JPH0631782B2 - Light water reactor - Google Patents

Light water reactor

Info

Publication number
JPH0631782B2
JPH0631782B2 JP60247089A JP24708985A JPH0631782B2 JP H0631782 B2 JPH0631782 B2 JP H0631782B2 JP 60247089 A JP60247089 A JP 60247089A JP 24708985 A JP24708985 A JP 24708985A JP H0631782 B2 JPH0631782 B2 JP H0631782B2
Authority
JP
Japan
Prior art keywords
reactor
core
pressure vessel
coolant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60247089A
Other languages
Japanese (ja)
Other versions
JPS62228197A (en
Inventor
研司 富永
省三 山成
宣昭 上妻
利彦 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP60247089A priority Critical patent/JPH0631782B2/en
Publication of JPS62228197A publication Critical patent/JPS62228197A/en
Publication of JPH0631782B2 publication Critical patent/JPH0631782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、冷却材喪失事故時における原子炉の安全性を
確保する軽水型原子炉に係り、特に減圧沸騰により冷却
材が放出されても炉心が露出しないだけの冷却材量の炉
心の燃料発熱部上端より上方に確保するようにした炉心
冠水維持型の原子炉を得ようとするものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light water reactor for ensuring the safety of a nuclear reactor in the event of a loss of coolant, and particularly to a core even if the coolant is discharged by reduced pressure boiling. It is intended to obtain a core submergence-maintaining reactor in which the coolant amount is secured above the upper end of the fuel heating portion of the core so as not to be exposed.

〔発明の背景〕[Background of the Invention]

従来の沸騰水型原子炉(以下BWRと称す)について、
第2図により説明する。
Regarding the conventional boiling water reactor (hereinafter referred to as BWR),
This will be described with reference to FIG.

第2図は、炉心1を格納する原子炉圧力容器5と、炉心
1での発生熱の除去及び炉熱出力制御の機能をもち、炉
心1より下方に位置する再循環系と、炉水の水位を一定
に保つための給水系6とを有し、さらに非常用炉心冷却
系(以下ECCSと称す)として、高圧炉心スプレイ系
7(以下HPCSと称す)と、低圧炉心スプレイ系(以
下LPCSと称す)と、低圧注水系9(LPCI)とを
有するBWRにおいて、冷却材喪失事故(以下LOCA
と称す)時の原子炉水位及び原子炉圧力の変化を示した
ものである。
FIG. 2 shows a reactor pressure vessel 5 for storing the core 1, a recirculation system located below the core 1 and having a function of removing heat generated in the core 1 and controlling the reactor heat output, and reactor water. A water supply system 6 for keeping the water level constant, and a high pressure core spray system 7 (hereinafter referred to as HPCS) and a low pressure core spray system (hereinafter referred to as LPCS) as an emergency core cooling system (hereinafter referred to as ECCS). And a low pressure water injection system 9 (LPCI), a coolant loss accident (hereinafter referred to as LOCA)
This is the change in the reactor water level and reactor pressure.

BWRのLOCA事象で炉心1の冷却に最も厳しい事故
は、炉心1より下方に位置する再循環系の吸込み配管1
5の破断である。再循環ポンプ13と、ダウンカマ14
の下部に位置する吸込み配管15と、ダウンカマ14か
ら取り出した冷却材を昇圧しジエツトポンプ16へ駆動
水を供給するための吐出配管17を有する再循環系にお
いて、吸込み配管15に破断が発生するとダウンカマ1
4の水位及び原子炉容器5内の圧力は急激に低下(減
圧)し(第2図の(イ)部分参照)、これに伴い炉心シ
ユラウド内水位も急激に低下する。図に示すように、L
OCA後、約50秒後に炉心1は露出し、このため燃料
被覆管温度は上昇する(第2図の(ロ)の部分参照)。
一方、原子炉圧力が低下するとECCSが注水されるた
め、やがてシユラウド内水位は回復し、炉心1は再冠水
(約150秒後)し冷却される(第2図の(ハ)の部分
参照)。このように、BWRでは、炉心1より下方に大
口径配管が位置しているため、LOCAが発生すると炉
心1は完全に露出してしまい、炉心冷却はECCS系に
よつて行われていた。
The most severe accident in cooling the core 1 due to the BWR LOCA event is the suction pipe 1 of the recirculation system located below the core 1.
No. 5 fracture. Recirculation pump 13 and downcomer 14
In the recirculation system having the suction pipe 15 located at the lower part of the pipe and the discharge pipe 17 for boosting the coolant taken out from the downcomer 14 and supplying the driving water to the jet pump 16, when the suction pipe 15 is broken, the downcomer 1
The water level of No. 4 and the pressure in the reactor vessel 5 are suddenly lowered (decompressed) (see the part (a) of FIG. 2), and the water level in the core shell is also drastically lowered. As shown in the figure, L
Approximately 50 seconds after OCA, the core 1 is exposed, and the temperature of the fuel cladding tube rises (see (B) in FIG. 2).
On the other hand, when the reactor pressure drops, ECCS is injected, so that the water level inside the shell is restored, and the reactor core 1 is re-submerged (after about 150 seconds) and cooled (see (c) in Fig. 2). . As described above, in the BWR, the large-diameter pipe is located below the core 1, so that when LOCA occurs, the core 1 is completely exposed, and core cooling is performed by the ECCS system.

