JPS62190496A - Purifier for coolant of nuclear reactor - Google Patents
Purifier for coolant of nuclear reactorInfo
- Publication number
- JPS62190496A JPS62190496A JP61031909A JP3190986A JPS62190496A JP S62190496 A JPS62190496 A JP S62190496A JP 61031909 A JP61031909 A JP 61031909A JP 3190986 A JP3190986 A JP 3190986A JP S62190496 A JPS62190496 A JP S62190496A
- Authority
- JP
- Japan
- Prior art keywords
- equipment
- coolant
- reactor
- purification
- heat removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002826 coolant Substances 0.000 title claims description 61
- 238000000746 purification Methods 0.000 claims description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 33
- 238000001816 cooling Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 14
- 239000012535 impurity Substances 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 229910017052 cobalt Inorganic materials 0.000 description 9
- 239000010941 cobalt Substances 0.000 description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 9
- 230000002285 radioactive effect Effects 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000011403 purification operation Methods 0.000 description 7
- 230000001172 regenerating effect Effects 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000007689 inspection Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000005115 demineralization Methods 0.000 description 4
- 230000002328 demineralizing effect Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241000139306 Platt Species 0.000 description 1
- 241000982634 Tragelaphus eurycerus Species 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は原子力発電所原子炉の冷却材浄化装置に関ずろ
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coolant purification device for a nuclear power plant reactor.
第6図は従来の加圧水型原子炉(以下PWRと称す)余
熱除去設備及び化学体積制御設備の系統図、第7図は従
来の沸騰水型原子炉(以下BWRと称す)残留熱除去設
備及び原子炉冷却材浄化設備の系統図である。Figure 6 is a system diagram of a conventional pressurized water reactor (hereinafter referred to as PWR) residual heat removal equipment and chemical volume control equipment, and Figure 7 is a conventional boiling water reactor (hereinafter referred to as BWR) residual heat removal equipment and It is a system diagram of a reactor coolant purification facility.
原子力発電所の炉内水である冷却材の浄化は、主に通常
出力運転時に行なわれ、炉内水はPWRの場合−次冷却
系1aBWRの場合原子炉系1bから抽出し、PWRの
場合化学体積制御設備12、BWltの場合原子炉冷却
材浄化設413の浄化設備を使用し、非再生冷却器4で
冷却させた後、これ等の浄化設備12.13の浄化装置
5に通水して再び炉内に充填することによって行なわれ
る。Purification of the coolant, which is the reactor water in a nuclear power plant, is mainly carried out during normal output operation.In the case of PWR, the reactor water is extracted from the sub-cooling system 1a, in the case of BWR, the reactor system 1b, and in the case of PWR, it is extracted from the reactor system 1b. In the case of the volume control equipment 12 and BWlt, the purification equipment of the reactor coolant purification equipment 413 is used, and after cooling with the non-regenerative cooler 4, water is passed through the purification equipment 5 of these purification equipment 12.13. This is done by filling the furnace again.
上記浄化設備12.13の浄化装置5はイオン交換樹脂
塔または、ろ過説塩塔が使用されており、冷却材中の放
射性腐食生成物、核分裂生成物等を除去することができ
る。The purification device 5 of the purification equipment 12, 13 uses an ion exchange resin tower or a filtration salt tower, and can remove radioactive corrosion products, nuclear fission products, etc. in the coolant.
上記浄化設備12,13の容量は主に冷却材の水質維持
を主目的として一般にPWRの場合、炉内水は2次系と
は分離されており、閉サイクルで炉外部からの不純物が
混入しないことを考慮し”C約20m/hr〜約30
rn’ /hr (電気出力約1100MWの場合)
、BWRの場合、炉内水は復水器から給水され炉内に一
〇蒸気を発生させるため復水器細管漏洩による海水の混
入等炉外部の給水系からの不純物の混入及び不純物の濃
縮を考慮して約120m/hr(fa気出力約1100
MWの場合)である。The capacity of the purification equipment 12 and 13 is mainly for the purpose of maintaining the water quality of the coolant.In general, in the case of PWR, the reactor water is separated from the secondary system, and impurities from outside the reactor do not mix in the closed cycle. Taking this into consideration, "C approx. 20m/hr ~ approx. 30m/hr"
rn' /hr (for electrical output approximately 1100MW)
In the case of BWR, the water inside the reactor is supplied from the condenser to generate 10 steam in the reactor, so contamination with impurities from the water supply system outside the reactor, such as seawater contamination due to condenser tube leakage, and concentration of impurities are avoided. Approximately 120m/hr (fa air output approximately 1100
MW).
