JPS6189591A - Purifier for coolant of nuclear reactor - Google Patents

Purifier for coolant of nuclear reactor

Info

Publication number
JPS6189591A
JPS6189591A JP21098884A JP21098884A JPS6189591A JP S6189591 A JPS6189591 A JP S6189591A JP 21098884 A JP21098884 A JP 21098884A JP 21098884 A JP21098884 A JP 21098884A JP S6189591 A JPS6189591 A JP S6189591A
Authority
JP
Japan
Prior art keywords
reactor
pump
coolant
pressure
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21098884A
Other languages
Japanese (ja)
Inventor
俊彦 福本
大角 克巳
佐藤 善晃
道好 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP21098884A priority Critical patent/JPS6189591A/en
Publication of JPS6189591A publication Critical patent/JPS6189591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉冷却材浄化装置に係ム特にポンプの保
守・点検時の作業員の放射線被曝低減に有効な原子炉冷
却材浄化装置の系統構成に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a reactor coolant purification system, which is effective in reducing radiation exposure of workers during pump maintenance and inspection, in particular. Regarding system configuration.

〔発明の背景〕[Background of the invention]

従来の原子炉冷却材浄化装置は、第3図に示すように、
再循環ポンプ2の吸込配管から原子炉冷却材を一部取)
出して循環ボ/プロで昇圧し、再生熱交換器4及び非再
生熱交換器5で約SOCに冷却した後、ろ過脱塩装置7
で浄化し、再び給水管8を介して原子炉圧力容器1に戻
す構成になっている。非再生熱交換器5は胴側に補機冷
却水を配管9で通水してあシ、管側を流れる高温冷却材
を熱交換によシ冷却している。このように構成された従
来の浄化装置では、原子炉内で生成されたC o−60
+Co−58等の腐食生成物核種が配管系や機器を冷却
材と共に循環し、配管系や機器の冷却材接液部に付着す
る。そのため、これら放対性核種から放出されるγ線に
よシ保守・点検時作業員が被曝する問題があった。さら
に、配管系や機器の放射線線量率を熱交換器4,5の上
流と下流で比較すると、冷却材温度が約50Cとなる下
流側に比べて冷却材温度が約280Cとなる上流側では
、放射線線量率が非常に高くなっていることが実機定検
時に確認されている。特に上流側に設置されている循環
ポンプ6は、保守φ点検類度が高い上複雑な構造のため
作業時間が長くなυやすいことから、作業員の被曝量が
増大する傾向がある。これに対しては、鉛などによる放
射線遮蔽を設けるなどの対策がとられつつおるが十分で
はない。
The conventional reactor coolant purification system, as shown in Figure 3,
Some of the reactor coolant was removed from the suction pipe of recirculation pump 2)
After that, the pressure is increased in the circulation bottle/pro, and the temperature is cooled to approximately SOC in the regenerative heat exchanger 4 and the non-regenerative heat exchanger 5.
The reactor pressure vessel 1 is returned to the reactor pressure vessel 1 via the water supply pipe 8. In the non-regenerative heat exchanger 5, auxiliary cooling water is passed through a pipe 9 to the shell side, and the high-temperature coolant flowing on the pipe side is cooled by heat exchange. In the conventional purification device configured in this way, the Co-60 generated in the nuclear reactor is
Corrosion product nuclides such as +Co-58 circulate together with the coolant through piping systems and equipment, and adhere to parts of the piping systems and equipment that come into contact with the coolant. Therefore, there was a problem in that maintenance and inspection workers were exposed to gamma rays emitted from these radionuclides. Furthermore, when comparing the radiation dose rate of the piping system and equipment upstream and downstream of the heat exchangers 4 and 5, on the upstream side where the coolant temperature is about 280C compared to the downstream side where the coolant temperature is about 50C, It was confirmed during regular inspections of the actual equipment that the radiation dose rate was extremely high. In particular, the circulation pump 6 installed on the upstream side requires a high degree of maintenance and inspection, and has a complicated structure that tends to take a long time to work, which tends to increase the radiation exposure of workers. Countermeasures are being taken to combat this, such as installing radiation shields using lead or other materials, but these are not sufficient.

