JPS59184890A - Reactor cooling system facility - Google Patents

Reactor cooling system facility

Info

Publication number
JPS59184890A
JPS59184890A JP58059662A JP5966283A JPS59184890A JP S59184890 A JPS59184890 A JP S59184890A JP 58059662 A JP58059662 A JP 58059662A JP 5966283 A JP5966283 A JP 5966283A JP S59184890 A JPS59184890 A JP S59184890A
Authority
JP
Japan
Prior art keywords
reactor
line
valve
piping
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58059662A
Other languages
Japanese (ja)
Other versions
JPH0479438B2 (en
Inventor
賢治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58059662A priority Critical patent/JPS59184890A/en
Publication of JPS59184890A publication Critical patent/JPS59184890A/en
Publication of JPH0479438B2 publication Critical patent/JPH0479438B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉冷却系統設備、特に、再循環系(以下
、PLRと称する)、残留熱除去系(以下RI−i几と
称する)、冷却材浄化系(以下、CUWと称する)、給
水系(以下、FDWと称する)及び隔離時冷却系(以下
RCICと称する)を有する原子炉冷却系統設備に関す
るものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to nuclear reactor cooling system equipment, particularly a recirculation system (hereinafter referred to as PLR), a residual heat removal system (hereinafter referred to as RI-i), The present invention relates to a reactor cooling system facility having a coolant purification system (hereinafter referred to as CUW), a water supply system (hereinafter referred to as FDW), and an isolation cooling system (hereinafter referred to as RCIC).

〔従来技術〕[Prior art]

第1図は従来の原子炉冷却系統設備の系統を示すもので
、1は原子炉圧力容器、2はPLR,3はRHR,,4
及び5はそれぞれR,IルR3の一部である停止時冷却
系(以下、SHCと称する)、低圧注水系(以下、L 
P CIと称する)、6はCUW。
Figure 1 shows the system of conventional reactor cooling system equipment, where 1 is the reactor pressure vessel, 2 is the PLR, 3 is the RHR, 4
and 5 are the stop cooling system (hereinafter referred to as SHC) and the low pressure water injection system (hereinafter referred to as L
6 is CUW.

7はFDW、8はRC丁Cである。7 is FDW and 8 is RC C.

P L R2は原子炉圧力容器1.原子炉圧力容器1内
の冷却材を強制循環させるP L R,ポンプ9゜PL
Rポンプ入ロシロライン10P L Rポンプ出ロライ
ン11より・構成されている。
P L R2 is the reactor pressure vessel 1. P L R for forced circulation of coolant inside the reactor pressure vessel 1, pump 9゜PL
It is composed of R pump inflow line 10P L R pump out line 11.

RHR3は、PLRポンプ入ロシロライン10分岐し、
ポンプ12及び熱交換器13の1次側を通り冷却された
原子炉圧力容器1内の冷却材が熱交換器出口ライン14
から5I(C戻りライン15を通りPLR−8HC配管
配管部16を介してPLRポンプ出ロシロライン11続
するS HCと、熱交換器13の一次側を通り冷却され
た冷却材が熱交換器出口ライン14から弁17を介して
直接原子炉圧力容器1に戻るLPCI5から構成される
装置 CU W 6は、PLRポンプ入ロシロライン10分岐
し、CUXVポンプ18及びCUW再生熱交候器19の
1次側を通り、フィルター脱塩装置20により浄化され
た原子炉圧力容器]内の冷却材がCUW戻シクシライン
21弁22を介してI;’I)W・CUW配管接合部2
3を介してFDW7の]=” D Wライン24に接続
する構成となっている。
RHR3 branches into 10 Roshiro lines with PLR pumps,
The coolant in the reactor pressure vessel 1 that has passed through the primary side of the pump 12 and the heat exchanger 13 and is cooled is transferred to the heat exchanger outlet line 14.
5I (C passes through the PLR-8HC piping piping section 15 and connects to the PLR pump output Roshiro line 11), and the coolant that has passed through the primary side of the heat exchanger 13 is transferred to the heat exchanger outlet line. The device CU W 6 is composed of an LPCI 5 that returns directly from the LPCI 5 to the reactor pressure vessel 1 via a valve 17 , branches into a PLR pump-equipped Rosiro line 10 , and connects the primary side of the CUXV pump 18 and the CUW regenerative heat exchanger 19 . The coolant inside the reactor pressure vessel purified by the filter desalination device 20 is passed through the CUW return line 21 and the valve 22 to the W/CUW piping joint 2.
3 to the ]="DW line 24 of the FDW 7.