14a、14bは熱除去設備であるが、この熱除去設備
は、原子炉の崩壊熱および他の残留熱を除去し、原子炉
停止後約20時間以内に一次冷却材)品度を60℃以下
とする。14a and 14b are heat removal equipment, which remove decay heat and other residual heat of the reactor, and reduce the quality of the primary coolant to 60°C or less within about 20 hours after the reactor is shut down. shall be.
上記浄化設備12,13の系統を説明すると、PWRの
場合、第6図に示すように、化学体積制御設備12は一
次冷却系1aの冷却材配管Cから再生熱交換器8の胴側
を通り非再生冷却器4を経由し浄化装置5に通水され、
体積制御タンク6からポンプ7にてポンプアップして再
生熱交換器8の管側を経由し一次冷却系1aへ充填され
、炉内水の浄化が行なわれる。BVl+l’Rの場合第
7図に示すように、原子炉冷却材浄化設備13は原子炉
系1bの冷却水配管aより炉内水を取水してポンプ7で
ポンプアップし再生熱交換器8の胴側を通り非再生冷却
器4を経由し浄化装置5に通水され再生熱交換器8の管
側を経由して原子炉系1bに戻る系統構成になっており
、炉内水の浄化のなめに使用される。To explain the system of the purification equipment 12 and 13, in the case of PWR, as shown in FIG. The water is passed to the purification device 5 via the non-regenerative cooler 4,
The water is pumped up from the volume control tank 6 by the pump 7 and filled into the primary cooling system 1a via the pipe side of the regenerative heat exchanger 8, thereby purifying the water in the furnace. In the case of BVl+l'R, as shown in FIG. The system has a system configuration in which water passes through the shell side, passes through the non-regenerative cooler 4, enters the purification device 5, and returns to the reactor system 1b via the pipe side of the regenerative heat exchanger 8. used for licking.
@6図に示すPWI’tの余熱除去設備14a及び第7
図に示ずBW[’tの残留熱除去膜(+114 b等の
熱除去設備は同じ系統て構成され、上記熱除去設備14
a、14bは第6図、第7図に示す通り、ポンプ2、冷
却器3、および関連配管、弁類からなる独立な2系統で
構成される(第6図、第7図では簡略化のため1系統で
表わしである)。ポンプ2吸入側配管は一次冷却系1a
または原子炉系1bの冷却材配管aに接続され通常運転
時にはバルブ10が閉じられている。上記ポンプ2出口
側は冷却器3を経由して一次冷却系1aまたは原子炉系
1bの冷却材配管Cと接続している。上記冷却器3には
バイパスラインfを設けており、このバイパスラインf
の流量をバルブ9で制御することで一次冷却材の冷却速
度を制限値以下に調節する。@PWI't residual heat removal equipment 14a and No. 7 shown in Figure 6
Not shown in the figure, the heat removal equipment such as the residual heat removal film (+114 b) of BW['t is configured in the same system, and the heat removal equipment 14
As shown in Figs. 6 and 7, a and 14b are composed of two independent systems consisting of a pump 2, a cooler 3, and related piping and valves (in Figs. 6 and 7, simplified Therefore, it is expressed in one system). Pump 2 suction side piping is primary cooling system 1a
Alternatively, it is connected to the coolant pipe a of the reactor system 1b, and the valve 10 is closed during normal operation. The outlet side of the pump 2 is connected via a cooler 3 to a coolant pipe C of the primary cooling system 1a or the reactor system 1b. The cooler 3 is provided with a bypass line f, and this bypass line f
By controlling the flow rate of the primary coolant with the valve 9, the cooling rate of the primary coolant is adjusted to be below the limit value.
プラント運転停止時は、原子炉の残留熱を除去するため
バルブ10を開いて冷却材配管aから取水し、冷却材配
管Cにもどす循環流路を確立ずろ。When the plant is shut down, valve 10 is opened to remove residual heat from the reactor, and a circulation flow path is established to take water from coolant pipe a and return it to coolant pipe C.
PWRの場合、余熱除去設備14aが一次冷却系1aに
併入される時点は、−次冷却系1aの圧力は低く (約
28kg/car以下)なっている。In the case of PWR, the pressure of the secondary cooling system 1a is low (approximately 28 kg/car or less) at the time when the residual heat removal equipment 14a is added to the primary cooling system 1a.
