JP6348855B2 - Emergency core cooling system for nuclear power plants - Google Patents

Emergency core cooling system for nuclear power plants Download PDF

Info

Publication number
JP6348855B2
JP6348855B2 JP2015022207A JP2015022207A JP6348855B2 JP 6348855 B2 JP6348855 B2 JP 6348855B2 JP 2015022207 A JP2015022207 A JP 2015022207A JP 2015022207 A JP2015022207 A JP 2015022207A JP 6348855 B2 JP6348855 B2 JP 6348855B2
Authority
JP
Japan
Prior art keywords
cooling system
pressure
core cooling
reactor
emergency core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015022207A
Other languages
Japanese (ja)
Other versions
JP2016145726A5 (en
JP2016145726A (en
Inventor
泰典 長田
泰典 長田
松浦 正義
正義 松浦
知博 中村
知博 中村
和明 木藤
和明 木藤
佳彦 石井
佳彦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2015022207A priority Critical patent/JP6348855B2/en
Priority to GB1602015.8A priority patent/GB2537957B/en
Priority to LT2016016A priority patent/LT6317B/en
Publication of JP2016145726A publication Critical patent/JP2016145726A/en
Publication of JP2016145726A5 publication Critical patent/JP2016145726A5/ja
Application granted granted Critical
Publication of JP6348855B2 publication Critical patent/JP6348855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • G21C15/182Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/08Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor
    • G21C1/084Boiling water reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は原子炉圧力容器内へ原子炉冷却材を注水し炉心の冷温停止を達成するために多重の注水系を備えた原子力発電所の非常用炉心冷却系に関する。   The present invention relates to an emergency core cooling system for a nuclear power plant equipped with multiple water injection systems in order to inject reactor coolant into a reactor pressure vessel and achieve cold shutdown of the core.

原子力発電プラントでは、安全性の観点から設計の妥当性を評価する上で想定すべき事象が定められており、原子炉冷却材の喪失事故もその1つである。   In a nuclear power plant, an event that should be assumed in evaluating the validity of the design from the viewpoint of safety is defined, and the accident of loss of reactor coolant is one of them.

原子炉冷却材の喪失事故は、原子炉の出力運転中に、原子炉冷却材圧力バウンダリを構成する配管あるいはこれに付随する機器等の破損や故障等により、原子炉冷却材が流出して原子炉炉心の冷却能力が低下する事象である。またここで、原子炉冷却材圧力バウンダリとは、原子炉の通常運転時に原子炉冷却材を内包して原子炉と同じ圧力条件となり、運転時の異常な過渡変化時及び事故時の苛酷な条件下で圧力障壁を形成するものであって、これが破壊すると原子炉冷却材喪失となる範囲の施設をいう。   Reactor coolant loss accidents occur when reactor coolant flows out during reactor power operation due to damage or failure of piping or other equipment that forms the reactor coolant pressure boundary. This is an event where the cooling capacity of the reactor core decreases. Here, the reactor coolant pressure boundary is the same pressure condition as the reactor, including the reactor coolant during normal operation of the reactor, and severe conditions during abnormal transient changes and accidents during operation. This is a facility that forms a pressure barrier underneath, and if this breaks down, the reactor coolant is lost.

原子炉施設の安全性確保とは、原子炉を安全に停止し、原子炉冷却材を原子炉圧力容器に注入して炉心を冷却し、原子炉格納容器内に放射性物質を閉じ込めることである。   Ensuring the safety of the reactor facility is to shut down the reactor safely, inject reactor coolant into the reactor pressure vessel, cool the reactor core, and confine radioactive material in the reactor containment vessel.

この内、炉心の冷却は非常用炉心冷却系によって達成される。本非常用炉心冷却系統は、原子炉冷却材の喪失事故時の炉心冷却による燃料被覆管の破損防止、格納容器の健全性保持、炉心崩壊熱の長期にわたる除去を達成できる設計となっている。加えて、非常用炉心冷却系の設計では、動的機器の単一故障下における安全機能が保証され、所内電源および外部電源の喪失を想定した非常用ディーゼル発電設備の設置および機能・系統の冗長性・独立性確保が考慮されている。ここで、単一故障とは、単一の原因によって一つの機器が所定の安全機能を失うことをいい、従属要因に基づく多重故障を含むものである。   Of these, cooling of the core is achieved by an emergency core cooling system. This emergency core cooling system is designed to prevent damage to the fuel cladding tube due to core cooling in the event of a loss of reactor coolant, maintain the integrity of the containment vessel, and remove the core decay heat over a long period of time. In addition, in the design of the emergency core cooling system, the safety function under a single failure of dynamic equipment is guaranteed, the installation of emergency diesel power generation facilities assuming the loss of in-house power supply and external power supply, and redundancy of functions and systems Securing gender and independence is considered. Here, the single failure means that one device loses a predetermined safety function due to a single cause, and includes multiple failures based on dependent factors.

本非常用炉心冷却系統は改良沸騰水型原子炉では、原子炉圧力容器内が高圧の時でも原子炉冷却材の注水ができる高圧炉心注水系ならびに原子炉隔離時冷却系と、原子炉圧力容器内が低圧の時に原子炉冷却材を注水する低圧注水系と、原子炉圧力容器を自動で減圧させる自動減圧系とから構成される。   This emergency core cooling system is an improved boiling water reactor, and a high pressure core injection system that can inject reactor coolant even when the pressure inside the reactor pressure vessel is high, a reactor isolation cooling system, and a reactor pressure vessel It consists of a low-pressure water injection system that injects reactor coolant when the inside is at low pressure, and an automatic pressure reduction system that automatically depressurizes the reactor pressure vessel.

図2は、従来の改良沸騰水型原子炉における非常用炉心冷却系の系統概略図である。この図において、まず改良沸騰水型原子炉は以下のように構成されている。   FIG. 2 is a system schematic diagram of an emergency core cooling system in a conventional improved boiling water reactor. In this figure, first, the improved boiling water reactor is configured as follows.

図2において3は原子炉格納容器であり、その内部に炉心4を格納する原子炉圧力容器2が設置されている。原子炉格納容器3底部の圧力抑制室19には、圧力抑制プール11が形成され冷却水を貯留している。20は原子炉格納容器3内の圧力抑制室19以外の部分を示すドライウェルである。なお12は給水配管であり、図示せぬ原子炉給水ポンプにより給水を原子炉圧力容器2に導く。給水配管は12A、12Bの2系統で構成されている。原子炉圧力容器2内で発生した蒸気は主蒸気配管18を介して、図示せぬ蒸気タービンに送られる。   In FIG. 2, 3 is a reactor containment vessel, in which a reactor pressure vessel 2 for housing a core 4 is installed. A pressure suppression pool 11 is formed in the pressure suppression chamber 19 at the bottom of the reactor containment vessel 3 to store cooling water. Reference numeral 20 denotes a dry well indicating a portion other than the pressure suppression chamber 19 in the reactor containment vessel 3. Reference numeral 12 denotes a water supply pipe which guides the water supply to the reactor pressure vessel 2 by a reactor water supply pump (not shown). The water supply pipe is composed of two systems, 12A and 12B. Steam generated in the reactor pressure vessel 2 is sent to a steam turbine (not shown) via a main steam pipe 18.

図2に示す非常用炉心冷却系1は、区分1A、区分1B、区分1Cに区分けされており、これらの区分に備えられた冷却用のポンプ5、6、7により圧力抑制プール11に貯留されている冷却水を原子炉圧力容器2に送り、炉心4を冷却する。   The emergency core cooling system 1 shown in FIG. 2 is divided into a section 1A, a section 1B, and a section 1C. The emergency core cooling system 1 is stored in the pressure suppression pool 11 by cooling pumps 5, 6, and 7 provided in these sections. The cooling water that is being supplied is sent to the reactor pressure vessel 2 to cool the core 4.

従来の非常用炉心冷却系1は、電動機8駆動の低圧注水系ポンプ5(5A、5B、5C)を有する3系列の低圧注水系(LPFL(A)、LPFL(B)、LPFL(C))と、電動機8駆動の高圧炉心注水系ポンプ6(6B、6C)を有する2系列の高圧炉心注水系(HPCF(B)、HPCF(C))と、蒸気タービン9駆動の原子炉隔離時冷却系ポンプ7を有する1系列の原子炉隔離時冷却系RCICと、自動減圧系ADSとから構成される。   The conventional emergency core cooling system 1 includes three series of low-pressure water injection systems (LPFL (A), LPFL (B), LPFL (C)) having a low-pressure water injection pump 5 (5A, 5B, 5C) driven by an electric motor 8. And two series of high-pressure core water injection systems (HPCF (B) and HPCF (C)) having a high-pressure core water injection system pump 6 (6B, 6C) driven by an electric motor 8 and a cooling system for reactor isolation driven by a steam turbine 9 A series of reactor isolation cooling system RCIC having a pump 7 and an automatic decompression system ADS are configured.

