JPS61105496A - Automatic decompression device for nuclear reactor - Google Patents

Automatic decompression device for nuclear reactor

Info

Publication number
JPS61105496A
JPS61105496A JP59226812A JP22681284A JPS61105496A JP S61105496 A JPS61105496 A JP S61105496A JP 59226812 A JP59226812 A JP 59226812A JP 22681284 A JP22681284 A JP 22681284A JP S61105496 A JPS61105496 A JP S61105496A
Authority
JP
Japan
Prior art keywords
reactor
pressure
output
low
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59226812A
Other languages
Japanese (ja)
Inventor
黒田 義博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59226812A priority Critical patent/JPS61105496A/en
Publication of JPS61105496A publication Critical patent/JPS61105496A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は沸騰水型原子力発電プラントの非常用炉心冷却
系に組み込まれる原子炉自動減圧装置に係t)、特に、
自動起動方法を改良した自動減圧装置に:fllする。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an automatic reactor decompression device incorporated in an emergency core cooling system of a boiling water nuclear power plant, and in particular:
Automatic depressurization device with improved automatic startup method: full.

〔発明の技術的青石とその問題点〕[Technical bluestone of invention and its problems]

一般に、原子ノ〕発電1ラントにおいては、原子炉圧力
容器に接続されている配管が原子炉運転中に破断し、原
子炉冷却材の漏洩もしくは喪失した場合に備えて非常用
炉心冷却系(Emergency CoreCooli
ng 5yste+++以下ECC8と略記する)が設
けられている。このECC8は高圧炉心スプレィ系、自
動減圧系、低圧炉心スプレィ系、低圧注入系の独立かつ
異なる原理の4系統より構成され、所要の起動信号によ
り自動起flI′IIるようになっている。
In general, in nuclear power generation, an emergency core cooling system (Emergency Core Cooling System) is installed in case piping connected to the reactor pressure vessel ruptures during reactor operation and reactor coolant leaks or is lost. Core Cooli
ng 5yste+++ (hereinafter abbreviated as ECC8) is provided. This ECC 8 is composed of four systems, which are independent and based on different principles: a high pressure core spray system, an automatic depressurization system, a low pressure core spray system, and a low pressure injection system, and is designed to be activated automatically in response to a required activation signal.

第4図はこのECC8に関連する原子炉主要部の構成を
示ず系統図で、原子炉圧力容器1を格納する原子炉格納
容器2の下底部にはサプレッションプール3が形成され
ている。ECC8はこのサプレッションプール3または
復水貯蔵タンク4の水を高圧炉心スプレィポンプ5によ
って炉心のすぐ上のスパージャヘッダのノズルからスプ
レィする高圧炉心スプレィ系と、サプレッションプール
3の水を低圧炉心スプレィポンプ6によってもう一つの
スパージャヘッダのノズルからスプレィする低圧炉心ス
プレィ系と、この低圧炉心スプレィ系の後備として、サ
プレッションプール3の水を低圧注水ポンプ7.8およ
び9によってそれぞれ炉内に注水する低圧注水系とを備
えており、これら各冷却系の高圧炉心スプレィポンプ5
、低圧炉心スプレィポンプ6および低圧注水ポンプ7.
8゜9はそれぞれ所内mm1oまたは非常用ディーゼル
発電8111から受電することによって駆動される。
FIG. 4 is a system diagram that does not show the configuration of the main parts of the reactor related to this ECC 8. A suppression pool 3 is formed at the bottom of the reactor containment vessel 2 that houses the reactor pressure vessel 1. The ECC 8 includes a high-pressure core spray system that sprays water from the suppression pool 3 or condensate storage tank 4 from a nozzle in the sparger header immediately above the core using a high-pressure core spray pump 5, and a low-pressure core spray pump 6 that sprays water from the suppression pool 3 from the nozzle of the sparger header immediately above the core. A low-pressure core spray system that sprays water from the nozzle of another sparger header, and a low-pressure water injection system that injects water from the suppression pool 3 into the reactor by low-pressure water injection pumps 7, 8 and 9, respectively, as backup for this low-pressure core spray system. and high pressure core spray pumps 5 for each of these cooling systems.
, low pressure core spray pump 6 and low pressure water injection pump 7.
8 and 9 are each driven by receiving power from the in-house mm1o or the emergency diesel power generator 8111.