BWRの場合残留熱除去設備14bは原子炉停止後、燃
料交換作業を行うためにタービン主復水器、給水設備を
併用して、約20時間で原子炉水温度を約60℃まで冷
却ずろ(原子炉停止冷却モード)。該停止冷却モードは
、炉停止後の崩壊熱を除去するもっとも通常的な運転モ
ードであり、原子炉水を原子炉系1bの冷却材配管aよ
り取水し、ボンゴ2で昇圧し冷却器3で冷却後、原子炉
系1bの冷却材配管Cを経て原子炉系1bに戻す。In the case of a BWR, the residual heat removal equipment 14b cools the reactor water temperature to approximately 60°C in approximately 20 hours by using the turbine main condenser and water supply equipment in order to perform fuel exchange work after the reactor is shut down. reactor shutdown cooling mode). The shutdown cooling mode is the most normal operation mode for removing decay heat after reactor shutdown, in which reactor water is taken from the coolant pipe a of the reactor system 1b, pressurized by the bongo 2, and cooled by the cooler 3. After cooling, it is returned to the reactor system 1b via the coolant pipe C of the reactor system 1b.
冷却された一部の原子炉水は、原子炉圧力容器頂部にあ
るヘッドスプレィノズルからスプレィされ、原子炉圧力
容器・\ラド部の冷却を行うこともできる。1611器
3にはバイパスラインfがありバイパス流量をバフ1ブ
9で調整することにより熱交換量の調整も可能である。A portion of the cooled reactor water can also be sprayed from a head spray nozzle at the top of the reactor pressure vessel to cool the reactor pressure vessel/RAD section. The 1611 device 3 has a bypass line f, and by adjusting the bypass flow rate with the buff 1 buff 9, it is possible to adjust the amount of heat exchange.
残留熱除去設備14bばプラット通常運転中は非常用炉
心冷却設備の1系統(低圧注水系)として圧力抑制室プ
ール水で満水待状態にあるため、停止時冷却モードの運
転に先立って系統の洗浄および暖機操作が必要である。During normal operation, the residual heat removal equipment 14b and Platt are used as one system of the emergency core cooling equipment (low-pressure water injection system) and are in a state of waiting to be filled with water from the pressure suppression chamber pool, so the system is cleaned prior to operation in shutdown cooling mode. and warm-up operation is required.
原子炉圧力が杓10kg/cnfになると、非常用炉心
冷却設備としての機能が要求されなくなるので系統の洗
浄を開始することができ、原子炉圧力が約8kg/cI
lrから本運転モードに入ることができろ。When the reactor pressure reaches 10kg/cnf, the function as an emergency core cooling facility is no longer required, so system cleaning can begin, and the reactor pressure drops to about 8kg/cI.
You can enter the main driving mode from lr.
出力運転時冷却材中の放射性コバルト、ニッケル、鉄等
の不純物は、乙の冷却材が通水される配管等の機器に付
着していき、線源強度を上げ、プラント停止後の原子炉
容器蓋開放及びその後の定期検査において、これらの汚
染機器周辺での作業によって、作業員の被曝線量を高め
ることとなっている。一般に、通常出力運転時に冷却材
浄化設備を連続運転しているが、この冷却材が通水され
る配管等の機器に付着していく放射性コバルト、ニッケ
ル、鉄等の不純物は、通常出力運転時、冷却材中には、
わずかにしか溶出していかないので、これらの不純物を
効果的に除去するには、限度がある。During power operation, impurities such as radioactive cobalt, nickel, and iron in the coolant adhere to piping and other equipment through which the coolant flows, increasing the source strength and damaging the reactor vessel after the plant is shut down. During the opening of the lid and subsequent periodic inspections, workers are exposed to increased radiation doses due to working around these contaminated equipment. Generally, coolant purification equipment is operated continuously during normal output operation, but impurities such as radioactive cobalt, nickel, iron, etc. that adhere to piping and other equipment through which this coolant flows are removed during normal output operation. , in the coolant,
Since these impurities are only slightly eluted, there is a limit to how effectively these impurities can be removed.