第4図はもう一つの従来技術である低圧型原子炉浄化装
置の例である。本装置は低圧条件で運転する脱塩装置1
6を有しているため、その上流に減圧弁17を設置して
10に9/i程度まで減圧する必要がある。このため、
浄化後の冷却材を高圧の原子炉圧力容器に戻すために循
環ポンプ6を脱塩装置16の下流に設置している。また
、循環ポンプ6の上流側には、再生熱交換器4.非再生
熱交換器5.減圧弁17.ろ過脱塩装置7.脱塩装置1
6が設置されており、循環ポンプ6までの圧力損失が犬
きくなシ、原子炉圧力が10 Kg/ cm ”程度よ
υ低くなるときには循環ポンプ6の押込圧力(NPSH
)が不足してキャビテーションを発生する可能性がある
。これを防止するために、補助ポンプ18を再生熱交換
器4の上流に設置しである。
FIG. 4 is an example of another conventional technology, a low-pressure reactor purification system. This device is a desalination device 1 that operates under low pressure conditions.
6, it is necessary to install a pressure reducing valve 17 upstream thereof to reduce the pressure to about 10/9/i. For this reason,
A circulation pump 6 is installed downstream of the desalination device 16 in order to return the purified coolant to the high-pressure reactor pressure vessel. Further, on the upstream side of the circulation pump 6, a regenerative heat exchanger 4. Non-regenerative heat exchanger5. Pressure reducing valve 17. Filtration desalination equipment7. Desalination equipment 1
6 is installed, and the pressure loss up to the circulation pump 6 is extremely low. When the reactor pressure drops to about 10 kg/cm, the pushing pressure of the circulation pump 6 (NPSH
) may be insufficient and cavitation may occur. In order to prevent this, an auxiliary pump 18 is installed upstream of the regenerative heat exchanger 4.

この従来装置では、循環ポンプ6は熱交換器4゜5の下
流側に設置されているから、先に述べたように冷却材温
度が低く放射性腐食生成物の付着量は少ないが、補助ポ
ンプ18が上流側に設置されているため、この補助ポン
プ18に同様の問題が生じる。
In this conventional device, the circulation pump 6 is installed downstream of the heat exchanger 4.5, so as mentioned above, the coolant temperature is low and the amount of radioactive corrosion products deposited is small, but the auxiliary pump 18 A similar problem occurs with this auxiliary pump 18 because it is installed on the upstream side.

第5図は特開1@54−38498に記載されている装
置を示す。本装置は、循環ポンプ6に流入する冷却材を
低温にしてポンプメカシールの寿命を延ばすことを目的
とし、循環ポンプ6を非再生熱交換器5下流に設置した
例である。さらに原子炉圧力が低くなったときに、循環
ポンプのNFSHが不足するのを防止するため、再循環
ポンプ2の吐出配管から再生熱交換器入口配管3に接続
するバイパス配管19を設置して、弁20を開き弁21
を閉じ、再循環ポンプ2の吐出圧力で冷却材を本装置に
通水し、循環ボンプロのNPSHを確保するものである
。この装置には第4図の低圧型原子炉冷却材浄化装置の
ような補助ポンプがないため、このポンプでの放射性腐
食生成物付着の心配はない。しかしながら、再循環ポン
プ2は原子炉停止時には停止するため、本装置も運転で
きないことになり、原子炉停止中の冷却材の浄化が不可
能どなる問題がある。
FIG. 5 shows the device described in Japanese Patent Application Laid-open No. 1@54-38498. This device is an example in which the circulation pump 6 is installed downstream of the non-regenerative heat exchanger 5 for the purpose of lowering the temperature of the coolant flowing into the circulation pump 6 to extend the life of the pump mechanical seal. Furthermore, in order to prevent the circulation pump from running out of NFSH when the reactor pressure becomes low, a bypass pipe 19 is installed that connects the discharge pipe of the recirculation pump 2 to the regenerative heat exchanger inlet pipe 3. Open valve 20 and open valve 21
is closed, and the refrigerant is passed through the device at the discharge pressure of the recirculation pump 2 to ensure the NPSH of the circulation pump. Since this device does not have an auxiliary pump like the low-pressure reactor coolant purification device shown in FIG. 4, there is no fear of radioactive corrosion products adhering to this pump. However, since the recirculation pump 2 is stopped when the nuclear reactor is shut down, this device cannot be operated, and there is a problem that it is impossible to purify the coolant while the reactor is shut down.