RCIC8は、RCICポンプ25及び吐出ライン26
を介して原子炉圧力容器]と接続する構成となっている
RCIC 8 includes RCIC pump 25 and discharge line 26
The structure is such that it is connected to the reactor pressure vessel via the reactor pressure vessel.

このような構成を有する従来の原子炉冷却系統設備にお
いて、5HC4においては、通常運転時、PLRポンプ
出ロシロライン11S ’I−I C戻りライン15の
内部流体温度は、それぞれ約177C及び72Cとなり
、両者の温度差は約105Cと女る。従って、この温度
差を持つ二流体が通常運転時に継続的にP L R−S
 I(C配管接合部16にて。
In the conventional reactor cooling system equipment having such a configuration, in the 5HC4, during normal operation, the internal fluid temperature of the PLR pump output Rosillo line 11S' I-I C return line 15 is approximately 177C and 72C, respectively, and both The temperature difference between the two is about 105C. Therefore, two fluids with this temperature difference continuously P L R - S during normal operation.
I (at C piping joint 16).

合流するために、熱疲労による配管の損傷が発生ずる危
険性が高かった。
Because of this, there was a high risk of damage to the piping due to thermal fatigue.

丑だ、COW6においては、P L Rポン1人ロライ
ン10より分岐しCUWポンプ18を介してCUW再生
再生熱交換器1エ01 ター脱塩装置20により浄化され、CUWポンプ18に
よシFDW− CUA■配管接合部23を介してFDW
ライン24に入る原子炉冷.却材は、原子炉起動,停止
,高温待機時には、COW戻りライン21及びFDWラ
イン24の内部流体温度は、それぞれ40C以下,22
0C以下となり、両者の温度差は1soC以上となる。
In the COW 6, the PLR pump is branched from the 1-person line 10 and is purified by the CUW regeneration heat exchanger 1E01 through the CUW pump 18. FDW via CUA ■ piping joint 23
Reactor cooling entering line 24. During reactor startup, shutdown, and high-temperature standby, the internal fluid temperatures of the COW return line 21 and FDW line 24 are below 40C and 22C, respectively.
It becomes 0C or less, and the temperature difference between the two becomes 1soC or more.

従って、プラント寿命中に、FDW−CUW配管接合部
23における温度差による熱疲労で、配管の損傷が発生
ずる危険性が高かった。
Therefore, during the life of the plant, there was a high risk that the piping would be damaged due to thermal fatigue due to the temperature difference at the FDW-CUW piping joint 23.

〔発明の目的〕[Purpose of the invention]

本発明は、PLR,−8l(C配管接合部及びFDW−
CUW配管接合部における熱疲労による損傷発生の防止
可能な原子炉冷却系統設備脂を提供することを目的とす
るものである。
The present invention provides PLR, -8l (C piping joint and FDW-
The object of the present invention is to provide a reactor cooling system equipment that can prevent damage caused by thermal fatigue at CUW piping joints.

〔発明の構成〕[Structure of the invention]

本発明は、再循環系,残留熱除去系,冷却材浄化系,給
水系,隔離時冷却系を有する原子炉冷却系統設備におい
て、前記残留熱除去の戻りライン及び原子炉の起動時、
停止時及び高温時期時における前記冷却材浄化系の戻り
ラインが前記残留熱除去系の低圧注水系及び前記隔離時
冷却系の少なくとも一方を介して原子炉に連通ずる流路
か設けられていることを特徴とするものである。
The present invention provides a nuclear reactor cooling system equipment having a recirculation system, a residual heat removal system, a coolant purification system, a water supply system, and an isolation cooling system, in which the return line for residual heat removal and at the time of reactor startup,
A flow path is provided through which the return line of the coolant purification system during shutdown and high temperature periods communicates with the reactor via at least one of the low pressure water injection system of the residual heat removal system and the isolation cooling system. It is characterized by:

すなわち、SHC戻り水をR H R,の一部であるL
PCI又はRCICを介して原子炉へ戻し、二流体の混
合するのを防ぎ、丑たFDWとCOWとの2M度差の犬
なる例えば原子炉起動時に、CU”vV戻p水をR I
−I R,の一部又はRCICを介して原子炉圧力容器
へと戻し、二流体の混合するのを防ぐことかできるため
、PLR.・SHC接合部及びPDW− CUW接合部
の熱疲労による配管損傷のボテンシャルを大幅に低減し
、信頼性が高く、かつS II C戻り配管の除去によ
って原子炉格納容器貫通部や配管の物量を低減した合理
的で従業員の被曝低減可能な原子炉冷却系統設備を提供
することを0丁能とするものである。
That is, the SHC return water is converted to L which is a part of R H R,
It is returned to the reactor via PCI or RCIC to prevent the two fluids from mixing, and when there is a 2M degree difference between FDW and COW, for example at reactor startup, the CU"vV return water is
- PLR.・Significantly reduces the potential for piping damage due to thermal fatigue at SHC joints and PDW-CUW joints, resulting in high reliability, and the removal of SII C return piping reduces the volume of reactor containment vessel penetrations and piping. The aim is to provide nuclear reactor cooling system equipment that is rational and capable of reducing radiation exposure for employees.

〔発明の実施例〕[Embodiments of the invention]

第2〜第7図は本発明のそれぞれ異なる実施例の系統を
示すもので、第1図と同一部分には同一符号が付しであ
る。
2 to 7 show systems of different embodiments of the present invention, and the same parts as in FIG. 1 are given the same reference numerals.

第2図の実施例においては、CUWフィルター脱塩装置
20の出口であるCOW戻りライン21とR,HR3の
熱交換器出口ライン14との間に、遠隔操作弁27及び
逆止弁28が設けられている配管29からなるタイライ
ンが設けられている。
In the embodiment shown in FIG. 2, a remote control valve 27 and a check valve 28 are provided between the COW return line 21, which is the outlet of the CUW filter desalination device 20, and the heat exchanger outlet line 14 of R, HR3. A tie line consisting of piping 29 is provided.

この実施例では、原子炉起動,停止,高温待機時等には
、CU’W戻シライン21に設けられている弁22を閉
とし、遠隔操作弁27とLPCI5の弁17を開とする
ことによって、COW戻り水をFDW7に戻さず、LP
CI5を介して原子炉圧力容器1へ戻す。このようにす
ることによって、FDW−CUW配管接合部23におけ
る温度差大なる二流体の流体混合を回避することができ
る。
In this embodiment, during reactor startup, shutdown, high temperature standby, etc., the valve 22 provided in the CU'W return cylinder 21 is closed, and the remote control valve 27 and the valve 17 of the LPCI 5 are opened. , COW return water is not returned to FDW7, LP
Return to reactor pressure vessel 1 via CI5. By doing so, mixing of two fluids with a large temperature difference at the FDW-CUW piping junction 23 can be avoided.

第1表は、原子炉起動時,停止時及び高温待機時におけ
る二系統の温度及びFDWの流量の概略値を示すもので
、前述の説明及び第1表から明らかなように、起動,停
止,高温待機時のFDWとCUWとの温度差は約185
Cにも及ぶが、この実施例では起動、停止、高温待機時
における原子炉圧力容器1とLPCI 5ラインとの接
合部近傍における温度差は十分小さいため、熱疲労損傷
の問題は生じない。
Table 1 shows approximate values of the temperature of the two systems and the flow rate of FDW during reactor startup, shutdown, and high-temperature standby.As is clear from the above explanation and Table 1, The temperature difference between FDW and CUW during high temperature standby is approximately 185
Although this also applies to C, in this embodiment, the temperature difference in the vicinity of the joint between the reactor pressure vessel 1 and the LPCI 5 line during startup, shutdown, and high-temperature standby is sufficiently small, so that the problem of thermal fatigue damage does not occur.