第5図に通常出力運転から炉停止にいたるプラットの冷
却材温度t、冷却材圧力P、冷却材中ボロンB、PHの
経時変化及びこれらに対応する冷却材中の放射性コバル
I−G度CO変化を破線にて示すが、通常出力運転時(
、noの濃度であったものが、ブラント解列T1後、冷
却材温度tが、通常出力運転時の温度ta(PWRの場
合300℃)から余熱除去設備が行なオ〕れるクールダ
ウン時T2の温度tb(P W Rの場合約170℃)
及び原子炉容器蓋を開放する1扁度tc (約60℃)
まで、通常出力運Lj
転時の放Q=j性コバルト濃度C1oの10〜10倍程
度上昇していき、通常出力運転時少しづつ配管等の機器
に付着していった放射性コバルl−、ニンケル、鉄等の
不純物が、冷却材温度りと冷却材中ボロンBの増加及び
リチウムの減少によるP Hの急低下の水質の過渡変化
により一気に冷却材中に大量にi8出していっているこ
とがわかった。このT1からT3及びそれ以降期間にに
おいて、冷却材中に溶出してくる不純物を除去すれば配
管等の機器に付着した不純物を除去していくことになり
、これらの線源強度が大rlにさがり、プラント停止後
の定期検査時の作業員の被曝線Jルを低減させることが
可能となる。Figure 5 shows changes over time in Pratt's coolant temperature t, coolant pressure P, boron B in the coolant, and PH from normal power operation to reactor shutdown, and the corresponding radioactive cobal I-G degree CO in the coolant. Changes are shown by broken lines, but during normal output operation (
, no concentration, after blunt disassembly T1, the coolant temperature t changes from the temperature ta during normal output operation (300°C in the case of PWR) to the cool-down time T2 when residual heat removal equipment performs temperature tb (approx. 170℃ for PWR)
and 1 degree tc to open the reactor vessel lid (approximately 60℃)
Until then, the concentration of released Q=j cobalt during normal output operation Lj increased by about 10 to 10 times C1o, and radioactive cobal L- and Ninkel gradually adhered to piping and other equipment during normal output operation. It was found that a large amount of impurities such as iron were released into the coolant at once due to transient changes in water quality such as a sharp drop in pH due to an increase in the coolant temperature, an increase in boron B in the coolant, and a decrease in lithium. Ta. During this period from T1 to T3 and beyond, if the impurities eluted into the coolant are removed, the impurities attached to equipment such as piping will be removed, and the intensity of these sources will increase to a large extent. This makes it possible to reduce the radiation exposure of workers during periodic inspections after plant shutdowns.
しかしながら、第5図に示すように従来のプラントにお
いては、炉停止時の冷却材中放射性コバ用l−濃度はC
noからCshへとΔC分急上界する乙とは、冷却材中
の、このような不純物を除去するためには、現在の浄化
設備では、容量が少ないことを示している。However, as shown in Figure 5, in conventional plants, the radioactive L concentration in the coolant when the reactor is shut down is
The sudden rise of ΔC from no to Csh indicates that the current purification equipment has a small capacity to remove such impurities from the coolant.
従来の化学体積制御設備12又は、原子炉冷却材浄化設
備13の浄化設備の容量を大巾にアップさせるためには
、本設備のポンプ7、及び弁、配管の大巾なアップが必
要となり、大変なコストアップとなる。また、炉停止時
浄化運転のみのために、本設備の全体の容量をアップす
ることは、通常出力運転時このような大容量の設備は必
要ない(従来の設備で問題ない)ことを考慮すれば、経
済的な設計でない。In order to significantly increase the capacity of the conventional chemical volume control equipment 12 or reactor coolant purification equipment 13, it is necessary to significantly increase the pump 7, valves, and piping of this equipment. This will result in a significant increase in costs. In addition, increasing the overall capacity of this equipment only for purification operation when the reactor is shut down takes into account that such large-capacity equipment is not required during normal output operation (there is no problem with conventional equipment). However, it is not an economical design.
また、クールダウンT2から原子炉容器蓋を開放するT
4までの期間を従来プラント(約3日程度)より長くし
て溶出放射性物質除去のための浄化運転を長期同行なう
ことも考えられるが、従来プラン1−の浄化設備では、
この期間(T2〜Ta)を相当長くする必要があり、こ
のことは、プラント定期検査の短縮化が計れない。Also, from cooldown T2 to T2 when the reactor vessel lid is opened.
It is conceivable that the period up to Plan 1-4 would be longer than in conventional plants (approximately 3 days) and the purification operation for removing eluted radioactive materials would be carried out for a long time, but in the conventional purification equipment of Plan 1-,
It is necessary to make this period (T2 to Ta) considerably long, which makes it impossible to shorten the periodic plant inspection.
本発明は上述した事情に鑑みてなされたもので、炉停止
時、ずなわちクールダウン以降に炉内冷却材を大容量循
環し冷却させろ機能を持つ余熱除去設備(RWRの場合
は同じ設備を残留熱除去設備と称ずろ)の循環ループに
浄化装置を設置して、この循環ループの配管、弁、ポン
プ、冷却器を利用して浄化運転する機能をもたせた冷却
材浄化装置を提供せんとするものである。The present invention was made in view of the above-mentioned circumstances, and includes residual heat removal equipment (in the case of RWR, the same equipment is used) that has the function of circulating a large volume of coolant in the furnace to cool it when the reactor is shut down, that is, after cool-down. We will provide a coolant purification device that has the function of installing a purification device in the circulation loop of a residual heat removal facility (referred to as residual heat removal equipment) and performing purification operation using the piping, valves, pumps, and coolers of this circulation loop. It is something to do.
