JPH063479A - Control equipment of reactor power - Google Patents

Control equipment of reactor power

Info

Publication number
JPH063479A
JPH063479A JP4160576A JP16057692A JPH063479A JP H063479 A JPH063479 A JP H063479A JP 4160576 A JP4160576 A JP 4160576A JP 16057692 A JP16057692 A JP 16057692A JP H063479 A JPH063479 A JP H063479A
Authority
JP
Japan
Prior art keywords
reactor
flow rate
injection system
pressure
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4160576A
Other languages
Japanese (ja)
Inventor
Hiromitsu Imaruoka
浩充 伊丸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4160576A priority Critical patent/JPH063479A/en
Publication of JPH063479A publication Critical patent/JPH063479A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain control equipment of a reactor power which ensures the water level of a reactor and controls the reactor power automatically and safely, by providing a recirculation from an injection piping of a high pressure injection system to a pressure control chamber pool and a flow control device and by injecting a high pressure injection flow corresponding to the water level of the reactor set beforehand, from the high pressure injection system, when scram fail transient phenomena take place. CONSTITUTION:An injection piping 15 of a high pressure injection system connected to a feed water piping 3 and a high pressure injection recirculation system branching from this injection piping 15 of the high pressure injection system, communicating with a pressure control chamber room 7 and being equipped with a flow regulating means 20 are provided. By controlling the flow regulating means 20 by a power control device 23 comprising a scram fail transient phenomenon determining part, a high pressure injection system needed injection flow calculating part and a control signal calculating part, a flow rate of feed water to a reactor at the time when scram fail transient phenomena of the reactor take place is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は沸騰水型原子炉における
スクラム不能過渡事象時の原子炉出力制御に係り、特に
スクラム不能過渡事象時の原子炉へ高圧注水系よりの注
水により自動的に原子炉の水位および出力を制御する原
子炉出力制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of reactor power during a non-scram transient event in a boiling water reactor, and in particular, automatic injection of water from a high-pressure injection system into the reactor during a non-scram transient event. The present invention relates to a reactor power control device that controls the water level and power of a reactor.

【0002】[0002]

【従来の技術】一般に沸騰水型原子炉においては、図3
の原子炉高圧注水系の構成図に示すように、原子炉格納
容器1の内部には原子炉を収納した原子炉圧力容器2が
設置され、この原子炉圧力容器2には外部より原子炉格
納容器1を貫通して給水を導く図示しない給水ポンプを
介挿した給水配管3と、内部で発生した高温高圧蒸気を
外部に引出す主蒸気管4が接続されていて、この主蒸気
管4には主蒸気逃し安全弁5および主蒸気隔離弁6が設
けられている。
2. Description of the Related Art Generally, in a boiling water reactor, FIG.
As shown in the configuration diagram of the reactor high-pressure water injection system, a reactor pressure vessel 2 accommodating a reactor is installed inside the reactor containment vessel 1, and the reactor pressure vessel 2 is stored from the outside. A water supply pipe 3 through which a water supply pump (not shown) for guiding the water supply through the container 1 is inserted, and a main steam pipe 4 for drawing out the high-temperature high-pressure steam generated inside is connected to the main steam pipe 4. A main steam relief safety valve 5 and a main steam isolation valve 6 are provided.

【0003】原子炉格納容器1の下部には原子炉格納容
器1と連通されていて、蒸気を凝縮して原子炉格納容器
1内の圧力上昇を防止するためのプール水を貯溜した圧
力抑制室プール7が設置されている。なお、この圧力抑
制室プール7には前記主蒸気逃し安全弁5から排気管8
が接続されている。
Below the reactor containment vessel 1 is communicated with the reactor containment vessel 1, and a pressure suppression chamber in which pool water is stored for condensing steam to prevent pressure rise in the reactor containment vessel 1. Pool 7 is installed. In this pressure suppression chamber pool 7, the main steam relief safety valve 5 to the exhaust pipe 8 are provided.
Are connected.

【0004】また圧力抑制室プール7は復水貯蔵タンク
9と高圧注水系水源切替弁10,11を介挿したプール側高
圧注水系吸込配管12およびタンク側高圧注水系吸込配管
13で接続されている。
Further, the pressure suppression chamber pool 7 is a pool-side high-pressure water injection system suction pipe 12 and a tank-side high-pressure water injection system suction pipe with a condensate storage tank 9 and high-pressure water injection system water source switching valves 10 and 11 interposed.
Connected with 13.

【0005】さらに、前記プール側高圧注水系吸込配管
12と前記給水配管3との間には、高圧注水系ポンプ14を
介挿した高圧注水系注入配管15が接続されており、原子
炉圧力容器2と連通して高圧注水系が形成されている。
通常の運転状態より給水流量が喪失して原子炉水位が低
下すると、原子炉水位が原子炉水位低(設定値L3)の
状態で原子炉をスクラムさせる。
Further, the pool side high pressure water injection system suction pipe
A high-pressure water injection system injection pipe 15 having a high-pressure water injection system pump 14 interposed is connected between the water supply pipe 12 and the water supply pipe 3, and communicates with the reactor pressure vessel 2 to form a high-pressure water injection system. .
When the supply water flow rate is lost and the reactor water level is lower than in the normal operating state, the reactor is scrammed while the reactor water level is low (set value L3).