次に新型沸騰水型原子炉(以下ABWRと称す)につい
て第3図より説明する。
Next, a new boiling water reactor (hereinafter referred to as ABWR) will be described with reference to FIG.

第3図は、炉心1を格納する原子炉圧力容器5と、炉心
1での発生熱の除去および炉熱出力制御の機能をもつた
インターナルポンプ10と、炉水位を一定に保つための
給水系6とを有し、さらにECCS系としてHPCS
7、原子炉隔離時冷却設備11(以下RCICと称
す)、低圧注水系12(以下LPFLと称す)を有する
ABWRにおいて、炉心冷却に最も厳しいHPCSの破
断を想定した場合における解析結果を示す図である。H
PCS配管7に破断が生じるとHPCSスーパジヤ18
の部分から冷却材が原子炉圧力容器5外に放出される。
しかし、ダウンカマ14における水位が低下すると、約
55秒でRCIC11が作動し(第3図の(ニ)の部分
参照)、さらに約150秒で自動減圧系(ADS)が作
動(第3図の(ホ)参照)する。原子炉圧力がLPFL
12の作動する圧力まで低下すると(この時減圧沸騰が
生じ炉心位が上昇する)約33秒でLPFL12が注水
を開始(第3図の(ヘ)参照)するため、炉水位は再び
上昇する。このため炉心1は事故時の全ての期間で冠水
維持される。このように、RCIC11は、LOCA開
始からLPFL12が作動するまでの炉心冠水冷却のた
めに、LPFL12は自動減圧系が作動し減圧沸騰により放出
される冷却材量と崩壊熱により放出される冷却材量を補
うために設けられている。一方、燃料棒被覆管温度変化
はLOCA発生後、インターナルポンプ10の停止によ
る炉心流量の急激な減少により遷移沸騰が発生し、熱伝
導率が低くなるため、燃料棒被覆管温度は上昇する(第
3図の(ト)参照)。しかし、スクラムによる出力低下
により燃料棒被覆管温度の上昇は短期間でおさまる。こ
のように、ABWRではLOCA発生初期にはRCIC
11により、原子炉圧力が低下した後には、LPFL1
2により炉内に冷却材が注水されるため、事故後全ての
期間で冠水維持され十分な炉心冷却が得られる。
FIG. 3 shows a reactor pressure vessel 5 that stores the core 1, an internal pump 10 that has functions of removing heat generated in the core 1 and controlling the reactor heat output, and water supply for keeping the reactor water level constant. HPCS as ECCS system
Fig. 7 is a diagram showing an analysis result in the case where the severest HPCS fracture in core cooling is assumed in an ABWR having a reactor isolation cooling facility 11 (hereinafter referred to as RCIC) and a low pressure water injection system 12 (hereinafter referred to as LPFL). is there. H
When the PCS piping 7 is broken, the HPCS super jar 18
The coolant is discharged to the outside of the reactor pressure vessel 5 from the portion.
However, when the water level in the downcomer 14 drops, the RCIC 11 operates in about 55 seconds (see (d) in FIG. 3), and the automatic depressurization system (ADS) operates in about 150 seconds ((in FIG. 3). E) See). Reactor pressure is LPFL
When the pressure drops to the operating pressure of 12 (at this time, depressurization boiling occurs and the reactor core level rises), the LPFL 12 starts water injection (see (f) in FIG. 3) in about 33 seconds, so that the reactor water level rises again. Therefore, the reactor core 1 will be flooded during the entire period of the accident. In this way, RCIC11 is for cooling the core flood from the start of LOCA until LPFL12 is activated. It is provided to supplement. On the other hand, the change in the temperature of the fuel rod cladding tube occurs after the occurrence of LOCA, the transition boiling occurs due to the rapid decrease in the core flow rate due to the stop of the internal pump 10, and the thermal conductivity decreases, so the temperature of the fuel rod cladding tube rises ( (See (g) of FIG. 3). However, the rise in the temperature of the fuel rod cladding tube is suppressed in a short period due to the decrease in output due to the scrum. As described above, in ABWR, RCIC is generated at the initial stage of LOCA occurrence.
After the reactor pressure dropped due to 11, LPFL1
Since the coolant is injected into the reactor by No. 2, it is possible to maintain the flooding for the entire period after the accident and obtain sufficient core cooling.