そのため、本発明の原子炉の冷却材浄化装置は、熱除去
設備における循環ループのポンプ又は冷却器の下流に、
上記熱除去設備の容量に相当する浄化装置とこれと併列
にバイパスラインを設けろ。Therefore, the nuclear reactor coolant purification device of the present invention has the following advantages:
Install a purification device corresponding to the capacity of the heat removal equipment described above and a bypass line in parallel with it.
熱除去設備の循環ループは、大容量のポンプにより炉内
水を循環させることができ、低差圧の浄化設備を設けれ
ば、この循環流量(PWrLの場自約700 m’ /
hr、 BWRの場合約1700m’/hr)は確保
することができ、従来の浄化設備の容量の数十倍の浄化
運転が可能となり、炉停止時、大量に溶出する冷却材中
放射コバルト、ニツイ1ル、鉄等の不純物を効果的にほ
とんどすべて除去することができる。The circulation loop of the heat removal equipment can circulate the water in the reactor using a large-capacity pump, and if a purification equipment with a low differential pressure is installed, this circulation flow rate (approximately 700 m' /
hr (approximately 1,700 m'/hr in the case of BWR), making it possible to perform purification operations several tens of times the capacity of conventional purification equipment. Almost all impurities such as metal and iron can be effectively removed.
第5図に従来の浄化設備運転の場合の冷却材中コバルト
濃度変化をCOlの曲線(破線)で示し、本発明の浄化
設備運転の場合の冷却材中コバルト濃度変化をCOlの
曲線(実線)で示す。第5図に示すように、本発明の浄
化設備は、大吉1辻浄化が可能となるために炉停止時の
溶出コバルト量をほとんど除去する乙とが可能となる。FIG. 5 shows the change in cobalt concentration in the coolant when the conventional purification equipment is operated as a COl curve (broken line), and the COl curve (solid line) shows the change in the cobalt concentration in the coolant when the purification equipment of the present invention is operated. Indicated by As shown in FIG. 5, the purification equipment of the present invention is capable of one-way purification, making it possible to remove almost all of the cobalt eluted when the reactor is shut down.
従来の残留COl度CR1に比し、本発明の残留CO濃
度CRλは大[]]に低下し、定検時の被曝も又低減さ
せろ乙とができる。Compared to the conventional residual CO concentration CR1, the residual CO concentration CRλ of the present invention is greatly reduced, and radiation exposure during regular inspections can also be reduced.
又、余熱除去設備のポンプ、冷却器の全容飛約700
rn’ / hr (BM/INの場合約1700rn
’/hr)の一部を浄化用として、バイパスして使用す
ることもできるので、経済的な浄化設備を設けることも
てきる。In addition, the total cost of the residual heat removal equipment pump and cooler was approximately 700 yen.
rn' / hr (approximately 1700rn for BM/IN
Since a part of the water ('/hr) can be bypassed and used for purification, it is also possible to provide economical purification equipment.
以下添付図に基づいて本発明の実施例を詳細に説明する
。Embodiments of the present invention will be described in detail below based on the accompanying drawings.
第1図は本発明の一実施例を示すPWRの余熱除去設備
循環ループを利用した冷却材浄化設備の系統図、第2図
は同実施例を示すBWRの残留熱除去設備循環ループを
利用した冷却材浄化設備の系統図、第3図は本発明の他
の実施例を示すpwRの余熱除去設備循環ループを利用
した冷却材浄化設備の系統図、第4図は同実施例を示す
BWRの残留熱除去設備循環ループを利用した冷却材浄
化設備の系統図である。Fig. 1 is a system diagram of a coolant purification equipment using a PWR residual heat removal equipment circulation loop showing an embodiment of the present invention, and Fig. 2 is a system diagram of a coolant purification equipment using a BWR residual heat removal equipment circulation loop showing the same embodiment. Fig. 3 is a system diagram of a coolant purification equipment using a PWR residual heat removal equipment circulation loop showing another embodiment of the present invention, and Fig. 4 is a system diagram of a BWR showing another embodiment of the present invention. It is a system diagram of a coolant purification equipment using a residual heat removal equipment circulation loop.
本発明の一実施例をP W Rに適用した場合、第1図
に示すように、浄化装置11aを冷却器3の下流側に設
けている。上記浄化装置11aにはバルブ15. 16
a、 I 6 bによりバイパスラインを設け、浄
化流量を調整することができるようになっている。When one embodiment of the present invention is applied to a PWR, a purification device 11a is provided downstream of the cooler 3, as shown in FIG. The purifier 11a has a valve 15. 16
A and I 6 b provide a bypass line so that the purification flow rate can be adjusted.