またこれらの冷却系統は、区分1A、区分1B、区分1Cごとに分割配置されており、区分1Aには、低圧注水系LPFL(A)と原子炉隔離時冷却系RCICが配置され、区分1Bには、低圧注水系LPFL(B)と高圧炉心注水系HPCF(B)が配置され、区分1Cには、低圧注水系LPFL(C)と高圧炉心注水系HPCF(C)が配置されている。   These cooling systems are divided and arranged for each of Category 1A, Category 1B, and Category 1C. In Category 1A, a low-pressure water injection system LPFL (A) and a reactor isolation cooling system RCIC are arranged, and in Category 1B , A low pressure water injection system LPFL (B) and a high pressure core water injection system HPCF (B) are arranged, and a low pressure water injection system LPFL (C) and a high pressure core water injection system HPCF (C) are arranged in section 1C.

また、非常用炉心冷却系1は、外部電源が利用できない場合に加えてこの系統を構成する機器の単一故障を仮定しても、この系統の安全機能が達成できるように非常用電源としての3系列の非常用ディーゼル発電機8(8A、8B、8C)から電力の供給を受ける。これにより、1系列の低圧注水系LPFL(A)と1系列の原子炉隔離時冷却系RCICと1系列の非常用ディーゼル発電機8Aとから構成される区分1Aと、1系列の低圧注水系LPFL(B)と1系列の高圧炉心注水系HPCF(B)と1系列の非常用ディーゼル発電機8Bとから構成される区分1Bと、1系列の低圧注水系LPFL(C)と1系列の高圧炉心注水系HPCF(C)と1系列の非常用ディーゼル発電機8Cとから構成される区分1Cとからなる3区分構成にしている。   Further, the emergency core cooling system 1 is used as an emergency power supply so that the safety function of this system can be achieved even if a single failure of the equipment constituting this system is assumed in addition to the case where an external power supply is not available. Electricity is supplied from three series of emergency diesel generators 8 (8A, 8B, 8C). As a result, section 1A composed of one series of low pressure water injection system LPFL (A), one series of reactor isolation cooling system RCIC and one series of emergency diesel generator 8A, and one series of low pressure water injection system LPFL Section 1B composed of (B), one series of high pressure core water injection system HPCF (B) and one series of emergency diesel generator 8B, one series of low pressure water injection system LPFL (C), and one series of high pressure cores A three-section configuration is made up of a section 1C composed of a water injection system HPCF (C) and a series of emergency diesel generators 8C.

上記注水系の構成のうち低圧注水系は、残留熱除去系の運転モードの1つであり、圧力抑制プール11内のプール水を吸水して原子炉圧力容器2の炉心シュラウド外側へ注水する系統であり、独立した3系列(LPFL(A)、LPFL(B)、LPFL(C))から構成されている。3区分の低圧注水系の内、区分1Aの低圧注水系LPFL(A)は開閉弁24を介して給水配管12Aを注水ルートとし、残る区分1B、1Cはそれぞれ低圧注水系注水配管13、14を注水配管とする。   The low-pressure water injection system is one of the operation modes of the residual heat removal system among the above water injection systems, and is a system that absorbs the pool water in the pressure suppression pool 11 and injects the water outside the core shroud of the reactor pressure vessel 2. And consists of three independent lines (LPFL (A), LPFL (B), and LPFL (C)). Of the three low pressure water injection systems, the low pressure water injection system LPFL (A) in section 1A uses the water supply pipe 12A as the water injection route via the on-off valve 24, and the remaining sections 1B and 1C have low pressure water injection pipes 13 and 14 respectively. Use water injection piping.

高圧炉心注水系は、初期には第1水源として復水貯蔵槽15から、最終的には第2水源である圧力抑制プール11から吸水して原子炉圧力容器2の炉心シュラウド内側へ注水する系統であり、独立した2系列から構成される。本系統の区分1B、1Cはそれぞれ高圧注水配管16、17を注水ルートとする。   The high pressure core water injection system initially absorbs water from the condensate storage tank 15 as the first water source and finally from the pressure suppression pool 11 as the second water source, and injects the water into the core shroud of the reactor pressure vessel 2. It is composed of two independent series. In the sections 1B and 1C of this system, the high-pressure water injection pipes 16 and 17 are water injection routes, respectively.

原子炉隔離時冷却系RCICは、初期には復水貯蔵槽15から、最終的には圧力抑制プール11から吸水して、炉心シュラウド外側へ注水する。本系統は給水配管12Bを注水ルートとする。   The reactor isolation cooling system RCIC initially absorbs water from the condensate storage tank 15 and finally from the pressure suppression pool 11 and injects water to the outside of the core shroud. This system uses the water supply pipe 12B as a water injection route.

なお自動減圧系ADSは、原子炉圧力容器2内の蒸気を圧力抑制室19へ逃がし、原子炉圧力容器2内の圧力を低圧注水系による注水が可能となる圧力まで低下させ、炉心冷却を促進する系統である。例えば主蒸気配管18の一部に設けられた逃し安全弁27を介して圧力抑制室19へ逃がす。   The automatic depressurization system ADS allows the steam in the reactor pressure vessel 2 to escape to the pressure suppression chamber 19, reduces the pressure in the reactor pressure vessel 2 to a pressure at which water can be injected by the low-pressure water injection system, and promotes core cooling. It is a system to do. For example, the pressure is released to the pressure suppression chamber 19 via a relief safety valve 27 provided in a part of the main steam pipe 18.

従来の改良沸騰水型原子炉の非常用炉心冷却系1の最も厳しい想定では、所内電源および外部電源の喪失を想定し、かつ、区分1Bあるいは1Cの非常用炉心冷却系がなんらかの理由により使用不可となる条件下において、さらに残った高圧炉心注水系の注水配管16、17いずれかの破損を考慮する。この時、原子炉隔離時冷却系ポンプ7が起動し、高圧となった原子炉圧力容器2に原子炉冷却材を注水して原子炉水位の低下を緩和する。続いて自動減圧系が作動して逃し安全弁27が開放し、原子炉圧力容器2内の圧力を低下させ、低圧注水系が注水を行う。   The most severe assumption of the conventional emergency boiling water reactor emergency core cooling system 1 assumes the loss of on-site power supply and external power supply, and the emergency core cooling system of Category 1B or 1C cannot be used for any reason. In the following conditions, the remaining one of the water injection pipes 16 and 17 of the high pressure core water injection system will be considered. At this time, the reactor isolation cooling system pump 7 is activated, and the reactor coolant is injected into the reactor pressure vessel 2 that has become high pressure to alleviate the decrease in the reactor water level. Subsequently, the automatic depressurization system is activated, the relief safety valve 27 is opened, the pressure in the reactor pressure vessel 2 is lowered, and the low-pressure water injection system performs water injection.

このような従来の非常用炉心冷却系1における最も厳しい想定に加え、なんらかの理由により更に1区分が使用不可となる事態を想定する。この場合、新たな最も厳しい想定として、所内電源および外部電源の喪失を想定し、かつ、区分1B、1Cの非常用炉心冷却系がなんらかの理由により使用不可となる条件下において、さらに区分1Aの低圧注水系LPFL(A)の注水配管12Aの破損を考慮する。   In addition to the most severe assumptions in the conventional emergency core cooling system 1 as described above, a situation is assumed in which one section cannot be used for some reason. In this case, as a new and most severe assumption, it is assumed that the in-house power supply and the external power supply are lost, and the emergency core cooling system of sections 1B and 1C becomes unusable for some reason. Consider damage to the water injection pipe 12A of the water injection system LPFL (A).

つまり、図3、4の状態となる。このうち図3は非常用炉心冷却系1の系統構成の機能を区分ごとに整理して示したものである。区分1Aに原子炉隔離時冷却系ポンプRCIC(7)、低圧注水系ポンプLPFL(5A)並びに非常用ディーゼル発電機DG(8A)を備え、区分1Bに高圧炉心注水系ポンプHPCF(6B)、低圧注水系ポンプLPFL(5B)並びに非常用ディーゼル発電機DG(8B)を備え、区分1Cに高圧炉心注水系ポンプHPCF(6C)、低圧注水系ポンプLPFL(5C)並びに非常用ディーゼル発電機DG(8C)を備えている。またこれら区分とは関わりなく、原子炉圧力容器を自動で減圧させる自動減圧系ADSを有することを表している。   That is, the state shown in FIGS. Of these, FIG. 3 shows the functions of the system configuration of the emergency core cooling system 1 organized by category. Category 1A is equipped with a reactor isolation cooling system pump RCIC (7), a low pressure injection pump LPLP (5A) and an emergency diesel generator DG (8A), and a high pressure core injection pump HPCF (6B), low pressure It is equipped with a water injection pump LPFL (5B) and an emergency diesel generator DG (8B). ). In addition, irrespective of these sections, it represents that an automatic pressure reducing system ADS for automatically reducing the pressure of the reactor pressure vessel is provided.