なお、本発明の原子炉冷却材浄化装置に関連するものに
は、この他例えば特開昭54−20294゜特開昭56
−111496等がある。
In addition, there are other publications related to the reactor coolant purification system of the present invention, such as JP-A-54-20294 and JP-A-56.
-111496 etc.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を解消し、循環ポ
ンプ保守・点検時の作業員の放射線被曝量を低減すると
共に、原子炉の停止時や低圧時にも循環ポンプのNFS
Hを十分に確保できる構成の原子炉冷却材浄化装置を提
供することでおる。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art, reduce the amount of radiation exposure of workers during maintenance and inspection of circulation pumps, and provide NFS of circulation pumps even when the reactor is shut down or at low pressure.
It is an object of the present invention to provide a reactor coolant purification system having a configuration that can sufficiently secure H.

〔発明の概要〕[Summary of the invention]

第6図に放射性腐食生成物付着量すなわち表面線量率と
冷却材温度との関係の実験結果を示す。
FIG. 6 shows the experimental results of the relationship between the amount of radioactive corrosion products deposited, that is, the surface dose rate, and the coolant temperature.

この図は、次の文献に揚げられた実験データから算出し
たものである。E、 G、 Brush and W、
 L。
This figure was calculated from experimental data published in the following literature. E, G, Brush and W,
L.

pearl @Corrosion and Corr
osion Product’3eleasein N
eutral Feedwater ’Corrosi
on。
pearl @Corrosion and Corr
osion Product'3eleasein N
eutral Feedwater 'Corrosi'
on.

28.129(1972)。BWRプラントの原子炉冷
却材温度は通常280C程度であり、この温度での放射
性生成ル付着量は非常に多い。これに比べ非再生熱交換
器出口での冷却材温度約50C程度では、放射性生成物
の付着量は約1/10と非常に少なくなっていることが
判明したうこの原因は、冷却材に接する配管系や機器の
表面が腐食する際、冷却材が高温であるほど酸化皮膜が
厚くなることから、放射性生成物が酸化皮膜に取シ込ま
れやすくなることであると推定される。以上の知見に基
づき、本発明の原子炉冷却材浄化装置は、冷却材温度が
約50Cと低温になる非再生熱交換器の下流に循環ポン
プを設置することを特徴とする。
28.129 (1972). The reactor coolant temperature in a BWR plant is usually around 280C, and the amount of radioactive product deposited at this temperature is extremely large. In comparison, when the coolant temperature at the outlet of the non-regenerative heat exchanger is about 50C, the amount of radioactive products adhering to it was found to be very small, about 1/10. When the surfaces of piping systems and equipment corrode, the higher the temperature of the coolant, the thicker the oxide film becomes, so it is presumed that radioactive products are more likely to be absorbed into the oxide film. Based on the above findings, the reactor coolant purification system of the present invention is characterized in that a circulation pump is installed downstream of the non-regenerative heat exchanger where the coolant temperature is as low as about 50C.

次に、循環ポンプを非再生熱交換器の下流に設置したこ
とにより、原子炉の停止時及び低圧時に循環ポンプNP
SHが不足するのを防ぐための対策を以下に述べる。循
環ポンプを非再生熱交換器下流に設置すると、上流に設
置するのに比べ、熱交換器及び配管の圧力損失が約2に
?/−はど増加し、従って循環ポンプのNPSHも約2
0m低下する。
Next, by installing the circulation pump downstream of the non-regenerative heat exchanger, the circulation pump NP is activated during reactor shutdown and low pressure.
Measures to prevent SH from running out are described below. If a circulation pump is installed downstream of a non-regenerative heat exchanger, the pressure loss in the heat exchanger and piping will be about 2 compared to installing it upstream? /- increases, so the NPSH of the circulation pump also increases by about 2
Decreased by 0m.