原子炉冷却材を、−次冷却系1aの冷却材配管aから取
水し、ポツプ2.Jfr却器3、から浄化装置11 a
1e経由して冷却材配管Cへもどす循環浄化運転が可
能となる。The reactor coolant is taken from the coolant pipe a of the secondary cooling system 1a, and the water is taken from the pop 2. Jfr quencher 3, purification device 11 a
A circulating purification operation in which the coolant is returned to the coolant pipe C via 1e becomes possible.
一方、本発明の一実施例をBWRに適用した場合、第2
図に示すように基本的にはP W Rと同様な系統構成
であり、原子炉水を原子炉系1bの冷却材配管aから取
水し、ポンプ2で界圧し、冷却器3で冷却し、浄化装置
11aを通水して浄化後冷却材配管Cを経て原子炉系1
bへもどす循環浄化運転となる。On the other hand, when one embodiment of the present invention is applied to BWR, the second
As shown in the figure, the system configuration is basically the same as that of PWR, in which reactor water is taken from the coolant pipe a of the reactor system 1b, brought to pressure by the pump 2, cooled by the cooler 3, Water is passed through the purification device 11a, and after purification, it is passed through the coolant pipe C to the reactor system 1.
A circulation purification operation returns to b.
本発明の他の実施例をPWRに適用した場合、第3図に
示すように、化学体積制御膜@12の従来の浄化装置5
(第6図)をスケールアップして浄化装置11bとし、
余熱除去設備14aの循環ループからでも浄化装置11
bへ通水できるように、配管B、B及びバルブ16 a
、 16 b、 17、.17bを設け、化学体積
制御設備12系ループからでも余熱除去設備14a系ル
ープからでも浄化装置11bを使用できるようにしてい
る。この場合、従来の浄化装置が1)F用できるため経
済的な設備となる。When another embodiment of the present invention is applied to PWR, as shown in FIG.
(Fig. 6) is scaled up to form a purification device 11b,
Even from the circulation loop of the residual heat removal equipment 14a, the purification device 11
Pipes B, B and valve 16 a so that water can flow to b.
, 16 b, 17, . 17b is provided so that the purification device 11b can be used from either the chemical volume control equipment 12 system loop or the residual heat removal equipment 14a system loop. In this case, a conventional purification device can be used for 1) F, making it an economical facility.
一方本発明の他の実施例をBWRに適用した場合、第4
図に示すように、原子炉冷却浄化設備13の従来の浄化
装置5 (第7図)をスケールアップして浄化装置11
bとし、残留熱除去膜@ 14 bの循環ループからで
も浄化装置11bへ通水できるように、配trC;Bp
B及びバルブ16 a、 16 b。On the other hand, when another embodiment of the present invention is applied to BWR, the fourth
As shown in the figure, the conventional purification device 5 (FIG. 7) of the reactor cooling purification equipment 13 is scaled up to provide a purification device 11.
b, and the distribution trC; Bp so that water can flow to the purification device 11b even from the circulation loop of the residual heat removal membrane
B and valves 16a, 16b.
+7a、 17 bを設け、原子炉冷却材浄化設備14
a系ループからでも浄化装置J11bを使用できるよう
にしている。この場き、従来の浄化装置が併用できるた
め経済的な設備となる。+7a and 17b are installed, and reactor coolant purification equipment 14
The purifier J11b can be used even from the a-system loop. In this case, conventional purification equipment can be used in combination, making it an economical facility.
上記浄化装置11a、llbは、放射性コバルト、ニッ
ケル分、鉄分を除去するものであり、余熱除去設備14
a又は残留熱除去設置14b等の熱除去設備の古風に相
当する能力を有し、大量に冷却水を通水することができ
ろ。型式としては■陽イオノ脱塩塔■混床脱塩塔■ろ過
脱塩塔(パウデ、ソクス樹脂)■高温吸着フィルタ等が
あり、特、f−÷、・
に陽イオン脱塩塔は通水温度が約100℃以下で使用す
ることができ、冷却器3出1コ温度が炉外d:後速やか
に約100℃以下となるので速やかに通水することがで
きる。また、高温吸着フィルタは高温条件でも使用でざ
るので、余熱除去膜@ 14a、14bに通水開始した
段階から使用することができる。The purification devices 11a and llb are for removing radioactive cobalt, nickel, and iron, and the residual heat removal equipment 14
It has a capability equivalent to that of old-fashioned heat removal equipment such as the residual heat removal installation 14a or the residual heat removal installation 14b, and is capable of passing a large amount of cooling water. Types include ■Cation demineralization tower ■Mixed bed demineralization tower ■Filtration demineralization tower (Paude, Sox resin) ■High temperature adsorption filter, etc.In particular, the cation demineralization tower has water flowing through f-÷,・. It can be used at a temperature of about 100° C. or less, and the temperature of the three coolers immediately drops to about 100° C. or less after leaving the furnace, so water can be passed through quickly. Furthermore, since the high temperature adsorption filter cannot be used even under high temperature conditions, it can be used from the stage when water starts flowing through the residual heat removal membranes @ 14a, 14b.