ここで想定した事態では、図3に「×」を付して示した炉心冷却系が機能発揮できない状態である。図4は、従来の改良沸騰水型原子炉において想定されるよりも厳しい条件下での非常用炉冷却系の構成図を示したものであり、機能障害箇所に「×」を付している。健全に機能し得るのは、区分1Aの原子炉隔離時冷却系ポンプ7と非常用ディーゼル発電機8A、及び原子炉圧力容器を自動で減圧させる自動減圧系逃し安全弁27のみということになる。なお非常用ディーゼル発電機8Aが稼働可能であっても、低圧注水系ポンプ5Aが供給する冷却水は注水配管12A(給水配管)の破損により、炉心冷却に貢献し得ない。   In the situation assumed here, the core cooling system indicated by “x” in FIG. 3 cannot function. FIG. 4 shows a block diagram of an emergency reactor cooling system under conditions that are severer than expected in a conventional improved boiling water reactor. . Only the reactor isolation cooling system pump 7 and the emergency diesel generator 8A in section 1A and the automatic depressurization relief valve 27 that automatically depressurizes the reactor pressure vessel can function soundly. Even if the emergency diesel generator 8A is operable, the cooling water supplied by the low-pressure water injection pump 5A cannot contribute to the core cooling due to the damage of the water injection pipe 12A (water supply pipe).

この状態における、健全機能による冷却機能は以下のようになると考えられる。この時には、原子炉隔離時冷却系のポンプ7が蒸気タービンにより起動し、高圧となった原子炉圧力容器2に原子炉冷却材を注水して原子炉水位の低下を緩和する。続いて自動減圧系ADSが作動(逃し安全弁27の開放)して原子炉圧力容器2内の圧力を低下させるが、原子炉隔離時冷却系RCICは原子炉圧力容器2が低圧となる条件下では使用できず、非常用炉心冷却系1に属するその他の冷却系も使用することはできないため、炉心の冷温停止が達成できない。   The cooling function based on the sound function in this state is considered as follows. At this time, the reactor isolation cooling system pump 7 is activated by the steam turbine, and the reactor coolant is injected into the reactor pressure vessel 2 that has become high pressure to alleviate the decrease in the reactor water level. Subsequently, the automatic depressurization system ADS is activated (the relief safety valve 27 is opened) to reduce the pressure in the reactor pressure vessel 2, but the reactor isolation cooling system RCIC is under the condition that the reactor pressure vessel 2 is at a low pressure. Since it cannot be used, and other cooling systems belonging to the emergency core cooling system 1 cannot be used, the cold shutdown of the core cannot be achieved.

本課題に対し、特許文献1では区分1Aの原子炉隔離時冷却系RCICを低圧条件下でも使用可能な高圧炉心注水系に変更する設計が開示されている。   In response to this problem, Patent Document 1 discloses a design in which the reactor isolation cooling system RCIC of Category 1A is changed to a high pressure core water injection system that can be used even under low pressure conditions.

特開2009−31079号公報JP 2009-31079 A

特許文献1が提案する解決案によれば、炉心の冷温停止が達成可能であるが、全交流電源喪失SBO条件下においては、いずれの冷却系も炉心への冷却水注水を実現できない。また既存設備の場合には大幅な取り外し、据え付け作業を行う必要がある。このことから、全交流電源喪失SBO条件下においても炉心への冷却水注水が可能である手法、また、より簡便な手法での炉心の冷温停止達成が望まれる。   According to the solution proposed by Patent Document 1, it is possible to achieve cold shutdown of the core, but none of the cooling systems can realize cooling water injection into the core under the all-AC power loss SBO condition. In the case of existing equipment, it is necessary to perform significant removal and installation work. For this reason, it is desired to achieve a cold shutdown of the core by a technique that allows the cooling water to be injected into the core even under the all-AC power loss SBO condition, and by a simpler technique.

以上のことから本発明においては、原子炉隔離時冷却系を含む非常用炉心冷却系構成において、各系列単体で炉心の冷温停止を達成することが可能な原子炉を提供するものである。   In view of the above, the present invention provides a nuclear reactor capable of achieving a cold shutdown of a core in each system alone in an emergency core cooling system configuration including a reactor isolation cooling system.

上記課題を解決するために本発明においては、少なくとも3区分された非常用炉心冷却系を有し、非常用炉心冷却系のうち第1区分はタービン駆動の高圧注水ポンプを有する原子炉隔離時冷却系と電動駆動の低圧注水ポンプを有する低圧注水系と非常用電源により構成され、原子炉隔離時冷却系により第1の配管、第1の給水配管を経由して原子炉圧力容器内に給水し、低圧注水系により第2の配管、第2の給水配管を経由して原子炉圧力容器内に給水するとともに、3区分された非常用炉心冷却系で共有される自動減圧系を備える原子力発電所の非常用炉心冷却系であって、第1の給水配管または第2の給水配管の破断を検知する破断検知装置、低圧注水系の第2の配管に設けられる第1の弁、第1の弁の上流側であって第1の配管と第2の配管を第2の弁を介して接続するタイライン配管を備え、破断検知装置により第2の給水配管の破断を検知し、第1の弁及び第2の弁を操作して、低圧注水系からタイライン配管、第1の給水配管を経由して原子炉圧力容器内に給水することを特徴とする。   In order to solve the above-described problems, the present invention has an emergency core cooling system divided into at least three sections, and the first section of the emergency core cooling system includes a turbine-driven high-pressure water injection pump for isolation isolation. The system is composed of a low-pressure water injection system having an electric-driven low-pressure water injection pump and an emergency power supply. Water is supplied into the reactor pressure vessel via the first piping and the first water supply piping by the reactor isolation cooling system. , A nuclear power plant that supplies water into the reactor pressure vessel via the second pipe and the second water supply pipe by a low-pressure water injection system, and has an automatic pressure reduction system shared by the three-section emergency core cooling system 1, a first valve provided in a second pipe of the low-pressure water injection system, a first valve, and a first valve provided in the second pipe of the low-pressure water injection system. Upstream of the first pipe and the second pipe A tie line pipe connecting the pipe via a second valve is provided, the breakage of the second water supply pipe is detected by a breakage detection device, and the first valve and the second valve are operated. Water is supplied into the reactor pressure vessel through a tie line pipe and a first water supply pipe.

本発明によれば、なんらかの理由で3区分ある非常用炉心冷却系のうち2区分が使用できない条件下で、さらに使用可能な1区分の非常用炉心冷却系のいずれかの注水系が有する注水配管に破断が生じた際にも、原子炉圧力容器内へ原子炉冷却材の注水を行い、炉心の冷温停止が達成できるように、注水系に多重性をもたせた非常用炉心冷却系を提供することができる。   According to the present invention, the water injection pipe of the water injection system of any one of the emergency core cooling systems that can be used under the condition that two of the emergency core cooling systems that are in three categories cannot be used for some reason. Provides an emergency core cooling system with multiple water injection systems so that even if a rupture occurs in the reactor, the reactor coolant can be injected into the reactor pressure vessel to achieve cold shutdown of the core. be able to.

本発明の実施例に係る非常用炉心冷却系を備えた改良沸騰水型原子炉の系統概略を示す図。The figure which shows the system | strain outline | summary of the improved boiling water reactor provided with the emergency core cooling system which concerns on the Example of this invention. 従来の改良沸騰水型原子炉における非常用炉心冷却系の系統概略を示す図。The figure which shows the system outline | summary of the emergency core cooling system in the conventional improved boiling water reactor. 非常用炉心冷却系1の系統構成の機能を区分ごとに整理して示した図。The figure which arranged and showed the function of the system configuration of emergency core cooling system 1 for every division. 改良沸騰水型原子炉における最過酷条件下での非常用炉冷却系の構成を示す図。The figure which shows the structure of the emergency reactor cooling system in the severest conditions in an improved boiling water reactor. 本発明の追加構成部分を中心に示した図。The figure which showed centering on the additional component part of this invention. 給水配管12Aの破断を検知する計器22(差圧計)の具体的な計測器設置位置を示した図。The figure which showed the specific measuring device installation position of the measuring instrument 22 (differential pressure gauge) which detects the fracture | rupture of 12 A of water supply piping. 図6の構成において給水配管12Aの破断Fが生じたことを示す図。The figure which shows that fracture | rupture F of 12 A of water supply piping had arisen in the structure of FIG. 給水配管間の差圧計測用の差圧計に採用される2 out of 4理論の構成例を示す図。The figure which shows the structural example of 2 out of 4 theory employ | adopted as the differential pressure gauge for the differential pressure measurement between water supply piping.