原子炉定常運転時で原子炉圧力が高い時には、循環ポン
プの吸込圧力も十分高いので、20m程度の低下は問題
とならない。しかし、原子炉圧力が約10Kg/ffl
以下になるとキャビテーションが発生する可能性が出て
くる。
When the reactor pressure is high during steady operation of the reactor, the suction pressure of the circulation pump is also sufficiently high, so a drop of about 20 m is not a problem. However, the reactor pressure is about 10Kg/ffl
If the temperature is below, there is a possibility that cavitation will occur.

特に原子炉停止時には、原子炉圧力は大気圧まで下がシ
、循環ポンプNP8Hは第7図に示すように2m近くま
で低下する。第7図において、原子炉圧力PIを大気圧
IQ、5m、静水頭Δhを約30m、圧力損失ΔPを約
37m、循環ポンプ入口での飽和蒸気圧力PI+を1.
sm(atsOc)とし、NPSHを計算すると、 NPSH=P++Δh−ΔP −P s = 2mとな
るからである。これに対し、循環ポンプの構造的要素か
ら要求されるNPSHは数m以上でらシ、それを確保で
きないとキャビチー7ヨンが発生する。これを防ぐ方法
としては、循環ポンプ据付はレベルをさらに10m近く
低くすることが考えられる。ところが現状でも循環ポン
プNPSHを大きくするため、最低レベルであるマット
階の上の階に設置しているプラントが#1とんどであり
、さらにマット階に循環ポンプを下げても高々数m程度
しか据付はレベルを低くできない。またポンプの構造上
要求NPSHを2m程度まで小さくすることは不可能で
ある。
In particular, when the reactor is shut down, the reactor pressure drops to atmospheric pressure, and the circulation pump NP8H drops to nearly 2 m as shown in FIG. In FIG. 7, the reactor pressure PI is atmospheric pressure IQ, 5 m, the hydrostatic head Δh is approximately 30 m, the pressure loss ΔP is approximately 37 m, and the saturated steam pressure PI+ at the circulation pump inlet is 1.
This is because when sm(atsOc) is assumed and NPSH is calculated, NPSH=P++Δh−ΔP−Ps=2m. On the other hand, the NPSH required by the structural elements of the circulation pump is several meters or more, and if this cannot be ensured, cavities will occur. One possible way to prevent this is to lower the level by approximately 10 m when installing a circulation pump. However, even at present, in order to increase the circulation pump NPSH, most plants are installed on the floor above the mat floor, which is the lowest level, and even if the circulation pump is lowered to the mat floor, it is only a few meters at most. However, the level of installation cannot be lowered. Further, due to the structure of the pump, it is impossible to reduce the required NPSH to about 2 m.

以上の検討に基づき、本発明の原子炉冷却材浄化装置で
は、本来は冷却材浄化以外の目的で原子炉に設けられ冷
却材循環系のひとつである残留熱除去系統のポンプ吐出
配管から、再生熱交換器入口配管に接続するバイパス配
管を設け、原子炉の停止時又は低圧時にはこの残留熱除
去ポンプにより冷却材を昇圧して、原子炉冷却材浄化装
置に送シ込み、循環ポンプのNPSHを十分に確保する
ようにしたものである。
Based on the above studies, in the reactor coolant purification system of the present invention, regeneration is performed from the pump discharge piping of the residual heat removal system, which is one of the coolant circulation systems that was originally provided in the reactor for purposes other than coolant purification. A bypass pipe is installed that connects to the heat exchanger inlet pipe, and when the reactor is stopped or the pressure is low, the residual heat removal pump increases the pressure of the coolant and sends it to the reactor coolant purification system, and the NPSH of the circulation pump is activated. This is to ensure that there is sufficient capacity.