また、通常運転時には、CUW戻り水は遠隔操作弁27
とLP CI 5の弁17が閉の状態で、弁22を開と
して、FDWライン24へ戻されるが、この際のFDW
7とCUW6との温度差は約400であり十分小さいの
で問題にはならない。
In addition, during normal operation, the CUW return water is supplied to the remote control valve 27.
With the valve 17 of the LP CI 5 closed, the valve 22 is opened and the FDW is returned to the FDW line 24.
The temperature difference between CUW 7 and CUW 6 is about 400, which is sufficiently small to cause no problem.

第3図の実症例においては、CUWフィルター・脱塩装
置20の出口であるCUW戻りライン21とRCIC8
のRCICポンプ25の吐出ライン26との間にRCI
Cポンプ遠隔操作弁30.逆止弁31が設けられている
配管32からなるタイラインが設けられている。
In the actual case shown in FIG. 3, the CUW return line 21 which is the outlet of the CUW filter/desalination device 20
RCI between the discharge line 26 of the RCIC pump 25 and
C pump remote control valve 30. A tie line consisting of a pipe 32 in which a check valve 31 is provided is provided.

この実施例では、原子炉起動、停止、高温待機時等には
、CUW戻りライン21に設けられている弁22を閉と
し、遠隔操作弁30.を開とするととによって、CUW
戻り水をFDW7に戻さず、R,ClC8を介して原子
炉圧力容器1へ戻す。このようにすることによって、第
2図の実施例と同様の効果を得ることができる。
In this embodiment, during reactor startup, shutdown, high temperature standby, etc., the valve 22 provided in the CUW return line 21 is closed, and the remote control valve 30. CUW
The return water is not returned to the FDW 7 but is returned to the reactor pressure vessel 1 via R and ClC 8. By doing so, it is possible to obtain the same effect as the embodiment shown in FIG.

第4図の実施例においては、RHR3の熱交換器出口ラ
イン14とRCIC8のRCICポンプ25の吐出ライ
ン26との間に遠隔操作弁33と逆止弁34が設けられ
ている配管35からなるタイラインが設けられ、かつ、
R,HR3の熱交換器出口ライン14から分岐しR,C
Rポンプ出ロライン11に至る第1図の従来の場合のS
 HC戻りライン15が除かれている。すなわち、この
タイラインにはR,CICICポンプ2動時にR,CI
C給水が逆流しないように逆止弁34が、またLPIC
5作動時には系統隔離が可能となるように遠隔操作弁3
3が、それぞれタイラインの下流側、及び上流側に設け
られている。
In the embodiment shown in FIG. 4, a tie consisting of piping 35 is provided with a remote control valve 33 and a check valve 34 between the heat exchanger outlet line 14 of the RHR 3 and the discharge line 26 of the RCIC pump 25 of the RCIC 8. a line is provided, and
Branched from the heat exchanger outlet line 14 of R, HR3 and connected to R, C
S in the conventional case shown in FIG. 1 leading to the R pump outlet line 11
HC return line 15 has been removed. In other words, this tie line has R and CI when the R and CIC pumps are in operation.
A check valve 34 is installed to prevent the C supply water from flowing backward, and the LPIC
5 Remote control valve 3 to enable system isolation when activated
3 are provided on the downstream side and upstream side of the tie line, respectively.

この実施例では、R,HR3の5HC4は原子炉停止時
に使用されるので、内部流体は原子炉起動時に作動して
いるP LR2に戻さず、原子炉起動時には作動してい
ないRCIC8を介して原子炉圧力容器1へ戻される。
In this example, since the 5HC4 of R and HR3 is used when the reactor is shut down, the internal fluid is not returned to the operating PLR2 when the reactor is started, but is passed through the RCIC8 which is not operating when the reactor is started. It is returned to the furnace pressure vessel 1.