一方、原子炉圧力容器1には主蒸気管12および給水管
13が接続され、このうち主蒸気管12にはbit子炉
熱炉蒸気プレッションプール3へ逃すための逃し安全弁
14が設・プられており、さらに、この逃し安全弁14
は原子炉水位低信号および格納容!5高信号を入力した
1jaT炉自動減圧装δ(^uto Depressu
rization 5ysLe−以下ADSと略記する
)15によって開放し1!する構成になっている。
On the other hand, a main steam pipe 12 and a water supply pipe 13 are connected to the reactor pressure vessel 1, and the main steam pipe 12 is equipped with a relief safety valve 14 for releasing steam to the bit sub-reactor thermal reactor steam pressure pool 3. Furthermore, this relief safety valve 14
is the reactor water level low signal and the containment volume! 5 1jaT reactor automatic depressurization system δ (^uto Depressu
rization 5ysLe-hereinafter abbreviated as ADS) released by 15 and 1! It is configured to do this.

なJt、ここでは高圧炉心スプレィ系を高圧用FCC!
;、低圧炉心スプレィ系および低圧注水系を低圧用EC
C8として、以下に冷却材喪失事故が発生した場合の炉
心冷却動作の概要について説明する。
Jt, here the high pressure core spray system is high pressure FCC!
;、Low pressure core spray system and low pressure water injection system
As C8, an outline of the core cooling operation in the event of a loss of coolant accident will be explained below.

例えば、図示しない再循環系配管の破断事故が起こると
、冷却材が流出してその一部が失われる。
For example, if a breakage accident occurs in the recirculation system piping (not shown), the coolant flows out and a portion of it is lost.

この冷却材喪失事故よって炉水位が低下し、炉心が露出
した場0合には燃料被覆材が溶融する恐れがある1、こ
の溶融を防ぐために原子炉水位が低下したときは高圧用
ECC8を作動させて高圧の原子炉圧力容器1内の炉心
の冷7Jlを図ると共に炉水位を回復させる。
If the reactor water level drops due to this coolant loss accident and the reactor core is exposed, there is a risk that the fuel cladding material will melt1.In order to prevent this melting, when the reactor water level drops, the high pressure ECC8 is activated. The reactor core inside the high-pressure reactor pressure vessel 1 is cooled down by 7 Jl, and the reactor water level is restored.

ところで、この高圧用ECC8を作動させてもなお原子
炉水位が低下し続ける場合には低圧用ECC8を作塾さ
せるが、この低圧用ECC8は原子炉圧力容器1内が高
圧の場合は作動が不可能であるので、原子炉の水位が所
定値より低(、かつ、原子炉格納容器の圧力が所定値よ
り高いと言う条件でADS15が逃し安全弁14を開放
させ、原子炉圧力容器1内の高圧蒸気をサプレッション
プール3の水中へ放出することによって原子炉圧力を積
極的に低下させ、低圧用ECC8による原子炉圧力容器
1への冷却材注入を可能にする。
By the way, if the reactor water level continues to drop even after the high pressure ECC 8 is activated, the low pressure ECC 8 is created, but this low pressure ECC 8 will not operate if the pressure inside the reactor pressure vessel 1 is high. Therefore, under the conditions that the water level in the reactor is lower than a predetermined value (and the pressure in the reactor containment vessel is higher than a predetermined value), the ADS 15 opens the relief safety valve 14 and reduces the high pressure in the reactor pressure vessel 1. By releasing steam into the water in the suppression pool 3, the reactor pressure is actively lowered, allowing the low-pressure ECC 8 to inject coolant into the reactor pressure vessel 1.

