の三信号が同時に発信された時に、前記低圧非常用炉
心冷却系の炉心への注水を停止させる停止信号を発信し
て成ることを特徴とするほう酸流出防止装置を提供す
る。
In order to achieve the above object, the first aspect of the present invention is to start a water injection pump of a low pressure emergency core cooling system for injecting a coolant into a reactor core in the event of an accident. A start signal and a second start signal for starting a water injection pump of a boric acid water injection system for injecting boric acid water into the core when a control rod is not inserted into the core at the time of an accident;
When three signals of a reactor water level high signal transmitted when the reactor water level in the reactor pressure vessel accommodating the reactor core exceeds a predetermined value, the low pressure emergency core cooling system Provided is a boric acid outflow prevention device characterized by transmitting a stop signal for stopping water injection to a core.

【0010】[0010]

【作用】この様に構成されたほう酸流出防止装置におい
ては、ほう酸水が原子炉内に注水され、低圧非常用炉心
冷却系から冷却水が注水された後に、原子炉水位が予め
定められた値以上となった場合に、低圧非常用炉心冷却
系からの注水が停止される。よって、ほう酸水注水系か
ら放出されたほう酸は、原子炉内が満水になることによ
って系外へ放出されることがないので有効に原子炉内に
保持される。
In the boric acid outflow prevention device configured as described above, after the boric acid water is injected into the reactor and the cooling water is injected from the low pressure emergency core cooling system, the reactor water level is set to a predetermined value. When the above is reached, water injection from the low pressure emergency core cooling system is stopped. Therefore, the boric acid released from the boric acid water injection system is not released to the outside of the system due to full water in the reactor, so that it is effectively retained in the reactor.

【0011】[0011]

【実施例】以下、本発明に係るほう酸流出防止装置の一
実施例を図1を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the boric acid outflow prevention device according to the present invention will be described below with reference to FIG.

【0012】図1において、原子炉圧力容器内の水位が
一定値以下となった場合に発信される低圧炉心冷却系の
作動信号である低圧炉心スプレイ系作動信号40および低
圧注水系作動信号41,42はORゲ―ト43に入力される。
このORゲ―ト43の出力信号44とほう酸注水系を作動さ
せるほう酸注水系作動信号45はANDゲ―ト46に入力さ
れる。このANDゲ―ト46の出力信号47と原子炉圧力容
器内の水位が主蒸気管ノズル位置より高い場合に出力さ
れる原子炉水位高信号48はAND回路49に入力される。
そして、このAND回路49は双方の条件が合致した場
合、低圧非常用炉心冷却系停止信号50を出力する構成と
なっている。
In FIG. 1, a low-pressure core spray system operation signal 40 and a low-pressure water injection system operation signal 41, which are operation signals of the low-pressure core cooling system, which are transmitted when the water level in the reactor pressure vessel falls below a certain value. 42 is input to the OR gate 43.
The output signal 44 of the OR gate 43 and the boric acid water injection system operation signal 45 for operating the boric acid water injection system are input to the AND gate 46. The output signal 47 of the AND gate 46 and the reactor water level high signal 48 output when the water level in the reactor pressure vessel is higher than the main steam pipe nozzle position are input to the AND circuit 49.
The AND circuit 49 outputs the low pressure emergency core cooling system stop signal 50 when both conditions are met.

【0013】よって、低圧非常用炉心冷却系停止信号が
発せられると低圧非常用炉心冷却系の注水が停止し水位
の上昇が止まって原子炉の冷却材が主蒸気管ノズルから
流出することなくほう酸は原子炉内に保持される。
Therefore, when the low-pressure emergency core cooling system stop signal is issued, the injection of water into the low-pressure emergency core cooling system is stopped, the rise of the water level is stopped, and the coolant of the reactor does not flow out from the main steam pipe nozzle. Are held in the reactor.

【0014】[0014]

【発明の効果】以上の説明で明らかなように本発明のほ
う酸流出防止装置はATWS時に高圧の非常用炉心系が
何らかの原因で機能せず、低圧の非常用炉心系にのみ注
水を依存しなければならない場合にほう酸の原子炉外へ
の流出を防止するという優れた効果が得られる。
As is apparent from the above description, in the boric acid outflow prevention device of the present invention, the high pressure emergency core system does not function for some reason during ATWS, and the low pressure emergency core system must depend on water injection only. The excellent effect of preventing the outflow of boric acid out of the reactor is obtained when it is necessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関るほう酸流出防止装置の一実施例に
組み込まれる論理演算部のブロック線図。
FIG. 1 is a block diagram of a logical operation unit incorporated in an embodiment of a boric acid outflow prevention device according to the present invention.