従って、熱疲労の原因となる高温流体としてのPLR,
側内部流体と、低温流体としての8l−(C側内部流体
との合流現象の繰り返しを回避することが可能となる。
Therefore, PLR as a high temperature fluid that causes thermal fatigue,
It becomes possible to avoid repetition of the merging phenomenon of the side internal fluid and the 8l-(C side internal fluid as a low-temperature fluid).

丑だSMC戻りラインが不要となるので、原子炉格納容
器(以下PCVと称する)36に設けられるペネ)・レ
ー/ヨンやPCV36内のSHC配管、配管サポー1−
 、弁、保温材、計器などを除去することが可能となる
ので大幅な費用低減が可能となる。才た、毎定検時にP
CV36内で実施する定検、配管供用期間中検査、弁の
分解点検、PT、Rポンプ分解点検、保温補修、空調機
点検、弁の動作試験等の作業時に、S 1−I C配管
の放射能による被曝をなくすことができ、定検作業効率
の改善や、作業時間の゛短縮が可能である。また、S 
HC戻り水をRCIC8を介して原子炉圧力容器1の頂
部から戻すので、原子炉圧力容器1内の一次冷却水の対
流が効率よ〈実施でき、原子炉圧力容器内の一次冷却水
の熱回収に効果的であムSHC作動時間の短縮が可能と
なる。
Since the unnecessary SMC return line is no longer required, it is possible to reduce the need for SHC piping and piping support 1- in the reactor containment vessel (hereinafter referred to as PCV) 36 and SHC piping in the PCV 36.
, valves, insulation materials, instruments, etc. can be removed, making it possible to significantly reduce costs. P
Radiation of S 1-I C piping occurs during regular inspections, pipe service inspections, valve disassembly inspections, PT and R pump disassembly inspections, heat insulation repairs, air conditioner inspections, valve operation tests, etc. carried out in CV36. It is possible to eliminate exposure to radiation caused by the function, improve the efficiency of regular inspection work, and shorten work time. Also, S
Since the HC return water is returned from the top of the reactor pressure vessel 1 via the RCIC 8, the convection of the primary cooling water in the reactor pressure vessel 1 can be carried out efficiently, and the heat recovery of the primary cooling water in the reactor pressure vessel can be carried out efficiently. This is effective for shortening the SHC operating time.

第5図の実施例では、RHR3の熱交換器出口ライン1
4から分岐しPLRポンプ出ロシロライン11る第1図
の従来の場合のS HC戻りライン15が除かれている
In the embodiment of FIG. 5, heat exchanger outlet line 1 of RHR3
The SHC return line 15 in the prior art case of FIG.

この実施例ではLPCI5を利用して弁17を開として
、SMC戻り水を原子炉圧力容器1に戻す。この場合に
も熱疲労個所の削減が可能で、S HC戻りライン用の
配管をなくすことによる合理化も可能である。
In this embodiment, the LPCI 5 is used to open the valve 17 to return SMC return water to the reactor pressure vessel 1. In this case as well, thermal fatigue points can be reduced, and streamlining can be achieved by eliminating piping for the SHC return line.

第6図の実施例は、第4図の実施例と同様の構成のタイ
ライン、すなわち、遠隔操作弁33.逆止弁34が設け
られている配管35からなるタイラインと、このタイラ
インの逆止弁34の上流側とフィルター脱塩装置20の
出口側との間に弁37の設けられている配管38よりな
るタイラインが接続されている。
The embodiment of FIG. 6 has a tie line having a configuration similar to that of the embodiment of FIG. A tie line consisting of a pipe 35 provided with a check valve 34, and a pipe 38 provided with a valve 37 between the upstream side of the check valve 34 of this tie line and the outlet side of the filter desalination device 20. More tie lines are connected.

この実施例では、原子炉起動、−停止、高温待機時には
、CUW戻りライン21の弁22を閉とし、弁33を閉
とし、弁37を開とすることによりCUW戻り水をFD
W7に戻さず、RCIC8の吐出ライン26を介して原
子炉圧力容器1に戻す。
In this embodiment, during reactor startup, shutdown, and high-temperature standby, the CUW return water is transferred to the FD by closing the valve 22 of the CUW return line 21, closing the valve 33, and opening the valve 37.
Instead of returning to W7, it is returned to the reactor pressure vessel 1 via the discharge line 26 of the RCIC8.