すなわち、ADS15は低圧用ECC8による注水を促
す機能を有している。なお、従来のAD815は上述し
た原子炉水位“低”、およTj原原子炉格納容器圧力湯
高が同時に発生したときに起動するが、これ以外に手動
による操作信号が出力された場合も、上述したと同様に
逃し安全弁14を開放する構成になっている。
That is, the ADS 15 has a function of prompting water injection by the low pressure ECC 8. The conventional AD815 is activated when the above-mentioned reactor water level is "low" and the Tj reactor containment vessel pressure water is high at the same time, but it also activates when a manual operation signal is output in addition to this. The configuration is such that the relief safety valve 14 is opened in the same manner as described above.

かくして、冷却材喪失事故が発生した場合でも、^圧用
ECC8,ADSI 5、低圧用ECC8の作動により
十分な炉心冷却が行なわれるので燃料破損を未然に防止
することができる。
In this way, even if a loss of coolant accident occurs, sufficient core cooling is performed by the operation of the ^-pressure ECC 8, ADSI 5, and low-pressure ECC 8, so that fuel damage can be prevented.

そして、近年では原子カプラントの安全性向上を図る動
向の中で、原子炉]・リップ系(RT S )の故障時
における原子カプラントの健全性が問題になっている。
In recent years, amidst the trend to improve the safety of nuclear couplants, the integrity of nuclear couplants in the event of failure of the nuclear reactor lip system (RTS) has become an issue.

ここで、原子炉トリップ系とは原子炉の運転中に異常状
態や誤動作が生じた場合、あるいは、異常状態に移行す
る過渡期に原子炉停止用の制御棒を緊急挿入(スクラム
)して原子炉および発電所を保護するシステムであるが
、例えば、異常状態に移行する過渡期にスクラムしたと
き一部の制御棒が挿入されないというような故障が発生
すると核分裂の継続によって原子炉は出力し続けるので
、このとき原子炉水位の異常な低下や原子炉格納容器圧
力の急上昇が予測される。
Here, the reactor trip system refers to the emergency insertion (scram) of control rods for reactor shutdown when an abnormal state or malfunction occurs during the operation of the reactor, or during a transition period before transitioning to an abnormal state. This is a system that protects the reactor and power plant, but if a failure occurs, such as when some control rods are not inserted during a scram during the transition period to an abnormal state, the reactor will continue to output power due to continued nuclear fission. Therefore, at this time, an abnormal drop in the reactor water level and a sudden rise in the reactor containment vessel pressure are expected.

かかる事態に対して上述した高圧用ECC8、ADS1
5および低圧用E CCSが作動して大間の冷水が炉心
に供給されることになる。
In response to such a situation, the high pressure ECC8 and ADS1 described above are used.
5 and the low-pressure E CCS will operate, and Oma's cold water will be supplied to the core.

ところで、上述した構成の原子カプラントのうち、特に
沸騰水型原子炉(13WR)では炉心に存在する蒸気泡
(以下ボイドという)の増減が原子炉出力に大きな影響
を与えている。
By the way, among the above-mentioned nuclear couplers, especially in boiling water reactors (13WR), increases and decreases in steam bubbles (hereinafter referred to as voids) present in the reactor core have a large effect on the reactor output.

すなわち、沸騰水型原子炉は一般に負の反応度係数を持
っているので、ボイドが減少すれば原子炉に正の反応度
が加わり、逆にボイドが増加すると原子炉に負の反応度
が加わる。したがって、原子炉トリップ系の故障時にA
DS15が作動して炉心に大量の冷水が注入されたとす
れば、冷却に基づくボイドの急減により原子炉出力が急
激に増加することになり、炉心の健全性という点では好
ましくない状況になる。
In other words, boiling water reactors generally have a negative reactivity coefficient, so if the voids decrease, positive reactivity will be added to the reactor, and conversely, if the voids increase, negative reactivity will be added to the reactor. . Therefore, in the event of a reactor trip system failure, A
If DS15 were activated and a large amount of cold water was injected into the reactor core, the reactor output would rapidly increase due to the sudden decrease in voids due to cooling, resulting in an unfavorable situation in terms of core health.