〔発明の実施例〕 以下、本発明の原子炉冷却材浄化装置の一実施例を第1
図により説明するう原子炉圧力容器1には再循環ポンプ
2が配管によって接続され、閉ループの再循環装置が形
成されている。冷却材浄化装置の基本ループは再循環ポ
ンプ2の吸込配管から分岐し、再生熱交換器4.非再生
熱交換器5゜循環ポンプ6、ろ過脱塩装置7を経て、再
生熱交換器4の胴側を経由し、さらに給水管8を介して
原子炉圧力容器1に戻る経路である。また、再循環ポン
プ2の吸込配管から分岐し、残留熱除去ポンプ10.残
留熱除去熱交換器11を介して、再び再循環ポンプ吐出
配管に戻るループは、残留熱除去系統である。この系統
は、残留熱除去熱交換器11により、原子炉の停止時も
しくは低圧時に原子炉を冷却することを目的としている
[Embodiment of the Invention] Hereinafter, one embodiment of the reactor coolant purification device of the present invention will be described as a first embodiment.
A recirculation pump 2 is connected to a reactor pressure vessel 1 through piping to form a closed loop recirculation device. The basic loop of the coolant purification device branches off from the suction pipe of the recirculation pump 2 and connects to the regenerative heat exchanger 4. It is a route that passes through the non-regenerative heat exchanger 5, the circulation pump 6, the filtration desalination device 7, the shell side of the regenerative heat exchanger 4, and then returns to the reactor pressure vessel 1 via the water supply pipe 8. Further, the residual heat removal pump 10.branches from the suction pipe of the recirculation pump 2. The loop through the residual heat removal heat exchanger 11 and back again to the recirculation pump discharge piping is the residual heat removal system. The purpose of this system is to cool the reactor using the residual heat removal heat exchanger 11 when the reactor is shut down or when the pressure is low.

本発明では特に、残留熱除去ポンプlOの吐出配管から
再生熱交換器入口配管3に接続するバイパス配管13を
設け、またこの配管13に弁14を設置するとともに再
生熱交換器入口配管3のバイパス配管13接続点よりも
上流に弁15を設置し、流路切シ換えができるようにし
である。なお、バイパス配管13の分岐点を残留熱除去
ポンプ10の出口とせず、点線で示すように残留熱除去
熱交換器11の出口とすれば、冷却後の冷却材を原子炉
冷却材浄化装置に移送できるため、さらに有効となる。
In particular, in the present invention, a bypass pipe 13 is provided which connects the discharge pipe of the residual heat removal pump IO to the regenerative heat exchanger inlet pipe 3, and a valve 14 is installed in this pipe 13, and a bypass of the regenerative heat exchanger inlet pipe 3 is provided. A valve 15 is installed upstream of the connection point of the pipe 13 to enable flow path switching. Note that if the branch point of the bypass pipe 13 is not the outlet of the residual heat removal pump 10 but the outlet of the residual heat removal heat exchanger 11 as shown by the dotted line, the coolant after cooling can be sent to the reactor coolant purification system. It is even more effective because it can be transported.

非再生熱交換器5及び残留熱除去熱交換器11は、胴側
にそれぞれ補機冷却水を配管9゜12で通水されており
、管側を流れる高温冷却材を熱交換冷却している。
The non-regenerative heat exchanger 5 and the residual heat removal heat exchanger 11 each have auxiliary cooling water passed through pipes 9 and 12 to the shell side, and heat exchange cooling of the high-temperature coolant flowing on the pipe side. .

次に、本構成での動作を説明する。まず原子炉の停止時
及び低圧時(約10に9/−以下)には、残留熱除去系
統は本来の系統機能として原子炉の冷却運転を行なうの
で、この系統のループ内には冷却材が循環している。こ
の時には、弁15を閉じ弁14を開いて、残留熱除去ポ
ンプ吐出配管から一部の冷却材をバイパス配管13で引
き出し、その冷却材を再生熱交換器4.非再生熱交換器
5゜循環ポンプ6、ろ過脱塩装置7.再生熱交換器4胴
側のルートを経て再び原子炉圧力容器1に戻す。
Next, the operation in this configuration will be explained. First, when the reactor is shut down and at low pressure (approximately 9/- or less), the residual heat removal system performs the reactor cooling operation as its original system function, so there is no coolant in the loop of this system. It's circulating. At this time, the valve 15 is closed, the valve 14 is opened, a portion of the coolant is drawn out from the residual heat removal pump discharge pipe through the bypass pipe 13, and the coolant is transferred to the regenerative heat exchanger 4. Non-regenerative heat exchanger 5° circulation pump 6, filtration desalination device 7. It is returned to the reactor pressure vessel 1 via the route on the side of the regenerative heat exchanger 4 shell.