以下、本発明の実施例について図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施例に係る非常用炉心冷却系を備えた改良沸騰水型原子炉の系統概略図である。   FIG. 1 is a system schematic diagram of an improved boiling water reactor equipped with an emergency core cooling system according to an embodiment of the present invention.

図1において、点線で丸く囲む部分が本発明により追加された機能構成部分を示している。ここでは要するに区分1Aにおいて原子炉隔離時冷却系RCICの配管と低圧注水系LPFL(A)の配管の間を、制御可能弁23を備えたタイライン21で接続し、給水配管12Aの破断を検知(例えば配管間に設定値以上の差圧が発生)するとき、制御可能弁23を制御、開放する。   In FIG. 1, a part surrounded by a dotted line is a functional component added by the present invention. In short, in section 1A, the reactor isolation cooling system RCIC piping and the low pressure water injection system LPFL (A) piping are connected by a tie line 21 equipped with a controllable valve 23 to detect a breakage of the water supply piping 12A. When, for example, a differential pressure greater than a set value is generated between the pipes, the controllable valve 23 is controlled and opened.

この構成によれば、原子炉隔離時冷却系RCICのポンプ7が蒸気タービン9により起動し、高圧となった原子炉圧力容器2に原子炉冷却材を注水して原子炉水位の低下を緩和する。続いて自動減圧系ADSが作動(逃し安全弁27の開放)して原子炉圧力容器2内の圧力を低下させる。さらに、給水配管12Aの破断を検知(例えば配管間に設定値以上の差圧が発生)するとき、制御可能弁23を開放し、起動可能な電動機8Aにより低圧注水系ポンプ5Aを駆動し、以後低圧注水系LPFL(A)、タイライン21、給水配管12Bを介して炉心注水を実現することができる。   According to this configuration, the reactor isolation cooling system RCIC pump 7 is activated by the steam turbine 9 to inject the reactor coolant into the reactor pressure vessel 2 that has become high pressure to alleviate the decrease in the reactor water level. . Subsequently, the automatic depressurization system ADS is activated (the relief safety valve 27 is opened), and the pressure in the reactor pressure vessel 2 is reduced. Further, when the breakage of the water supply pipe 12A is detected (for example, a differential pressure greater than a set value is generated between the pipes), the controllable valve 23 is opened, and the low-pressure water injection pump 5A is driven by the startable motor 8A. Core water injection can be realized through the low-pressure water injection system LPFL (A), the tie line 21, and the water supply pipe 12B.

概略上記のように構成され、使用される本発明の実施例1について、以下詳細に説明する。   The first embodiment of the present invention configured and used as described above will be described in detail below.

まず実施例の改良沸騰水型原子炉における非常用炉心冷却系の主要構成は図2に示したものと同じである。この非常用炉心冷却系1は、電動機8駆動の低圧注水系ポンプ5(5A、5B、5C)を有する3系列の低圧注水系(LPFL(A)、LPFL(B)、LPFL(C))と、電動機8駆動の高圧炉心注水系ポンプ6(6B、6C)を有する2系列の高圧炉心注水系(HPCF(B)、HPCF(C))と、蒸気タービン9駆動の原子炉隔離時冷却系ポンプ7を有する1系列の原子炉隔離時冷却系RCICと、自動減圧系ADSとから構成される。   First, the main configuration of the emergency core cooling system in the improved boiling water reactor of the embodiment is the same as that shown in FIG. The emergency core cooling system 1 includes three series of low-pressure water injection systems (LPFL (A), LPFL (B), LPFL (C)) having a low-pressure water injection pump 5 (5A, 5B, 5C) driven by an electric motor 8. Two series of high-pressure core water injection systems (HPCF (B), HPCF (C)) having a high-pressure core water injection system pump 6 (6B, 6C) driven by an electric motor 8 and a cooling system pump for isolating a reactor driven by a steam turbine 9 7 is composed of a series of reactor isolation cooling system RCIC 7 and an automatic decompression system ADS.

またこれらの冷却系統は、区分1A、区分1B、区分1Cごとに分割配置されており、区分1Aには、低圧注水系LPFL(A)と原子炉隔離時冷却系RCICが配置され、区分1Bには、低圧注水系LPFL(B)と高圧炉心注水系HPCF(B)が配置され、区分1Cには、低圧注水系LPFL(C)と高圧炉心注水系HPCF(C)が配置されている。   These cooling systems are divided and arranged for each of Category 1A, Category 1B, and Category 1C. In Category 1A, a low-pressure water injection system LPFL (A) and a reactor isolation cooling system RCIC are arranged, and in Category 1B , A low pressure water injection system LPFL (B) and a high pressure core water injection system HPCF (B) are arranged, and a low pressure water injection system LPFL (C) and a high pressure core water injection system HPCF (C) are arranged in section 1C.

また、非常用炉心冷却系1は、外部電源が利用できない場合に加えてこの系統を構成する機器の単一故障を仮定しても、この系統の安全機能が達成できるように非常用電源としての3系列の非常用ディーゼル発電機8(8A、8B、8C)から電力の供給を受ける。これにより、1系列の低圧注水系LPFL(A)と1系列の原子炉隔離時冷却系RCICと1系列の非常用ディーゼル発電機8Aとから構成される区分1Aと、1系列の低圧注水系LPFL(B)と1系列の高圧炉心注水系HPCF(B)と1系列の非常用ディーゼル発電機8Bとから構成される区分1Bと、1系列の低圧注水系LPFL(C)と1系列の高圧炉心注水系HPCF(C)と1系列の非常用ディーゼル発電機8Cとから構成される区分1Cとからなる3区分構成にしている。   Further, the emergency core cooling system 1 is used as an emergency power supply so that the safety function of this system can be achieved even if a single failure of the equipment constituting this system is assumed in addition to the case where an external power supply is not available. Electricity is supplied from three series of emergency diesel generators 8 (8A, 8B, 8C). As a result, section 1A composed of one series of low pressure water injection system LPFL (A), one series of reactor isolation cooling system RCIC and one series of emergency diesel generator 8A, and one series of low pressure water injection system LPFL Section 1B composed of (B), one series of high pressure core water injection system HPCF (B) and one series of emergency diesel generator 8B, one series of low pressure water injection system LPFL (C), and one series of high pressure cores A three-section configuration is made up of a section 1C composed of a water injection system HPCF (C) and a series of emergency diesel generators 8C.

上記注水系の構成のうち低圧注水系は、残留熱除去系の運転モードの1つであり、圧力抑制プール11内のプール水を吸水して原子炉圧力容器2の炉心シュラウド外側へ注水する系統であり、独立した3系列(LPFL(A)、LPFL(B)、LPFL(C))から構成されている。3区分の低圧注水系の内、区分1Aの低圧注水系LPFL(A)は開閉弁24を介して給水配管12Aを注水ルートとし、残る区分1B、1Cはそれぞれ低圧注水系注水配管13、14を注水ルートとする。   The low-pressure water injection system is one of the operation modes of the residual heat removal system among the above water injection systems, and is a system that absorbs the pool water in the pressure suppression pool 11 and injects the water outside the core shroud of the reactor pressure vessel 2. And consists of three independent lines (LPFL (A), LPFL (B), and LPFL (C)). Of the three low pressure water injection systems, the low pressure water injection system LPFL (A) in section 1A uses the water supply pipe 12A as the water injection route via the on-off valve 24, and the remaining sections 1B and 1C have low pressure water injection pipes 13 and 14 respectively. Water injection route.

高圧炉心注水系は、初期には第1水源として復水貯蔵槽15から、最終的には第2水源である圧力抑制プール11から吸水して原子炉圧力容器2の炉心シュラウド内側へ注水する系統であり、独立した2系列から構成される。本系統の区分1B、1Cはそれぞれ高圧注水配管16、17を注水ルートとする。   The high pressure core water injection system initially absorbs water from the condensate storage tank 15 as the first water source and finally from the pressure suppression pool 11 as the second water source, and injects the water into the core shroud of the reactor pressure vessel 2. It is composed of two independent series. In the sections 1B and 1C of this system, the high-pressure water injection pipes 16 and 17 are water injection routes, respectively.