このように、従来のADS15は機器の健全性から見た
とき必ずしも最適な条件下で作動するように構成されて
いなかった。
As described above, the conventional ADS 15 was not necessarily configured to operate under optimal conditions from the viewpoint of the health of the device.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点を解消するためになされたもので
、原子炉炉心の健全性を確実に維持し得る原子炉自動減
圧装置の提供を目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an automatic reactor decompression device that can reliably maintain the integrity of a nuclear reactor core.

〔発明の概要〕[Summary of the invention]

この目的を達成するために本発明は、低圧用非低B用非
常用炉心冷却系による注水を促すために、原子炉蒸気を
サブレッジ:1ンプールヘ逃す安全弁を開放して原子炉
圧力を低下させる原子炉自動減圧装置において、原子炉
圧力容器内の水位が警戒を要する水位に低下したときに
出力される原子炉水位低信号と、原子炉格納wX内の圧
力が警戒を要する圧力に上昇したときに出力される格納
容器高信号とを少なくとも同時に人力すると共に、原子
力1出力が臨界出力以下に低下したときに出力される原
子炉出力低信号が1rJ1時に入力されたとき、あるい
は、原子炉出力が上記臨界出力以上であるとさ・で、し
かも上記低圧用非常用炉心冷W系の少なくとも1系統が
起動しているときに出力される低圧用ECC8作動信り
とが共に同時に入力されたときに、上記安全弁を開放せ
しめる開弁操作信号を出力する論理演算部を設けたこと
を特徴とする。
To achieve this objective, the present invention is designed to reduce reactor pressure by opening a safety valve that releases reactor steam to a subledge: 1 pool in order to encourage water injection by a low-pressure non-low B emergency core cooling system. In the reactor automatic depressurization system, the reactor water level low signal is output when the water level in the reactor pressure vessel drops to a level that requires caution, and the reactor water level low signal is output when the pressure in the reactor containment wX rises to a level that requires caution. At least simultaneously with the output containment vessel high signal, the reactor output low signal that is output when the nuclear power output drops below the critical output is input at 1rJ1, or when the reactor output is above When the output is above the critical output and the low-pressure ECC8 operation signal that is output when at least one of the low-pressure emergency core cooling W systems is activated is input at the same time, The present invention is characterized in that it includes a logic operation section that outputs a valve opening operation signal for opening the safety valve.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について第1図ないし第31図
を参照して説明する。なお、第1図および第2図・中、
第4図と同一部分は同一符号を付して、その説明は省略
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 31. In addition, Figures 1 and 2, middle,
The same parts as in FIG. 4 are designated by the same reference numerals, and the explanation thereof will be omitted.

第1図は本発明に係る自動減圧装置の一実施例に組み込
まれる論理演算部の要部を示すブロック線図であり、第
1、第2両ANDゲート20.21、ORゲート22、
NOTゲート23を有する。
FIG. 1 is a block diagram showing the main parts of the logic operation section incorporated in an embodiment of the automatic decompression device according to the present invention, including first and second AND gates 20, 21, OR gate 22,
It has a NOT gate 23.