第4図は、原子炉圧力が70ATAからの減圧沸騰によ
つて冷却材が原子炉圧力容器5外に放出される割合を示
したものであり、全冷却材保有量の約38%が放出され
ることがわかつている。
FIG. 4 shows the rate at which the reactor pressure is released to the outside of the reactor pressure vessel 5 by the reduced pressure boiling from 70 ATA, and about 38% of the total amount of the coolant possessed is released. I am aware of this.

第5図は、LOCA時の原子炉圧力容器5内の水位に対
する残留水量を示す。図から、BWRでは大口径配管が
炉心より下方に存在するため配管破断時に多量の冷却材
流出があり、炉水位は第5図点に低下するが、ABW
Rでは、一次系配管が炉心1の上方に位置すること、及
びRCIC11の作動により、原子炉圧力容器5内の残
留水量がBWRに比べて多く、燃料発熱部上端より上方
の第5図点に低下する。しかし、減圧沸騰により冷却
材が放出され(全冷却材の38%)、かつRCIC11
なしの炉水位は、第5図点であり燃料発熱部上端より
下方になる。
FIG. 5 shows the residual water amount with respect to the water level in the reactor pressure vessel 5 at the time of LOCA. From the figure, in the BWR, the large-diameter pipe is located below the core, so a large amount of coolant flows out when the pipe breaks, and the reactor water level drops to the point in Fig. 5, but the ABW
In R, the primary system piping is located above the core 1 and the operation of the RCIC 11 causes the amount of residual water in the reactor pressure vessel 5 to be larger than that in BWR, and to the point in FIG. descend. However, the coolant was released by the reduced pressure boiling (38% of the total coolant), and RCIC11
The reactor water level without is shown in Fig. 5 and is below the upper end of the fuel heat generation part.

第6図に各原子炉固有の安全性を示す。炉心1、冷却系
循環ポンプ2、冷却系中間熱交換器3を配管で結び冷却
材であるナトリウムによつて、炉心1で発生した熱を水
に伝え蒸気を発生させ、タービンを回転し発電する高速
増幅炉(FBR)は、原子炉冷却材バウンダリでLOC
Aが発生した場合においても、一次冷却材の循環に支障
をきたすことなく安全に炉心1の冷却が行えるように、
一次主冷却系の配管及び機器が高所配置になつている。
又、やむを得ず低い位置に配置される配管及び機器に
は、ガードベツセル4を配置し、原子炉容器液位を許容
レベル以上に保持できる設計としている。よつて、EC
CS系がなくとも十分な炉心冷却が得られるため原子炉
固有の安全性が非常に高い。なお、ガードベツセル4
は、原子炉圧力容器5、一次主冷却系中間熱交換器3、
一次主冷却系循環ポンプ2にそれぞれ設置されている。
しかし、BWRでは原子炉一次冷却系等の原子炉圧力容
器に接続されている配管の完全破断によりLOCAが発
生した場合、破断口からの冷却材流出及び減圧沸騰によ
る冷却材流出によつて炉心1は露出するため炉心冷却は
ECCSに担うところが大きい。したがつて、原子炉固
有の安全性は低いといえる。
Figure 6 shows the safety peculiar to each reactor. The core 1, the cooling system circulation pump 2, and the cooling system intermediate heat exchanger 3 are connected by a pipe, the heat generated in the core 1 is transferred to water by sodium, which is a coolant, and steam is generated to rotate a turbine to generate electricity. Fast amplification reactor (FBR) is LOC at the reactor coolant boundary
Even if A occurs, the core 1 can be cooled safely without hindering the circulation of the primary coolant.
The piping and equipment of the primary main cooling system are located in high places.
Also, the guard bezel cell 4 is arranged in the piping and equipment which are unavoidably arranged at a low position, and the design is such that the liquid level in the reactor vessel can be maintained above an allowable level. Yotsutte, EC
Since the core can be sufficiently cooled without the CS system, the safety peculiar to the reactor is very high. In addition, guard bet cell 4
Is the reactor pressure vessel 5, the primary main cooling system intermediate heat exchanger 3,
Each is installed in the primary main cooling system circulation pump 2.
However, in BWR, when LOCA occurs due to complete rupture of the piping connected to the reactor pressure vessel such as the primary reactor cooling system, the coolant flow from the breakage port and the coolant flow due to reduced pressure boiling cause the reactor core 1 Since the core is exposed, the core cooling is largely responsible for ECCS. Therefore, it can be said that the inherent safety of the reactor is low.