また、原子炉停止時には、弁33を開とし弁37を閉と
して、−次冷却水をPLI%2に戻さすRCI C8を
介して原子炉圧力容器1に戻される。
Further, when the reactor is shut down, the valve 33 is opened and the valve 37 is closed, and the secondary cooling water is returned to the reactor pressure vessel 1 via the RCI C8 which returns the water to PLI%2.

その結果、第3図及び第5図の実施例と同様の効果が得
られ、さらに、有機的な系統構成によって系統設備の合
理化を割ることができる。
As a result, the same effects as the embodiments of FIGS. 3 and 5 can be obtained, and furthermore, the rationalization of system equipment can be done by organic system configuration.

第7図の実施例では、RHR,3の熱交換器出口ライン
14とCUW6のフィルター脱塩器20のcuw戻りラ
イン21との間に、弁39.弁40及び配管41からな
るタイラインと、とのタイラ。
In the embodiment of FIG. 7, a valve 39. A tie line consisting of a valve 40 and piping 41;

インの弁39と弁40との間とRCIC8との間に弁4
2.と逆止弁43とを有する配管44からなるタイライ
ンが接続されている。
Valve 4 between valve 39 and valve 40 of the engine and RCIC 8.
2. A tie line consisting of a pipe 44 having a check valve 43 and a check valve 43 is connected thereto.

こめ実施例では、原子炉起動、停止、高温待機時に、C
UW戻りライン21の弁22を閉とし、弁39を閉にし
弁40と弁42を開とすることによシCUW戻り水をF
DW7へ戻さず、R,C1,C8の吐出ライン26を介
して原子炉圧力容器1に戻す。また、弁22と弁42を
閉とし、弁39と弁40を開にし、弁17を開にするこ
とによっても、LPCI 5を介して原子炉圧力容器1
へ1次冷却水を戻すことができる。さらに捷だ、原子炉
停止後に、弁42を閉とし、弁39と弁40とを開にす
ることによってS HC戻り水をF’DW7へ戻すこと
が可能になる。この時点ではFDW7は停止しており、
FDW−CUW配管接合部23において熱疲労損傷の恐
れはない。あるいは、弁17を閉、弁40を閉、弁39
と弁42を開にすることによって、SHC戻り水をR,
CICライン26を介して原子炉圧力容器1へ戻すとと
が可能となる。
In this example, during reactor startup, shutdown, and high temperature standby, C
By closing the valve 22 of the UW return line 21, closing the valve 39, and opening the valves 40 and 42, the CUW return water is
Instead of returning to DW7, it is returned to reactor pressure vessel 1 via discharge lines 26 of R, C1, and C8. Also, by closing the valves 22 and 42, opening the valves 39 and 40, and opening the valve 17, the reactor pressure vessel 1
The primary cooling water can be returned to the Furthermore, after the nuclear reactor is shut down, by closing valve 42 and opening valves 39 and 40, it becomes possible to return SHC return water to F'DW 7. At this point, FDW7 is stopped,
There is no fear of thermal fatigue damage at the FDW-CUW piping joint 23. Alternatively, close valve 17, close valve 40, close valve 39,
By opening the valve 42, the SHC return water is
It is possible to return the fuel to the reactor pressure vessel 1 via the CIC line 26.

以上の如く、FDW7とCUW6及びPLR2と5HC
4との接合部における熱疲労を回避することができ、第
3図及び第5図の実施例と同様の効果が得られる。
As mentioned above, FDW7 and CUW6 and PLR2 and 5HC
4 can be avoided, and the same effects as the embodiments shown in FIGS. 3 and 5 can be obtained.