循環ポンプ6の吸込側には、残留熱除去ポンプ10の吐
出圧力が加わるため、NPSHが確保され、キャビテー
ション発生の心配はない。原子炉圧力が上昇して約10
Kp/m以上になった時点で、第1図の弁開閉状態が示
すように弁14を閉、弁15を開とする。この状態では
、従来の原子炉冷却材浄化装置と同様再循環ポンプ2吸
込配管がら配管3で冷却材の一部を引き出し、原子炉冷
め材浄化装置へ導く。原子炉圧力が十分に高いため、循
環ポンプのNPSHが十分に確保され、キャビテーショ
ンが発生する可能性はない。
Since the discharge pressure of the residual heat removal pump 10 is applied to the suction side of the circulation pump 6, NPSH is ensured and there is no fear of cavitation occurring. The reactor pressure rose to about 10
When the temperature exceeds Kp/m, the valve 14 is closed and the valve 15 is opened, as shown in the valve opening/closing state in FIG. In this state, similar to the conventional reactor coolant purification system, part of the coolant is drawn out from the recirculation pump 2 through the suction pipe 3 and guided to the reactor coolant purification system. Since the reactor pressure is sufficiently high, sufficient NPSH of the circulation pump is ensured, and there is no possibility of cavitation occurring.

以上の説明のように本発明の原子炉冷却材浄化装置によ
れば、原子炉圧力の全範囲において循環ポンプ6のNP
SHが十分に確保されるからキャビテーションの心配は
ない。しかも、循環ポンプ6は常に低温(約50C)の
状態で運転されるため、第6図に示すように、冷却材温
度約2800の再生熱交換器4の上流に循環ポンプロが
設置されている従来装置に比べ、ポンプの表面線量率は
約1/10となシ、保守・点検時作業員の放射線被曝量
を大幅に低減できる。また、残留熱除去ポンプ10は原
子炉事故時の炉心冷却モードで容量を決定しておシ、原
子炉停止時の冷却運転では、これよシ小さい容量で十分
である。従って現状原子炉停止時には一部余った流量を
残留熱交換器11をバイパスしている。本発明はこの残
留熱除去系統の余剰流量を原子炉冷却材浄化装置に通水
し有効に活用する効果も有している。
As described above, according to the reactor coolant purification system of the present invention, the NP of the circulation pump 6 is
Since sufficient SH is ensured, there is no need to worry about cavitation. Moreover, since the circulation pump 6 is always operated at a low temperature (approximately 50 C), as shown in FIG. The surface dose rate of the pump is about 1/10 of that of the pump, which significantly reduces radiation exposure for workers during maintenance and inspection. Further, the capacity of the residual heat removal pump 10 is determined in the core cooling mode at the time of a nuclear reactor accident, and a smaller capacity is sufficient for cooling operation at the time of reactor shutdown. Therefore, at present, when the nuclear reactor is shut down, a portion of the remaining flow rate is bypassed through the residual heat exchanger 11. The present invention also has the effect of effectively utilizing the surplus flow rate of the residual heat removal system by passing it through the reactor coolant purification system.