第1ANDゲート20は原子炉水位低信号S24と、格
納容器高信号825と、原子炉出力低信号326とを入
力とし、このAND条件を充足したときにORゲート2
2を経て開弁操作信号S27を出力するようになってい
る。上記原子炉水位低信号S24は原子炉圧力容器1内
の水位が警戒を要する水位に低下したときに出力され、
格納容器圧力高信号825は原子炉格納容器2内の圧力
が警戒を要する圧力に上昇したときに出力されるもので
ある。また、原子炉出力低信号826は、原子炉出ツノ
が臨界出力よりも低い値、例えば、約数%程度以下に低
下したときに出力されるものである。
The first AND gate 20 inputs the reactor water level low signal S24, the containment vessel high signal 825, and the reactor output low signal 326, and when this AND condition is satisfied, the OR gate 20
2, the valve opening operation signal S27 is output. The reactor water level low signal S24 is output when the water level in the reactor pressure vessel 1 has decreased to a level that requires caution,
The containment vessel pressure high signal 825 is output when the pressure within the reactor containment vessel 2 rises to a pressure that requires caution. Further, the reactor power low signal 826 is output when the reactor power output has decreased to a value lower than the critical power, for example, to about several percent or less.

また、第2ANDゲート21は上記原子炉水位低信号8
24と、格納容器圧力高信号S25とを入力とすると共
に、原子炉出力低信号826についてはNOTゲート2
3を介して入力せしめ、しかも、低圧用’E CCS 
I台作動信号828を入力とし〔いる。したがりて、開
弁操作信号827は第1ANDゲート20、あるいは第
2ANDゲート21のいずれか一方のAND条件を充足
したときに出力され、この開弁操作信号827を入力し
た逃し安全弁14は開放され、原子炉圧力容器1内の高
圧蒸気はサプレッションプール3へ逃されて、原子炉内
圧力を低下せしめる。
Further, the second AND gate 21 is connected to the reactor water level low signal 8.
24 and the containment vessel pressure high signal S25 are input, and the reactor output low signal 826 is input to NOT gate 2.
3, and low pressure 'E CCS
The I unit operation signal 828 is input. Therefore, the valve opening operation signal 827 is output when the AND condition of either the first AND gate 20 or the second AND gate 21 is satisfied, and the relief safety valve 14 to which this valve opening operation signal 827 is input is opened. The high-pressure steam in the reactor pressure vessel 1 is released to the suppression pool 3, reducing the pressure inside the reactor.

上記低圧用ECC3I台作動信号828は、第2図に示
すように複数の低圧用ECC8の各ポンプ6.7.8.
9から選択的に1台のみ作動させるための論理演算回路
から出力されるものである。
As shown in FIG. 2, the low pressure ECC 3I operation signal 828 is transmitted to each pump 6.7.8 of the plurality of low pressure ECCs 8.
9 is output from a logic operation circuit for selectively operating only one unit.