以上の如く、実施例の原子炉冷却系統設備においては、
FDWとCUWとの配管接合部、P J、 RとS H
Cとの配管接合部及び両者における熱疲労損失の発生要
因をなくシ、信頼性の高い原子カプラントを得ることが
できる。また、SHC配管を原子炉格納容器からとり除
くことができるので、配管ペネトレ=ノヨン、弁、配管
、保温材、配管ザボートなどの物量を大幅に低減し、合
理的なプラントの建設が可能となる。丑だ放射性配管で
あるS HC配管をのそくことで、作業員の被曝低減が
得られる。
As mentioned above, in the reactor cooling system equipment of the example,
Piping joint between FDW and CUW, P J, R and S H
A highly reliable atomic couplant can be obtained by eliminating the cause of thermal fatigue loss at the piping joint with C and both. Furthermore, since the SHC piping can be removed from the reactor containment vessel, the amount of piping penetrations, valves, piping, heat insulating materials, piping sabots, etc. can be significantly reduced, making it possible to construct a rational plant. By removing the SHC piping, which is radioactive piping, it is possible to reduce the radiation exposure of workers.

〔発明の効果〕〔Effect of the invention〕

本発明は、PLl、(、・S I−I C配管接合部及
びFDW−CUW配管接合部における熱疲労による損傷
発生の防止可能な原子炉冷却系統設備を提供可能とする
もので、産業上の効果の大なるもので。
The present invention makes it possible to provide nuclear reactor cooling system equipment that can prevent damage caused by thermal fatigue at PLl, (, S I-I C piping joints and FDW-CUW piping joints, and is useful for industrial purposes. It's a big effect.

ある。be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の原子炉冷却系統設備の系統図、第2図〜
第7図は本発明の原子炉冷却系統設備のそれぞれ異なる
実施例の系統図である。 1・・・原子炉圧力容器、2・・・PLR,3・・・R
HR14・・SHC,5・・・LPCI、6・、・・C
UW、7・・・FDW、8・・・RCIC,10・・・
PL、R,ポンプ入口ライン、11・・・PLRポンプ
出ロシロライン3・・・熱交換器、14・・・熱交換器
出口ライン、15・・・SCR戻りライン、16・・・
PLR・S HC配管接合部、17・・・弁、20・・
フィルター脱塩装置、2l−CUW戻りライン、22−
弁、23−CTJW・I”DW配管接合部、26・・・
吐出ライン、27゜30.33・・・遠隔操作弁、28
,31.34・・・逆止弁、29,32.35・・・配
管、36・・・p c v、37 遠隔操作弁、38・
・・配管、39,4.0゜42・遠隔操作弁、43・・
逆止弁、41.44・・配管。
Figure 1 is a system diagram of conventional reactor cooling system equipment, Figure 2~
FIG. 7 is a system diagram of different embodiments of the reactor cooling system equipment of the present invention. 1...Reactor pressure vessel, 2...PLR, 3...R
HR14...SHC, 5...LPCI, 6...C
UW, 7...FDW, 8...RCIC, 10...
PL, R, pump inlet line, 11...PLR pump output line 3...heat exchanger, 14...heat exchanger outlet line, 15...SCR return line, 16...
PLR・S HC piping joint, 17...Valve, 20...
Filter desalination equipment, 2l-CUW return line, 22-
Valve, 23-CTJW/I"DW piping joint, 26...
Discharge line, 27°30.33...Remote control valve, 28
, 31.34... Check valve, 29, 32. 35... Piping, 36... p c v, 37 Remote control valve, 38.
・・Piping, 39, 4.0° 42・Remote control valve, 43・・
Check valve, 41.44...Piping.