【0006】これにより原子炉圧力容器2から主蒸気管
4を通って流出する蒸気流量が抑制されて原子炉水位の
低下は緩慢になる。しかしながら、原子炉はスクラムし
ても崩壊熱が発生しているため、通常定格蒸気流量に対
して約5%の蒸気発生は継続される。従って、この蒸気
発生量に対応する給水流量が確保できなければ、流入量
と流出量のミスマッチにより、原子炉水位は更に低下
し、ついには原子炉水位低々(L2)に到達する。
As a result, the flow rate of steam flowing out from the reactor pressure vessel 2 through the main steam pipe 4 is suppressed, and the decrease in the reactor water level becomes slow. However, since the decay heat is generated in the nuclear reactor even when it is scrammed, steam generation of about 5% of the rated steam flow rate is usually continued. Therefore, if the supply water flow rate corresponding to this steam generation amount cannot be secured, the reactor water level further decreases due to the mismatch between the inflow amount and the outflow amount, and finally reaches the reactor water level low (L2).

【0007】原子炉水位が原子炉水位低々(L2)に到
達すると主蒸気隔離弁6が閉止すると共に、安全保護装
置である原子炉隔離時冷却系(Reactor Core Isolation
Cooling System RCIC)や高圧非常用炉心冷却系(高圧
Emergency Core Cooling System ECCS)が自動起動し
て、原子炉水位がこれ以下に低下することを防止する。
When the reactor water level reaches the reactor water level at a low level (L2), the main steam isolation valve 6 is closed, and the reactor isolation cooling system (Reactor Core Isolation) which is a safety protection device is closed.
Cooling System RCIC) and high pressure emergency core cooling system (high pressure)
Emergency Core Cooling System ECCS) is automatically started to prevent the reactor water level from dropping below this level.

【0008】一方、前記主蒸気隔離弁6が閉止されるた
め、原子炉圧力容器2内は崩壊熱によって発生した蒸気
により圧力は上昇し、主蒸気管4に設けられた主蒸気逃
し安全弁5の設定圧に達すると主蒸気隔離弁逃し安全弁
5は開放し、発生蒸気の一部が主蒸気逃し安全弁5の排
気管8を通って前記圧力抑制室プール7へ放出されて原
子炉圧力の上昇は抑制される。このようにして、原子炉
水位および原子炉圧力は、安全に制御されるようになっ
ている。しかしながら、現実に発生する確率は非常に低
いと考えられているが、原子炉スクラムに失敗した場合
を想定すると以下の状態のようになる。
On the other hand, since the main steam isolation valve 6 is closed, the pressure in the reactor pressure vessel 2 rises due to the steam generated by the decay heat, and the main steam relief safety valve 5 provided in the main steam pipe 4 is closed. When the set pressure is reached, the main steam isolation valve relief safety valve 5 is opened, and a part of the generated steam is discharged to the pressure suppression chamber pool 7 through the exhaust pipe 8 of the main steam relief safety valve 5 to increase the reactor pressure. Suppressed. In this way, the reactor water level and reactor pressure are safely controlled. However, although the probability of actually occurring is considered to be extremely low, the following situation is assumed assuming that the reactor scrum fails.

【0009】通常の運転状態より給水流量が喪失した場
合には、原子炉水位は低下し、原子炉水位低(L3)に
より原子炉スクラム信号が発せられるが、何らかの原因
で全制御棒挿入に失敗すると仮定する。
When the feed water flow rate is lost from the normal operating state, the reactor water level decreases and the reactor water level low (L3) causes the reactor scrum signal to be emitted, but the insertion of all control rods fails for some reason. Suppose.

【0010】これにより、原子炉水位は更に低下して原
子炉水位低々(L2)に到達し、主蒸気隔離弁7が閉止
する。また図示しない原子炉隔離時冷却系や高圧非常用
炉心冷却系の自動起動信号が発生するため、原子炉に注
水が開始されて原子炉水位は確保されるが、そのために
炉心流量が保たれて原子炉出力の抑制が不十分となり、
発生した蒸気により圧力抑制室プール7への熱負荷が大
きくなる。
As a result, the reactor water level further decreases to reach the reactor water level at a low level (L2), and the main steam isolation valve 7 is closed. Also, since an automatic start signal for the reactor isolation cooling system and the high-pressure emergency core cooling system (not shown) is generated, water injection is started in the reactor and the reactor water level is secured, but for that reason the core flow rate is maintained. Insufficient suppression of reactor power,
The generated steam increases the heat load on the pressure suppression chamber pool 7.

【0011】これは原子炉格納容器1の健全性を確保す
るという観点からは不十分であり、従って、このような
事態に至るのを避けるために従来から以下のような手段
が考えられていた。
This is insufficient from the viewpoint of ensuring the soundness of the reactor containment vessel 1, and therefore the following means have been conventionally considered in order to avoid such a situation. .

【0012】スクラム不能過渡事象(Anticipated Tran
sient Without Scram ATWS)初期の原子炉出力を低下さ
せて、発生蒸気量を少しでも抑制するためにスクラム不
能過渡事象時には図示しない原子炉再循環ポンプをトリ
ップし、炉心流量を減少させて原子炉出力を抑える。
Unscrambling Transient (Anticipated Tran
sient Without Scram ATWS) In order to reduce the initial reactor power and suppress the amount of generated steam as much as possible, a reactor recirculation pump (not shown) is tripped during a transient event where scram cannot occur, and the reactor core flow is reduced to reduce the reactor power. Suppress.