原子炉隔離時冷却系RCICは、初期には復水貯蔵槽15から、最終的には圧力抑制プール11から吸水して、炉心シュラウド外側へ注水する。本系統は給水配管12Bを注水ルートとする。   The reactor isolation cooling system RCIC initially absorbs water from the condensate storage tank 15 and finally from the pressure suppression pool 11 and injects water to the outside of the core shroud. This system uses the water supply pipe 12B as a water injection route.

なお自動減圧系ADSは、原子炉圧力容器2内の蒸気を圧力抑制室19へ逃がし、原子炉圧力容器2内の圧力を低圧注水系による注水が可能となる圧力まで低下させ、炉心冷却を促進する系統である。例えば主蒸気配管18の一部に設けられた逃し安全弁27を介して圧力抑制室19へ逃がす。   The automatic depressurization system ADS allows the steam in the reactor pressure vessel 2 to escape to the pressure suppression chamber 19, reduces the pressure in the reactor pressure vessel 2 to a pressure at which water can be injected by the low-pressure water injection system, and promotes core cooling. It is a system to do. For example, the pressure is released to the pressure suppression chamber 19 via a relief safety valve 27 provided in a part of the main steam pipe 18.

従来の改良沸騰水型原子炉の非常用炉心冷却系1の最も厳しい想定では、所内電源および外部電源の喪失を想定し、かつ、区分1Bあるいは1Cの非常用炉心冷却系がなんらかの理由により使用不可となる条件下において、さらに残った高圧炉心注水系の注水配管16、17いずれかの破損を考慮する。この時、原子炉隔離時冷却系ポンプ7が起動し、高圧となった原子炉圧力容器2に原子炉冷却材を注水して原子炉水位の低下を緩和する。続いて自動減圧系が作動して逃し安全弁27が開放し、原子炉圧力容器2内の圧力を低下させ、低圧注水系が注水を行う。   The most severe assumption of the conventional emergency boiling water reactor emergency core cooling system 1 assumes the loss of on-site power supply and external power supply, and the emergency core cooling system of Category 1B or 1C cannot be used for any reason. In the following conditions, the remaining one of the water injection pipes 16 and 17 of the high pressure core water injection system will be considered. At this time, the reactor isolation cooling system pump 7 is activated, and the reactor coolant is injected into the reactor pressure vessel 2 that has become high pressure to alleviate the decrease in the reactor water level. Subsequently, the automatic depressurization system is activated, the relief safety valve 27 is opened, the pressure in the reactor pressure vessel 2 is lowered, and the low-pressure water injection system performs water injection.

このような従来の非常用炉心冷却系1における最も厳しい想定に加え、なんらかの理由により更に1区分が使用不可となる事態を想定する。この場合、新たな最も厳しい想定として、所内電源および外部電源の喪失を想定し、かつ、区分1B、1Cの非常用炉心冷却系がなんらかの理由により使用不可となる条件下において、さらに区分1Aの低圧注水系LPFL(A)の注水配管12Aの破損を考慮する。   In addition to the most severe assumptions in the conventional emergency core cooling system 1 as described above, a situation is assumed in which one section cannot be used for some reason. In this case, as a new and most severe assumption, it is assumed that the in-house power supply and the external power supply are lost, and the emergency core cooling system of sections 1B and 1C becomes unusable for some reason. Consider damage to the water injection pipe 12A of the water injection system LPFL (A).

この場合、図3に示したように1系列の原子炉隔離時冷却系RCICのみが原子炉圧力容器2内へ原子炉冷却材の注水が可能な状態である。   In this case, as shown in FIG. 3, only one series of reactor isolation cooling system RCIC is in a state where water can be injected into the reactor pressure vessel 2.

本発明の実施例では、上記既存構成に加え、さらに以下の追加構成を備える。図1の丸で囲む部分がこの追加部分であり、追加部分の構成を中心にして整理したのが図5であるので、この追加部分の説明を、図5を参照して行う。   In the embodiment of the present invention, in addition to the above existing configuration, the following additional configuration is further provided. The portion surrounded by a circle in FIG. 1 is this additional portion, and FIG. 5 is an arrangement centering on the configuration of the additional portion. Therefore, the additional portion will be described with reference to FIG.

図5には区分1Aを主体に記述している。ここでは低圧注水系LPFL(A)の注水配管(給水配管)12Aへの接続配管31と、原子炉隔離時冷却系RCICの注水配管(給水配管)12Bへの接続配管32は、タイライン21で接続されている。このタイライン21には開閉可能な弁23が設けられている(図1では、暫定的にモータ駆動弁MOを記載している)。加えて、低圧注水系LPFL(A)の接続配管31にも開閉可能な弁24が設けられるが、この弁24は既存の弁を使用可能である。   FIG. 5 mainly describes the category 1A. Here, the connection pipe 31 to the water injection pipe (water supply pipe) 12A of the low pressure water injection system LPFL (A) and the connection pipe 32 to the water injection pipe (water supply pipe) 12B of the RCIC cooling system RCIC are connected by the tie line 21. It is connected. The tie line 21 is provided with a valve 23 that can be opened and closed (in FIG. 1, a motor-driven valve MO is provisionally described). In addition, a valve 24 that can be opened and closed is also provided in the connection pipe 31 of the low-pressure water injection system LPFL (A), but an existing valve can be used.

また、両給水配管12A、12Bには状態量を計測する計器22(図1では暫定的に差圧計を記載している)が接続され、この計器22には両給水配管12A、12Bの状態量を元に破断配管を特定するための破断検知装置29が接続されている。なお図5の例は破断検知装置29により破断配管を検知するために、給水配管12A、12Bに差圧検出器を設けた例であい。   Further, a meter 22 for measuring the state quantity (a differential pressure gauge is tentatively shown in FIG. 1) is connected to both the water supply pipes 12A and 12B, and the state quantity of the both water supply pipes 12A and 12B is connected to the meter 22. A breakage detection device 29 for identifying the breakage pipe based on is connected. Note that the example of FIG. 5 is an example in which a differential pressure detector is provided in the water supply pipes 12A and 12B in order to detect the broken pipe by the fracture detection device 29.

破断検知装置29は、計器22の出力から給水配管12Aの破断Fを検知して、タイライン21の弁23ならびに接続配管31上の弁24を操作する。これにより、低圧注水系LPFL(A)は給水配管12Aおよび給水配管12Bの2つの配管から選択的に注水を行うことができる。   The break detection device 29 detects the break F of the water supply pipe 12 </ b> A from the output of the meter 22 and operates the valve 23 on the tie line 21 and the valve 24 on the connection pipe 31. Thereby, the low pressure water injection system LPFL (A) can selectively perform water injection from the two pipes of the water supply pipe 12A and the water supply pipe 12B.

例えば破断検知装置29は、給水配管12Aにおいて破断が検知された場合、本配管12Aへの接続配管31上にある弁24が閉じ、タイライン21上にある弁23が開いている状態になるように操作することで、低圧注水系LPFL(A)からも炉心への注水が可能となる。この場合には、起動可能な電動機8Aにより低圧注水系ポンプ5Aを起動し、低圧注水系LPFLの配管31からタイライン21上にある弁23、原子炉隔離時冷却系RCICの配管32及びその注水配管(給水配管)12Bを介して炉心への注水が行われることになる。   For example, when a break is detected in the water supply pipe 12A, the break detection device 29 closes the valve 24 on the connection pipe 31 to the main pipe 12A and opens the valve 23 on the tie line 21. In this way, water can be injected into the core from the low pressure water injection system LPFL (A). In this case, the low pressure water injection pump 5A is started by the startable electric motor 8A, the valve 23 on the tie line 21 from the low pressure water injection system LPFL piping 31, the piping 32 of the reactor isolation cooling system RCIC and the water injection thereof. Water is poured into the core through the pipe (water supply pipe) 12B.

従って、実施例の非常用炉心冷却系であれば、なんらかの理由で3区分ある非常用炉心冷却系のうち2区分が使用できず、1区分の非常用炉心冷却系のみが使用可能な場合に、さらに使用可能な1区分の非常用炉心冷却系が有するいずれかの注水系の注水配管における破断を想定しても、必要に応じタイライン21の弁23ならびに接続配管上の弁24を操作し区分1Aの低圧注水系の注水ルートを切り替えることで、安定した流量の原子炉冷却材を原子炉圧力容器2内へ注水できる。   Therefore, in the case of the emergency core cooling system of the embodiment, when for some reason two of the three emergency core cooling systems cannot be used and only one emergency core cooling system can be used, Furthermore, even if it is assumed that any one of the water injection pipes of the water injection system of the one-part emergency core cooling system that can be used is broken, the valve 23 on the tie line 21 and the valve 24 on the connection pipe are operated as necessary. By switching the water injection route of the 1A low-pressure water injection system, the reactor coolant having a stable flow rate can be injected into the reactor pressure vessel 2.