上記浄化装置は、図示しない使用済燃料ピット水の浄化
装置を併用することもできる。The above purification device can also be used in conjunction with a spent fuel pit water purification device (not shown).
以上説明した本発明によれば、下記の如き効果を生じる
。According to the present invention described above, the following effects are produced.
■ 熱除去設備の循環ループに浄化装置を設けることに
より、炉停止時に冷却材中に溶出する大量の放射性コバ
ルト、ニッケル、鉄等の不純物を効果的に除去すること
ができ、プラント定検時の被曝線量率が大I11に低減
できる。■ By installing a purification device in the circulation loop of the heat removal equipment, it is possible to effectively remove large amounts of impurities such as radioactive cobalt, nickel, and iron that are eluted into the coolant when the reactor is shut down. The exposure dose rate can be reduced to 11%.
■ 従来の冷却材浄化用の設備を炉停止時の7ヤ化のた
めに容量アップさせろ場合、浄化装置のみ設備、原子炉
冷却材浄化設備の全体の配管、弁等の機器の容量を上げ
る必要があり、その場合、通常出力運転時不必要な設備
の追加がほとんどとなり、経済的でない。■ When increasing the capacity of conventional coolant purification equipment to make it 7-layer during reactor shutdown, it is necessary to increase the capacity of only the purification equipment, the entire piping of the reactor coolant purification equipment, valves, and other equipment. In that case, unnecessary equipment will be added during normal output operation, which is not economical.
従来の熱除去設備の循環ループを浄化用として使用する
ことにより熱除去設備全体の配管弁等の機器の容量アン
プはほとんど必要なく、上記のものより、経済的な設計
となる。By using the circulation loop of the conventional heat removal equipment for purification, there is almost no need for capacity amplifiers for equipment such as piping valves in the entire heat removal equipment, resulting in a more economical design than the one described above.
■ 従来プラントよりクールダウンから原子炉容器蓋開
放までの冷却材浄化運転が短期間となり、定期検査の期
間がその分短縮できる。■ Compared to conventional plants, the coolant purification operation from cool-down to opening of the reactor vessel lid is shorter, and the period for periodic inspections can be shortened accordingly.
第」図は本発明の一実施例を示すPWRの余熱除去設備
循環ループを利用した冷却材浄化設備の系統図、第2図
は同実施例を示すBWRの残留熱除去設備循環ループを
利用した冷却材浄化設備の系統図、第3図は本発明の他
の実施例を示すpwl(の余熱除去設備循環ループを利
用した冷却材浄化設備の系統図、第4図は同実施例を示
すBWRの残留熱除去設備循環ループを利用した冷却材
浄化設備の系統図、第5図は炉停止後のゴラノ)・の温
度、圧力、冷却材水質条件及び冷却+4中放射性コバル
トr度変化を示すグラフ、第6図は従来のPWRの余熱
除去設備及び化学体積制御設備系統図、第7図は従来の
B W Rの残留熱除去設備及び原子炉冷却材浄化設備
系統図である。
】a −次冷却系、 1b 原子炉系、2.7 ポツ
プ、 3 冷却器、
4 非再生冷却器、 5. lla、 llb 浄化
装置、6 体積制御タンク、8 再生熱交換器、9、
+0.15.16a、 16b、 17a、 17b
バルブ、12 ・化学体積制御設備、
13 原子炉冷却材浄化設備、
14a 余熱除去設備、
14b 残留熱除去設備、Figure 1 is a system diagram of a coolant purification equipment using a residual heat removal equipment circulation loop of a PWR showing an embodiment of the present invention, and Figure 2 is a system diagram of a coolant purification equipment using a residual heat removal equipment circulation loop of a BWR showing an embodiment of the present invention. Fig. 3 is a system diagram of a coolant purification equipment using the residual heat removal equipment circulation loop of Pwl (PWL) showing another embodiment of the present invention, and Fig. 4 is a system diagram of a BWR showing the same embodiment. A system diagram of the coolant purification equipment using the residual heat removal equipment circulation loop, Figure 5 is a graph showing the temperature, pressure, coolant water quality conditions, and radioactive cobalt degree changes during cooling +4 after the reactor was shut down. , FIG. 6 is a system diagram of residual heat removal equipment and chemical volume control equipment of a conventional PWR, and FIG. 7 is a system diagram of a conventional BWR residual heat removal equipment and reactor coolant purification equipment. ]a - secondary cooling system, 1b reactor system, 2.7 pop, 3 cooler, 4 non-regenerative cooler, 5. lla, llb purification device, 6 volume control tank, 8 regenerative heat exchanger, 9,
+0.15.16a, 16b, 17a, 17b
valve, 12 - chemical volume control equipment, 13 reactor coolant purification equipment, 14a residual heat removal equipment, 14b residual heat removal equipment,
Claims (1)
循環ループのポンプ又は冷却器の下流に、上記熱除去設
備の容量以下に相当する浄化装置と、これに併列にバイ
パスラインを設けたことを特徴とする原子炉の冷却材浄