【0013】また図示しない給水ポンプをランバック
し、原子炉水位を低下させて自然循環力を低下させ、炉
心流量を絞って原子炉出力を抑制させるようにし、スク
ラム不能過渡事象初期原子炉出力を抑えるようにしてい
る。
Further, the feed water pump (not shown) is run back to lower the reactor water level to reduce the natural circulation force, to reduce the core flow rate to suppress the reactor power, and to suppress the scram impossible transient event initial reactor power. I try to keep it down.

【0014】なお、それ以降は運転員が原子炉への注水
流量を制御して原子炉水位を低く保ち、自然循環流量を
抑え、炉心入口流量を抑制して原子炉出力を低く維持す
ることで圧力抑制室プール7への熱負荷を最小限にする
ようにしていた。
After that, the operator controls the water injection flow rate into the reactor to keep the reactor water level low, the natural circulation flow rate suppressed, the core inlet flow rate suppressed, and the reactor output kept low. The heat load on the pressure suppression chamber pool 7 was minimized.

【0015】[0015]

【発明が解決しようとする課題】従来のスクラム不能過
渡事象時に原子炉出力を抑制する方法では、原子炉再循
環ポンプトリップ、給水ポンプランバック、注水流量の
制御と、全て運転員の手動操作に頼っている。
In the conventional method for suppressing the reactor power during a non-scram transient event, the reactor recirculation pump trip, the feed water pump runback, the control of the water injection flow rate, and the manual operation of the operator are all involved. I rely on.

【0016】しかも沸騰水型原子炉(BWR/4)の場
合は、原子炉水位が確保されている場合でも、もともと
高圧注水系(High Pressure Coolant Injection System
HPCI )は冷却材喪失事故(Lost of Coolant Accident
LOCA )を想定して設計されているため、スクラム不能
過渡事象時の注水流量としては大き過ぎることから、注
水流量を大幅に絞り込まなければ原子炉水位を低く保つ
ことが困難で、そのために炉心における自然循環力が増
して炉心流量の制御ができずに原子炉出力を十分低く維
持できない。
Moreover, in the case of a boiling water reactor (BWR / 4), even if the reactor water level is secured, the high pressure cooling system (High Pressure Coolant Injection System) is originally used.
HPCI) is the Lost of Coolant Accident
Since it is designed assuming LOCA), it is too large for the water injection flow rate during a non-scram transient event, so it is difficult to keep the reactor water level low unless the water injection flow rate is significantly reduced. The natural circulation force increases and the core flow rate cannot be controlled, and the reactor power cannot be maintained sufficiently low.

【0017】従って、運転員による水位低下維持操作に
頼らなければ原子炉出力を十分に抑制できないため、主
蒸気逃し弁5が間欠的に開閉し、圧力抑制室プール7へ
の放出蒸気量が増加して原子炉格納容器1の健全性維持
に支障を及ぼすという課題があった。
Therefore, since the reactor output cannot be sufficiently suppressed unless the operator maintains the water level lowering operation, the main steam relief valve 5 is opened and closed intermittently, and the amount of steam discharged to the pressure suppression chamber pool 7 increases. Then, there was a problem that it hinders the maintenance of the soundness of the containment vessel 1.

【0018】本発明の目的とするところは、高圧注水系
注入配管より圧力抑制室プールへの高圧注水再循環系お
よび流量制御装置を設けて、スクラム不能過渡事象時に
高圧注水系より予め設定された原子炉水位に相当する高
圧注水流量を注入して自動的に適切な原子炉水位を確保
すると共に、復水貯蔵タンク水を圧力抑制室プールへ導
いて原子炉出力の安全制御と原子炉格納容器の健全性を
確保できる原子炉出力制御装置を提供することにある。
The object of the present invention is to provide a high pressure water injection recirculation system to the pressure suppression chamber pool from the high pressure water injection system injection pipe and a flow rate control device so that the high pressure water injection system is preset from the high pressure water injection system at the time of a transient event in which the scrum cannot be performed. A high-pressure injection flow rate equivalent to the reactor water level is injected to automatically secure an appropriate reactor water level, and the condensate storage tank water is guided to the pressure suppression chamber pool to safely control the reactor output and the containment vessel. An object of the present invention is to provide a reactor power control device capable of ensuring the soundness of the reactor.

【0019】[0019]

【課題を解決するための手段】沸騰水型原子炉の給水配
管に接続された高圧注水系注入配管とこの高圧注水系注
入配管より分岐して圧力制御室プールに連通した流量調
整手段を備えた高圧注水再循環系を設けると共に、スク
ラム不能過渡事象判定部と高圧注水系必要注入流量算出
部および制御信号算出部からなる出力制御装置により前
記流量調整手段を制御して原子炉のスクラム不能過渡事
象時における原子炉への給水流量を制御することを特徴
とする。
[Means for Solving the Problems] A high pressure water injection system injection pipe connected to a water supply pipe of a boiling water reactor and a flow rate adjusting means branched from this high pressure water injection system injection pipe and communicating with a pressure control chamber pool are provided. A high-pressure water injection recirculation system is provided, and the flow control means is controlled by an output control device consisting of a scram-impossible transient event determination unit, a high-pressure water injection system required injection flow rate calculation unit, and a control signal calculation unit to control the reactor's non-scram transient event. It is characterized by controlling the flow rate of water supply to the reactor at the time.