すなわち、前述の従来よりも厳しい想定事象においても、注入系に多重性をもたせ、炉心の冷温停止を達成できる。   In other words, even in the assumed event that is severer than the conventional one, it is possible to achieve a cold shutdown of the core by providing the injection system with multiplicity.

本実施例は改良沸騰水型原子炉を例に記載したが、本発明は原子炉全般に適用することができる。   In the present embodiment, an improved boiling water reactor has been described as an example, but the present invention can be applied to all nuclear reactors.

上記説明の実施例において、さらに以下の変形、代案を施すことが可能である。まず、実施例1において、区分1Aの低圧注水系と原子炉隔離時冷却系RCIC間のタイライン21上の開閉可能弁24は、モータ駆動弁あるいは圧縮空気駆動弁、窒素駆動弁、手動弁など、その種類は問わず適用可能である。   In the embodiment described above, the following modifications and alternatives can be made. First, in the first embodiment, the openable / closable valve 24 on the tie line 21 between the low pressure water injection system of the section 1A and the reactor isolation cooling system RCIC is a motor driven valve, a compressed air driven valve, a nitrogen driven valve, a manual valve, etc. Any type can be applied.

また両給水配管12A、12Bの状態量を計測し給水配管12A、12Bの破断を検知する計器22は、差圧計あるいは差流量計、温度計、放射線計測器のいずれかが使用可能であり、その種類は問わない。 The meter 22 for measuring the state quantities of both the water supply pipes 12A and 12B and detecting the breakage of the water supply pipes 12A and 12B can use either a differential pressure gauge, a differential flow meter, a thermometer, or a radiation measuring instrument. Any type.

なお、両給水配管12A、12Bの状態量を計測し給水配管12Aの破断を検知する計器22として、原子炉隔離時冷却系RCIC側を高圧側、低圧注水系側を低圧側として構成される差圧計を用いることで、給水配管12Bが破断した場合には、ダウンスケールにより望まない低圧注水系の注水ルートLPFL(A)の切替を防止できる。   The difference between the reactor isolation cooling system RCIC side as the high pressure side and the low pressure water injection system side as the low pressure side as the instrument 22 for measuring the state quantities of both the water supply pipes 12A and 12B and detecting the breakage of the water supply pipe 12A. By using the pressure gauge, when the water supply pipe 12B breaks, it is possible to prevent the switching of the water injection route LPFL (A) of the low pressure water injection system which is not desired by downscaling.

図6は、給水配管12Aの破断を検知する計器22(差圧計)の具体的な計測器設置位置を示した図である。この場合の計測器設置位置は、原子炉格納容器3内の両給水配管12A、12Bの立ち上がり部33よりも原子炉格納容器3側に設定することで、静水頭の観点から大きな差圧が得られる。 FIG. 6 is a diagram showing a specific measuring instrument installation position of the measuring instrument 22 (differential pressure gauge) that detects the breakage of the water supply pipe 12A. Instrument installation position in this case, by setting both the water supply pipe 12A, the containment vessel 3 side of the rising portion 33 of the 12B of the reactor containment vessel 3, to give a large pressure difference in terms of hydrostatic head It is done.

図7は、図6の構成において給水配管12Aの破断Fが生じたことを示す図である。この図7において、計器22(差圧計)の圧力計測点の圧力がPA、PBであり、炉心内圧力がP0である。この場合には、区分1Aの注水ルート切替の設定差圧は、通常時の両給水配管12A、12B間の差圧ΔP1より大きく、かつ給水配管12Aのうち原子炉圧力容器2付近かつ給水配管12Aの立ち上がり部33Aよりも原子炉圧力容器2側で配管破断Fが発生した場合の両給水配管12A、12B間の差圧ΔP2よりも小さい値に設定する。これにより、通常時の注水ルートの望まない切替を防止するとともに、本発明における想定事象において、給水配管12A上の大半の位置における破断想定時にも差圧検知ひいては注水ルートの切替ができる。   FIG. 7 is a diagram showing that the fracture F of the water supply pipe 12A has occurred in the configuration of FIG. In FIG. 7, the pressure at the pressure measurement point of the instrument 22 (differential pressure gauge) is PA and PB, and the pressure in the core is P0. In this case, the set differential pressure for switching the water injection route in section 1A is larger than the differential pressure ΔP1 between the two water supply pipes 12A and 12B at the normal time, and the vicinity of the reactor pressure vessel 2 in the water supply pipe 12A and the water supply pipe 12A. Is set to a value smaller than the pressure difference ΔP2 between the two water supply pipes 12A and 12B when the pipe fracture F occurs on the reactor pressure vessel 2 side of the rising portion 33A. As a result, undesired switching of the normal water injection route can be prevented, and in the assumed event of the present invention, the differential pressure can be detected and the water injection route can be switched even when fractures are assumed at most positions on the water supply pipe 12A.

また図6、図7の構成において、両給水配管12A、12Bのいずれの破断においても、破断発生直後に衝撃波が発生する場合がある。この場合、本衝撃波の影響により、両給水配管12A、12B間の差圧の正確な測定が困難になる。本事象に対し、破断検知装置29に破断後、例えば数十秒後から動作するようにタイマーを設置することで、不正確な差圧計測による注水ルートの望まない切替を防止する事ができる。   In the configurations of FIGS. 6 and 7, a shock wave may be generated immediately after the rupture occurs in any of the ruptures of both the water supply pipes 12 </ b> A and 12 </ b> B. In this case, accurate measurement of the differential pressure between the two water supply pipes 12A and 12B becomes difficult due to the influence of this shock wave. For this event, by installing a timer in the rupture detection device 29 so as to operate, for example, several tens of seconds after the rupture, undesired switching of the water injection route due to inaccurate differential pressure measurement can be prevented.

さらに図6、図7の構成において、計測の信頼度向上には計測器などの多重化が有効であり、この場合の位置構成例を図8に示す。図8では差圧計測器22を4台(22a、22b、22c、22d)設置し、破断検知装置29では4台の差圧計の信号に2 out of 4理論を採用することで、差圧計による誤計測の防止確率を向上できる。   Further, in the configurations of FIGS. 6 and 7, multiplexing of measuring instruments or the like is effective for improving the reliability of measurement. FIG. 8 shows an example of the position configuration in this case. In FIG. 8, four differential pressure measuring instruments 22 (22a, 22b, 22c, 22d) are installed, and the break detection device 29 adopts the 2 out of 4 theory for the signals of the four differential pressure gauges. The probability of preventing erroneous measurement can be improved.

1:非常用炉心冷却系
2:原子炉圧力容器
3:原子炉格納容器
4:炉心
5:低圧注水系ポンプ
6:高圧炉心注水系ポンプ
7:原子炉隔離時冷却系ポンプ
8A、8B、8C:非常用ディーゼル発電機
9:原子炉隔離時冷却系ポンプ駆動用蒸気タービン
11:圧力抑制プール
12A、12B:給水配管
LPFL(A)、LPFL(B)、LPFL(C):低圧注水系
HPCF(B)、HPCF(C):高圧注水系
RCIC:原子炉隔離時冷却系
13、14:低圧流水系注水配管
15:復水貯蔵槽
16、17:高圧炉心注水系注水配管
18:主蒸気配管
19:圧力抑制室
20:ドライウェル
21:低圧注水系LPFL(A)と原子炉隔離時冷却系間のタイライン
22:破断検知用計器
23:低圧注水系LPFL(A)の注水ルート切替弁
24:低圧注水系LPFL(A)の給水配管12Aへの接続配管上の開閉弁
33A、33B:給水配管立ち上がり部
27:逃し安全弁
29:破断検知装置
31:低圧注水系LPFL(A)の注水配管(給水配管)12Aへの接続配管
32:原子炉隔離時冷却系RCICの注水配管(給水配管)12Bへの接続配管
1: Emergency core cooling system 2: Reactor pressure vessel 3: Reactor containment vessel 4: Core 5: Low pressure water injection system pump 6: High pressure core water injection system pump 7: Reactor isolation cooling system pumps 8A, 8B, 8C: Emergency diesel generator 9: Steam turbine for cooling system pump drive at reactor isolation 11: Pressure suppression pool 12A, 12B: Feed water piping LPFL (A), LPFL (B), LPFL (C): Low pressure water injection system HPCF (B ), HPCF (C): high pressure water injection system RCIC: reactor isolation cooling system 13, 14: low pressure flowing water injection pipe 15: condensate storage tank 16, 17: high pressure core water injection pipe 18: main steam pipe 19: Pressure suppression chamber 20: Dry well 21: Tie line 22 between low pressure water injection system LPFL (A) and reactor isolation cooling system 22: Break detection instrument 23: Water injection route switching valve 24 of low pressure water injection system LPFL (A): Low pressure On-off valves 33A, 33B on the connection pipe of the water system LPFL (A) to the water supply pipe 12A: Water supply pipe rising section 27: Relief safety valve 29: Break detection device 31: Water injection pipe (water supply pipe) of the low pressure water injection system LPFL (A) Connection pipe 32 to 12A: Connection pipe to the water injection pipe (water supply pipe) 12B of the RCIC cooling system RCIC