すなわち、原子炉水位低信号824、格納容器圧力高信
号S25の出力により、複数系統の低圧用ECC8の各
ポンプ6.7.8.9がそれぞれ起動し、このときに各
系統かり低圧用ECC8作動確認信号829が出力され
る。しかし、この状態では原子炉圧力容器1内圧力がま
だ高圧であるために、この低圧用ECC8による原子炉
への注水、スプレィは実行されずに待機している状態に
ある。上記低圧用ECC8作動確認信号829の一方は
フィードバック回路30のNOTゲート30aへ入力さ
れ、ここで反転されてANDゲート30bへ入力される
。このANDゲート30bは原子炉出力低信号S26を
入力とするNOTゲート23の出力信号を一方の入力と
しているので、原子炉出力低信号826が出力されない
状態、すなわち原子炉出力が臨界出力よりも大きく、し
かも、複数系統の低圧用ECCSの各ポンプ6.7゜8
.9いずれもが起動していない状態時に選択信号831
を出力する。この選択信号831は各低圧用ECC8へ
帰還され、所要の低圧用ECCSのポンプ例えば6.1
台のみを起動し、原子炉圧力容器1への冷却材の注水、
またはスプレィを行なうように待機する。これと同時に
、待機する低圧用ECC8からは低圧用ECC8作動確
認信号S29が出力され、これは低圧用ECC3I台作
動信号S24として上記第1ANDゲート21へ出力さ
れるようになっている。したがって、従来のAI)81
5にあっては、原子炉水位低および原子炉格納容器圧力
高という!li態が同時に発生したとき逃し安全弁を開
放したが、ここでは原子炉出力が臀に近い所定値以下す
なわち臨界出力よりも降下しているという条件、あるい
は臨界出力状態では低圧ECC3I台注入待機状態にあ
るという条件が加わったとき初めて逃し安全弁を開放し
ている。このことは、原子炉トリップ系の故障に伴う異
常状態が発生した場合でら臨界出力は維持されており、
この状態で大量の冷水の注入を防止し、原子炉出力の急
激な上昇を抑制すると共に原子炉トリップ系が正規に作
動した場合には遅延なく大量の冷水を注入して炉心の過
熱ないし溶融を防ぐことができることを示している。
In other words, each pump 6.7.8.9 of the low pressure ECC 8 of multiple systems is activated by the output of the reactor water level low signal 824 and the containment vessel pressure high signal S25, and at this time, the low pressure ECC 8 of each system is activated. A confirmation signal 829 is output. However, in this state, since the pressure inside the reactor pressure vessel 1 is still high, the low-pressure ECC 8 is not injecting or spraying water into the reactor and is in a standby state. One of the low voltage ECC8 operation confirmation signals 829 is input to the NOT gate 30a of the feedback circuit 30, inverted there and input to the AND gate 30b. Since this AND gate 30b has one input as the output signal of the NOT gate 23 which receives the reactor output low signal S26, it is in a state where the reactor output low signal 826 is not output, that is, the reactor output is higher than the critical output. Moreover, each pump of the low pressure ECCS of multiple systems is 6.7°8
.. Selection signal 831 when none of 9 are activated.
Output. This selection signal 831 is fed back to each low pressure ECC 8, and the selected low pressure ECCS pump, for example 6.1
Start only the unit and inject coolant into the reactor pressure vessel 1.
Or wait to spray. At the same time, the low-pressure ECC 8 on standby outputs a low-pressure ECC 8 operation confirmation signal S29, which is output to the first AND gate 21 as a low-pressure ECC 3I operation signal S24. Therefore, conventional AI)81
5, the reactor water level is low and the reactor containment vessel pressure is high! When the li state occurred at the same time, the relief safety valve was opened, but here the condition is that the reactor output is below a predetermined value close to the buttock, that is, it has fallen below the critical output, or in the critical output state, the low-pressure ECC3I unit is in the injection standby state. The relief safety valve is opened only when certain conditions are met. This means that even if an abnormal condition occurs due to a failure in the reactor trip system, the critical output is maintained.
In this state, a large amount of cold water is prevented from being injected, suppressing a sudden increase in reactor output, and if the reactor trip system operates normally, a large amount of cold water is injected without delay to prevent overheating or melting of the core. This shows that it can be prevented.

かくして、原子炉に大幅な正の反応度が付加されること
のない安全な炉心冷u1が可能になる。
In this way, safe core cooling u1 is possible without adding significant positive reactivity to the reactor.