【0020】[0020]

【作用】原子炉のスクラム不能過渡事象時に出力制御装
置において、原子炉出力信号とスクラム作動要求信号か
らスクラム不能過渡事象の判定を行い、スクラム不能過
渡事象とされた場合に予め設定されたスクラム不能過渡
事象時の目標原子炉水位から、注入流量を算出すると共
に、復水貯蔵タンク水あるいは圧力制御室プール水を高
圧注水系注入配管および給水配管を経由して原子炉に注
入する。
[Operation] At the time of a transient unscrammable event of the reactor, the output control device judges the transient unscrambling event from the reactor output signal and the scrum operation request signal, and when the unscrammable transient event is set, the preset scram cannot be disabled. The injection flow rate is calculated from the target reactor water level during a transient event, and the condensate storage tank water or pressure control room pool water is injected into the reactor via the high-pressure injection system injection pipe and the water supply pipe.

【0021】またこの流量は前記出力制御装置により制
御される流量調整手段である流量調整弁の開度調整によ
り、再循環流量を調節して自動的に制御する。これによ
り原子炉水位の確保と、原子炉出力の抑制ができ、また
エンタルピーの低い復水貯蔵タンク水を高圧注水再循環
系を通して圧力抑制室プールへ導くことで、圧力抑制室
プール水の水温上昇を直接抑制して原子炉圧力容器およ
び原子炉格納容器の健全性が確保される。
The flow rate is automatically controlled by adjusting the recirculation flow rate by adjusting the opening of a flow rate adjusting valve which is a flow rate adjusting means controlled by the output control device. As a result, the reactor water level can be secured, the reactor output can be suppressed, and the condensate storage tank water with a low enthalpy is guided to the pressure suppression chamber pool through the high-pressure injection recirculation system to raise the temperature of the pressure suppression chamber pool water. The soundness of the reactor pressure vessel and the reactor containment vessel is secured by directly suppressing the above.

【0022】[0022]

【実施例】本発明の一実施例について図面を参照して説
明する。なお上記した従来技術と同じ構成部分について
は同一符号を付して詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. It should be noted that the same components as those of the above-described conventional technique are designated by the same reference numerals and detailed description thereof will be omitted.

【0023】図1の原子炉高圧注水系等の概略構成図に
示すように、原子炉格納容器1の内部には原子炉を収納
した原子炉圧力容器2が設置され、外部より原子炉格納
容器1を貫通して給水を導く図示しない給水ポンプを介
挿した給水配管3が接続されている。
As shown in the schematic diagram of the reactor high-pressure water injection system in FIG. 1, a reactor pressure vessel 2 accommodating a reactor is installed inside the reactor containment vessel 1, and the reactor containment vessel is provided from the outside. A water supply pipe 3 is connected to which a water supply pump (not shown) that guides the water supply through 1 is inserted.

【0024】さらに、原子炉圧力容器2内部で発生した
高温高圧蒸気を外部に引出す主蒸気管4が接続されてい
て、この主蒸気管4には主蒸気逃し安全弁5および主蒸
気隔離弁6が設けられている。
Further, a main steam pipe 4 for drawing out the high-temperature high-pressure steam generated inside the reactor pressure vessel 2 to the outside is connected, and a main steam release safety valve 5 and a main steam isolation valve 6 are connected to the main steam pipe 4. It is provided.

【0025】また原子炉格納容器1の下部には原子炉格
納容器1と連通されていて、蒸気を凝縮して原子炉格納
容器1内等の圧力上昇を防止するためのプール水を貯溜
した圧力抑制室プール7が設置されている。なお、この
圧力抑制室プール7には前記主蒸気逃し安全弁5からの
排気管8が接続されている。
The lower part of the reactor containment vessel 1 is communicated with the reactor containment vessel 1, and the pressure at which pool water is stored for condensing steam to prevent pressure rise in the reactor containment vessel 1 and the like. The suppression room pool 7 is installed. An exhaust pipe 8 from the main steam relief safety valve 5 is connected to the pressure suppression chamber pool 7.

【0026】圧力抑制室プール7は復水貯蔵タンク9
と、高圧注水系水源切替弁10,11を介挿したプール側高
圧注水系吸込配管12およびタンク側高圧注水系吸込配管
13で接続されている。
The pressure suppression chamber pool 7 is a condensate storage tank 9
And the high pressure water injection system suction pipe 12 on the pool side and the high pressure water injection system suction pipe on the tank side through the high pressure water injection system water source switching valves 10 and 11.
Connected with 13.