一方、ABWRは、設計上想定すべき破断口は著しく小
さく、且つ破断位置も炉心1の上部に位置している。こ
のため、LOCA時に原子炉からの冷却材流出量が少な
く炉心が露出しにくいのでBWRに比べプラント固有の
安全性は高い。
On the other hand, in the ABWR, the breakage hole that should be assumed in design is extremely small, and the breakage position is also located above the core 1. For this reason, the amount of coolant flowing out of the reactor during LOCA is small and the core is difficult to be exposed, so the safety peculiar to the plant is higher than that of the BWR.

以上のことから特にABWRではLOCAが発生して
も、減圧沸騰により放出される冷却材(全保有水の38
%)を捕えるだけの保有水量を炉心1上部に確保できれ
ば、プラント固有の安全性を高めることができる。
From the above, in particular in ABWR, even if LOCA occurs, the coolant (38
%) Can be secured in the upper part of the core 1, the safety inherent to the plant can be enhanced.

第7図にABWRのECCS系統を示す。FIG. 7 shows the ABWR ECCS system.

ECCS系統は、単一故障を仮定しても装置の安全機能
が達成できるように独立性を有する構造であり、図に示
すように区分I、区分II及び区分IIIの3つに区分さ
れ、それぞれの区分ごとに動力源として非常用デイーゼ
ル発電機19を設置している。例えば、最も炉心冷却に
厳しいHPLS7の破断を考えると、図に示す区分IIの
HPCS7機能が停止し、且つ単一故障を想定すると、
区分IIIのECCS系の機能も同時に停止するという極
めて厳しい事故となる。しかし、残りの区分IのRCI
C11、LPFL12及び区分IIのLPFL12により炉心
を十分冷却できるだけの容量をもつ性能をもつている。
各系統の容量は、RCIC11が1系統で180T/H
r、HPCS7が2系統で730T/Hr、LPFL12は
3系統で950T/Hrである。
The ECCS system has an independent structure so that the safety function of the device can be achieved even if a single failure is assumed. As shown in the figure, the ECCS system is divided into three categories, Category I, Category II, and Category III. An emergency diesel generator 19 is installed as a power source for each category. For example, considering breakage of HPLS7, which is the most severe for core cooling, assuming that the HPCS7 function of Category II shown in the figure stops and a single failure is assumed,
This is a very severe accident in which the functions of the ECCS system of Category III are also stopped at the same time. However, the remaining RCIs of Category I
With C11, LPFL12 and LPFL12 of section II, it has the capacity to cool the core sufficiently.
The capacity of each system is 180T / H for one system of RCIC11.
r and HPCS7 are 730 T / Hr in 2 lines, and LPFL12 is 950 T / Hr in 3 lines.

なお、従来の公知例としては、日立評論Vo1.66、No.
4(1984年4月号)の第59頁〜第64頁に記載された
ABWR(新型沸騰水型原子カプラント)の開発と題す
る技術がある。
In addition, as a conventional publicly known example, Hitachi review Vo1.66, No.
4 (April 1984 issue), pages 59 to 64, there is a technology entitled "ABWR (New Boiling Water Atomic Plant)".

〔発明の目的〕[Object of the Invention]

本発明は、原子炉一次系配管のLOCA時においても炉
心が露出せず冠水維持される信頼性の高い軽水型原子炉
を得ることにある。
An object of the present invention is to obtain a highly reliable light water reactor in which the reactor core is not exposed and flooding is maintained even during the LOCA of the reactor primary system piping.

〔発明の概要〕[Outline of Invention]