化装置。In heat removal equipment such as residual heat removal equipment and residual heat removal equipment, a purification device equivalent to the capacity of the heat removal equipment or less is installed downstream of the circulation loop pump or cooler, and a bypass line is installed in parallel with this. Features of nuclear reactor coolant purification equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61031909A JPS62190496A (en) | 1986-02-18 | 1986-02-18 | Purifier for coolant of nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61031909A JPS62190496A (en) | 1986-02-18 | 1986-02-18 | Purifier for coolant of nuclear reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62190496A true JPS62190496A (en) | 1987-08-20 |
Family
ID=12344114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61031909A Pending JPS62190496A (en) | 1986-02-18 | 1986-02-18 | Purifier for coolant of nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62190496A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05264779A (en) * | 1991-12-09 | 1993-10-12 | General Electric Co <Ge> | Reactor water purification system |
JP2014081207A (en) * | 2012-10-12 | 2014-05-08 | Mitsubishi Heavy Ind Ltd | Cooling apparatus for radioactive material and cooling system for high level radioactive waste |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5585297A (en) * | 1978-12-22 | 1980-06-27 | Tokyo Shibaura Electric Co | Afterrheat removable device |
JPS56150395A (en) * | 1980-04-24 | 1981-11-20 | Tokyo Shibaura Electric Co | Residual heat removing device of nuclear reactor |
-
1986
- 1986-02-18 JP JP61031909A patent/JPS62190496A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5585297A (en) * | 1978-12-22 | 1980-06-27 | Tokyo Shibaura Electric Co | Afterrheat removable device |
JPS56150395A (en) * | 1980-04-24 | 1981-11-20 | Tokyo Shibaura Electric Co | Residual heat removing device of nuclear reactor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05264779A (en) * | 1991-12-09 | 1993-10-12 | General Electric Co <Ge> | Reactor water purification system |
JP2014081207A (en) * | 2012-10-12 | 2014-05-08 | Mitsubishi Heavy Ind Ltd | Cooling apparatus for radioactive material and cooling system for high level radioactive waste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6323519B2 (en) | ||
US4043864A (en) | Nuclear power plant having a pressurized-water reactor | |
US5517539A (en) | Method of decontaminating a PWR primary loop | |
JPS62190496A (en) | Purifier for coolant of nuclear reactor | |
JPS63103999A (en) | Method and device for inhibiting adhesion of radioactive substance | |
JP2011038891A (en) | Nuclear power plant with boiling water reactor and leak and hydrostatic test method for reactor pressure vessel | |
US4216057A (en) | Purifying plant for water to be vaporized in a steam generator of a nuclear reactor | |
JP2013130565A (en) | Component of nuclear power plant, method for suppressing adhesion of radioactive nuclide to component of nuclear power plant, and film forming device for component of nuclear power plant | |
JP2007033352A (en) | Method for zinc supply to reactor | |
JP2013113653A (en) | Pressurized-water reactor and method for removing reactor core decay heat | |
JP2001091684A (en) | Fuel pool cooling equipment | |
JPS6189591A (en) | Purifier for coolant of nuclear reactor | |
CN116246810A (en) | Nuclear power plant radioactive anion Sb-124 nuclide purification system and method | |
JP2895267B2 (en) | Reactor water purification system | |
JP2567030B2 (en) | Residual heat removal device | |
JPS60192297A (en) | Purifying system of nuclear reactor refrigerant | |
CN115565706A (en) | Spent fuel storage pool cooling and purifying system combined with organic flash evaporation circulation | |
JPS60247198A (en) | Method of preventing adhesion of radioactivity | |
JPS61207998A (en) | Nuclear power plant | |
JPH0631817B2 (en) | Boiling water nuclear plant | |
JPS5882193A (en) | Device for cleaning residual heat removal pipeline | |
JPS59217198A (en) | Reactor heat transfer facility | |
JPS60178394A (en) | Refrigerant purifying system of nuclear reactor | |
JPH0259699A (en) | Operating method for nuclear reactor apparatus cooling equipment | |
JPS60111193A (en) | Method of removing radioactivity |