【0027】前記プール側高圧注水系吸込配管12と前記
給水配管3との間には、高圧注水系ポンプ14を介挿した
高圧注水系注入配管15が接続されて高圧注水系が形成さ
れていて原子炉圧力容器2と連通しており、さらに、こ
の高圧注水系注入配管15から分岐して前記圧力抑制室プ
ール7に高圧注水再循環系を形成する流量調整手段であ
る流量調整弁20を介挿した再循環配管21が連通されてい
る。この流量調整弁20には弁開度制御部22が連結してい
て、さらに、弁開度制御部22に弁開度信号を発する出力
制御装置23が接続されて構成している。
A high-pressure water injection system 15 is connected between the pool-side high-pressure water injection system suction pipe 12 and the water supply pipe 3 to connect a high-pressure water injection system injection pipe 15 to form a high-pressure water injection system. A flow rate adjusting valve 20 which is a flow rate adjusting means which communicates with the reactor pressure vessel 2 and further branches off from the high pressure water injection system injection pipe 15 to form a high pressure water injection recirculation system in the pressure suppression chamber pool 7. The inserted recirculation pipe 21 is in communication. A valve opening control unit 22 is connected to the flow rate adjusting valve 20, and an output control device 23 that issues a valve opening signal is connected to the valve opening control unit 22.

【0028】またスクラム不能過渡事象時には、圧力抑
制室プール7のプール水温の上昇を抑制することから、
原子炉出力を低下させる目的で原子炉水位を下降させる
ため、図示しない給水ポンプをトリップさせる。しかし
ながら、この時の炉心冠水を確保するために高圧注水系
を用いて原子炉へ注水を行う。
Further, at the time of the transient event where the scrum cannot be performed, since the rise of the pool water temperature of the pressure suppression chamber pool 7 is suppressed,
In order to lower the reactor water level for the purpose of reducing the reactor output, a feed pump (not shown) is tripped. However, in order to secure core flooding at this time, high pressure water injection system is used to inject water into the reactor.

【0029】この高圧注水系は、高圧注水系ポンプ14を
運転して注水するが、水源としては通常はエンタルピー
の小さな復水貯蔵タンク9の復水を用い、タンク側高圧
注水系吸込配管13、高圧注水系注入配管15および給水配
管3を経由して原子炉圧力容器2内の炉心へ注入する。
In this high-pressure water injection system, the high-pressure water injection system pump 14 is operated to inject water, but the condensate of the condensate storage tank 9 having a small enthalpy is usually used as the water source, and the tank-side high-pressure water injection system suction pipe 13, It is injected into the reactor core in the reactor pressure vessel 2 via the high-pressure water injection system injection pipe 15 and the water supply pipe 3.

【0030】しかし、圧力抑制室プール7の水位が高く
なった場合や復水貯蔵タンク9の水位が低下した場合に
は、高圧注水系水源切替弁10を開き、高圧注水系水源切
替弁11を閉じることによって水源を圧力抑制室プール7
に切替えられる。
However, when the water level in the pressure suppression chamber pool 7 rises or the water level in the condensate storage tank 9 drops, the high pressure water injection system water source switching valve 10 is opened and the high pressure water injection system water source switching valve 11 is opened. By closing the water source, the pressure suppression chamber pool 7
Is switched to.

【0031】図2のブロック構成図は弁開度制御部22に
流量調整弁20の弁開度信号を発する出力制御装置23の構
成と機能を示し、この出力制御装置23はスクラム不能過
渡事象判定部24と高圧注水系必要流量算出部25、および
制御信号算出部である制御弁開度算出部26より構成され
ている。スクラム不能過渡事象判定部24は、原子炉出力
信号S1 とスクラム作動要求信号S2 を入力して、スク
ラム不能過渡事象(ATWS)が生じたことを判定する。
The block diagram of FIG. 2 shows the configuration and function of an output control device 23 that issues a valve opening signal of the flow rate adjusting valve 20 to the valve opening control part 22. This output control device 23 determines a scram-incapable transient event. It comprises a part 24, a high-pressure water injection system required flow rate calculation part 25, and a control valve opening calculation part 26 which is a control signal calculation part. The non-scrum transient event determination unit 24 inputs the reactor output signal S1 and the scram operation request signal S2 and determines that a non-scram transient event (ATWS) has occurred.

【0032】また高圧注水系必要流量算出部25は、スク
ラム不能過渡事象判定部24からのスクラム不能過渡事象
信号S3 と、原子炉隔離時冷却系流量信号S4 、および
予め定められたスクラム不能過渡事象時目標原子炉水位
信号S5 を入力して、スクラム不能事象過渡事象時にお
ける高圧注水系必要流量を計算して高圧注水系必要注入
流量信号S6 を算出し、弁開度算出部26へ出力する。
Further, the high-pressure water injection system required flow rate calculation unit 25 includes a scram impossible transient event signal S3 from the scram impossible transient event determination unit 24, a reactor isolation cooling system flow signal S4, and a predetermined scram impossible transient event. The time target reactor water level signal S5 is input to calculate the high pressure water injection system required flow rate at the time of a transient unscrambling event to calculate the high pressure water injection system required injection flow rate signal S6, which is output to the valve opening degree calculation unit 26.

【0033】なお、ここで行う高圧注水系必要注入流量
の算出方法は、高圧注水系必要流量算出部25には、予め
求められた原子炉水位対原子炉出力(発生蒸気流量)が
内蔵されており、スクラム不能過渡事象時目標原子炉水
位を入力することによって原子炉出力(発生蒸気流量)
を求め、更に、ここで求められた発生蒸気流量から図示
しない原子炉隔離時冷却系から原子炉に入力される流量
を差引いて高圧注水系必要流量を算出するものである。
In the method of calculating the required injection flow rate of the high-pressure water injection system performed here, the high-pressure water injection system required flow rate calculation unit 25 has a built-in preliminarily obtained reactor water level vs. reactor output (generated steam flow rate). Reactor output (flow rate of generated steam) by inputting the target reactor water level during a non-scram transient event
Further, the required flow rate of the high-pressure water injection system is calculated by subtracting the flow rate input to the reactor from a reactor isolation cooling system (not shown) from the generated steam flow rate obtained here.