本発明は、原子炉の炉心と前記炉心上方に装備された上
部プレナムとを格納する原子炉圧力容器、及び前記原子
炉圧力容器に注水系として接続される注水配管及び同じ
く前記原子炉圧力容器に接続される主蒸気配管を有する
軽水型原子炉において、原子炉圧力容器内の圧力が通常
運転時の圧力から大気圧まで急減圧した場合に減圧沸騰
により冷却材が原子炉圧力容器外に放出された場合にお
いても冷却材を炉心の燃料発熱部上端より上方に確保で
きる高さに、前記各配管の前記原子炉圧力容器内におけ
る開口の位置を前記燃料発熱部上端よりも上方に設定し
たことを特徴とする軽水型原子炉であって、事故時の原
子炉圧力容器内での減圧沸騰においても炉心を冠水維持
して原子炉の安全性と信頼性とを向上するものである。
The present invention relates to a reactor pressure vessel that stores a reactor core and an upper plenum installed above the reactor core, a water injection pipe connected to the reactor pressure vessel as a water injection system, and the reactor pressure vessel. In a light water reactor having a main steam pipe connected to it, when the pressure inside the reactor pressure vessel is suddenly reduced from the pressure during normal operation to atmospheric pressure, the coolant is released to the outside of the reactor pressure vessel by depressurization boiling. In this case, the position of the opening of each pipe in the reactor pressure vessel is set above the upper end of the fuel heat generating part so that the coolant can be secured above the upper end of the fuel heat generating part of the core. A light water reactor characterized by improving the safety and reliability of the reactor by maintaining the core flooded even during depressurization boiling in the reactor pressure vessel at the time of an accident.

〔発明の実施例〕Example of Invention

本発明の具体的実施例は、軽水型原子炉において、LO
CAが発生しても、破断口と燃料発熱部上端との間に破
断口以下の全保有水の38%以上を確保できる構造とす
ることにより、小容量の低圧ECCSだけで十分に炉心
を冷却することができる点に特徴がある。
A specific embodiment of the present invention is a light water reactor in which LO
Even if CA occurs, a structure that can secure 38% or more of the total retained water below the break port between the break port and the upper end of the fuel heat generation part can sufficiently cool the core with only a small volume of low pressure ECCS. The feature is that you can do it.

以下、本発明の一実施例を第1図及び第8図を用いて具
体的に説明する。
An embodiment of the present invention will be specifically described below with reference to FIGS. 1 and 8.

第1図はABWRに本発明を採用した例で、図において
5は炉心1を格納する原子炉圧力容器、10は炉心1で
の発生熱を除去、及び炉熱出力制御の機能をもつたイン
ターナルポンプ、6は炉水位を一定に保つための給水系
統である。ECCS系統としては、HPCS7,RCI
C11,LPFL12を設置している。上部プレナム2
1は約40cm高くしてあり、その分、上部プレナム21
より上方の原子炉圧力容器5を含む構造物を高くしてい
る。1350MWe級のABWRプラントの通常水位で
の全保有水量は、約30m3であり、減圧沸騰で原子炉圧
力容器5外に放出される割合は全保有水量の38%であ
るので、放出される冷却材量は約11.5m3である。こ
の放出量をHPCSノズル18と燃料棒発熱部上端との間に
確保するにはHPCSノズル18を約40cm上方に高く
位置させればよい。
FIG. 1 is an example in which the present invention is applied to an ABWR. In the figure, 5 is a reactor pressure vessel for storing the core 1, 10 is an interface having functions of removing heat generated in the core 1 and controlling the reactor heat output. Null pump 6 is a water supply system for keeping the reactor water level constant. ECCS systems include HPCS7, RCI
C11 and LPFL12 are installed. Upper plenum 2
1 is about 40 cm higher, and the upper plenum 21
The structure including the upper reactor pressure vessel 5 is elevated. The total amount of water held at the normal water level of the 1350 MWe class ABWR plant is about 30 m 3 , and the rate of release to the outside of the reactor pressure vessel 5 by depressurization boiling is 38% of the total amount of water held, so the cooling released. The material amount is about 11.5 m 3 . In order to secure this discharge amount between the HPCS nozzle 18 and the upper end of the fuel rod heat generating portion, the HPCS nozzle 18 may be positioned higher by about 40 cm.

本発明では、上部プレナム21を約40cm高くし、その
分HPCSノズル18を高く位置させることにより、炉
心冷却に最も厳しいHPCS破断によるLOCAが発生
しても自動減圧系が作動する間約150秒間はRCIC
11を注水しなくとも、発熱部上端より上方に冷却材を
多く確保できるので、炉心は露出しない。また減圧沸騰
によつて原子炉圧力容器5外に全保有水量の38%が放
出されても炉心は露出しないため、LOCA後、LPF
Lが作動するまでの間約330秒の間炉心は冠水維持さ
れる。よつて、本発明によれば、RCIC11がなくと
もLPFL12だけで十分な炉心冷却が得られる。ま
た、LPFL12の容量も、減圧沸騰によつて放出され
る冷却材量を考慮しなくともよいため、崩壊熱により放
出される冷却材相当の量だけで十分である。
In the present invention, the upper plenum 21 is raised by about 40 cm, and the HPCS nozzle 18 is positioned higher by that amount, so that even if LOCA occurs due to the HPCS rupture that is the most severe for core cooling, the automatic depressurization system operates for about 150 seconds. RCIC
Even if water is not injected into the reactor 11, a large amount of coolant can be secured above the upper end of the heat generating portion, so the core is not exposed. Moreover, even if 38% of the total amount of water held is released to the outside of the reactor pressure vessel 5 by the reduced pressure boiling, the core is not exposed.
The core remains submerged for about 330 seconds until L is activated. Therefore, according to the present invention, sufficient core cooling can be obtained only by the LPFL 12 without the RCIC 11. Further, the capacity of the LPFL 12 does not need to consider the amount of the coolant released by the reduced pressure boiling, so that only the amount of the coolant released by the decay heat is sufficient.