第3図(a)〜(C)は原子炉トリップ系の故障に伴う
異常過渡状態での原子炉圧力、ECC8流量オよび原子
炉出力の変化を表したもので、従来のADS15を用い
た場合を一点鎖線に、本発明のADSを用いた場合を実
線でそれぞれ示している。第3図において、時刻t1で
原子炉水位低、格納容器圧力高になると、従来のADS
15はこの時点で動作するので、これ以後原子炉圧力は
曲線pに示すように減少すると共にECC3i!!lは
曲1aに示すように著しく増大するので、これによって
原子炉出力は曲線rに示すように急激に上昇するが、本
発明のADSでは、たとえ時刻t1にて原子炉水位低、
格納容器圧力高になってADSが作動しても低圧ECC
8の注入待機状態にある台数が抑えられているので曲線
qに示すように急激な冷水の注入はなく原子炉出力の急
上昇が防止される。
Figures 3 (a) to (C) show changes in reactor pressure, ECC8 flow rate, and reactor power during an abnormal transient state due to a failure in the reactor trip system, when using the conventional ADS15. The case where the ADS of the present invention is used is shown by the dashed line, and the solid line shows the case where the ADS of the present invention is used. In Figure 3, when the reactor water level is low and the containment vessel pressure is high at time t1, the conventional ADS
15 operates at this point, the reactor pressure then decreases as shown by curve p and ECC3i! ! Since l increases significantly as shown in curve 1a, the reactor power increases sharply as shown in curve r.However, in the ADS of the present invention, even if the reactor water level is low at time t1,
Even if the containment vessel pressure becomes high and the ADS is activated, the low pressure ECC
8, the number of units in the injection standby state is suppressed, so there is no sudden injection of cold water as shown by curve q, and a sudden increase in the reactor output is prevented.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかなように、本発明の原子炉自
動減圧装置は冷却材喪失事故に対しては従来装置と同様
に確実に機能させ得ると共に、原子炉トリップ系の故障
のように原子炉自動減圧装置の作動が好ましくない状況
[でも、水位確保に必要かつ十分な低圧ECC8のみを
待機状態とするので原子炉自動減圧装置が作動しても炉
心の健全性は確実に維持し得るという優れた効果が得ら
れる。
As is clear from the above explanation, the automatic reactor depressurization system of the present invention can function reliably in the same manner as conventional systems in the event of a loss of coolant accident, and can also function automatically in the event of a reactor trip system failure. In situations where the operation of the depressurizer is unfavorable, only the low-pressure ECC8 necessary and sufficient to secure the water level is put on standby, so even if the automatic reactor depressurizer operates, the health of the reactor core can be maintained reliably. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る原子炉自動減圧装置の一実施例に
組み込まれる論理演弾部の要部を示すブロック線図、第
2図は本実施例の論理演算部の全体構成を示すブロック
線図、第3図(a)〜(C)は本実施例の作用を説明り
るためのタイムチャート、第4図は自動減圧系の一般的
な構成を示寸系統図である。 1・・・原子炉圧力容器、2・・・原子炉格納容器、3
・・・勺プレッションプール、5・・・8圧炉心スプレ
イポンプ、6・・・低圧炉心スプレィポンプ、7,8゜
9・・・低圧注水ポンプ、12・・・主蒸気管、13・
・・給水管、14・・・逃し安全弁、′15・・・原子
炉自動減圧装置、20・・・第1ANDゲート、21・
・・第2ANDゲート、22−ORケート、23− ・
・−N OT ケ−]・、S27・・・開弁操作信号、
828・・・低圧用ECC3I台作動信号、30・・・
フィードバック回路。
FIG. 1 is a block diagram showing the main parts of the logic operation section incorporated in an embodiment of the automatic reactor depressurization system according to the present invention, and FIG. 2 is a block diagram showing the overall configuration of the logic operation section of this embodiment. 3(a) to 3(C) are time charts for explaining the operation of this embodiment, and FIG. 4 is a dimensional system diagram showing the general configuration of the automatic pressure reduction system. 1... Reactor pressure vessel, 2... Reactor containment vessel, 3
...Pressure pool, 5...8 pressure core spray pump, 6...Low pressure core spray pump, 7,8゜9...Low pressure water injection pump, 12...Main steam pipe, 13.
... Water supply pipe, 14 ... Relief safety valve, '15 ... Reactor automatic decompression device, 20 ... 1st AND gate, 21 ...
・・2nd AND gate, 22-OR gate, 23-・
・-N OT K-]・, S27... Valve opening operation signal,
828... Low pressure ECC3I unit operation signal, 30...
feedback circuit.