【0034】弁開度算出部26では、高圧注水系必要注入
流量信号S6 を受けて原子炉内に必要流量を注入ため、
高圧注水系注水配管15から圧力抑制室プール7へ分配す
る流量を制御する再循環配管21に設けた流量調整弁20の
弁開度信号S7 を弁開度制御部22へ出力する。これによ
りスクラム不能過渡事象時において高圧注水系により原
子炉への注水流量を自動的に制御し、原子炉水位および
原子炉出力の制御が自動的に行える。
The valve opening calculation unit 26 receives the high pressure water injection system required injection flow rate signal S6 and injects the required flow rate into the reactor.
The valve opening signal S7 of the flow rate adjusting valve 20 provided in the recirculation pipe 21 that controls the flow rate distributed from the high pressure water injection system water injection pipe 15 to the pressure suppression chamber pool 7 is output to the valve opening control unit 22. In this way, the flow rate of water injection into the reactor can be automatically controlled by the high-pressure water injection system at the time of a transient event that is impossible to scrum, and the reactor water level and reactor power can be automatically controlled.

【0035】なお、流量調整手段が前記流量調整弁20で
ない他の流量調整装置の場合には、弁開度算出部26であ
る制御信号算出部は被流量調整装置をに対する制御信号
の発生器とすることにより上記一実施例と同様の作用が
得られる。次に、上記構成による作用について説明す
る。
When the flow rate adjusting means is another flow rate adjusting device other than the flow rate adjusting valve 20, the control signal calculating section, which is the valve opening calculating section 26, is a generator of a control signal for the flow rate adjusting apparatus. By doing so, an effect similar to that of the above-described embodiment can be obtained. Next, the operation of the above configuration will be described.

【0036】原子炉が定格出力運転時に何らかの原因に
より全給水流量喪失が生じると、原子炉水位は低下し、
原子炉水位低(L3)でスクラム要求信号S2 が発せら
れる。この状態において、さらに全制御棒挿入が失敗す
るという事象が重なったことを想定すると、この時に出
力制御装置23のスクラム不能過渡事象判定部24において
は、例えば平均出力モニタ信号から得た炉心崩壊熱によ
る原子炉出力が3%以上の場合の原子炉出力信号S1
と、原子炉水位低の原子炉スクラム要求信号S2を入力
し、スクラム不能過渡事象と判定してスクラム不能過渡
事象信号S3 を出力する。
If the total feedwater flow rate is lost for some reason during the rated power operation of the reactor, the reactor water level will drop,
When the reactor water level is low (L3), the scrum request signal S2 is issued. In this state, assuming that the event that all the control rods have failed is further overlapped, at this time, in the scram impossible transient event determination unit 24 of the power control device 23, for example, the core decay heat obtained from the average power monitor signal. Reactor output signal S1 when the reactor output is 3% or more
Then, the reactor scram demand signal S2 of low reactor water level is input, it is determined that the transient event is not scram, and the transient event signal S3 of non-scram is output.

【0037】これを受けて各プラント毎に定められてい
るスクラム不能過渡事象時の操作手順に沿って、図示し
ない再循環ポンプと給水ポンプのトリップが作動してい
るものとする。
In response to this, it is assumed that the trips of the recirculation pump and the feed water pump (not shown) are operating in accordance with the operation procedure at the time of the non-scram transient event which is set for each plant.

【0038】スクラム不能過渡事象時における前記スク
ラム不能過渡事象信号S3 を受けて高圧注水系必要注水
流量算出部25は、原子炉隔離時冷却系流量信号S4 とス
クラム不能過渡事象初期目標水位信号S5 (例えば原子
炉水位L1+1m)を入力として高圧注水系必要注入流
量信号S6 を出力する。
In response to the non-scrum transient event signal S3 at the time of non-scrum transient event, the high pressure water injection system required water injection flow rate calculation unit 25 causes the reactor isolation cooling system flow signal S4 and the scram non-transient event initial target water level signal S5 ( For example, the reactor water level L1 + 1m) is input, and the high-pressure water injection system required injection flow rate signal S6 is output.

【0039】弁開度算出部26では、高圧注水系必要注入
流量信号S6 を受けて圧力抑制室プール7へ再循環する
流量を算出し、流量調整弁20の弁開度を算出して弁開度
信号S7 を弁開度制御部22へ出力する。弁開度制御部22
では、この弁開度信号S7 を受けて流量調整弁20の弁開
度を制御する。
The valve opening calculation unit 26 receives the high pressure water injection system required injection flow rate signal S6, calculates the flow rate to be recirculated to the pressure suppression chamber pool 7, calculates the valve opening degree of the flow rate adjusting valve 20, and opens the valve. The degree signal S7 is output to the valve opening control unit 22. Valve opening controller 22
Then, in response to this valve opening signal S7, the valve opening of the flow rate adjusting valve 20 is controlled.