以上述べたように、炉心冷却に最も厳しいHPCS破断
によるLOCAの場合でも炉心は冠水維持されるため、
他の原子炉圧の容器に接続されるRCIC11,LPF
L12,給水系の6配管(HPCS配管7よりも上方に
設置)の破断が生じても破断口と燃料発熱部上端との間
に減圧沸騰で放出される全保有水量の38%を確保でき
れば炉心は冠水維持されるため、次に示すようにECC
S系の簡素化が計れる。
As described above, even in the case of LOCA due to HPCS fracture, which is the most severe for core cooling, the core is flooded,
RCIC11, LPF connected to another reactor pressure vessel
L12, Even if breakage occurs in 6 pipes of the water supply system (installed above the HPCS pipe 7), if 38% of the total retained water amount released by reduced pressure boiling can be secured between the breakage port and the upper end of the fuel heat generating part, the core Is flooded, ECC
The S system can be simplified.

第8図に本発明によるECCS系統の新しい構成を示
す。先に述べたように、LOCA時においては、RCI
C12に作動の必要はないが、過渡事象時の原子炉隔離
時における炉心の冷却を目的として設置しておく必要が
あるため、RCIC12を削減することはできない。し
かし、高圧ECCSがなくとも炉心は冠水維持されるた
め従来必要とされた第7図中のHPCS7は不要とな
る。したがつて、LOCA及び単一故障を仮定して、第
8図に示すECCS系統とすることができる。ECCS容量
としては、従来のABWRが、RCIC11:180T
/Hr(1系統)、HPCS7:730T/Hr(2系
統)、LPFL12:950T/Hr(3系統)に対
し、本発明におけるABWRによれば、RCIC11:
180T/Hr(1系統)、LPFL12:約230T
/Hr(3系統)のECCS系統で十分炉心1は冷却さ
れる。なお、230T/Hrの根拠は、LOCA後、約
3分後の崩壊熱(トータル出力の2%以下)による冷却
材喪失相当分の量にいくらかの余裕を含んだ値である。
FIG. 8 shows a new configuration of the ECCS system according to the present invention. As mentioned above, at the time of LOCA, the RCI
Although it is not necessary to operate C12, RCIC12 cannot be reduced because it must be installed for the purpose of cooling the core during reactor isolation during a transient event. However, the HPCS 7 shown in FIG. 7, which is conventionally required, is not necessary because the core is flooded without the high pressure ECCS. Therefore, assuming the LOCA and the single failure, the ECCS system shown in FIG. 8 can be obtained. For ECCS capacity, conventional ABWR is RCIC11: 180T
/ Hr (1 line), HPCS7: 730T / Hr (2 lines), LPFL12: 950T / Hr (3 lines), according to the ABWR of the present invention, RCIC11:
180T / Hr (1 system), LPFL12: about 230T
/ Hr (3 systems) ECCS system sufficiently cools the core 1. The basis of 230 T / Hr is a value including some margin in the amount of loss of coolant due to decay heat (2% or less of total output) about 3 minutes after LOCA.