Claims (11)

少なくとも3区分された非常用炉心冷却系を有し、該非常用炉心冷却系のうち第1区分はタービン駆動の高圧注水ポンプを有する原子炉隔離時冷却系と電動駆動の低圧注水ポンプを有する低圧注水系と非常用電源により構成され、前記原子炉隔離時冷却系により第1の配管、第1の給水配管を経由して原子炉圧力容器内に給水し、前記低圧注水系により第2の配管、第2の給水配管を経由して原子炉圧力容器内に給水するとともに、前記3区分された非常用炉心冷却系で共有される自動減圧系を備える原子力発電所の非常用炉心冷却系であって、
前記第1の給水配管または前記第2の給水配管の破断を検知する破断検知装置、前記低圧注水系の第2の配管に設けられる第1の弁、該第1の弁の上流側であって前記第1の配管と第2の配管を第2の弁を介して接続するタイライン配管を備え、
前記破断検知装置により前記第2の給水配管の破断を検知し、前記第1の弁及び前記第2の弁を操作して、前記低圧注水系から前記タイライン配管、前記第1の給水配管を経由して原子炉圧力容器内に給水することを特徴とする原子力発電所の非常用炉心冷却系。
The emergency core cooling system has at least three sections, and the first section of the emergency core cooling system has a low pressure having a reactor isolation cooling system having a turbine-driven high-pressure water injection pump and an electrically driven low-pressure water injection pump. Consists of a water injection system and an emergency power supply, water is supplied into the reactor pressure vessel via the first piping and first water supply piping by the reactor isolation cooling system, and the second piping is supplied by the low pressure water injection system. An emergency core cooling system of a nuclear power plant that supplies water into a reactor pressure vessel via a second water supply pipe and has an automatic pressure reducing system shared by the three divided emergency core cooling systems. And
A break detection device for detecting breakage of the first water supply pipe or the second water supply pipe, a first valve provided in a second pipe of the low-pressure water injection system, and an upstream side of the first valve; A tie line pipe connecting the first pipe and the second pipe via a second valve;
The rupture detection device detects a rupture of the second water supply pipe, operates the first valve and the second valve, and connects the tie line pipe and the first water supply pipe from the low pressure water injection system. An emergency core cooling system for a nuclear power plant characterized in that water is supplied into the reactor pressure vessel via
請求項1に記載の原子力発電所の非常用炉心冷却系であって、
前記第1区分の非常用炉心冷却系は、前記原子炉隔離時冷却系により第1の配管、第1の給水配管を経由して原子炉圧力容器内に給水し、前記3区分された非常用炉心冷却系で共有される自動減圧系を稼働し、原子炉圧力容器内の減圧後に前記低圧注水系から前記タイライン配管、前記第1の給水配管を経由して原子炉圧力容器内に給水することを特徴とする原子力発電所の非常用炉心冷却系。
An emergency core cooling system for a nuclear power plant according to claim 1,
The first-section emergency core cooling system supplies the water into the reactor pressure vessel via the first piping and the first feed water piping by the reactor isolation cooling system, and the three-section emergency core cooling system. An automatic depressurization system shared by the core cooling system is operated, and after depressurization in the reactor pressure vessel, water is supplied into the reactor pressure vessel from the low-pressure water injection system via the tie line piping and the first water supply piping. An emergency core cooling system for nuclear power plants.
請求項1または請求項2に記載の原子力発電所の非常用炉心冷却系であって、
前記3区分された非常用炉心冷却系のうち第1区分以外の非常用炉心冷却系は、前記原子炉圧力容器内が高圧の時でも原子炉冷却材の注水ができる高圧炉心注水系と、原子炉圧力容器内が低圧の時に原子炉冷却材を注水する低圧注水系とで構成され、
前記第1区分の低圧注水ポンプは、所内電源および外部電源を喪失し、かつ前記第1区分以外の非常用炉心冷却系による冷却がなんらかの理由により使用不可となる事態であってかつ前記第2の給水配管の破断時においても使用可能であることを特徴とする原子力発電所の非常用炉心冷却系。
An emergency core cooling system for a nuclear power plant according to claim 1 or 2,
Among the three-sectioned emergency core cooling systems, the emergency core cooling systems other than the first section include a high-pressure core injection system that can inject reactor coolant even when the inside of the reactor pressure vessel is at a high pressure, It consists of a low-pressure water injection system that injects reactor coolant when the pressure inside the reactor pressure vessel is low,
The low pressure water injection pump of the first section is a situation in which the in- house power supply and the external power supply are lost, and the cooling by the emergency core cooling system other than the first section becomes unusable for some reason , and the second section An emergency core cooling system for a nuclear power plant that can be used even when the water supply pipe is broken.
請求項1から請求項3のいずれか1項に記載の原子力発電所の非常用炉心冷却系であって、
前記第1の弁及び前記第2の弁として、開閉可能なモータ駆動弁、圧縮空気駆動弁、窒素駆動弁、手動弁のいずれかを備えることを特徴とする原子力発電所の非常用炉心冷却系。
An emergency core cooling system for a nuclear power plant according to any one of claims 1 to 3,
As the first valve and the second valve, openable motor driven valve, compressed air driven valves, nitrogen driven valve, emergency core cooling system of a nuclear power plant, characterized in that it comprises either manual valve .
請求項1から請求項4のいずれか1項に記載の原子力発電所の非常用炉心冷却系であって、
前記第1の給水配管または前記第2の給水配管の破断を検知する破断検知装置は、前記第1の給水配管と前記第2の給水配管の間に設けられて給水配管内の状態量を計測する計器の信号を用いており、当該計器として、差圧計、差流量計、温度計、放射線計測器のいずれかを備えることを特徴とする原子力発電所の非常用炉心冷却系。
An emergency core cooling system for a nuclear power plant according to any one of claims 1 to 4,
A breakage detection device for detecting breakage of the first water supply pipe or the second water supply pipe is provided between the first water supply pipe and the second water supply pipe and measures a state quantity in the water supply pipe. An emergency core cooling system for a nuclear power plant characterized in that it uses a signal from a measuring instrument and includes any one of a differential pressure gauge, a differential flow meter, a thermometer, and a radiation measuring instrument .
前記破断検知装置として差圧計を用いた請求項5に記載の原子力発電所の非常用炉心冷却系であって、
前記差圧計は、前記原子炉隔離時冷却系側を高圧側、前記低圧注水系側を低圧側として形成され、注水ルート切替の設定差圧は、通常時の差圧より大きく、かつ配管破断が発生した場合の差圧よりも小さい値に設定されることにより、第1の給水配管が破断した場合には、前記差圧計出力のダウンスケールにより前記低圧注水系の注水ルートが切り替わらないことを特徴とする原子力発電所の非常用炉心冷却系。
An emergency core cooling system for a nuclear power plant according to claim 5, wherein a differential pressure gauge is used as the rupture detection device ,
The differential pressure gauge is formed with the reactor isolation cooling system side as the high pressure side and the low pressure water injection system side as the low pressure side, and the set differential pressure for switching the water injection route is larger than the normal pressure difference, and the pipe breaks. By setting to a value smaller than the differential pressure at the time of occurrence, when the first water supply pipe is broken, the water injection route of the low pressure water injection system is not switched by the downscale of the differential pressure gauge output. An emergency core cooling system for nuclear power plants.
前記破断検知装置として差圧計を用いた請求項5または請求項6に記載の原子力発電所の非常用炉心冷却系であって、
前記差圧計は、原子炉格納容器内であって、前記第1の給水配管および前記第2の給水配管の立ち上がり部よりも原子炉格納容器側で差圧計測されることを特徴とする原子力発電所の非常用炉心冷却系。
An emergency core cooling system for a nuclear power plant according to claim 5 or 6, wherein a differential pressure gauge is used as the rupture detection device .
The differential pressure gauge is in a nuclear reactor containment vessel, and differential pressure is measured on the reactor containment vessel side from the rising portions of the first water supply pipe and the second water supply pipe. Emergency core cooling system.
前記破断検知装置として差圧計を用いた請求項5から請求項7のいずれか1項に記載の原子力発電所の非常用炉心冷却系であって、
前記差圧計は、注水ルート切替差圧の設定値を、通常運転時の前記第1の給水配管と前記第2の給水配管の間の差圧以上に設定し、通常運転時には注水ルートが切り替わらないことを特徴とする原子力発電所の非常用炉心冷却系。
The emergency core cooling system for a nuclear power plant according to any one of claims 5 to 7, wherein a differential pressure gauge is used as the rupture detection device .
The differential pressure gauge sets the set value of the water injection route switching differential pressure to be equal to or higher than the pressure difference between the first water supply pipe and the second water supply pipe during normal operation, and the water injection route is not switched during normal operation. An emergency core cooling system for nuclear power plants.
前記破断検知装置として差圧計を用いた請求項8に記載の原子力発電所の非常用炉心冷却系であって、
前記差圧計は、前記第2の給水配管のうち原子炉圧力容器付近、かつ前記第2の給水配管の立ち上がり部より原子炉圧力容器側での配管破断を想定した場合においても、差圧検知が可能であることを特徴とする原子力発電所の非常用炉心冷却系。
An emergency core cooling system for a nuclear power plant according to claim 8, wherein a differential pressure gauge is used as the rupture detection device .
The differential pressure gauge is capable of detecting a differential pressure even when a pipe breakage is assumed in the vicinity of the reactor pressure vessel in the second water supply pipe and on the reactor pressure vessel side from the rising portion of the second water supply pipe. An emergency core cooling system for nuclear power plants, which is possible.
請求項1から請求9のいずれか1項に記載の原子力発電所の非常用炉心冷却系であって、
前記破断検知装置は、前記第1の給水配管あるいは前記第2の給水配管の破断直後に発生し得る衝撃波を考慮しても前記破断検知装置が誤った動作を起こさないよう、破断後、緩和時間を経てから動作するように設定されたタイマーを備えることを特徴とする原子力発電所の非常用炉心冷却系。
An emergency core cooling system for a nuclear power plant according to any one of claims 1 to 9,
The rupture detection device has a relaxation time after rupture so that the rupture detection device does not cause an erroneous operation even if a shock wave that may occur immediately after the first water supply pipe or the second water supply pipe is ruptured is taken into account. An emergency core cooling system for a nuclear power plant, comprising a timer set to operate after passing through.
前記破断検知装置として差圧計を用いた請求項1から請求10のいずれか1項に記載の原子力発電所の非常用炉心冷却系であって、
前記差圧計は、誤計測を防止するために2 out of 4理論を採用することを特徴とする原子力発電所の非常用炉心冷却系。
The emergency core cooling system for a nuclear power plant according to any one of claims 1 to 10, wherein a differential pressure gauge is used as the rupture detection device .
The differential pressure gauge employs a 2 out of 4 theory to prevent erroneous measurement, and an emergency core cooling system for a nuclear power plant.
JP2015022207A 2015-02-06 2015-02-06 Emergency core cooling system for nuclear power plants Active JP6348855B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015022207A JP6348855B2 (en) 2015-02-06 2015-02-06 Emergency core cooling system for nuclear power plants
GB1602015.8A GB2537957B (en) 2015-02-06 2016-02-04 Emergency core cooling system of nuclear power plant
LT2016016A LT6317B (en) 2015-02-06 2016-02-05 Emergency core cooling system of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022207A JP6348855B2 (en) 2015-02-06 2015-02-06 Emergency core cooling system for nuclear power plants