【0040】これにより、復水貯蔵タンク9を水源とし
て高圧注水系ポンプ14により所定の必要流量が給水配管
3を通じて原子炉内に注入される。一方、高圧注水系注
入配管15から分岐した再循環配管21を通じて流量調整弁
20により制御された再循環流量が圧力抑制室プール7に
放出される。
As a result, the high-pressure water injection system pump 14 injects a predetermined required flow rate into the reactor through the water supply pipe 3 using the condensate storage tank 9 as a water source. On the other hand, through the recirculation pipe 21 branched from the high-pressure water injection system injection pipe 15, the flow rate adjustment valve
The recirculation flow rate controlled by 20 is discharged to the pressure suppression chamber pool 7.

【0041】以上のようにすれば、冷却水を所定の原子
炉水位になるように原子炉に注入でき、更にエンタルピ
ーの小さな復水貯蔵タンク水を一定の割合で圧力抑制室
プール7に導入することができるので、圧力抑制室プー
ル7における直接的な熱負荷の軽減にも寄与する。
With the above arrangement, the cooling water can be injected into the reactor so as to reach the predetermined reactor water level, and the condensate storage tank water with a small enthalpy is introduced into the pressure suppression chamber pool 7 at a constant rate. Therefore, it contributes to the direct reduction of the heat load in the pressure suppression chamber pool 7.

【0042】従って、原子炉における全給水流量喪失と
全制御棒挿入失敗の重複したスクラム不能過渡事象時に
おいても、既存の原子炉設備の改造により原子炉水位お
よび原子炉出力を自動制御し、かつ原子炉圧力容器や原
子炉格納容器の健全性を十分確保することができる。な
お、本発明に係る実施態様項としては下記のものがあ
る。 (1) 出力制御装置に入力する原子炉の出力信号は、平均
出力モニタからの信号であることを特徴とする原子炉出
力制御装置。
Therefore, even at the time of the non-scrum transient event in which the total feed water flow rate loss and all control rod insertion failures in the reactor overlap, the reactor water level and reactor power are automatically controlled by modifying the existing reactor equipment, and It is possible to sufficiently secure the soundness of the reactor pressure vessel and the containment vessel. In addition, there are the following as an embodiment item according to the present invention. (1) A reactor output control device characterized in that the reactor output signal input to the output control device is a signal from an average output monitor.

【0043】(2) 高圧注水系による原子炉への注入流量
は、高圧注水系注入配管から分岐した高圧注水再循環系
に流れる流量を流量調整弁で調整して制御することを特
徴とする原子炉出力制御装置。 (3) 高圧注水再循環系は、圧力制御室プールに導かれる
ことを特徴とする原子炉出力制御装置。
(2) The injection flow rate into the nuclear reactor by the high pressure water injection system is controlled by adjusting the flow rate of the high pressure water injection recirculation system branched from the high pressure water injection system injection pipe with a flow rate adjusting valve. Reactor power control device. (3) The reactor power output control device characterized in that the high-pressure water injection recirculation system is led to the pressure control room pool.

【0044】[0044]

【発明の効果】以上本発明によれば、スクラム不能過渡
事象に際し、原子炉水位および原子炉出力を自動制御
し、原子炉出力を適切に抑制して原子炉圧力容器と原子
炉格納容器の健全性が確保できる。また復水貯蔵タンク
水の一部を圧力制御室プールに注入することにより圧力
抑制室プールの直接的な熱負荷の軽減に寄与することか
ら原子力発電所の安全性と信頼性が向上する効果があ
り、更に運転員に要求されていた水位低下維持操作が無
くなり、圧力抑制室プール水温を安全に制御できること
から運転員の負担が軽減される効果もある。
As described above, according to the present invention, the reactor water level and the reactor power are automatically controlled in the event of a non-scram transient, and the reactor power is appropriately suppressed to ensure the soundness of the reactor pressure vessel and the containment vessel. You can secure the sex. In addition, by injecting a part of the condensate storage tank water into the pressure control room pool, it contributes to the direct reduction of the heat load of the pressure suppression room pool, which has the effect of improving safety and reliability of the nuclear power plant. In addition, the operation of maintaining the lowering of the water level required by the operator is eliminated, and the pool temperature of the pressure suppression chamber can be safely controlled, so that the burden on the operator can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の原子炉高圧注水系等の
概略構成図。
FIG. 1 is a schematic configuration diagram of a reactor high pressure water injection system and the like according to an embodiment of the present invention.

【図2】本発明に係る一実施例の出力制御装置のブロッ
ク構成図。
FIG. 2 is a block configuration diagram of an output control device according to an embodiment of the present invention.

【図3】従来の原子炉出力制御装置の概略構成図。FIG. 3 is a schematic configuration diagram of a conventional reactor power control device.