本発明の原子炉冷却材浄化装置の他の実施例を第2図に
よシ説明する。本実施例は第1図に示した実施例に比べ
、循環ポンプ6の設置位置をさらに下流側つまシろ過脱
塩装置7の下流に設置する構成としている。循環ポンプ
6をろ過脱塩装置7の下流にすると、さらにろ過脱塩装
置7の圧力損失が最大で約4 K9/cfI増加するが
、原子炉の停止時または低圧時であっても、この時は残
留熱除去ポンプ10の吐出圧力が加わるため、循環ポツ
プ6のNPSHが十分に確保され、キャビチーショア発
生の心配はない。本実施例によれば、ろ過説塩装置7に
よる冷却材中の放射性腐食生成物の除去率が約1/10
0であるから、循環ポンプ6を約50Cの低温冷却材側
に設置することによる効果と併せて、循環ポンプ6の表
面線量率は約1/1000 (=1/100XI/10
)に大幅に低減される。
Another embodiment of the reactor coolant purification system of the present invention will be described with reference to FIG. Compared to the embodiment shown in FIG. 1, this embodiment has a configuration in which the circulation pump 6 is installed further downstream of the filtration and demineralization device 7 on the downstream side. If the circulation pump 6 is placed downstream of the filtration and demineralization device 7, the pressure loss of the filtration and demineralization device 7 will increase by a maximum of approximately 4 K9/cfI, but even when the reactor is shut down or at low pressure, Since the discharge pressure of the residual heat removal pump 10 is applied, a sufficient NPSH of the circulation pop 6 is ensured, and there is no fear of cavity shore occurring. According to this embodiment, the removal rate of radioactive corrosion products in the coolant by the filtration salt theory device 7 is approximately 1/10.
0, the surface dose rate of the circulation pump 6 is approximately 1/1000 (= 1/100XI/10
) is significantly reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によ′れば、循環ポンプを冷却材の低温側に設置
できるので、循1ポンプに対する放射性生成物の付着量
を大幅に低減可能であり、これにより循環ポンプの保守
・点検時作業員の放射線被曝低減に大きな効果が得られ
る。しかも原子炉の全運転範囲にわたって循環ポンプの
NPSHを十分に確保できる効果がある。
According to the present invention, since the circulation pump can be installed on the low temperature side of the coolant, it is possible to significantly reduce the amount of radioactive products attached to the circulation pump. This has a significant effect on reducing radiation exposure. Moreover, there is an effect of ensuring sufficient NPSH of the circulation pump over the entire operating range of the nuclear reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の原子炉冷却材浄化装置の実
施例の系統図、第3図及び第4図は従来の原子炉冷却材
浄化装置の系統図、第5図は先に提案された原子炉冷却
材浄化装置の系統図、第6図は冷却材温度と表面線量率
との関係を示す特性図、第7図は循環ポンプNFSHの
概略算出図でおる。 1・・・原子炉圧力容器、2・・・再循環ポンプ、3・
・・再生熱交換器入口配管、4・・・再生熱交換器、5
・・・非再生熱交換器、6・・・循環ポンプ、7・・・
ろ過脱塩装置、8・・・給水管、9,12.19・・・
配管、1o・・・残留熱除去ポンプ、11・・・残留熱
除去熱交換器、13・・・バイパス配管、14,15,
20.21・・・弁、16・・・混床式脱塩装置、17
・・・減圧弁、18・・・補助ポンプ。
Figures 1 and 2 are system diagrams of an embodiment of the reactor coolant purification system of the present invention, Figures 3 and 4 are system diagrams of a conventional reactor coolant purification system, and Figure 5 is a system diagram of an embodiment of the reactor coolant purification system of the present invention. A system diagram of the proposed reactor coolant purification system, Fig. 6 is a characteristic diagram showing the relationship between coolant temperature and surface dose rate, and Fig. 7 is a schematic calculation diagram of the circulation pump NFSH. 1...Reactor pressure vessel, 2...Recirculation pump, 3.
... Regenerative heat exchanger inlet piping, 4... Regenerative heat exchanger, 5
...Non-regenerative heat exchanger, 6...Circulation pump, 7...
Filtration desalination equipment, 8... Water supply pipe, 9, 12. 19...
Piping, 1o... Residual heat removal pump, 11... Residual heat removal heat exchanger, 13... Bypass piping, 14, 15,
20.21... Valve, 16... Mixed bed desalination equipment, 17
...Pressure reducing valve, 18...Auxiliary pump.