【図2】沸騰水型原子力プラントの従来例を示す概略系
統図。
FIG. 2 is a schematic system diagram showing a conventional example of a boiling water nuclear power plant.

【符号の説明】[Explanation of symbols]

2…原子炉圧力容器 7…炉心 11…主蒸気配管 23…低圧炉心スプレイポ
ンプ 25…低圧炉心スプレイ配管 27…ほう酸水注入配管 28…ほう酸水注入タンク 29…低圧注水ポンプ 30…低圧注水配管
2 ... Reactor pressure vessel 7 ... Core 11 ... Main steam pipe 23 ... Low pressure core spray pump 25 ... Low pressure core spray pipe 27 ... Boric acid water injection pipe 28 ... Boric acid water injection tank 29 ... Low pressure water injection pump 30 ... Low pressure water injection pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 事故時に原子炉の炉心内に冷却材を注入
する低圧非常用炉心冷却系の注水ポンプを起動させる第
1の起動信号と、事故時に炉心内に制御棒が挿入されな
い場合に炉心内にほう酸水を注入するほう酸水注入系の
注水ポンプを起動させる第2の起動信号と、前記炉心を
収容する原子炉圧力容器内の原子炉水位が予め定められ
た値を越えた時に発信される原子炉水位高信号の三信号
が同時に発信された時に、前記低圧非常用炉心冷却系の
炉心への注水を停止させる停止信号を発信して成ること
を特徴とするほう酸流出防止装置。
1. A first start signal for starting a water injection pump of a low pressure emergency core cooling system for injecting a coolant into a reactor core at the time of an accident, and a core when a control rod is not inserted in the core at the time of the accident. A second activation signal for activating a water injection pump of a boric acid water injection system for injecting boric acid water into the reactor, and a signal when the reactor water level in the reactor pressure vessel accommodating the core exceeds a predetermined value. A boric acid outflow prevention device, which transmits a stop signal for stopping water injection into the core of the low-pressure emergency core cooling system when three signals of the reactor water level high signal are simultaneously transmitted.
JP5000418A 1993-01-06 1993-01-06 Boric acid flowout prevention device Pending JPH06201880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5000418A JPH06201880A (en) 1993-01-06 1993-01-06 Boric acid flowout prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5000418A JPH06201880A (en) 1993-01-06 1993-01-06 Boric acid flowout prevention device

Publications (1)

Publication Number Publication Date
JPH06201880A true JPH06201880A (en) 1994-07-22

Family

ID=11473259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5000418A Pending JPH06201880A (en) 1993-01-06 1993-01-06 Boric acid flowout prevention device

Country Status (1)

Country Link
JP (1) JPH06201880A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871506A (en) * 2012-12-11 2014-06-18 中国核动力研究设计院 High-pressure safe injection system for nuclear power station
CN106887259A (en) * 2015-12-15 2017-06-23 中国核动力研究设计院 A kind of nuclear power plant fast and safely reactor shut-off system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871506A (en) * 2012-12-11 2014-06-18 中国核动力研究设计院 High-pressure safe injection system for nuclear power station
CN106887259A (en) * 2015-12-15 2017-06-23 中国核动力研究设计院 A kind of nuclear power plant fast and safely reactor shut-off system

Similar Documents

Publication Publication Date Title
US3859166A (en) Combined storage tank and sump for nuclear reactor
US5349616A (en) Reactor cooling system for boiling water reactors
JP2856865B2 (en) Core cooling equipment for nuclear power plants
JPH06201880A (en) Boric acid flowout prevention device
CN111916233A (en) Small pressurized water reactor safety injection system combining passive and active functions
JP2003270374A (en) Containment spray control device
JPH02222878A (en) Residual heat removal system of nuclear power plant
JPS62237397A (en) Safety protective device for boiling water type reactor
JPH0740073B2 (en) Automatic decompression system
JP3984038B2 (en) Boiling water nuclear power plant
JPH05119189A (en) Nuclear reactor injection water flow automatic controller
JPH02264886A (en) Apparatus for output control of reactor
JPS6118155B2 (en)
JP2736191B2 (en) Reactor core cooling system
JPS61243397A (en) Emergency core cooling device for nuclear reactor
JPS6050318B2 (en) Reactor control device
JPS5945116B2 (en) Emergency reactor cooling system
JPH02272394A (en) Boric acid water charging device
JPS61169796A (en) Supply device for coolant of boiling water type reactor
JPS60171495A (en) Controller for automatic decompression system of boiling-water type nuclear power plant
JPS59126288A (en) Feedwater device for bwr type reactor
JPH01276097A (en) Emergency reactor core cooling system
JPS61241697A (en) Automatic decompression device for nuclear reactor
JPS62251698A (en) Nuclear-reactor water-level lowering reducer
JPS62228197A (en) Light water type reactor