【符号の説明】[Explanation of symbols]

1…原子炉格納容器、2…原子炉圧力容器、3…給水配
管、4…主蒸気管、5…主蒸気逃し安全弁、6…主蒸気
隔離弁、7…圧力抑制室プール、8…排気管、9…復水
貯蔵タンク、10,11…高圧注水系水源切替弁、12…プー
ル側高圧注水系吸込配管、13…タンク側高圧注水系吸込
配管、14…高圧注水系ポンプ、15…高圧注水系注入配
管、20…流量調整弁、21…再循環配管、22…弁開度制御
部、23…出力制御装置、24…スクラム不能過渡事象判定
部、25…高圧注水系必要注水流量算出部、26…弁開度算
出部、S1 …原子炉出力信号、S2 …スクラム作動要求
信号、S3 …スクラム不能過渡事象信号、S4 …原子炉
隔離時冷却系流量信号、S5…スクラム不能過渡事象時
目標原子炉水位信号、S6 …高圧注水系必要注入流量信
号、S7 …弁開度信号。
DESCRIPTION OF SYMBOLS 1 ... Reactor containment vessel, 2 ... Reactor pressure vessel, 3 ... Water supply piping, 4 ... Main steam pipe, 5 ... Main steam release safety valve, 6 ... Main steam isolation valve, 7 ... Pressure suppression chamber pool, 8 ... Exhaust pipe , 9 ... Condensate storage tank, 10, 11 ... High pressure water injection system water source switching valve, 12 ... Pool side high pressure water injection system suction pipe, 13 ... Tank side high pressure water injection system suction pipe, 14 ... High pressure water injection pump, 15 ... High pressure injection Water system injection pipe, 20 ... Flow control valve, 21 ... Recirculation pipe, 22 ... Valve opening control unit, 23 ... Output control device, 24 ... Scrum impossible transient event determination unit, 25 ... High pressure water injection system necessary water injection flow rate calculation unit, 26 ... Valve opening calculation unit, S1 ... Reactor output signal, S2 ... Scrum operation request signal, S3 ... Scrum impossible transient event signal, S4 ... Reactor isolation cooling system flow rate signal, S5 ... Scrum impossible transient event target atom Reactor water level signal, S6 ... Required injection flow rate signal for high pressure water injection system, S7 ... Valve opening signal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 沸騰水型原子炉の給水配管に接続された
高圧注水系注入配管とこの高圧注水系注入配管より分岐
して圧力制御室プールに連通した流量調整手段を備えた
高圧注水再循環系を設けると共に、スクラム不能過渡事
象判定部と高圧注水系必要注入流量算出部および制御信
号算出部からなる出力制御装置により前記流量調整手段
を制御して原子炉のスクラム不能過渡事象時における原
子炉への給水流量を制御することを特徴とする原子炉出
力制御装置。
1. A high-pressure water recirculation system comprising a high-pressure water injection system injection pipe connected to a water supply pipe of a boiling water reactor and flow rate adjusting means branched from the high-pressure water injection system injection pipe to communicate with a pressure control chamber pool. In addition to the system, the flow control means is controlled by an output control device including a scram impossible transient event determination section, a high-pressure water injection system required injection flow rate calculation section and a control signal calculation section to control the reactor during a scrum impossible transient event. A reactor output control device characterized by controlling the flow rate of water supplied to the reactor.
JP4160576A 1992-06-19 1992-06-19 Control equipment of reactor power Pending JPH063479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160576A JPH063479A (en) 1992-06-19 1992-06-19 Control equipment of reactor power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160576A JPH063479A (en) 1992-06-19 1992-06-19 Control equipment of reactor power

Publications (1)

Publication Number Publication Date
JPH063479A true JPH063479A (en) 1994-01-11

Family

ID=15717954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160576A Pending JPH063479A (en) 1992-06-19 1992-06-19 Control equipment of reactor power

Country Status (1)

Country Link
JP (1) JPH063479A (en)

Similar Documents

Publication Publication Date Title
JP3194818B2 (en) Method for reducing leakage of heat transfer tubes of pressurized water reactor and steam generator
EP0405720B1 (en) Passive safety injection system using borated water
CA2870859C (en) Defense in depth safety paradigm for nuclear reactor
GB2268312A (en) Nuclear reactor with makeup water assist from residual heat removal system
CN109903863B (en) Safe injection system and nuclear power system
KR102214119B1 (en) Coolant recirculation system of nuclear power plant
KR20060020756A (en) Integral pwr with diverse emergency cooling and method of operating same
Tusheva et al. Investigations on optimization of accident management measures following a station blackout accident in a VVER-1000 pressurized water reactor
JPH063479A (en) Control equipment of reactor power
JP3213076B2 (en) Apparatus and method for low pressure coolant injection correction for boiling water reactors
Vahman et al. Assessment of management measures on station blackout accident in Unit-1 Bushehr nuclear power plant
JPH04109197A (en) Reactor core decay heat removing device for pressurized water reactor
JPH05264774A (en) Emergency reactor cooling equipment
JP3136786B2 (en) Reactor water level control method and apparatus
JPH05119189A (en) Nuclear reactor injection water flow automatic controller
JP5844319B2 (en) Emergency core cooling backup equipment
JPH0755984A (en) Reactor supply water equipment
Israel EPR: steam generator tube rupture analysis in Finland and in France
Wu et al. Study on Passive Pulse Cooling Method of Secondary Side in PWR Nuclear Power Plant
Zhang et al. Preliminary Study of Function Determination and Capacity of ACP600’s Reactor Emergency Borating System
Ke et al. The emergency operating strategy analysis of medium LOCA with MHSI unavailable
Yang et al. Preliminary Study of Large-Power PWR With Safety Balanced Design
Saiu et al. Loss-of-normal-feedwater sensitivity studies for AP600 behavior characterization
Cao et al. Preliminary Study of the Application of PEFS on PCWA
JPH0715505B2 (en) Reactor water injection device