Claims (1)

【特許請求の範囲】[Claims] 低圧用非常用炉心冷却系による注水を促すために、原子
炉蒸気をサプレツシヨンプールへ逃す安全弁を開放して
原子炉圧力を低下させる原子炉自動減圧装置において、
原子炉圧力容器内の水位が警戒を要する水位に低下した
ときに出力される原子炉水位低信号と、原子炉格納容器
内の圧力が警戒を要する圧力に上昇したときに出力され
る格納容器高信号とを少なくとも同期に入力すると共に
、原子炉出力が臨界出力以下に低下したときに出力され
る原子炉出力低信号が同時に入力されたとき、あるいは
、原子炉出力が上記臨界出力以上であるときで、しかも
上記低圧用非常用炉心冷却系の少なくとも1系統が起動
しているときに出力される低圧用ECCS作動信号とが
共に同時に入力されたときに、上記安全弁を開放せしめ
る開弁操作信号を出力する論理演算部を設けたことを特
徴とする原子炉自動減圧装置。
In the automatic reactor depressurization system, which lowers the reactor pressure by opening the safety valve that releases reactor steam to the suppression pool to encourage water injection by the low-pressure emergency core cooling system,
The reactor water level low signal is output when the water level in the reactor pressure vessel drops to a level that requires caution, and the containment vessel high signal is output when the pressure in the reactor containment vessel rises to a level that requires caution. and the reactor output low signal, which is output when the reactor output drops below the critical output, is input at the same time, or when the reactor output is above the critical output. and when the low-pressure ECCS activation signal that is output when at least one system of the low-pressure emergency core cooling system is activated is input at the same time, a valve opening operation signal that opens the safety valve is generated. An automatic nuclear reactor decompression device characterized by being provided with a logic operation section that outputs output.
JP59226812A 1984-10-30 1984-10-30 Automatic decompression device for nuclear reactor Pending JPS61105496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59226812A JPS61105496A (en) 1984-10-30 1984-10-30 Automatic decompression device for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59226812A JPS61105496A (en) 1984-10-30 1984-10-30 Automatic decompression device for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS61105496A true JPS61105496A (en) 1986-05-23

Family

ID=16850988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59226812A Pending JPS61105496A (en) 1984-10-30 1984-10-30 Automatic decompression device for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS61105496A (en)

Similar Documents

Publication Publication Date Title
US8817941B2 (en) Pressurized water reactor plant
US5349616A (en) Reactor cooling system for boiling water reactors
CN210956182U (en) Safe injection system and nuclear power system
US4812286A (en) Shroud tank and fill pipe for a boiling water nuclear reactor
JP2859990B2 (en) Boiling water reactor equipment
JPS5860293A (en) Emergency core cooling system
JPS6375691A (en) Natural circulation type reactor
JPS61105496A (en) Automatic decompression device for nuclear reactor
JP6348855B2 (en) Emergency core cooling system for nuclear power plants
CN112750540A (en) Safe injection system and method and nuclear power system
JPS61241697A (en) Automatic decompression device for nuclear reactor
JPS62100696A (en) Method of automatically decompressing nuclear reactor
JPS60165585A (en) Automatic decompression device for reactor
JP5844319B2 (en) Emergency core cooling backup equipment
JPS62228197A (en) Light water type reactor
Ke et al. The emergency operating strategy analysis of medium LOCA with MHSI unavailable
Israel EPR: steam generator tube rupture analysis in Finland and in France
JPH0740073B2 (en) Automatic decompression system
JPS61243397A (en) Emergency core cooling device for nuclear reactor
JP3136786B2 (en) Reactor water level control method and apparatus
JPS62272195A (en) Nuclear-reactor water filler
JPH02222878A (en) Residual heat removal system of nuclear power plant
JP2003344576A (en) Boiling water reactor equipment
JPS62237397A (en) Safety protective device for boiling water type reactor
JPS5967498A (en) Control device for reactor core cooling system