〔発明の効果〕〔The invention's effect〕

本発明によれば、LOCAが発生しても炉心は露出せ
ず、冠水維持されるためプラント固有の安全性を得るこ
とができ、しかも同時にECCS系統を簡略化できると
共にその容量も従来のものに対し1/5以下とすること
ができる。このように本発明によれば、信頼性が高く、
しかも製品価格を大幅に低減することのできる軽水型原
子炉を得ることができる。
According to the present invention, even if LOCA occurs, the core is not exposed and flooding is maintained, so that it is possible to obtain plant-specific safety, and at the same time, the ECCS system can be simplified and its capacity can be made conventional. On the other hand, it can be 1/5 or less. Thus, according to the present invention, the reliability is high,
Moreover, it is possible to obtain a light water reactor capable of significantly reducing the product price.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の軽水型原子炉の一実施例を示す概略
縦断面図、第2図は従来のBWRの構造とその事故解析
結果を示す線図、第3図は従来のABWR構造とその事
故解析結果を示す線図、第4図は減圧沸騰割合を示す線
図、第5図は、原子炉水位に対するベツセル内体積の関
係を示す図、第6図は従来の各原子炉固有の安全性及び
本発明の一実施例としてのABWRにおける固有の安全
性を比較して示す図、第7図は、従来のABWRのECCS系統
を説明する図、第8図は、本発明の一実施例におけるE
CCS系統を説明する図である。 1…炉心、2…冷却系循環ポンプ、3…冷却系中間熱交
換器、4…ガードベツセル、5…原子炉圧力容器、6…
給水系、7…高圧炉心スプレイ系(HPCS)、9…低
圧注水系(LPCI)、10…インターナルポンプ、1
1…原子炉隔離時冷却設備(RCIC)、12低圧注入
系(LPFL)、13…再循環ポンプ、14…ダウンカマ、
15…再循環系吸込み配管、16…ジエツトポンプ、1
7…再循環系吐出配管、18…高圧炉心スプレイスパー
ジヤ、19…非常用デイーゼル発電機、20…主蒸気
系、21…上部プレナム。
FIG. 1 is a schematic vertical sectional view showing an embodiment of a light water reactor of the present invention, FIG. 2 is a diagram showing a conventional BWR structure and its accident analysis results, and FIG. 3 is a conventional ABWR structure. And a diagram showing the accident analysis result, FIG. 4 is a diagram showing the reduced pressure boiling rate, FIG. 5 is a diagram showing the relationship between the reactor water level and the volume in the Bethel, and FIG. FIG. 7 is a diagram showing the comparison between the safety of the present invention and the inherent safety of the ABWR as one embodiment of the present invention, FIG. 7 is a diagram for explaining the ECCS system of the conventional ABWR, and FIG. 8 is one of the present invention. E in the example
It is a figure explaining a CCS system. 1 ... Reactor core, 2 ... Cooling system circulation pump, 3 ... Cooling system intermediate heat exchanger, 4 ... Guard vessel, 5 ... Reactor pressure vessel, 6 ...
Water supply system, 7 ... High pressure core spray system (HPCS), 9 ... Low pressure water injection system (LPCI), 10 ... Internal pump, 1
1 ... Reactor isolation cooling facility (RCIC), 12 low pressure injection system (LPFL), 13 ... recirculation pump, 14 ... downcomer,
15 ... Recirculation system suction pipe, 16 ... Jet pump, 1
7 ... Recirculation system discharge piping, 18 ... High pressure core sparger, 19 ... Emergency diesel generator, 20 ... Main steam system, 21 ... Upper plenum.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上妻 宣昭 茨城県日立市幸町3丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 杉崎 利彦 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (56)参考文献 特開 昭59−231484(JP,A) 特開 昭60−202390(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuaki Uezuma 3-2-1, Sachimachi, Hitachi, Ibaraki Prefecture Hitachi Engineering Co., Ltd. (72) Inventor Toshihiko Sugisaki 3-chome, Hitachi, Hitachi, Ibaraki No. 1 Hitachi Ltd., Hitachi Works (56) References JP 59-231484 (JP, A) JP 60-202390 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】原子炉の炉心と前記炉心上方に装備された
上部プレナムとを格納する原子炉圧力容器、及び前記原
子炉圧力容器に注水系として接続される注水配管及び同
じく前記原子炉圧力容器に接続される主蒸気配管を有す
る軽水型原子炉において、原子炉圧力容器内の圧力が通
常運転時の圧力から大気圧まで急減圧した場合に減圧沸
騰により冷却材が原子炉圧力容器外に放出された場合に
おいても冷却材を炉心の燃料発熱部上端より上方に確保
できる高さに、前記各配管の前記原子炉圧力容器内にお
ける開口の位置を前記燃料発熱部上端よりも上方に設定
したことを特徴とする軽水型原子炉。
1. A reactor pressure vessel for storing a reactor core and an upper plenum installed above the core, a water injection pipe connected to the reactor pressure vessel as a water injection system, and the same reactor pressure vessel. In a light water reactor that has a main steam pipe connected to, when the pressure inside the reactor pressure vessel is suddenly reduced from the pressure during normal operation to atmospheric pressure, the coolant is released to the outside of the reactor pressure vessel by reduced pressure boiling. The height of the coolant above the upper end of the fuel heating part of the core, the position of the opening of each pipe in the reactor pressure vessel is set above the upper end of the fuel heating part. Is a light water reactor.
【請求項2】特許請求の範囲第1項において、原子炉圧
力容器に接続されている配管の開口位置と燃料発熱部上
端の間に確保できる冷却材量を、前記配管の開口位置よ
り下方の原子炉圧力容器内に確保できる冷却材の全量に
対し38%以上とすることを特徴とする軽水型原子炉。
2. The amount of coolant that can be ensured between the opening position of the pipe connected to the reactor pressure vessel and the upper end of the fuel heat generating portion is set below the opening position of the pipe according to claim 1. A light water reactor characterized by containing 38% or more of the total amount of coolant that can be secured in the reactor pressure vessel.
【請求項3】特許請求の範囲第2項において、上部プレ
ナムを高くし原子炉圧力容器に接続される注水配管の原
子炉圧力容器内での開口の位置を燃料発熱部上端から前
記開口の位置との間に約11.5m3以上の冷却材が確保
できる高さにしたことを特徴とする軽水型原子炉。
3. The position of the opening in the reactor pressure vessel of the water injection pipe connected to the reactor pressure vessel by raising the upper plenum according to claim 2, the position of the opening from the upper end of the fuel heating portion A light water reactor characterized by having a height that can secure a coolant of approximately 11.5 m 3 or more between and.
【請求項4】特許請求の範囲第2項において、注水配管
による注水系は、原子炉隔離時冷却設備系と低圧注水系
とを含んで構成され、前記低圧注水系の容量は約230
T/Hr以下であることを特徴とする軽水型原子炉。
4. The water injection system according to claim 2, wherein the water injection system is composed of a cooling system for reactor isolation cooling and a low pressure water injection system, and the capacity of the low pressure water injection system is about 230.
A light water reactor characterized by having T / Hr or less.
JP60247089A 1985-11-06 1985-11-06 Light water reactor Expired - Lifetime JPH0631782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60247089A JPH0631782B2 (en) 1985-11-06 1985-11-06 Light water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60247089A JPH0631782B2 (en) 1985-11-06 1985-11-06 Light water reactor