Publications (3)

Publication Number Publication Date
JP2016145726A JP2016145726A (en) 2016-08-12
JP2016145726A5 JP2016145726A5 (en) 2017-03-23
JP6348855B2 true JP6348855B2 (en) 2018-06-27

Family

ID=55641812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022207A Active JP6348855B2 (en) 2015-02-06 2015-02-06 Emergency core cooling system for nuclear power plants

Country Status (3)

Country Link
JP (1) JP6348855B2 (en)
GB (1) GB2537957B (en)
LT (1) LT6317B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10706973B2 (en) * 2017-05-02 2020-07-07 Ge-Hitachi Nuclear Energy Americas Llc Very simplified boiling water reactors for commercial electricity generation
US11380451B2 (en) 2017-08-15 2022-07-05 Ge-Hitachi Nuclear Energy Americas Llc Depressurization and coolant injection systems for very simplified boiling water reactors

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860293A (en) * 1981-10-06 1983-04-09 株式会社東芝 Emergency core cooling system
JPS59184890A (en) * 1983-04-04 1984-10-20 株式会社日立製作所 Reactor cooling system facility
JPH0740073B2 (en) * 1986-01-09 1995-05-01 株式会社東芝 Automatic decompression system
JPS63191000A (en) * 1987-02-03 1988-08-08 Toshiba Corp Breaking position detecting method for pipeline
JPH01217297A (en) * 1988-02-26 1989-08-30 Hitachi Ltd Protecting device of nuclear reactor plant
JPH03296692A (en) * 1990-04-17 1991-12-27 Toshiba Corp Detecting device of fracture of piping of residual heat removing equipment
US5213755A (en) * 1991-04-01 1993-05-25 General Electric Company Low pressure coolant injection modification for boiling water reactors
JPH0587968A (en) * 1991-09-25 1993-04-09 Toshiba Corp Recircuration device of nuclear reactor
US5511102A (en) * 1995-03-15 1996-04-23 General Electric Company Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor
JP2004061192A (en) * 2002-07-25 2004-02-26 Toshiba Corp Nuclear power generation facilities
JP2008185572A (en) * 2007-01-31 2008-08-14 Toshiba Corp Alternative cooling system for nuclear reactor and the like
JP4956316B2 (en) * 2007-07-26 2012-06-20 株式会社東芝 Emergency core cooling system
US20120294409A1 (en) * 2009-12-14 2012-11-22 Kabushiki Kaisha Toshiba Transient mitigation system for reactor
JP2011185741A (en) * 2010-03-09 2011-09-22 Hitachi-Ge Nuclear Energy Ltd Emergency core cooling system

Also Published As

Publication number Publication date
GB2537957B (en) 2017-06-07
GB201602015D0 (en) 2016-03-23
LT2016016A (en) 2016-08-10
GB2537957A (en) 2016-11-02
LT6317B (en) 2016-09-12
JP2016145726A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
US8817941B2 (en) Pressurized water reactor plant
US8638898B2 (en) Emergency core cooling system for pressurized water reactor
US10529457B2 (en) Defense in depth safety paradigm for nuclear reactor
US20020101951A1 (en) Boiling water reactor nuclear power plant
GB2519920A (en) Combined active and passive emergency shutdown system and method
JP4956316B2 (en) Emergency core cooling system
JP5642091B2 (en) Reactor transient mitigation system
JP6348855B2 (en) Emergency core cooling system for nuclear power plants
JPH05307094A (en) Reactor cooling system of boiling water type nuclear reactor
JP2953787B2 (en) Light water reactor
US20200143950A1 (en) Utilizing Decay Heat via Steam Cycles to Produce Electric Power on Site to Eliminate Accidents Caused by Station Blackout in Nuclear Power Plants
JP2008020234A (en) Emergency core cooling system
GB2536741A (en) Boiling water type nuclear power plant
Leng et al. Fault tree reliability analysis for passive medium pressure safety injection system in nuclear power plant
CN110610770A (en) Automatic isolation system and method for safety injection tank of pressurized water reactor nuclear power plant
Marguet Main Circuits
Ke et al. The emergency operating strategy analysis of medium LOCA with MHSI unavailable
CN115775641A (en) Reactor protection method and system for dealing with shutdown accidents of steam turbine
JP6335660B2 (en) Turbine building flood prevention device
JP2004132779A (en) Water replenishing equipment of nuclear power plant
JP2003344576A (en) Boiling water reactor equipment
CN111696689A (en) Safe injection system and nuclear power station
Brown et al. Operator action event trees for the Zion 1 pressurized water reactor
Bento SAFETY ASSESSMENT AND OPTIMIZATION Reliability of a BWR-auxiliary feedwater pump
Stefanova et al. Use of Main Loop Isolating Valves (GZZS) in WWER 440

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180601

R150 Certificate of patent or registration of utility model

Ref document number: 6348855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150