Claims (1)

【特許請求の範囲】 1、原子炉から冷却材の一部を取出し熱交換器で冷却し
た後にポンプで昇圧してろ過脱塩装置により浄化し再び
原子炉に戻す原子炉冷却材浄化装置において、原子炉の
停止時または低圧時にも運転され冷却材を循環させる残
留熱除去系の残留熱除去ポンプ下流から前記熱交換器上
流にバイパス配管を設け、浄化系ポンプの押込圧力が不
足したときに残留熱除去ポンプの圧力で加圧することを
特徴とする原子炉冷却材浄化装置。 2、特許請求の範囲第1項において、前記浄化系ポンプ
をろ過脱塩装置の下流に設置することを特徴とする原子
炉冷却材浄化装置。 3、特許請求の範囲第1項または第2項において、バイ
パス配管を残留熱除去ポンプ下流に配置された残留熱除
去熱交換器の下流に接続し、そこから加圧を受けること
を特徴とする原子炉冷却材浄化装置。
[Scope of Claims] 1. A reactor coolant purification device that takes a part of the coolant from the reactor, cools it in a heat exchanger, increases the pressure with a pump, purifies it with a filtration desalination device, and returns it to the reactor, Bypass piping is provided from downstream of the residual heat removal pump of the residual heat removal system that circulates coolant even when the reactor is stopped or at low pressure, and upstream of the heat exchanger, so that when the pushing pressure of the purification system pump is insufficient, residual heat removal A nuclear reactor coolant purification system characterized by pressurization using the pressure of a heat removal pump. 2. A reactor coolant purification device according to claim 1, wherein the purification system pump is installed downstream of a filtration desalination device. 3. In claim 1 or 2, the bypass pipe is connected downstream of a residual heat removal heat exchanger disposed downstream of the residual heat removal pump, and is pressurized therefrom. Reactor coolant purification equipment.
JP21098884A 1984-10-08 1984-10-08 Purifier for coolant of nuclear reactor Pending JPS6189591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21098884A JPS6189591A (en) 1984-10-08 1984-10-08 Purifier for coolant of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21098884A JPS6189591A (en) 1984-10-08 1984-10-08 Purifier for coolant of nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6189591A true JPS6189591A (en) 1986-05-07

Family

ID=16598454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21098884A Pending JPS6189591A (en) 1984-10-08 1984-10-08 Purifier for coolant of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6189591A (en)

Similar Documents

Publication Publication Date Title
US4187146A (en) Reduction of radioactive emissions from nuclear-reactor plant
JPS6323519B2 (en)
US4666662A (en) Steam generator recirculating system for a pressurized water nuclear reactor
JPS6189591A (en) Purifier for coolant of nuclear reactor
US4216057A (en) Purifying plant for water to be vaporized in a steam generator of a nuclear reactor
RU2150153C1 (en) Emergency feeding and borating system for pressurized-water reactor and its operation process
JPS62190496A (en) Purifier for coolant of nuclear reactor
JP2001091684A (en) Fuel pool cooling equipment
JPS62215894A (en) Purification system of coolant for nuclear reactor
JPS5941155B2 (en) Reactor shutdown cooling system
JP2895267B2 (en) Reactor water purification system
JPS5882193A (en) Device for cleaning residual heat removal pipeline
JPS61218994A (en) Purifier for water for nuclear reactor
JPH029720B2 (en)
JPS60192295A (en) Cooling device for nuclear reactor
JPH0259699A (en) Operating method for nuclear reactor apparatus cooling equipment
JP2563506B2 (en) Reactor coolant purification equipment
JPS58201094A (en) Reactor coolant cleanup system
JPS61207998A (en) Nuclear power plant
JPS60201290A (en) Cooling facility on stoppage of nuclear reactor
JPS60196592A (en) Condensate feedwater recirculating system
JPH07318687A (en) Coolant purification system for reactor
JPH0434119B2 (en)
JPS58143298A (en) Method of protecting corrosion of feedwater pipe for reactor water
JPS6319596A (en) Pressure-suppression chamber pool-water system of nuclear power plant