Claims (1)

【特許請求の範囲】[Claims] 1、再循環系、残留熱除去系、冷却材浄化系、給水系、
及び隔離時冷却系を有する原子炉冷却系統設備において
、前記残留熱除去系の戻りラインと原子炉の起動時、停
止時及び高温時期時における前記冷却材浄化系の戻りラ
インとが、前記残留熱除去系の低圧注水系及び前記隔離
時冷却系の少なくとも一方を介して原子炉に連通ずる流
路が設けられていることを特徴とする原子炉冷却系統設
備。
1. Recirculation system, residual heat removal system, coolant purification system, water supply system,
And in the reactor cooling system equipment having an isolation cooling system, the return line of the residual heat removal system and the return line of the coolant purification system at the time of reactor startup, shutdown, and high temperature periods are connected to the residual heat removal system. Reactor cooling system equipment, characterized in that a flow path communicating with the nuclear reactor is provided through at least one of a low-pressure water injection system of a removal system and the isolation cooling system.
JP58059662A 1983-04-04 1983-04-04 Reactor cooling system facility Granted JPS59184890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58059662A JPS59184890A (en) 1983-04-04 1983-04-04 Reactor cooling system facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58059662A JPS59184890A (en) 1983-04-04 1983-04-04 Reactor cooling system facility

Publications (2)

Publication Number Publication Date
JPS59184890A true JPS59184890A (en) 1984-10-20
JPH0479438B2 JPH0479438B2 (en) 1992-12-15

Family

ID=13119629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58059662A Granted JPS59184890A (en) 1983-04-04 1983-04-04 Reactor cooling system facility

Country Status (1)

Country Link
JP (1) JPS59184890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197795A (en) * 1986-02-26 1987-09-01 株式会社日立製作所 Removing device for residual heat in nuclear reactor
JP2016145726A (en) * 2015-02-06 2016-08-12 日立Geニュークリア・エナジー株式会社 Emergency reactor core cooling system of nuclear power station

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368398A (en) * 1976-12-01 1978-06-17 Hitachi Ltd Purifying/cooling system for reactor coolant
JPS53113993A (en) * 1977-03-17 1978-10-04 Toshiba Corp Coolant purification device of reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368398A (en) * 1976-12-01 1978-06-17 Hitachi Ltd Purifying/cooling system for reactor coolant
JPS53113993A (en) * 1977-03-17 1978-10-04 Toshiba Corp Coolant purification device of reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197795A (en) * 1986-02-26 1987-09-01 株式会社日立製作所 Removing device for residual heat in nuclear reactor
JP2016145726A (en) * 2015-02-06 2016-08-12 日立Geニュークリア・エナジー株式会社 Emergency reactor core cooling system of nuclear power station

Also Published As

Publication number Publication date
JPH0479438B2 (en) 1992-12-15

Similar Documents

Publication Publication Date Title
US20210202121A1 (en) Flow Mixing T-Unit of Reactor Volume Control System
CN108831573A (en) A kind of nuclear power station secondary side passive residual heat removal security system
JPS59184890A (en) Reactor cooling system facility
GB993173A (en) Closed fluid circulation system for removing heat from a heat generator
CN203746436U (en) Cooling water system of spent fuel water tank device
JPS5941155B2 (en) Reactor shutdown cooling system
JPH08146184A (en) Nuclear reactor container
JPH053559B2 (en)
CN208938662U (en) A kind of ocean nuclear power flat reaction heap residual heat removal system
JP2001091684A (en) Fuel pool cooling equipment
JP2909301B2 (en) How to pump up the feedwater heater drain
JPH01245194A (en) At-reactor isolation cooler
CN104715800A (en) Nuclear power plant emergency power source power supply test method and system
JPS62197795A (en) Removing device for residual heat in nuclear reactor
JPS62215894A (en) Purification system of coolant for nuclear reactor
JPS59116584A (en) Cooling circuit facility at reactor shutdown
JPS62233791A (en) Nuclear-reactor stoppage-time cooling device
JPS6375695A (en) Nuclear-reactor residual-heat removal system facility
CN116386909A (en) Cooling water system of high-temperature gas cooled reactor nuclear island equipment and operation method thereof
SK289115B6 (en) System for long-term heat removal from the hermetic zone
JPH03170095A (en) Coolant cleaning system for nuclear reactor
CN117323799A (en) Desulfurization and denitration flue gas system and process water reflux method thereof
JPH04270995A (en) Purification system of nuclear reactor coolant
JPS62190496A (en) Purifier for coolant of nuclear reactor
JPS62195594A (en) Nuclear reactor cooling system facility