Publications (2)

Publication Number Publication Date
JPS62228197A JPS62228197A (en) 1987-10-07
JPH0631782B2 true JPH0631782B2 (en) 1994-04-27

Family

ID=17158261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60247089A Expired - Lifetime JPH0631782B2 (en) 1985-11-06 1985-11-06 Light water reactor

Country Status (1)

Country Link
JP (1) JPH0631782B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214796A (en) * 1988-02-24 1989-08-29 Hitachi Ltd Emergency core cooling system of nuclear reactor
JP2537538B2 (en) * 1988-06-16 1996-09-25 株式会社日立製作所 Natural circulation type reactor

Also Published As

Publication number Publication date
JPS62228197A (en) 1987-10-07

Similar Documents

Publication Publication Date Title
EP2839480B1 (en) Defense in depth safety paradigm for nuclear reactor
US8817941B2 (en) Pressurized water reactor plant
US6795518B1 (en) Integral PWR with diverse emergency cooling and method of operating same
JP5016066B2 (en) Nuclear power plants using nanoparticles in emergency systems and related methods
US20120243651A1 (en) Emergency core cooling system for pressurized water reactor
CN104520939A (en) Small modular reactor safety systems
US9728281B2 (en) Auxiliary condenser system for decay heat removal in a nuclear reactor
US20220367075A1 (en) Passive techniques for long-term reactor cooling
CN104969301A (en) Pressurized water reactor depressurization system
JPH0631782B2 (en) Light water reactor
JPS6375691A (en) Natural circulation type reactor
Lekakh et al. ACR-1000 passive features
Spinks A passive emergency heat sink for water-cooled reactors with particular application to CANDU reactors
Park et al. State-of-the-art report on the safety injection system for the system design of SMART-P
Ragheb Three Mile Island Accident
JPH0227295A (en) Reactor emergency core cooling system
JPS61105496A (en) Automatic decompression device for nuclear reactor
JPS61243397A (en) Emergency core cooling device for nuclear reactor
JPS6184595A (en) Emergency core cooling device for nuclear reactor
JPH0432798A (en) Nuclear reactor pressure reduction maintaining device
JPH0232294A (en) Emergency reactor core cooling device for nuclear reactor
PWR G.-M. GAUTIER, C. DE MASI
CANDU PJ. ALLEN, NJ. SPINKS
Birts et al. Improvements in nuclear reactors
EP2973595A2 (en) Passive techniques for long-term reactor cooling

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term